xref: /netbsd-src/sys/dev/pci/if_vr.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: if_vr.c,v 1.107 2010/12/16 17:07:44 jakllsch Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1997, 1998
35  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by Bill Paul.
48  * 4. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62  * THE POSSIBILITY OF SUCH DAMAGE.
63  *
64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65  */
66 
67 /*
68  * VIA Rhine fast ethernet PCI NIC driver
69  *
70  * Supports various network adapters based on the VIA Rhine
71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
72  * Datasheets are available at http://www.via.com.tw.
73  *
74  * Written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The VIA Rhine controllers are similar in some respects to the
81  * the DEC tulip chips, except less complicated. The controller
82  * uses an MII bus and an external physical layer interface. The
83  * receiver has a one entry perfect filter and a 64-bit hash table
84  * multicast filter. Transmit and receive descriptors are similar
85  * to the tulip.
86  *
87  * The Rhine has a serious flaw in its transmit DMA mechanism:
88  * transmit buffers must be longword aligned. Unfortunately,
89  * the kernel doesn't guarantee that mbufs will be filled in starting
90  * at longword boundaries, so we have to do a buffer copy before
91  * transmission.
92  *
93  * Apparently, the receive DMA mechanism also has the same flaw.  This
94  * means that on systems with struct alignment requirements, incoming
95  * frames must be copied to a new buffer which shifts the data forward
96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
97  */
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.107 2010/12/16 17:07:44 jakllsch Exp $");
101 
102 #include "rnd.h"
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113 
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117 
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123 
124 #include <net/bpf.h>
125 
126 #include <sys/bus.h>
127 #include <sys/intr.h>
128 #include <machine/endian.h>
129 
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/mii_bitbang.h>
133 
134 #include <dev/pci/pcireg.h>
135 #include <dev/pci/pcivar.h>
136 #include <dev/pci/pcidevs.h>
137 
138 #include <dev/pci/if_vrreg.h>
139 
140 #define	VR_USEIOSPACE
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static const struct vr_type {
146 	pci_vendor_id_t		vr_vid;
147 	pci_product_id_t	vr_did;
148 } vr_devs[] = {
149 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
150 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
151 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
152 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
153 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
154 };
155 
156 /*
157  * Transmit descriptor list size.
158  */
159 #define	VR_NTXDESC		64
160 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
161 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
162 
163 /*
164  * Receive descriptor list size.
165  */
166 #define	VR_NRXDESC		64
167 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
168 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
169 
170 /*
171  * Control data structres that are DMA'd to the Rhine chip.  We allocate
172  * them in a single clump that maps to a single DMA segment to make several
173  * things easier.
174  *
175  * Note that since we always copy outgoing packets to aligned transmit
176  * buffers, we can reduce the transmit descriptors to one per packet.
177  */
178 struct vr_control_data {
179 	struct vr_desc		vr_txdescs[VR_NTXDESC];
180 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
181 };
182 
183 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
184 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
185 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
186 
187 /*
188  * Software state of transmit and receive descriptors.
189  */
190 struct vr_descsoft {
191 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
192 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
193 };
194 
195 struct vr_softc {
196 	device_t		vr_dev;
197 	void			*vr_ih;		/* interrupt cookie */
198 	bus_space_tag_t		vr_bst;		/* bus space tag */
199 	bus_space_handle_t	vr_bsh;		/* bus space handle */
200 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
201 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
202 	pcitag_t		vr_tag;		/* PCI tag */
203 	struct ethercom		vr_ec;		/* Ethernet common info */
204 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
205 	struct mii_data		vr_mii;		/* MII/media info */
206 
207 	pcireg_t		vr_id;		/* vendor/product ID */
208 	uint8_t			vr_revid;	/* Rhine chip revision */
209 
210 	callout_t		vr_tick_ch;	/* tick callout */
211 
212 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
213 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
214 
215 	/*
216 	 * Software state for transmit and receive descriptors.
217 	 */
218 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
219 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
220 
221 	/*
222 	 * Control data structures.
223 	 */
224 	struct vr_control_data	*vr_control_data;
225 
226 	int	vr_txpending;		/* number of TX requests pending */
227 	int	vr_txdirty;		/* first dirty TX descriptor */
228 	int	vr_txlast;		/* last used TX descriptor */
229 
230 	int	vr_rxptr;		/* next ready RX descriptor */
231 
232 	uint32_t	vr_save_iobase;
233 	uint32_t	vr_save_membase;
234 	uint32_t	vr_save_irq;
235 
236 #if NRND > 0
237 	rndsource_element_t rnd_source;	/* random source */
238 #endif
239 };
240 
241 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
242 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
243 
244 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
245 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
246 
247 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
248 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
249 
250 #define	VR_CDTXSYNC(sc, x, ops)						\
251 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
252 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
253 
254 #define	VR_CDRXSYNC(sc, x, ops)						\
255 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
256 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
257 
258 /*
259  * Note we rely on MCLBYTES being a power of two below.
