xref: /netbsd-src/sys/dev/pci/if_vr.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: if_vr.c,v 1.76 2006/06/17 23:34:27 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1997, 1998
42  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Bill Paul.
55  * 4. Neither the name of the author nor the names of any co-contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69  * THE POSSIBILITY OF SUCH DAMAGE.
70  *
71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72  */
73 
74 /*
75  * VIA Rhine fast ethernet PCI NIC driver
76  *
77  * Supports various network adapters based on the VIA Rhine
78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
79  * Datasheets are available at http://www.via.com.tw.
80  *
81  * Written by Bill Paul <wpaul@ctr.columbia.edu>
82  * Electrical Engineering Department
83  * Columbia University, New York City
84  */
85 
86 /*
87  * The VIA Rhine controllers are similar in some respects to the
88  * the DEC tulip chips, except less complicated. The controller
89  * uses an MII bus and an external physical layer interface. The
90  * receiver has a one entry perfect filter and a 64-bit hash table
91  * multicast filter. Transmit and receive descriptors are similar
92  * to the tulip.
93  *
94  * The Rhine has a serious flaw in its transmit DMA mechanism:
95  * transmit buffers must be longword aligned. Unfortunately,
96  * the kernel doesn't guarantee that mbufs will be filled in starting
97  * at longword boundaries, so we have to do a buffer copy before
98  * transmission.
99  *
100  * Apparently, the receive DMA mechanism also has the same flaw.  This
101  * means that on systems with struct alignment requirements, incoming
102  * frames must be copied to a new buffer which shifts the data forward
103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
104  */
105 
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.76 2006/06/17 23:34:27 christos Exp $");
108 
109 #include "rnd.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/callout.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/device.h>
120 
121 #if NRND > 0
122 #include <sys/rnd.h>
123 #endif
124 
125 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
126 
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_media.h>
131 #include <net/if_ether.h>
132 
133 #include "bpfilter.h"
134 #if NBPFILTER > 0
135 #include <net/bpf.h>
136 #endif
137 
138 #include <machine/bus.h>
139 #include <machine/intr.h>
140 #include <machine/endian.h>
141 
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144 #include <dev/mii/mii_bitbang.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149 
150 #include <dev/pci/if_vrreg.h>
151 
152 #define	VR_USEIOSPACE
153 
154 /*
155  * Various supported device vendors/types and their names.
156  */
157 static struct vr_type {
158 	pci_vendor_id_t		vr_vid;
159 	pci_product_id_t	vr_did;
160 	const char		*vr_name;
161 } vr_devs[] = {
162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
163 		"VIA VT3043 (Rhine) 10/100" },
164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
165 		"VIA VT6102 (Rhine II) 10/100" },
166 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
167 		"VIA VT6105 (Rhine III) 10/100" },
168 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
169 		"VIA VT86C100A (Rhine-II) 10/100" },
170 	{ 0, 0, NULL }
171 };
172 
173 /*
174  * Transmit descriptor list size.
175  */
176 #define	VR_NTXDESC		64
177 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
178 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
179 
180 /*
181  * Receive descriptor list size.
182  */
183 #define	VR_NRXDESC		64
184 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
185 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
186 
187 /*
188  * Control data structres that are DMA'd to the Rhine chip.  We allocate
189  * them in a single clump that maps to a single DMA segment to make several
190  * things easier.
191  *
192  * Note that since we always copy outgoing packets to aligned transmit
193  * buffers, we can reduce the transmit descriptors to one per packet.
194  */
195 struct vr_control_data {
196 	struct vr_desc		vr_txdescs[VR_NTXDESC];
197 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
198 };
199 
200 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
201 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
202 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
203 
204 /*
205  * Software state of transmit and receive descriptors.
206  */
207 struct vr_descsoft {
208 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
209 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
210 };
211 
212 struct vr_softc {
213 	struct device		vr_dev;		/* generic device glue */
214 	void			*vr_ih;		/* interrupt cookie */
215 	void			*vr_ats;	/* shutdown hook */
216 	bus_space_tag_t		vr_bst;		/* bus space tag */
217 	bus_space_handle_t	vr_bsh;		/* bus space handle */
218 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
219 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
220 	pcitag_t		vr_tag;		/* PCI tag */
221 	struct ethercom		vr_ec;		/* Ethernet common info */
222 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
223 	struct mii_data		vr_mii;		/* MII/media info */
224 
225 	u_int8_t		vr_revid;	/* Rhine chip revision */
226 
227 	struct callout		vr_tick_ch;	/* tick callout */
228 
229 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
230 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
231 
232 	/*
233 	 * Software state for transmit and receive descriptors.
234 	 */
235 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
236 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
237 
238 	/*
239 	 * Control data structures.
240 	 */
241 	struct vr_control_data	*vr_control_data;
242 
243 	int	vr_txpending;		/* number of TX requests pending */
244 	int	vr_txdirty;		/* first dirty TX descriptor */
245 	int	vr_txlast;		/* last used TX descriptor */
246 
247 	int	vr_rxptr;		/* next ready RX descriptor */
248 
249 	u_int32_t	vr_save_iobase;
250 	u_int32_t	vr_save_membase;
251 	u_int32_t	vr_save_irq;
252 
253 #if NRND > 0
254 	rndsource_element_t rnd_source;	/* random source */
255 #endif
256 };
257 
258 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
259 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
260 
261 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
262 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
263 
264 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
265 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
266 
267 #define	VR_CDTXSYNC(sc, x, ops)						\
268 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
269 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
270 
271 #define	VR_CDRXSYNC(sc, x, ops)						\
272 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
273 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
274 
275 /*
276  * Note we rely on MCLBYTES being a power of two below.
277  */
278 #define	VR_INIT_RXDESC(sc, i)						\
279 do {									\
280 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
281 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
282 									\
283 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
284 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
285 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
286 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
287 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
288 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
289 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
290 } while (/* CONSTCOND */ 0)
291 
292 /*
293  * register space access macros
294  */
295 #define	CSR_WRITE_4(sc, reg, val)					\
296 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
297 #define	CSR_WRITE_2(sc, reg, val)					\
298 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
299 #define	CSR_WRITE_1(sc, reg, val)					\
300 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
301 
302 #define	CSR_READ_4(sc, reg)						\
303 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
304 #define	CSR_READ_2(sc, reg)						\
305 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
306 #define	CSR_READ_1(sc, reg)						\
307 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
308 
309 #define	VR_TIMEOUT		1000
310 
311 static int	vr_add_rxbuf(struct vr_softc *, int);
312 
313 static void	vr_rxeof(struct vr_softc *);
314 static void	vr_rxeoc(struct vr_softc *);
315 static void	vr_txeof(struct vr_softc *);
316 static int	vr_intr(void *);
317 static void	vr_start(struct ifnet *);
318 static int	vr_ioctl(struct ifnet *, u_long, caddr_t);
319 static int	vr_init(struct ifnet *);
320 static void	vr_stop(struct ifnet *, int);
321 static void	vr_rxdrain(struct vr_softc *);
322 static void	vr_watchdog(struct ifnet *);
323 static void	vr_tick(void *);
324 
325 static int	vr_ifmedia_upd(struct ifnet *);
326 static void	vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
327 
328 static int	vr_mii_readreg(struct device *, int, int);
329 static void	vr_mii_writereg(struct device *, int, int, int);
330 static void	vr_mii_statchg(struct device *);
331 
332 static void	vr_setmulti(struct vr_softc *);
333 static void	vr_reset(struct vr_softc *);
334 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, void *, pcireg_t);
335 
336 int	vr_copy_small = 0;
337 
338 #define	VR_SETBIT(sc, reg, x)				\
339 	CSR_WRITE_1(sc, reg,				\
340 	    CSR_READ_1(sc, reg) | (x))
341 
342 #define	VR_CLRBIT(sc, reg, x)				\
343 	CSR_WRITE_1(sc, reg,				\
344 	    CSR_READ_1(sc, reg) & ~(x))
345 
346 #define	VR_SETBIT16(sc, reg, x)				\
347 	CSR_WRITE_2(sc, reg,				\
348 	    CSR_READ_2(sc, reg) | (x))
349 
350 #define	VR_CLRBIT16(sc, reg, x)				\
351 	CSR_WRITE_2(sc, reg,				\
352 	    CSR_READ_2(sc, reg) & ~(x))
353 
354 #define	VR_SETBIT32(sc, reg, x)				\
355 	CSR_WRITE_4(sc, reg,				\
356 	    CSR_READ_4(sc, reg) | (x))
357 
358 #define	VR_CLRBIT32(sc, reg, x)				\
359 	CSR_WRITE_4(sc, reg,				\
360 	    CSR_READ_4(sc, reg) & ~(x))
361 
362 /*
363  * MII bit-bang glue.
364  */
365 static u_int32_t vr_mii_bitbang_read(struct device *);
366 static void	vr_mii_bitbang_write(struct device *, u_int32_t);
367 
368 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
369 	vr_mii_bitbang_read,
370 	vr_mii_bitbang_write,
371 	{
372 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
373 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
374 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
375 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
376 		0,			/* MII_BIT_DIR_PHY_HOST */
377 	}
378 };
379 
380 static u_int32_t
381 vr_mii_bitbang_read(struct device *self)
382 {
383 	struct vr_softc *sc = (void *) self;
384 
385 	return (CSR_READ_1(sc, VR_MIICMD));
386 }
387 
388 static void
389 vr_mii_bitbang_write(struct device *self, u_int32_t val)
390 {
391 	struct vr_softc *sc = (void *) self;
392 
393 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
394 }
395 
396 /*
397  * Read an PHY register through the MII.
398  */
399 static int
400 vr_mii_readreg(struct device *self, int phy, int reg)
401 {
402 	struct vr_softc *sc = (void *) self;
403 
404 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
405 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
406 }
407 
408 /*
409  * Write to a PHY register through the MII.
410  */
411 static void
412 vr_mii_writereg(struct device *self, int phy, int reg, int val)
413 {
414 	struct vr_softc *sc = (void *) self;
415 
416 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
417 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
418 }
419 
420 static void
421 vr_mii_statchg(struct device *self)
422 {
423 	struct vr_softc *sc = (struct vr_softc *)self;
424 
425 	/*
426 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
427 	 * register, we first have to put the transmit and/or receive logic
428 	 * in the idle state.
429 	 */
430 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
431 
432 	if (sc->vr_mii.mii_media_active & IFM_FDX)
433 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
434 	else
435 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
436 
437 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
438 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
439 }
440 
441 #define	vr_calchash(addr) \
442 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
443 
444 /*
445  * Program the 64-bit multicast hash filter.
446  */
447 static void
448 vr_setmulti(struct vr_softc *sc)
449 {
450 	struct ifnet *ifp;
451 	int h = 0;
452 	u_int32_t hashes[2] = { 0, 0 };
453 	struct ether_multistep step;
454 	struct ether_multi *enm;
455 	int mcnt = 0;
456 	u_int8_t rxfilt;
457 
458 	ifp = &sc->vr_ec.ec_if;
459 
460 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
461 
462 	if (ifp->if_flags & IFF_PROMISC) {
463 allmulti:
464 		ifp->if_flags |= IFF_ALLMULTI;
465 		rxfilt |= VR_RXCFG_RX_MULTI;
466 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
467 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
468 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
469 		return;
470 	}
471 
472 	/* first, zot all the existing hash bits */
473 	CSR_WRITE_4(sc, VR_MAR0, 0);
474 	CSR_WRITE_4(sc, VR_MAR1, 0);
475 
476 	/* now program new ones */
477 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
478 	while (enm != NULL) {
479 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
480 		    ETHER_ADDR_LEN) != 0)
481 			goto allmulti;
482 
483 		h = vr_calchash(enm->enm_addrlo);
484 
485 		if (h < 32)
486 			hashes[0] |= (1 << h);
487 		else
488 			hashes[1] |= (1 << (h - 32));
489 		ETHER_NEXT_MULTI(step, enm);
490 		mcnt++;
491 	}
492 
493 	ifp->if_flags &= ~IFF_ALLMULTI;
494 
495 	if (mcnt)
496 		rxfilt |= VR_RXCFG_RX_MULTI;
497 	else
498 		rxfilt &= ~VR_RXCFG_RX_MULTI;
499 
500 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
501 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
502 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
503 }
504 
505 static void
506 vr_reset(struct vr_softc *sc)
507 {
508 	int i;
509 
510 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
511 
512 	for (i = 0; i < VR_TIMEOUT; i++) {
513 		DELAY(10);
514 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
515 			break;
516 	}
517 	if (i == VR_TIMEOUT) {
518 		if (sc->vr_revid < REV_ID_VT3065_A) {
519 			printf("%s: reset never completed!\n",
520 			    sc->vr_dev.dv_xname);
521 		} else {
522 			/* Use newer force reset command */
523 			printf("%s: using force reset command.\n",
524 			    sc->vr_dev.dv_xname);
525 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
526 		}
527 	}
528 
529 	/* Wait a little while for the chip to get its brains in order. */
530 	DELAY(1000);
531 }
532 
533 /*
534  * Initialize an RX descriptor and attach an MBUF cluster.