260  */
261 #define	VR_INIT_RXDESC(sc, i)						\
262 do {									\
263 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
264 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
265 									\
266 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
267 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
268 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
269 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
270 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
271 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
272 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
273 } while (/* CONSTCOND */ 0)
274 
275 /*
276  * register space access macros
277  */
278 #define	CSR_WRITE_4(sc, reg, val)					\
279 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
280 #define	CSR_WRITE_2(sc, reg, val)					\
281 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define	CSR_WRITE_1(sc, reg, val)					\
283 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
284 
285 #define	CSR_READ_4(sc, reg)						\
286 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
287 #define	CSR_READ_2(sc, reg)						\
288 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
289 #define	CSR_READ_1(sc, reg)						\
290 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
291 
292 #define	VR_TIMEOUT		1000
293 
294 static int	vr_add_rxbuf(struct vr_softc *, int);
295 
296 static void	vr_rxeof(struct vr_softc *);
297 static void	vr_rxeoc(struct vr_softc *);
298 static void	vr_txeof(struct vr_softc *);
299 static int	vr_intr(void *);
300 static void	vr_start(struct ifnet *);
301 static int	vr_ioctl(struct ifnet *, u_long, void *);
302 static int	vr_init(struct ifnet *);
303 static void	vr_stop(struct ifnet *, int);
304 static void	vr_rxdrain(struct vr_softc *);
305 static void	vr_watchdog(struct ifnet *);
306 static void	vr_tick(void *);
307 
308 static int	vr_mii_readreg(device_t, int, int);
309 static void	vr_mii_writereg(device_t, int, int, int);
310 static void	vr_mii_statchg(device_t);
311 
312 static void	vr_setmulti(struct vr_softc *);
313 static void	vr_reset(struct vr_softc *);
314 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
315     pcireg_t);
316 static bool	vr_resume(device_t, const pmf_qual_t *);
317 
318 int	vr_copy_small = 0;
319 
320 #define	VR_SETBIT(sc, reg, x)				\
321 	CSR_WRITE_1(sc, reg,				\
322 	    CSR_READ_1(sc, reg) | (x))
323 
324 #define	VR_CLRBIT(sc, reg, x)				\
325 	CSR_WRITE_1(sc, reg,				\
326 	    CSR_READ_1(sc, reg) & ~(x))
327 
328 #define	VR_SETBIT16(sc, reg, x)				\
329 	CSR_WRITE_2(sc, reg,				\
330 	    CSR_READ_2(sc, reg) | (x))
331 
332 #define	VR_CLRBIT16(sc, reg, x)				\
333 	CSR_WRITE_2(sc, reg,				\
334 	    CSR_READ_2(sc, reg) & ~(x))
335 
336 #define	VR_SETBIT32(sc, reg, x)				\
337 	CSR_WRITE_4(sc, reg,				\
338 	    CSR_READ_4(sc, reg) | (x))
339 
340 #define	VR_CLRBIT32(sc, reg, x)				\
341 	CSR_WRITE_4(sc, reg,				\
342 	    CSR_READ_4(sc, reg) & ~(x))
343 
344 /*
345  * MII bit-bang glue.
346  */
347 static uint32_t vr_mii_bitbang_read(device_t);
348 static void	vr_mii_bitbang_write(device_t, uint32_t);
349 
350 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
351 	vr_mii_bitbang_read,
352 	vr_mii_bitbang_write,
353 	{
354 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
355 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
356 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
357 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
358 		0,			/* MII_BIT_DIR_PHY_HOST */
359 	}
360 };
361 
362 static uint32_t
363 vr_mii_bitbang_read(device_t self)
364 {
365 	struct vr_softc *sc = device_private(self);
366 
367 	return (CSR_READ_1(sc, VR_MIICMD));
368 }
369 
370 static void
371 vr_mii_bitbang_write(device_t self, uint32_t val)
372 {
373 	struct vr_softc *sc = device_private(self);
374 
375 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
376 }
377 
378 /*
379  * Read an PHY register through the MII.
380  */
381 static int
382 vr_mii_readreg(device_t self, int phy, int reg)
383 {
384 	struct vr_softc *sc = device_private(self);
385 
386 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
387 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
388 }
389 
390 /*
391  * Write to a PHY register through the MII.
392  */
393 static void
394 vr_mii_writereg(device_t self, int phy, int reg, int val)
395 {
396 	struct vr_softc *sc = device_private(self);
397 
398 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
399 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
400 }
401 
402 static void
403 vr_mii_statchg(device_t self)
404 {
405 	struct vr_softc *sc = device_private(self);
406 
407 	/*
408 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
409 	 * register, we first have to put the transmit and/or receive logic
410 	 * in the idle state.
411 	 */
412 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
413 
414 	if (sc->vr_mii.mii_media_active & IFM_FDX)
415 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
416 	else
417 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
418 
419 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
420 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
421 }
422 
423 #define	vr_calchash(addr) \
424 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
425 
426 /*
427  * Program the 64-bit multicast hash filter.
428  */
429 static void
430 vr_setmulti(struct vr_softc *sc)
431 {
432 	struct ifnet *ifp;
433 	int h = 0;
434 	uint32_t hashes[2] = { 0, 0 };
435 	struct ether_multistep step;
436 	struct ether_multi *enm;
437 	int mcnt = 0;
438 	uint8_t rxfilt;
439 
440 	ifp = &sc->vr_ec.ec_if;
441 
442 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
443 
444 	if (ifp->if_flags & IFF_PROMISC) {
445 allmulti:
446 		ifp->if_flags |= IFF_ALLMULTI;
447 		rxfilt |= VR_RXCFG_RX_MULTI;
448 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
449 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
450 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
451 		return;
452 	}
453 
454 	/* first, zot all the existing hash bits */
455 	CSR_WRITE_4(sc, VR_MAR0, 0);
456 	CSR_WRITE_4(sc, VR_MAR1, 0);
457 
458 	/* now program new ones */
459 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
460 	while (enm != NULL) {
461 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
462 		    ETHER_ADDR_LEN) != 0)
463 			goto allmulti;
464 
465 		h = vr_calchash(enm->enm_addrlo);
466 
467 		if (h < 32)
468 			hashes[0] |= (1 << h);
469 		else
470 			hashes[1] |= (1 << (h - 32));
471 		ETHER_NEXT_MULTI(step, enm);
472 		mcnt++;
473 	}
474 
475 	ifp->if_flags &= ~IFF_ALLMULTI;
476 
477 	if (mcnt)
478 		rxfilt |= VR_RXCFG_RX_MULTI;
479 	else
480 		rxfilt &= ~VR_RXCFG_RX_MULTI;
481 
482 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
483 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
484 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
485 }
486 
487 static void
488 vr_reset(struct vr_softc *sc)
489 {
490 	int i;
491 
492 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
493 
494 	for (i = 0; i < VR_TIMEOUT; i++) {
495 		DELAY(10);
496 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
497 			break;
498 	}
499 	if (i == VR_TIMEOUT) {
500 		if (sc->vr_revid < REV_ID_VT3065_A) {
501 			printf("%s: reset never completed!\n",
502 			    device_xname(sc->vr_dev));
503 		} else {
504 			/* Use newer force reset command */
505 			printf("%s: using force reset command.\n",
506 			    device_xname(sc->vr_dev));
507 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
508 		}
509 	}
510 
511 	/* Wait a little while for the chip to get its brains in order. */
512 	DELAY(1000);
513 }
514 
515 /*
516  * Initialize an RX descriptor and attach an MBUF cluster.