535  * Note: the length fields are only 11 bits wide, which means the
536  * largest size we can specify is 2047. This is important because
537  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
538  * overflow the field and make a mess.
539  */
540 static int
541 vr_add_rxbuf(struct vr_softc *sc, int i)
542 {
543 	struct vr_descsoft *ds = VR_DSRX(sc, i);
544 	struct mbuf *m_new;
545 	int error;
546 
547 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
548 	if (m_new == NULL)
549 		return (ENOBUFS);
550 
551 	MCLGET(m_new, M_DONTWAIT);
552 	if ((m_new->m_flags & M_EXT) == 0) {
553 		m_freem(m_new);
554 		return (ENOBUFS);
555 	}
556 
557 	if (ds->ds_mbuf != NULL)
558 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
559 
560 	ds->ds_mbuf = m_new;
561 
562 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
563 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
564 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
565 	if (error) {
566 		printf("%s: unable to load rx DMA map %d, error = %d\n",
567 		    sc->vr_dev.dv_xname, i, error);
568 		panic("vr_add_rxbuf");		/* XXX */
569 	}
570 
571 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
572 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
573 
574 	VR_INIT_RXDESC(sc, i);
575 
576 	return (0);
577 }
578 
579 /*
580  * A frame has been uploaded: pass the resulting mbuf chain up to
581  * the higher level protocols.
582  */
583 static void
584 vr_rxeof(struct vr_softc *sc)
585 {
586 	struct mbuf *m;
587 	struct ifnet *ifp;
588 	struct vr_desc *d;
589 	struct vr_descsoft *ds;
590 	int i, total_len;
591 	u_int32_t rxstat;
592 
593 	ifp = &sc->vr_ec.ec_if;
594 
595 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
596 		d = VR_CDRX(sc, i);
597 		ds = VR_DSRX(sc, i);
598 
599 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
600 
601 		rxstat = le32toh(d->vr_status);
602 
603 		if (rxstat & VR_RXSTAT_OWN) {
604 			/*
605 			 * We have processed all of the receive buffers.
606 			 */
607 			break;
608 		}
609 
610 		/*
611 		 * If an error occurs, update stats, clear the
612 		 * status word and leave the mbuf cluster in place:
613 		 * it should simply get re-used next time this descriptor
614 		 * comes up in the ring.
615 		 */
616 		if (rxstat & VR_RXSTAT_RXERR) {
617 			const char *errstr;
618 
619 			ifp->if_ierrors++;
620 			switch (rxstat & 0x000000FF) {
621 			case VR_RXSTAT_CRCERR:
622 				errstr = "crc error";
623 				break;
624 			case VR_RXSTAT_FRAMEALIGNERR:
625 				errstr = "frame alignment error";
626 				break;
627 			case VR_RXSTAT_FIFOOFLOW:
628 				errstr = "FIFO overflow";
629 				break;
630 			case VR_RXSTAT_GIANT:
631 				errstr = "received giant packet";
632 				break;
633 			case VR_RXSTAT_RUNT:
634 				errstr = "received runt packet";
635 				break;
636 			case VR_RXSTAT_BUSERR:
637 				errstr = "system bus error";
638 				break;
639 			case VR_RXSTAT_BUFFERR:
640 				errstr = "rx buffer error";
641 				break;
642 			default:
643 				errstr = "unknown rx error";
644 				break;
645 			}
646 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
647 			    errstr);
648 
649 			VR_INIT_RXDESC(sc, i);
650 
651 			continue;
652 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
653 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
654 			/*
655 			 * This driver expects to receive whole packets every
656 			 * time.  In case we receive a fragment that is not
657 			 * a complete packet, we discard it.
658 			 */
659 			ifp->if_ierrors++;
660 
661 			printf("%s: receive error: incomplete frame; "
662 			       "size = %d, status = 0x%x\n",
663 			       sc->vr_dev.dv_xname,
664 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
665 
666 			VR_INIT_RXDESC(sc, i);
667 
668 			continue;
669 		}
670 
671 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
672 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
673 
674 		/* No errors; receive the packet. */
675 		total_len = VR_RXBYTES(le32toh(d->vr_status));
676 #ifdef DIAGNOSTIC
677 		if (total_len == 0) {
678 			/*
679 			 * If we receive a zero-length packet, we probably
680 			 * missed to handle an error condition above.
681 			 * Discard it to avoid a later crash.
682 			 */
683 			ifp->if_ierrors++;
684 
685 			printf("%s: receive error: zero-length packet; "
686 			       "status = 0x%x\n",
687 			       sc->vr_dev.dv_xname, rxstat);
688 
689 			VR_INIT_RXDESC(sc, i);
690 
691 			continue;
692 		}
693 #endif
694 
695 		/*
696 		 * The Rhine chip includes the CRC with every packet.
697 		 * Trim it off here.
698 		 */
699 		total_len -= ETHER_CRC_LEN;
700 
701 #ifdef __NO_STRICT_ALIGNMENT
702 		/*
703 		 * If the packet is small enough to fit in a
704 		 * single header mbuf, allocate one and copy
705 		 * the data into it.  This greatly reduces
706 		 * memory consumption when we receive lots
707 		 * of small packets.
708 		 *
709 		 * Otherwise, we add a new buffer to the receive
710 		 * chain.  If this fails, we drop the packet and
711 		 * recycle the old buffer.
712 		 */
713 		if (vr_copy_small != 0 && total_len <= MHLEN) {
714 			MGETHDR(m, M_DONTWAIT, MT_DATA);
715 			if (m == NULL)
716 				goto dropit;
717 			memcpy(mtod(m, caddr_t),
718 			    mtod(ds->ds_mbuf, caddr_t), total_len);
719 			VR_INIT_RXDESC(sc, i);
720 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
721 			    ds->ds_dmamap->dm_mapsize,
722 			    BUS_DMASYNC_PREREAD);
723 		} else {
724 			m = ds->ds_mbuf;
725 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
726  dropit:
727 				ifp->if_ierrors++;
728 				VR_INIT_RXDESC(sc, i);
729 				bus_dmamap_sync(sc->vr_dmat,
730 				    ds->ds_dmamap, 0,
731 				    ds->ds_dmamap->dm_mapsize,
732 				    BUS_DMASYNC_PREREAD);
733 				continue;
734 			}
735 		}
736 #else
737 		/*
738 		 * The Rhine's packet buffers must be 4-byte aligned.
739 		 * But this means that the data after the Ethernet header
740 		 * is misaligned.  We must allocate a new buffer and
741 		 * copy the data, shifted forward 2 bytes.
742 		 */
743 		MGETHDR(m, M_DONTWAIT, MT_DATA);
744 		if (m == NULL) {
745  dropit:
746 			ifp->if_ierrors++;
747 			VR_INIT_RXDESC(sc, i);
748 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
749 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
750 			continue;
751 		}
752 		if (total_len > (MHLEN - 2)) {
753 			MCLGET(m, M_DONTWAIT);
754 			if ((m->m_flags & M_EXT) == 0) {
755 				m_freem(m);
756 				goto dropit;
757 			}
758 		}
759 		m->m_data += 2;
760 
761 		/*
762 		 * Note that we use clusters for incoming frames, so the
763 		 * buffer is virtually contiguous.
764 		 */
765 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
766 		    total_len);
767 
768 		/* Allow the receive descriptor to continue using its mbuf. */
769 		VR_INIT_RXDESC(sc, i);
770 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
771 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
772 #endif /* __NO_STRICT_ALIGNMENT */
773 
774 		ifp->if_ipackets++;
775 		m->m_pkthdr.rcvif = ifp;
776 		m->m_pkthdr.len = m->m_len = total_len;
777 #if NBPFILTER > 0
778 		/*
779 		 * Handle BPF listeners. Let the BPF user see the packet, but
780 		 * don't pass it up to the ether_input() layer unless it's
781 		 * a broadcast packet, multicast packet, matches our ethernet
782 		 * address or the interface is in promiscuous mode.
783 		 */
784 		if (ifp->if_bpf)
785 			bpf_mtap(ifp->if_bpf, m);
786 #endif
787 		/* Pass it on. */
788 		(*ifp->if_input)(ifp, m);
789 	}
790 
791 	/* Update the receive pointer. */
792 	sc->vr_rxptr = i;
793 }
794 
795 void
796 vr_rxeoc(struct vr_softc *sc)
797 {
798 
799 	vr_rxeof(sc);
800 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
801 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
802 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
803 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
804 }
805 
806 /*
807  * A frame was downloaded to the chip. It's safe for us to clean up
808  * the list buffers.
809  */
810 static void
811 vr_txeof(struct vr_softc *sc)
812 {
813 	struct ifnet *ifp = &sc->vr_ec.ec_if;
814 	struct vr_desc *d;
815 	struct vr_descsoft *ds;
816 	u_int32_t txstat;
817 	int i;
818 
819 	ifp->if_flags &= ~IFF_OACTIVE;
820 
821 	/*
822 	 * Go through our tx list and free mbufs for those
823 	 * frames that have been transmitted.
824 	 */
825 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
826 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
827 		d = VR_CDTX(sc, i);
828 		ds = VR_DSTX(sc, i);
829 
830 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
831 
832 		txstat = le32toh(d->vr_status);
833 		if (txstat & VR_TXSTAT_OWN)
834 			break;
835 
836 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
837 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
838 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
839 		m_freem(ds->ds_mbuf);
840 		ds->ds_mbuf = NULL;
841 
842 		if (txstat & VR_TXSTAT_ERRSUM) {
843 			ifp->if_oerrors++;
844 			if (txstat & VR_TXSTAT_DEFER)
845 				ifp->if_collisions++;
846 			if (txstat & VR_TXSTAT_LATECOLL)
847 				ifp->if_collisions++;
848 		}
849 
850 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
851 		ifp->if_opackets++;
852 	}
853 
854 	/* Update the dirty transmit buffer pointer. */
855 	sc->vr_txdirty = i;
856 
857 	/*
858 	 * Cancel the watchdog timer if there are no pending
859 	 * transmissions.
860 	 */
861 	if (sc->vr_txpending == 0)
862 		ifp->if_timer = 0;
863 }
864 
865 static int
866 vr_intr(void *arg)
867 {
868 	struct vr_softc *sc;
869 	struct ifnet *ifp;
870 	u_int16_t status;
871 	int handled = 0, dotx = 0;
872 
873 	sc = arg;
874 	ifp = &sc->vr_ec.ec_if;
875 
876 	/* Suppress unwanted interrupts. */
877 	if ((ifp->if_flags & IFF_UP) == 0) {
878 		vr_stop(ifp, 1);
879 		return (0);
880 	}
881 
882 	/* Disable interrupts. */
883 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
884 
885 	for (;;) {
886 		status = CSR_READ_2(sc, VR_ISR);
887 		if (status)
888 			CSR_WRITE_2(sc, VR_ISR, status);
889 
890 		if ((status & VR_INTRS) == 0)
891 			break;
892 
893 		handled = 1;
894 
895 #if NRND > 0
896 		if (RND_ENABLED(&sc->rnd_source))
897 			rnd_add_uint32(&sc->rnd_source, status);
898 #endif
899 
900 		if (status & VR_ISR_RX_OK)
901 			vr_rxeof(sc);
902 
903 		if (status &
904 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
905 		     VR_ISR_RX_DROPPED))
906 			vr_rxeoc(sc);
907 
908 		if (status & VR_ISR_TX_OK) {
909 			dotx = 1;
910 			vr_txeof(sc);
911 		}
912 
913 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
914 			if (status & VR_ISR_TX_UNDERRUN)
915 				printf("%s: transmit underrun\n",
916 				    sc->vr_dev.dv_xname);
917 			if (status & VR_ISR_TX_ABRT)
918 				printf("%s: transmit aborted\n",
919 				    sc->vr_dev.dv_xname);
920 			ifp->if_oerrors++;
921 			dotx = 1;
922 			vr_txeof(sc);
923 			if (sc->vr_txpending) {
924 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
925 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
926 			}
927 			/*
928 			 * Unfortunately many cards get stuck after
929 			 * aborted transmits, so we reset them.