517  * Note: the length fields are only 11 bits wide, which means the
518  * largest size we can specify is 2047. This is important because
519  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
520  * overflow the field and make a mess.
521  */
522 static int
523 vr_add_rxbuf(struct vr_softc *sc, int i)
524 {
525 	struct vr_descsoft *ds = VR_DSRX(sc, i);
526 	struct mbuf *m_new;
527 	int error;
528 
529 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
530 	if (m_new == NULL)
531 		return (ENOBUFS);
532 
533 	MCLGET(m_new, M_DONTWAIT);
534 	if ((m_new->m_flags & M_EXT) == 0) {
535 		m_freem(m_new);
536 		return (ENOBUFS);
537 	}
538 
539 	if (ds->ds_mbuf != NULL)
540 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
541 
542 	ds->ds_mbuf = m_new;
543 
544 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
545 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
546 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
547 	if (error) {
548 		aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
549 		    i, error);
550 		panic("vr_add_rxbuf");		/* XXX */
551 	}
552 
553 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
554 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
555 
556 	VR_INIT_RXDESC(sc, i);
557 
558 	return (0);
559 }
560 
561 /*
562  * A frame has been uploaded: pass the resulting mbuf chain up to
563  * the higher level protocols.
564  */
565 static void
566 vr_rxeof(struct vr_softc *sc)
567 {
568 	struct mbuf *m;
569 	struct ifnet *ifp;
570 	struct vr_desc *d;
571 	struct vr_descsoft *ds;
572 	int i, total_len;
573 	uint32_t rxstat;
574 
575 	ifp = &sc->vr_ec.ec_if;
576 
577 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
578 		d = VR_CDRX(sc, i);
579 		ds = VR_DSRX(sc, i);
580 
581 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
582 
583 		rxstat = le32toh(d->vr_status);
584 
585 		if (rxstat & VR_RXSTAT_OWN) {
586 			/*
587 			 * We have processed all of the receive buffers.
588 			 */
589 			break;
590 		}
591 
592 		/*
593 		 * If an error occurs, update stats, clear the
594 		 * status word and leave the mbuf cluster in place:
595 		 * it should simply get re-used next time this descriptor
596 		 * comes up in the ring.
597 		 */
598 		if (rxstat & VR_RXSTAT_RXERR) {
599 			const char *errstr;
600 
601 			ifp->if_ierrors++;
602 			switch (rxstat & 0x000000FF) {
603 			case VR_RXSTAT_CRCERR:
604 				errstr = "crc error";
605 				break;
606 			case VR_RXSTAT_FRAMEALIGNERR:
607 				errstr = "frame alignment error";
608 				break;
609 			case VR_RXSTAT_FIFOOFLOW:
610 				errstr = "FIFO overflow";
611 				break;
612 			case VR_RXSTAT_GIANT:
613 				errstr = "received giant packet";
614 				break;
615 			case VR_RXSTAT_RUNT:
616 				errstr = "received runt packet";
617 				break;
618 			case VR_RXSTAT_BUSERR:
619 				errstr = "system bus error";
620 				break;
621 			case VR_RXSTAT_BUFFERR:
622 				errstr = "rx buffer error";
623 				break;
624 			default:
625 				errstr = "unknown rx error";
626 				break;
627 			}
628 			printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
629 			    errstr);
630 
631 			VR_INIT_RXDESC(sc, i);
632 
633 			continue;
634 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
635 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
636 			/*
637 			 * This driver expects to receive whole packets every
638 			 * time.  In case we receive a fragment that is not
639 			 * a complete packet, we discard it.
640 			 */
641 			ifp->if_ierrors++;
642 
643 			printf("%s: receive error: incomplete frame; "
644 			       "size = %d, status = 0x%x\n",
645 			       device_xname(sc->vr_dev),
646 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
647 
648 			VR_INIT_RXDESC(sc, i);
649 
650 			continue;
651 		}
652 
653 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
654 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
655 
656 		/* No errors; receive the packet. */
657 		total_len = VR_RXBYTES(le32toh(d->vr_status));
658 #ifdef DIAGNOSTIC
659 		if (total_len == 0) {
660 			/*
661 			 * If we receive a zero-length packet, we probably
662 			 * missed to handle an error condition above.
663 			 * Discard it to avoid a later crash.
664 			 */
665 			ifp->if_ierrors++;
666 
667 			printf("%s: receive error: zero-length packet; "
668 			       "status = 0x%x\n",
669 			       device_xname(sc->vr_dev), rxstat);
670 
671 			VR_INIT_RXDESC(sc, i);
672 
673 			continue;
674 		}
675 #endif
676 
677 		/*
678 		 * The Rhine chip includes the CRC with every packet.
679 		 * Trim it off here.
680 		 */
681 		total_len -= ETHER_CRC_LEN;
682 
683 #ifdef __NO_STRICT_ALIGNMENT
684 		/*
685 		 * If the packet is small enough to fit in a
686 		 * single header mbuf, allocate one and copy
687 		 * the data into it.  This greatly reduces
688 		 * memory consumption when we receive lots
689 		 * of small packets.
690 		 *
691 		 * Otherwise, we add a new buffer to the receive
692 		 * chain.  If this fails, we drop the packet and
693 		 * recycle the old buffer.
694 		 */
695 		if (vr_copy_small != 0 && total_len <= MHLEN) {
696 			MGETHDR(m, M_DONTWAIT, MT_DATA);
697 			if (m == NULL)
698 				goto dropit;
699 			memcpy(mtod(m, void *),
700 			    mtod(ds->ds_mbuf, void *), total_len);
701 			VR_INIT_RXDESC(sc, i);
702 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
703 			    ds->ds_dmamap->dm_mapsize,
704 			    BUS_DMASYNC_PREREAD);
705 		} else {
706 			m = ds->ds_mbuf;
707 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
708  dropit:
709 				ifp->if_ierrors++;
710 				VR_INIT_RXDESC(sc, i);
711 				bus_dmamap_sync(sc->vr_dmat,
712 				    ds->ds_dmamap, 0,
713 				    ds->ds_dmamap->dm_mapsize,
714 				    BUS_DMASYNC_PREREAD);
715 				continue;
716 			}
717 		}
718 #else
719 		/*
720 		 * The Rhine's packet buffers must be 4-byte aligned.