930 			 */
931 			if (status & VR_ISR_TX_ABRT) {
932 				printf("%s: restarting\n", sc->vr_dev.dv_xname);
933 				dotx = 0;
934 				(void) vr_init(ifp);
935 			}
936 		}
937 
938 		if (status & VR_ISR_BUSERR) {
939 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
940 			/* vr_init() calls vr_start() */
941 			dotx = 0;
942 			(void) vr_init(ifp);
943 		}
944 	}
945 
946 	/* Re-enable interrupts. */
947 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
948 
949 	if (dotx)
950 		vr_start(ifp);
951 
952 	return (handled);
953 }
954 
955 /*
956  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
957  * to the mbuf data regions directly in the transmit lists. We also save a
958  * copy of the pointers since the transmit list fragment pointers are
959  * physical addresses.
960  */
961 static void
962 vr_start(struct ifnet *ifp)
963 {
964 	struct vr_softc *sc = ifp->if_softc;
965 	struct mbuf *m0, *m;
966 	struct vr_desc *d;
967 	struct vr_descsoft *ds;
968 	int error, firsttx, nexttx, opending;
969 
970 	/*
971 	 * Remember the previous txpending and the first transmit
972 	 * descriptor we use.
973 	 */
974 	opending = sc->vr_txpending;
975 	firsttx = VR_NEXTTX(sc->vr_txlast);
976 
977 	/*
978 	 * Loop through the send queue, setting up transmit descriptors
979 	 * until we drain the queue, or use up all available transmit
980 	 * descriptors.
981 	 */
982 	while (sc->vr_txpending < VR_NTXDESC) {
983 		/*
984 		 * Grab a packet off the queue.
985 		 */
986 		IFQ_POLL(&ifp->if_snd, m0);
987 		if (m0 == NULL)
988 			break;
989 		m = NULL;
990 
991 		/*
992 		 * Get the next available transmit descriptor.
993 		 */
994 		nexttx = VR_NEXTTX(sc->vr_txlast);
995 		d = VR_CDTX(sc, nexttx);
996 		ds = VR_DSTX(sc, nexttx);
997 
998 		/*
999 		 * Load the DMA map.  If this fails, the packet didn't
1000 		 * fit in one DMA segment, and we need to copy.  Note,
1001 		 * the packet must also be aligned.
1002 		 * if the packet is too small, copy it too, so we're sure
1003 		 * we have enough room for the pad buffer.
1004 		 */
1005 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1006 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1007 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1008 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1009 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1010 			if (m == NULL) {
1011 				printf("%s: unable to allocate Tx mbuf\n",
1012 				    sc->vr_dev.dv_xname);
1013 				break;
1014 			}
1015 			if (m0->m_pkthdr.len > MHLEN) {
1016 				MCLGET(m, M_DONTWAIT);
1017 				if ((m->m_flags & M_EXT) == 0) {
1018 					printf("%s: unable to allocate Tx "
1019 					    "cluster\n", sc->vr_dev.dv_xname);
1020 					m_freem(m);
1021 					break;
1022 				}
1023 			}
1024 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1025 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1026 			/*
1027 			 * The Rhine doesn't auto-pad, so we have to do this
1028 			 * ourselves.
1029 			 */
1030 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1031 				memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
1032 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1033 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1034 			}
1035 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1036 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1037 			if (error) {
1038 				m_freem(m);
1039 				printf("%s: unable to load Tx buffer, "
1040 				    "error = %d\n", sc->vr_dev.dv_xname, error);
1041 				break;
1042 			}
1043 		}
1044 
1045 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1046 		if (m != NULL) {
1047 			m_freem(m0);
1048 			m0 = m;
1049 		}
1050 
1051 		/* Sync the DMA map. */
1052 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1053 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1054 
1055 		/*
1056 		 * Store a pointer to the packet so we can free it later.
1057 		 */
1058 		ds->ds_mbuf = m0;
1059 
1060 #if NBPFILTER > 0
1061 		/*
1062 		 * If there's a BPF listener, bounce a copy of this frame
1063 		 * to him.
1064 		 */
1065 		if (ifp->if_bpf)
1066 			bpf_mtap(ifp->if_bpf, m0);
1067 #endif
1068 
1069 		/*
1070 		 * Fill in the transmit descriptor.
1071 		 */
1072 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1073 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1074 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1075 
1076 		/*
1077 		 * If this is the first descriptor we're enqueuing,
1078 		 * don't give it to the Rhine yet.  That could cause
1079 		 * a race condition.  We'll do it below.
1080 		 */
1081 		if (nexttx == firsttx)
1082 			d->vr_status = 0;
1083 		else
1084 			d->vr_status = htole32(VR_TXSTAT_OWN);
1085 
1086 		VR_CDTXSYNC(sc, nexttx,
1087 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1088 
1089 		/* Advance the tx pointer. */
1090 		sc->vr_txpending++;
1091 		sc->vr_txlast = nexttx;
1092 	}
1093 
1094 	if (sc->vr_txpending == VR_NTXDESC) {
1095 		/* No more slots left; notify upper layer. */
1096 		ifp->if_flags |= IFF_OACTIVE;
1097 	}
1098 
1099 	if (sc->vr_txpending != opending) {
1100 		/*
1101 		 * We enqueued packets.  If the transmitter was idle,
1102 		 * reset the txdirty pointer.
1103 		 */
1104 		if (opending == 0)
1105 			sc->vr_txdirty = firsttx;
1106 
1107 		/*
1108 		 * Cause a transmit interrupt to happen on the
1109 		 * last packet we enqueued.
1110 		 */
1111 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1112 		VR_CDTXSYNC(sc, sc->vr_txlast,
1113 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1114 
1115 		/*
1116 		 * The entire packet chain is set up.  Give the
1117 		 * first descriptor to the Rhine now.
1118 		 */
1119 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1120 		VR_CDTXSYNC(sc, firsttx,
1121 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122 
1123 		/* Start the transmitter. */
1124 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1125 
1126 		/* Set the watchdog timer in case the chip flakes out. */
1127 		ifp->if_timer = 5;
1128 	}
1129 }
1130 
1131 /*
1132  * Initialize the interface.  Must be called at splnet.
1133  */
1134 static int
1135 vr_init(struct ifnet *ifp)
1136 {
1137 	struct vr_softc *sc = ifp->if_softc;
1138 	struct vr_desc *d;
1139 	struct vr_descsoft *ds;
1140 	int i, error = 0;
1141 
1142 	/* Cancel pending I/O. */
1143 	vr_stop(ifp, 0);
1144 
1145 	/* Reset the Rhine to a known state. */
1146 	vr_reset(sc);
1147 
1148 	/* set DMA length in BCR0 and BCR1 */
1149 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1150 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1151 
1152 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1153 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1154 
1155 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1156 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1157 
1158 	/* set DMA threshold length in RXCFG and TXCFG */
1159 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1160 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1161 
1162 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1163 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1164 
1165 	/*
1166 	 * Initialize the transmit descriptor ring.  txlast is initialized
1167 	 * to the end of the list so that it will wrap around to the first
1168 	 * descriptor when the first packet is transmitted.
1169 	 */
1170 	for (i = 0; i < VR_NTXDESC; i++) {
1171 		d = VR_CDTX(sc, i);
1172 		memset(d, 0, sizeof(struct vr_desc));
1173 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1174 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1175 	}
1176 	sc->vr_txpending = 0;
1177 	sc->vr_txdirty = 0;
1178 	sc->vr_txlast = VR_NTXDESC - 1;
1179 
1180 	/*
1181 	 * Initialize the receive descriptor ring.
1182 	 */
1183 	for (i = 0; i < VR_NRXDESC; i++) {
1184 		ds = VR_DSRX(sc, i);
1185 		if (ds->ds_mbuf == NULL) {
1186 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1187 				printf("%s: unable to allocate or map rx "
1188 				    "buffer %d, error = %d\n",
1189 				    sc->vr_dev.dv_xname, i, error);
1190 				/*
1191 				 * XXX Should attempt to run with fewer receive
1192 				 * XXX buffers instead of just failing.
1193 				 */
1194 				vr_rxdrain(sc);
1195 				goto out;
1196 			}
1197 		} else
1198 			VR_INIT_RXDESC(sc, i);
1199 	}
1200 	sc->vr_rxptr = 0;
1201 
1202 	/* If we want promiscuous mode, set the allframes bit. */
1203 	if (ifp->if_flags & IFF_PROMISC)
1204 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1205 	else
1206 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1207 
1208 	/* Set capture broadcast bit to capture broadcast frames. */
1209 	if (ifp->if_flags & IFF_BROADCAST)
1210 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1211 	else
1212 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1213 
1214 	/* Program the multicast filter, if necessary. */
1215 	vr_setmulti(sc);
1216 
1217 	/* Give the transmit and receive rings to the Rhine. */
1218 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1219 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1220 
1221 	/* Set current media. */
1222 	mii_mediachg(&sc->vr_mii);
1223 
1224 	/* Enable receiver and transmitter. */
1225 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1226 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1227 				    VR_CMD_RX_GO);
1228 
1229 	/* Enable interrupts. */
1230 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1231 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1232 
1233 	ifp->if_flags |= IFF_RUNNING;
1234 	ifp->if_flags &= ~IFF_OACTIVE;
1235 
1236 	/* Start one second timer. */
1237 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1238 
1239 	/* Attempt to start output on the interface. */
1240 	vr_start(ifp);
1241 
1242  out:
1243 	if (error)
1244 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1245 	return (error);
1246 }
1247 
1248 /*
1249  * Set media options.
1250  */
1251 static int
1252 vr_ifmedia_upd(struct ifnet *ifp)
1253 {
1254 	struct vr_softc *sc = ifp->if_softc;
1255 
1256 	if (ifp->if_flags & IFF_UP)
1257 		mii_mediachg(&sc->vr_mii);
1258 	return (0);
1259 }
1260 
1261 /*
1262  * Report current media status.
1263  */
1264 static void
1265 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1266 {
1267 	struct vr_softc *sc = ifp->if_softc;
1268 
1269 	mii_pollstat(&sc->vr_mii);
1270 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
1271 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
1272 }
1273 
1274 static int
1275 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1276 {
1277 	struct vr_softc *sc = ifp->if_softc;
1278 	struct ifreq *ifr = (struct ifreq *)data;
1279 	int s, error = 0;
1280 
1281 	s = splnet();
1282 
1283 	switch (command) {
1284 	case SIOCGIFMEDIA:
1285 	case SIOCSIFMEDIA:
1286 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1287 		break;
1288 
1289 	default:
1290 		error = ether_ioctl(ifp, command, data);
1291 		if (error == ENETRESET) {
1292 			/*
1293 			 * Multicast list has changed; set the hardware filter
1294 			 * accordingly.
1295 			 */
1296 			if (ifp->if_flags & IFF_RUNNING)
1297 				vr_setmulti(sc);
1298 			error = 0;
1299 		}
1300 		break;
1301 	}
1302 
1303 	splx(s);
1304 	return (error);
1305 }
1306 
1307 static void
1308 vr_watchdog(struct ifnet *ifp)
1309 {
1310 	struct vr_softc *sc = ifp->if_softc;
1311 
1312 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1313 	ifp->if_oerrors++;
1314 
1315 	(void) vr_init(ifp);
1316 }
1317 
1318 /*
1319  * One second timer, used to tick MII.
1320  */
1321 static void
1322 vr_tick(void *arg)
1323 {
1324 	struct vr_softc *sc = arg;
1325 	int s;
1326 
1327 	s = splnet();
1328 	mii_tick(&sc->vr_mii);
1329 	splx(s);
1330 
1331 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1332 }
1333 
1334 /*
1335  * Drain the receive queue.