721 		 * But this means that the data after the Ethernet header
722 		 * is misaligned.  We must allocate a new buffer and
723 		 * copy the data, shifted forward 2 bytes.
724 		 */
725 		MGETHDR(m, M_DONTWAIT, MT_DATA);
726 		if (m == NULL) {
727  dropit:
728 			ifp->if_ierrors++;
729 			VR_INIT_RXDESC(sc, i);
730 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
731 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
732 			continue;
733 		}
734 		if (total_len > (MHLEN - 2)) {
735 			MCLGET(m, M_DONTWAIT);
736 			if ((m->m_flags & M_EXT) == 0) {
737 				m_freem(m);
738 				goto dropit;
739 			}
740 		}
741 		m->m_data += 2;
742 
743 		/*
744 		 * Note that we use clusters for incoming frames, so the
745 		 * buffer is virtually contiguous.
746 		 */
747 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
748 		    total_len);
749 
750 		/* Allow the receive descriptor to continue using its mbuf. */
751 		VR_INIT_RXDESC(sc, i);
752 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
753 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
754 #endif /* __NO_STRICT_ALIGNMENT */
755 
756 		ifp->if_ipackets++;
757 		m->m_pkthdr.rcvif = ifp;
758 		m->m_pkthdr.len = m->m_len = total_len;
759 		/*
760 		 * Handle BPF listeners. Let the BPF user see the packet, but
761 		 * don't pass it up to the ether_input() layer unless it's
762 		 * a broadcast packet, multicast packet, matches our ethernet
763 		 * address or the interface is in promiscuous mode.
764 		 */
765 		bpf_mtap(ifp, m);
766 		/* Pass it on. */
767 		(*ifp->if_input)(ifp, m);
768 	}
769 
770 	/* Update the receive pointer. */
771 	sc->vr_rxptr = i;
772 }
773 
774 void
775 vr_rxeoc(struct vr_softc *sc)
776 {
777 	struct ifnet *ifp;
778 	int i;
779 
780 	ifp = &sc->vr_ec.ec_if;
781 
782 	ifp->if_ierrors++;
783 
784 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
785 	for (i = 0; i < VR_TIMEOUT; i++) {
786 		DELAY(10);
787 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
788 			break;
789 	}
790 	if (i == VR_TIMEOUT) {
791 		/* XXX need reset? */
792 		printf("%s: RX shutdown never complete\n",
793 		    device_xname(sc->vr_dev));
794 	}
795 
796 	vr_rxeof(sc);
797 
798 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
799 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
800 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
801 }
802 
803 /*
804  * A frame was downloaded to the chip. It's safe for us to clean up
805  * the list buffers.
806  */
807 static void
808 vr_txeof(struct vr_softc *sc)
809 {
810 	struct ifnet *ifp = &sc->vr_ec.ec_if;
811 	struct vr_desc *d;
812 	struct vr_descsoft *ds;
813 	uint32_t txstat;
814 	int i, j;
815 
816 	ifp->if_flags &= ~IFF_OACTIVE;
817 
818 	/*
819 	 * Go through our tx list and free mbufs for those
820 	 * frames that have been transmitted.
821 	 */
822 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
823 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
824 		d = VR_CDTX(sc, i);
825 		ds = VR_DSTX(sc, i);
826 
827 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
828 
829 		txstat = le32toh(d->vr_status);
830 
831 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
832 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
833 			for (j = 0; j < VR_TIMEOUT; j++) {
834 				DELAY(10);
835 				if ((CSR_READ_2(sc, VR_COMMAND) &
836 				    VR_CMD_TX_ON) == 0)
837 					break;
838 			}
839 			if (j == VR_TIMEOUT) {
840 				/* XXX need reset? */
841 				printf("%s: TX shutdown never complete\n",
842 				    device_xname(sc->vr_dev));
843 			}
844 			d->vr_status = htole32(VR_TXSTAT_OWN);
845 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
846 			break;
847 		}
848 
849 		if (txstat & VR_TXSTAT_OWN)
850 			break;
851 
852 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
853 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
854 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
855 		m_freem(ds->ds_mbuf);
856 		ds->ds_mbuf = NULL;
857 
858 		if (txstat & VR_TXSTAT_ERRSUM) {
859 			ifp->if_oerrors++;
860 			if (txstat & VR_TXSTAT_DEFER)
861 				ifp->if_collisions++;
862 			if (txstat & VR_TXSTAT_LATECOLL)
863 				ifp->if_collisions++;
864 		}
865 
866 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
867 		ifp->if_opackets++;
868 	}
869 
870 	/* Update the dirty transmit buffer pointer. */
871 	sc->vr_txdirty = i;
872 
873 	/*
874 	 * Cancel the watchdog timer if there are no pending
875 	 * transmissions.
876 	 */
877 	if (sc->vr_txpending == 0)
878 		ifp->if_timer = 0;
879 }
880 
881 static int
882 vr_intr(void *arg)
883 {
884 	struct vr_softc *sc;
885 	struct ifnet *ifp;
886 	uint16_t status;
887 	int handled = 0, dotx = 0;
888 
889 	sc = arg;
890 	ifp = &sc->vr_ec.ec_if;
891 
892 	/* Suppress unwanted interrupts. */
893 	if ((ifp->if_flags & IFF_UP) == 0) {
894 		vr_stop(ifp, 1);
895 		return (0);
896 	}
897 
898 	/* Disable interrupts. */
899 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
900 
901 	for (;;) {
902 		status = CSR_READ_2(sc, VR_ISR);
903 		if (status)
904 			CSR_WRITE_2(sc, VR_ISR, status);
905 
906 		if ((status & VR_INTRS) == 0)
907 			break;
908 
909 		handled = 1;
910 
911 #if NRND > 0
912 		if (RND_ENABLED(&sc->rnd_source))
913 			rnd_add_uint32(&sc->rnd_source, status);
914 #endif
915 
916 		if (status & VR_ISR_RX_OK)
917 			vr_rxeof(sc);
918 
919 		if (status & VR_ISR_RX_DROPPED) {
920 			printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
921 			ifp->if_ierrors++;
922 		}
923 
924 		if (status &
925 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
926 			vr_rxeoc(sc);
927 
928 
929 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
930 			if (status & VR_ISR_BUSERR)
931 				printf("%s: PCI bus error\n",
932 				    device_xname(sc->vr_dev));
933 			if (status & VR_ISR_TX_UNDERRUN)
934 				printf("%s: transmit underrun\n",
935 				    device_xname(sc->vr_dev));
936 			/* vr_init() calls vr_start() */
937 			dotx = 0;
938 			(void)vr_init(ifp);
939 
940 		}
941 
942 		if (status & VR_ISR_TX_OK) {
943 			dotx = 1;
944 			vr_txeof(sc);
945 		}
946 
947 		if (status &
948 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
949 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
950 				printf("%s: transmit aborted\n",
951 				    device_xname(sc->vr_dev));
952 			if (status & VR_ISR_TX_UDFI)
953 				printf("%s: transmit underflow\n",
954 				    device_xname(sc->vr_dev));
955 			ifp->if_oerrors++;
956 			dotx = 1;
957 			vr_txeof(sc);
958 			if (sc->vr_txpending) {
959 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
960 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
961 			}
962 		}
963 	}
964 
965 	/* Re-enable interrupts. */
966 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
967 
968 	if (dotx)
969 		vr_start(ifp);
970 
971 	return (handled);
972 }
973 
974 /*
975  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
976  * to the mbuf data regions directly in the transmit lists. We also save a
977  * copy of the pointers since the transmit list fragment pointers are
978  * physical addresses.