1336  */
1337 static void
1338 vr_rxdrain(struct vr_softc *sc)
1339 {
1340 	struct vr_descsoft *ds;
1341 	int i;
1342 
1343 	for (i = 0; i < VR_NRXDESC; i++) {
1344 		ds = VR_DSRX(sc, i);
1345 		if (ds->ds_mbuf != NULL) {
1346 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1347 			m_freem(ds->ds_mbuf);
1348 			ds->ds_mbuf = NULL;
1349 		}
1350 	}
1351 }
1352 
1353 /*
1354  * Stop the adapter and free any mbufs allocated to the
1355  * transmit lists.
1356  */
1357 static void
1358 vr_stop(struct ifnet *ifp, int disable)
1359 {
1360 	struct vr_softc *sc = ifp->if_softc;
1361 	struct vr_descsoft *ds;
1362 	int i;
1363 
1364 	/* Cancel one second timer. */
1365 	callout_stop(&sc->vr_tick_ch);
1366 
1367 	/* Down the MII. */
1368 	mii_down(&sc->vr_mii);
1369 
1370 	ifp = &sc->vr_ec.ec_if;
1371 	ifp->if_timer = 0;
1372 
1373 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1374 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1375 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1376 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1377 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1378 
1379 	/*
1380 	 * Release any queued transmit buffers.
1381 	 */
1382 	for (i = 0; i < VR_NTXDESC; i++) {
1383 		ds = VR_DSTX(sc, i);
1384 		if (ds->ds_mbuf != NULL) {
1385 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1386 			m_freem(ds->ds_mbuf);
1387 			ds->ds_mbuf = NULL;
1388 		}
1389 	}
1390 
1391 	if (disable)
1392 		vr_rxdrain(sc);
1393 
1394 	/*
1395 	 * Mark the interface down and cancel the watchdog timer.
1396 	 */
1397 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1398 	ifp->if_timer = 0;
1399 }
1400 
1401 static int	vr_probe(struct device *, struct cfdata *, void *);
1402 static void	vr_attach(struct device *, struct device *, void *);
1403 static void	vr_shutdown(void *);
1404 
1405 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1406     vr_probe, vr_attach, NULL, NULL);
1407 
1408 static struct vr_type *
1409 vr_lookup(struct pci_attach_args *pa)
1410 {
1411 	struct vr_type *vrt;
1412 
1413 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1414 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1415 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1416 			return (vrt);
1417 	}
1418 	return (NULL);
1419 }
1420 
1421 static int
1422 vr_probe(struct device *parent, struct cfdata *match, void *aux)
1423 {
1424 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1425 
1426 	if (vr_lookup(pa) != NULL)
1427 		return (1);
1428 
1429 	return (0);
1430 }
1431 
1432 /*
1433  * Stop all chip I/O so that the kernel's probe routines don't
1434  * get confused by errant DMAs when rebooting.
1435  */
1436 static void
1437 vr_shutdown(void *arg)
1438 {
1439 	struct vr_softc *sc = (struct vr_softc *)arg;
1440 
1441 	vr_stop(&sc->vr_ec.ec_if, 1);
1442 }
1443 
1444 /*
1445  * Attach the interface. Allocate softc structures, do ifmedia
1446  * setup and ethernet/BPF attach.
1447  */
1448 static void
1449 vr_attach(struct device *parent, struct device *self, void *aux)
1450 {
1451 	struct vr_softc *sc = (struct vr_softc *) self;
1452 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1453 	bus_dma_segment_t seg;
1454 	struct vr_type *vrt;
1455 	u_int32_t reg;
1456 	struct ifnet *ifp;
1457 	u_char eaddr[ETHER_ADDR_LEN];
1458 	int i, rseg, error;
1459 
1460 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1461 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1462 
1463 	sc->vr_pc = pa->pa_pc;
1464 	sc->vr_tag = pa->pa_tag;
1465 	callout_init(&sc->vr_tick_ch);
1466 
1467 	vrt = vr_lookup(pa);
1468 	if (vrt == NULL) {
1469 		printf("\n");
1470 		panic("vr_attach: impossible");
1471 	}
1472 
1473 	printf(": %s Ethernet\n", vrt->vr_name);
1474 
1475 	/*
1476 	 * Handle power management nonsense.
1477 	 */
1478 
1479 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1480 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1481 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1482 
1483 	/* power up chip */
1484 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1485 	    vr_restore_state)) && error != EOPNOTSUPP) {
1486 		aprint_error("%s: cannot activate %d\n", sc->vr_dev.dv_xname,
1487 		    error);
1488 		return;
1489 	}
1490 
1491 	/* Make sure bus mastering is enabled. */
1492 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1493 	reg |= PCI_COMMAND_MASTER_ENABLE;
1494 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1495 
1496 	/* Get revision */
1497 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1498 
1499 	/*
1500 	 * Map control/status registers.
1501 	 */
1502 	{
1503 		bus_space_tag_t iot, memt;
1504 		bus_space_handle_t ioh, memh;
1505 		int ioh_valid, memh_valid;
1506 		pci_intr_handle_t intrhandle;
1507 		const char *intrstr;
1508 
1509 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1510 			PCI_MAPREG_TYPE_IO, 0,
1511 			&iot, &ioh, NULL, NULL) == 0);
1512 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1513 			PCI_MAPREG_TYPE_MEM |
1514 			PCI_MAPREG_MEM_TYPE_32BIT,
1515 			0, &memt, &memh, NULL, NULL) == 0);
1516 #if defined(VR_USEIOSPACE)
1517 		if (ioh_valid) {
1518 			sc->vr_bst = iot;
1519 			sc->vr_bsh = ioh;
1520 		} else if (memh_valid) {
1521 			sc->vr_bst = memt;
1522 			sc->vr_bsh = memh;
1523 		}
1524 #else
1525 		if (memh_valid) {
1526 			sc->vr_bst = memt;
1527 			sc->vr_bsh = memh;
1528 		} else if (ioh_valid) {
1529 			sc->vr_bst = iot;
1530 			sc->vr_bsh = ioh;
1531 		}
1532 #endif
1533 		else {
1534 			printf(": unable to map device registers\n");
1535 			return;
1536 		}
1537 
1538 		/* Allocate interrupt */
1539 		if (pci_intr_map(pa, &intrhandle)) {
1540 			printf("%s: couldn't map interrupt\n",
1541 				sc->vr_dev.dv_xname);
1542 			return;
1543 		}
1544 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1545 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1546 						vr_intr, sc);
1547 		if (sc->vr_ih == NULL) {
1548 			printf("%s: couldn't establish interrupt",
1549 				sc->vr_dev.dv_xname);
1550 			if (intrstr != NULL)
1551 				printf(" at %s", intrstr);
1552 			printf("\n");
1553 		}
1554 		printf("%s: interrupting at %s\n",
1555 			sc->vr_dev.dv_xname, intrstr);
1556 	}
1557 
1558 	/*
1559 	 * Windows may put the chip in suspend mode when it
1560 	 * shuts down. Be sure to kick it in the head to wake it
1561 	 * up again.