979  */
980 static void
981 vr_start(struct ifnet *ifp)
982 {
983 	struct vr_softc *sc = ifp->if_softc;
984 	struct mbuf *m0, *m;
985 	struct vr_desc *d;
986 	struct vr_descsoft *ds;
987 	int error, firsttx, nexttx, opending;
988 
989 	/*
990 	 * Remember the previous txpending and the first transmit
991 	 * descriptor we use.
992 	 */
993 	opending = sc->vr_txpending;
994 	firsttx = VR_NEXTTX(sc->vr_txlast);
995 
996 	/*
997 	 * Loop through the send queue, setting up transmit descriptors
998 	 * until we drain the queue, or use up all available transmit
999 	 * descriptors.
1000 	 */
1001 	while (sc->vr_txpending < VR_NTXDESC) {
1002 		/*
1003 		 * Grab a packet off the queue.
1004 		 */
1005 		IFQ_POLL(&ifp->if_snd, m0);
1006 		if (m0 == NULL)
1007 			break;
1008 		m = NULL;
1009 
1010 		/*
1011 		 * Get the next available transmit descriptor.
1012 		 */
1013 		nexttx = VR_NEXTTX(sc->vr_txlast);
1014 		d = VR_CDTX(sc, nexttx);
1015 		ds = VR_DSTX(sc, nexttx);
1016 
1017 		/*
1018 		 * Load the DMA map.  If this fails, the packet didn't
1019 		 * fit in one DMA segment, and we need to copy.  Note,
1020 		 * the packet must also be aligned.
1021 		 * if the packet is too small, copy it too, so we're sure
1022 		 * we have enough room for the pad buffer.
1023 		 */
1024 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1025 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1026 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1027 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1028 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1029 			if (m == NULL) {
1030 				printf("%s: unable to allocate Tx mbuf\n",
1031 				    device_xname(sc->vr_dev));
1032 				break;
1033 			}
1034 			if (m0->m_pkthdr.len > MHLEN) {
1035 				MCLGET(m, M_DONTWAIT);
1036 				if ((m->m_flags & M_EXT) == 0) {
1037 					printf("%s: unable to allocate Tx "
1038 					    "cluster\n", device_xname(sc->vr_dev));
1039 					m_freem(m);
1040 					break;
1041 				}
1042 			}
1043 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1044 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1045 			/*
1046 			 * The Rhine doesn't auto-pad, so we have to do this
1047 			 * ourselves.
1048 			 */
1049 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1050 				memset(mtod(m, char *) + m0->m_pkthdr.len,
1051 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1052 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1053 			}
1054 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1055 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1056 			if (error) {
1057 				m_freem(m);
1058 				printf("%s: unable to load Tx buffer, "
1059 				    "error = %d\n", device_xname(sc->vr_dev), error);
1060 				break;
1061 			}
1062 		}
1063 
1064 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1065 		if (m != NULL) {
1066 			m_freem(m0);
1067 			m0 = m;
1068 		}
1069 
1070 		/* Sync the DMA map. */
1071 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1072 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1073 
1074 		/*
1075 		 * Store a pointer to the packet so we can free it later.
1076 		 */
1077 		ds->ds_mbuf = m0;
1078 
1079 		/*
1080 		 * If there's a BPF listener, bounce a copy of this frame
1081 		 * to him.
1082 		 */
1083 		bpf_mtap(ifp, m0);
1084 
1085 		/*
1086 		 * Fill in the transmit descriptor.
1087 		 */
1088 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1089 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1090 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1091 
1092 		/*
1093 		 * If this is the first descriptor we're enqueuing,
1094 		 * don't give it to the Rhine yet.  That could cause
1095 		 * a race condition.  We'll do it below.
1096 		 */
1097 		if (nexttx == firsttx)
1098 			d->vr_status = 0;
1099 		else
1100 			d->vr_status = htole32(VR_TXSTAT_OWN);
1101 
1102 		VR_CDTXSYNC(sc, nexttx,
1103 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1104 
1105 		/* Advance the tx pointer. */
1106 		sc->vr_txpending++;
1107 		sc->vr_txlast = nexttx;
1108 	}
1109 
1110 	if (sc->vr_txpending == VR_NTXDESC) {
1111 		/* No more slots left; notify upper layer. */
1112 		ifp->if_flags |= IFF_OACTIVE;
1113 	}
1114 
1115 	if (sc->vr_txpending != opending) {
1116 		/*
1117 		 * We enqueued packets.  If the transmitter was idle,
1118 		 * reset the txdirty pointer.
1119 		 */
1120 		if (opending == 0)
1121 			sc->vr_txdirty = firsttx;
1122 
1123 		/*
1124 		 * Cause a transmit interrupt to happen on the
1125 		 * last packet we enqueued.
1126 		 */
1127 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1128 		VR_CDTXSYNC(sc, sc->vr_txlast,
1129 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 
1131 		/*
1132 		 * The entire packet chain is set up.  Give the
1133 		 * first descriptor to the Rhine now.
1134 		 */
1135 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1136 		VR_CDTXSYNC(sc, firsttx,
1137 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1138 
1139 		/* Start the transmitter. */
1140 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1141 
1142 		/* Set the watchdog timer in case the chip flakes out. */
1143 		ifp->if_timer = 5;
1144 	}
1145 }
1146 
1147 /*
1148  * Initialize the interface.  Must be called at splnet.
1149  */
1150 static int
1151 vr_init(struct ifnet *ifp)
1152 {
1153 	struct vr_softc *sc = ifp->if_softc;
1154 	struct vr_desc *d;
1155 	struct vr_descsoft *ds;
1156 	int i, error = 0;
1157 
1158 	/* Cancel pending I/O. */
1159 	vr_stop(ifp, 0);
1160 
1161 	/* Reset the Rhine to a known state. */
1162 	vr_reset(sc);
1163 
1164 	/* set DMA length in BCR0 and BCR1 */
1165 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1166 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1167 
1168 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1169 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1170 
1171 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1172 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1173 
1174 	/* set DMA threshold length in RXCFG and TXCFG */
1175 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1176 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1177 
1178 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1179 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1180 
1181 	/*
1182 	 * Initialize the transmit descriptor ring.  txlast is initialized
1183 	 * to the end of the list so that it will wrap around to the first
1184 	 * descriptor when the first packet is transmitted.
1185 	 */
1186 	for (i = 0; i < VR_NTXDESC; i++) {
1187 		d = VR_CDTX(sc, i);
1188 		memset(d, 0, sizeof(struct vr_desc));
1189 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1190 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1191 	}
1192 	sc->vr_txpending = 0;
1193 	sc->vr_txdirty = 0;
1194 	sc->vr_txlast = VR_NTXDESC - 1;
1195 
1196 	/*
1197 	 * Initialize the receive descriptor ring.
1198 	 */
1199 	for (i = 0; i < VR_NRXDESC; i++) {
1200 		ds = VR_DSRX(sc, i);
1201 		if (ds->ds_mbuf == NULL) {
1202 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1203 				printf("%s: unable to allocate or map rx "
1204 				    "buffer %d, error = %d\n",
1205 				    device_xname(sc->vr_dev), i, error);
1206 				/*
1207 				 * XXX Should attempt to run with fewer receive
1208 				 * XXX buffers instead of just failing.
1209 				 */
1210 				vr_rxdrain(sc);
1211 				goto out;
1212 			}
1213 		} else
1214 			VR_INIT_RXDESC(sc, i);
1215 	}
1216 	sc->vr_rxptr = 0;
1217 
1218 	/* If we want promiscuous mode, set the allframes bit. */
1219 	if (ifp->if_flags & IFF_PROMISC)
1220 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1221 	else
1222 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1223 
1224 	/* Set capture broadcast bit to capture broadcast frames. */
1225 	if (ifp->if_flags & IFF_BROADCAST)
1226 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1227 	else
1228 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1229 
1230 	/* Program the multicast filter, if necessary. */
1231 	vr_setmulti(sc);
1232 
1233 	/* Give the transmit and receive rings to the Rhine. */
1234 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1235 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1236 
1237 	/* Set current media. */
1238 	if ((error = ether_mediachange(ifp)) != 0)
1239 		goto out;
1240 
1241 	/* Enable receiver and transmitter. */
1242 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1243 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1244 				    VR_CMD_RX_GO);
1245 
1246 	/* Enable interrupts. */
1247 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1248 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1249 
1250 	ifp->if_flags |= IFF_RUNNING;
1251 	ifp->if_flags &= ~IFF_OACTIVE;
1252 
1253 	/* Start one second timer. */
1254 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1255 
1256 	/* Attempt to start output on the interface. */
1257 	vr_start(ifp);
1258 
1259  out:
1260 	if (error)
1261 		printf("%s: interface not running\n", device_xname(sc->vr_dev));
1262 	return (error);
1263 }
1264 
1265 static int
1266 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1267 {
1268 	struct vr_softc *sc = ifp->if_softc;
1269 	int s, error = 0;
1270 
1271 	s = splnet();
1272 
1273 	error = ether_ioctl(ifp, command, data);
1274 	if (error == ENETRESET) {
1275 		/*
1276 		 * Multicast list has changed; set the hardware filter
1277 		 * accordingly.
1278 		 */
1279 		if (ifp->if_flags & IFF_RUNNING)
1280 			vr_setmulti(sc);
1281 		error = 0;
1282 	}
1283 
1284 	splx(s);
1285 	return (error);
1286 }
1287 
1288 static void
1289 vr_watchdog(struct ifnet *ifp)
1290 {
1291 	struct vr_softc *sc = ifp->if_softc;
1292 
1293 	printf("%s: device timeout\n", device_xname(sc->vr_dev));
1294 	ifp->if_oerrors++;
1295 
1296 	(void) vr_init(ifp);
1297 }
1298 
1299 /*
1300  * One second timer, used to tick MII.
1301  */
1302 static void
1303 vr_tick(void *arg)
1304 {
1305 	struct vr_softc *sc = arg;
1306 	int s;
1307 
1308 	s = splnet();
1309 	mii_tick(&sc->vr_mii);
1310 	splx(s);
1311 
1312 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1313 }
1314 
1315 /*
1316  * Drain the receive queue.
1317  */
1318 static void
1319 vr_rxdrain(struct vr_softc *sc)
1320 {
1321 	struct vr_descsoft *ds;
1322 	int i;
1323 
1324 	for (i = 0; i < VR_NRXDESC; i++) {
1325 		ds = VR_DSRX(sc, i);
1326 		if (ds->ds_mbuf != NULL) {
1327 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1328 			m_freem(ds->ds_mbuf);
1329 			ds->ds_mbuf = NULL;
1330 		}
1331 	}
1332 }
1333 
1334 /*
1335  * Stop the adapter and free any mbufs allocated to the
1336  * transmit lists.