1562 	 */
1563 	VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1564 
1565 	/* Reset the adapter. */
1566 	vr_reset(sc);
1567 
1568 	/*
1569 	 * Get station address. The way the Rhine chips work,
1570 	 * you're not allowed to directly access the EEPROM once
1571 	 * they've been programmed a special way. Consequently,
1572 	 * we need to read the node address from the PAR0 and PAR1
1573 	 * registers.
1574 	 *
1575 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1576 	 *         of the *whole* EEPROM, not just the MAC address. This is
1577 	 *         pretty pointless since the chip does this automatically
1578 	 *         at powerup/reset.
1579 	 *         I suspect the same thing applies to the other Rhine
1580 	 *         variants, but in the absence of a data sheet for those
1581 	 *         (and the lack of anyone else noticing the problems this
1582 	 *         causes) I'm going to retain the old behaviour for the
1583 	 *         other parts.
1584 	 */
1585 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1586 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102) {
1587 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1588 		DELAY(200);
1589 	}
1590 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1591 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1592 
1593 	/*
1594 	 * A Rhine chip was detected. Inform the world.
1595 	 */
1596 	printf("%s: Ethernet address: %s\n",
1597 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1598 
1599 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1600 
1601 	sc->vr_dmat = pa->pa_dmat;
1602 
1603 	/*
1604 	 * Allocate the control data structures, and create and load
1605 	 * the DMA map for it.
1606 	 */
1607 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1608 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1609 	    0)) != 0) {
1610 		printf("%s: unable to allocate control data, error = %d\n",
1611 		    sc->vr_dev.dv_xname, error);
1612 		goto fail_0;
1613 	}
1614 
1615 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1616 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1617 	    BUS_DMA_COHERENT)) != 0) {
1618 		printf("%s: unable to map control data, error = %d\n",
1619 		    sc->vr_dev.dv_xname, error);
1620 		goto fail_1;
1621 	}
1622 
1623 	if ((error = bus_dmamap_create(sc->vr_dmat,
1624 	    sizeof(struct vr_control_data), 1,
1625 	    sizeof(struct vr_control_data), 0, 0,
1626 	    &sc->vr_cddmamap)) != 0) {
1627 		printf("%s: unable to create control data DMA map, "
1628 		    "error = %d\n", sc->vr_dev.dv_xname, error);
1629 		goto fail_2;
1630 	}
1631 
1632 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1633 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1634 	    0)) != 0) {
1635 		printf("%s: unable to load control data DMA map, error = %d\n",
1636 		    sc->vr_dev.dv_xname, error);
1637 		goto fail_3;
1638 	}
1639 
1640 	/*
1641 	 * Create the transmit buffer DMA maps.
1642 	 */
1643 	for (i = 0; i < VR_NTXDESC; i++) {
1644 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1645 		    1, MCLBYTES, 0, 0,
1646 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1647 			printf("%s: unable to create tx DMA map %d, "
1648 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1649 			goto fail_4;
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * Create the receive buffer DMA maps.
1655 	 */
1656 	for (i = 0; i < VR_NRXDESC; i++) {
1657 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1658 		    MCLBYTES, 0, 0,
1659 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1660 			printf("%s: unable to create rx DMA map %d, "
1661 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1662 			goto fail_5;
1663 		}
1664 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1665 	}
1666 
1667 	ifp = &sc->vr_ec.ec_if;
1668 	ifp->if_softc = sc;
1669 	ifp->if_mtu = ETHERMTU;
1670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1671 	ifp->if_ioctl = vr_ioctl;
1672 	ifp->if_start = vr_start;
1673 	ifp->if_watchdog = vr_watchdog;
1674 	ifp->if_init = vr_init;
1675 	ifp->if_stop = vr_stop;
1676 	IFQ_SET_READY(&ifp->if_snd);
1677 
1678 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1679 
1680 	/*
1681 	 * Initialize MII/media info.
1682 	 */
1683 	sc->vr_mii.mii_ifp = ifp;
1684 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1685 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1686 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1687 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1688 		vr_ifmedia_sts);
1689 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1690 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1691 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1692 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1693 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1694 	} else
1695 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1696 
1697 	/*
1698 	 * Call MI attach routines.
1699 	 */
1700 	if_attach(ifp);
1701 	ether_ifattach(ifp, sc->vr_enaddr);
1702 #if NRND > 0
1703 	rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
1704 	    RND_TYPE_NET, 0);
1705 #endif
1706 
1707 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1708 	if (sc->vr_ats == NULL)
1709 		printf("%s: warning: couldn't establish shutdown hook\n",
1710 			sc->vr_dev.dv_xname);
1711 	return;
1712 
1713  fail_5:
1714 	for (i = 0; i < VR_NRXDESC; i++) {
1715 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1716 			bus_dmamap_destroy(sc->vr_dmat,
1717 			    sc->vr_rxsoft[i].ds_dmamap);
1718 	}
1719  fail_4:
1720 	for (i = 0; i < VR_NTXDESC; i++) {
1721 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1722 			bus_dmamap_destroy(sc->vr_dmat,
1723 			    sc->vr_txsoft[i].ds_dmamap);
1724 	}
1725 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1726  fail_3:
1727 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1728  fail_2:
1729 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1730 	    sizeof(struct vr_control_data));
1731  fail_1:
1732 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1733  fail_0:
1734 	return;
1735 }
1736 
1737 static int
1738 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, void *ssc, pcireg_t state)
1739 {
1740 	struct vr_softc *sc = ssc;
1741 	int error;
1742 
1743 	if (state == PCI_PMCSR_STATE_D0)
1744 		return 0;
1745 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1746 		return error;
1747 
1748 	/* Restore PCI config data. */
1749 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1750 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1751 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1752 	return 0;
1753 }
1754