1337  */
1338 static void
1339 vr_stop(struct ifnet *ifp, int disable)
1340 {
1341 	struct vr_softc *sc = ifp->if_softc;
1342 	struct vr_descsoft *ds;
1343 	int i;
1344 
1345 	/* Cancel one second timer. */
1346 	callout_stop(&sc->vr_tick_ch);
1347 
1348 	/* Down the MII. */
1349 	mii_down(&sc->vr_mii);
1350 
1351 	ifp = &sc->vr_ec.ec_if;
1352 	ifp->if_timer = 0;
1353 
1354 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1355 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1356 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1357 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1358 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1359 
1360 	/*
1361 	 * Release any queued transmit buffers.
1362 	 */
1363 	for (i = 0; i < VR_NTXDESC; i++) {
1364 		ds = VR_DSTX(sc, i);
1365 		if (ds->ds_mbuf != NULL) {
1366 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1367 			m_freem(ds->ds_mbuf);
1368 			ds->ds_mbuf = NULL;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Mark the interface down and cancel the watchdog timer.
1374 	 */
1375 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1376 	ifp->if_timer = 0;
1377 
1378 	if (disable)
1379 		vr_rxdrain(sc);
1380 }
1381 
1382 static int	vr_probe(device_t, cfdata_t, void *);
1383 static void	vr_attach(device_t, device_t, void *);
1384 static bool	vr_shutdown(device_t, int);
1385 
1386 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1387     vr_probe, vr_attach, NULL, NULL);
1388 
1389 static const struct vr_type *
1390 vr_lookup(struct pci_attach_args *pa)
1391 {
1392 	const struct vr_type *vrt;
1393 	int i;
1394 
1395 	for (i = 0; i < __arraycount(vr_devs); i++) {
1396 		vrt = &vr_devs[i];
1397 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1398 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1399 			return (vrt);
1400 	}
1401 	return (NULL);
1402 }
1403 
1404 static int
1405 vr_probe(device_t parent, cfdata_t match, void *aux)
1406 {
1407 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1408 
1409 	if (vr_lookup(pa) != NULL)
1410 		return (1);
1411 
1412 	return (0);
1413 }
1414 
1415 /*
1416  * Stop all chip I/O so that the kernel's probe routines don't
1417  * get confused by errant DMAs when rebooting.
1418  */
1419 static bool
1420 vr_shutdown(device_t self, int howto)
1421 {
1422 	struct vr_softc *sc = device_private(self);
1423 
1424 	vr_stop(&sc->vr_ec.ec_if, 1);
1425 
1426 	return true;
1427 }
1428 
1429 /*
1430  * Attach the interface. Allocate softc structures, do ifmedia
1431  * setup and ethernet/BPF attach.
1432  */
1433 static void
1434 vr_attach(device_t parent, device_t self, void *aux)
1435 {
1436 	struct vr_softc *sc = device_private(self);
1437 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1438 	bus_dma_segment_t seg;
1439 	uint32_t reg;
1440 	struct ifnet *ifp;
1441 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
1442 	int i, rseg, error;
1443 	char devinfo[256];
1444 
1445 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1446 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1447 
1448 	sc->vr_dev = self;
1449 	sc->vr_pc = pa->pa_pc;
1450 	sc->vr_tag = pa->pa_tag;
1451 	sc->vr_id = pa->pa_id;
1452 	callout_init(&sc->vr_tick_ch, 0);
1453 
1454 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1455 	aprint_naive("\n");
1456 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1457 	    PCI_REVISION(pa->pa_class));
1458 
1459 	/*
1460 	 * Handle power management nonsense.
1461 	 */
1462 
1463 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1464 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1465 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1466 
1467 	/* power up chip */
1468 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1469 	    vr_restore_state)) && error != EOPNOTSUPP) {
1470 		aprint_error_dev(self, "cannot activate %d\n",
1471 		    error);
1472 		return;
1473 	}
1474 
1475 	/* Make sure bus mastering is enabled. */
1476 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1477 	reg |= PCI_COMMAND_MASTER_ENABLE;
1478 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1479 
1480 	/* Get revision */
1481 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1482 
1483 	/*
1484 	 * Map control/status registers.
1485 	 */
1486 	{
1487 		bus_space_tag_t iot, memt;
1488 		bus_space_handle_t ioh, memh;
1489 		int ioh_valid, memh_valid;
1490 		pci_intr_handle_t intrhandle;
1491 		const char *intrstr;
1492 
1493 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1494 			PCI_MAPREG_TYPE_IO, 0,
1495 			&iot, &ioh, NULL, NULL) == 0);
1496 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1497 			PCI_MAPREG_TYPE_MEM |
1498 			PCI_MAPREG_MEM_TYPE_32BIT,
1499 			0, &memt, &memh, NULL, NULL) == 0);
1500 #if defined(VR_USEIOSPACE)
1501 		if (ioh_valid) {
1502 			sc->vr_bst = iot;
1503 			sc->vr_bsh = ioh;
1504 		} else if (memh_valid) {
1505 			sc->vr_bst = memt;
1506 			sc->vr_bsh = memh;
1507 		}
1508 #else
1509 		if (memh_valid) {
1510 			sc->vr_bst = memt;
1511 			sc->vr_bsh = memh;
1512 		} else if (ioh_valid) {
1513 			sc->vr_bst = iot;
1514 			sc->vr_bsh = ioh;
1515 		}
1516 #endif
1517 		else {
1518 			printf(": unable to map device registers\n");
1519 			return;
1520 		}
1521 
1522 		/* Allocate interrupt */
1523 		if (pci_intr_map(pa, &intrhandle)) {
1524 			aprint_error_dev(self, "couldn't map interrupt\n");
1525 			return;
1526 		}
1527 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1528 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1529 						vr_intr, sc);
1530 		if (sc->vr_ih == NULL) {
1531 			aprint_error_dev(self, "couldn't establish interrupt");
1532 			if (intrstr != NULL)
1533 				aprint_error(" at %s", intrstr);
1534 			aprint_error("\n");
1535 		}
1536 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1537 	}
1538 
1539 	/*
1540 	 * Windows may put the chip in suspend mode when it
1541 	 * shuts down. Be sure to kick it in the head to wake it
1542 	 * up again.
1543 	 *
1544 	 * Don't touch this register on VT3043 since it causes
1545 	 * kernel MCHK trap on macppc.
1546 	 * (Note some VT86C100A chip returns a product ID of VT3043)
1547 	 */
1548 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1549 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1550 
1551 	/* Reset the adapter. */
1552 	vr_reset(sc);
1553 
1554 	/*
1555 	 * Get station address. The way the Rhine chips work,
1556 	 * you're not allowed to directly access the EEPROM once
1557 	 * they've been programmed a special way. Consequently,
1558 	 * we need to read the node address from the PAR0 and PAR1
1559 	 * registers.
1560 	 *
1561 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1562 	 *         of the *whole* EEPROM, not just the MAC address. This is
1563 	 *         pretty pointless since the chip does this automatically
1564 	 *         at powerup/reset.
1565 	 *         I suspect the same thing applies to the other Rhine
1566 	 *         variants, but in the absence of a data sheet for those
1567 	 *         (and the lack of anyone else noticing the problems this
1568 	 *         causes) I'm going to retain the old behaviour for the
1569 	 *         other parts.
1570 	 *         In some cases, the chip really does startup without having
1571 	 *         read the EEPROM (kern/34812). To handle this case, we force
1572 	 *         a reload if we see an all-zeroes MAC address.
1573 	 */
1574 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1575 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1576 
1577 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1578 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1579 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1580 		DELAY(200);
1581 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1582 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1583 	}
1584 
1585 	/*
1586 	 * A Rhine chip was detected. Inform the world.
1587 	 */
1588 	aprint_normal("%s: Ethernet address: %s\n",
1589 		device_xname(self), ether_sprintf(eaddr));
1590 
1591 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1592 
1593 	sc->vr_dmat = pa->pa_dmat;
1594 
1595 	/*
1596 	 * Allocate the control data structures, and create and load
1597 	 * the DMA map for it.
1598 	 */
1599 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1600 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1601 	    0)) != 0) {
1602 		aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1603 		goto fail_0;
1604 	}
1605 
1606 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1607 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1608 	    BUS_DMA_COHERENT)) != 0) {
1609 		aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1610 		goto fail_1;
1611 	}
1612 
1613 	if ((error = bus_dmamap_create(sc->vr_dmat,
1614 	    sizeof(struct vr_control_data), 1,
1615 	    sizeof(struct vr_control_data), 0, 0,
1616 	    &sc->vr_cddmamap)) != 0) {
1617 		aprint_error_dev(self, "unable to create control data DMA map, "
1618 		    "error = %d\n", error);
1619 		goto fail_2;
1620 	}
1621 
1622 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1623 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1624 	    0)) != 0) {
1625 		aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1626 		    error);
1627 		goto fail_3;
1628 	}
1629 
1630 	/*
1631 	 * Create the transmit buffer DMA maps.
1632 	 */
1633 	for (i = 0; i < VR_NTXDESC; i++) {
1634 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1635 		    1, MCLBYTES, 0, 0,
1636 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1637 			aprint_error_dev(self, "unable to create tx DMA map %d, "
1638 			    "error = %d\n", i, error);
1639 			goto fail_4;
1640 		}
1641 	}
1642 
1643 	/*
1644 	 * Create the receive buffer DMA maps.
1645 	 */
1646 	for (i = 0; i < VR_NRXDESC; i++) {
1647 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1648 		    MCLBYTES, 0, 0,
1649 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1650 			aprint_error_dev(self, "unable to create rx DMA map %d, "
1651 			    "error = %d\n", i, error);
1652 			goto fail_5;
1653 		}
1654 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1655 	}
1656 
1657 	ifp = &sc->vr_ec.ec_if;
1658 	ifp->if_softc = sc;
1659 	ifp->if_mtu = ETHERMTU;
1660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1661 	ifp->if_ioctl = vr_ioctl;
1662 	ifp->if_start = vr_start;
1663 	ifp->if_watchdog = vr_watchdog;
1664 	ifp->if_init = vr_init;
1665 	ifp->if_stop = vr_stop;
1666 	IFQ_SET_READY(&ifp->if_snd);
1667 
1668 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1669 
1670 	/*
1671 	 * Initialize MII/media info.
1672 	 */
1673 	sc->vr_mii.mii_ifp = ifp;
1674 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1675 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1676 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1677 
1678 	sc->vr_ec.ec_mii = &sc->vr_mii;
1679 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1680 		ether_mediastatus);
1681 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1682 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1683 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1684 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1685 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1686 	} else
1687 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1688 
1689 	sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1690 
1691 	/*
1692 	 * Call MI attach routines.
1693 	 */
1694 	if_attach(ifp);
1695 	ether_ifattach(ifp, sc->vr_enaddr);
1696 #if NRND > 0
1697 	rnd_attach_source(&sc->rnd_source, device_xname(self),
1698 	    RND_TYPE_NET, 0);
1699 #endif
1700 
1701 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1702 		pmf_class_network_register(self, ifp);
1703 	else
1704 		aprint_error_dev(self, "couldn't establish power handler\n");
1705 
1706 	return;
1707 
1708  fail_5:
1709 	for (i = 0; i < VR_NRXDESC; i++) {
1710 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1711 			bus_dmamap_destroy(sc->vr_dmat,
1712 			    sc->vr_rxsoft[i].ds_dmamap);
1713 	}
1714  fail_4:
1715 	for (i = 0; i < VR_NTXDESC; i++) {
1716 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1717 			bus_dmamap_destroy(sc->vr_dmat,
1718 			    sc->vr_txsoft[i].ds_dmamap);
1719 	}
1720 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1721  fail_3:
1722 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1723  fail_2:
1724 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1725 	    sizeof(struct vr_control_data));
1726  fail_1:
1727 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1728  fail_0:
1729 	return;
1730 }
1731 
1732 static int
1733 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1734     pcireg_t state)
1735 {
1736 	struct vr_softc *sc = device_private(self);
1737 	int error;
1738 
1739 	if (state == PCI_PMCSR_STATE_D0)
1740 		return 0;
1741 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1742 		return error;
1743 
1744 	/* Restore PCI config data. */
1745 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1746 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1747 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1748 	return 0;
1749 }
1750 
1751 static bool
1752 vr_resume(device_t self, const pmf_qual_t *qual)
1753 {
1754 	struct vr_softc *sc = device_private(self);
1755 
1756 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1757 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1758 
1759 	return true;
1760 }
1761