xref: /netbsd-src/sys/dev/pci/if_vr.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_vr.c,v 1.124 2018/06/26 06:48:01 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1997, 1998
35  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by Bill Paul.
48  * 4. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62  * THE POSSIBILITY OF SUCH DAMAGE.
63  *
64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65  */
66 
67 /*
68  * VIA Rhine fast ethernet PCI NIC driver
69  *
70  * Supports various network adapters based on the VIA Rhine
71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
72  * Datasheets are available at http://www.via.com.tw.
73  *
74  * Written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The VIA Rhine controllers are similar in some respects to the
81  * the DEC tulip chips, except less complicated. The controller
82  * uses an MII bus and an external physical layer interface. The
83  * receiver has a one entry perfect filter and a 64-bit hash table
84  * multicast filter. Transmit and receive descriptors are similar
85  * to the tulip.
86  *
87  * The Rhine has a serious flaw in its transmit DMA mechanism:
88  * transmit buffers must be longword aligned. Unfortunately,
89  * the kernel doesn't guarantee that mbufs will be filled in starting
90  * at longword boundaries, so we have to do a buffer copy before
91  * transmission.
92  *
93  * Apparently, the receive DMA mechanism also has the same flaw.  This
94  * means that on systems with struct alignment requirements, incoming
95  * frames must be copied to a new buffer which shifts the data forward
96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
97  */
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.124 2018/06/26 06:48:01 msaitoh Exp $");
101 
102 
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113 
114 #include <sys/rndsource.h>
115 
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_ether.h>
121 
122 #include <net/bpf.h>
123 
124 #include <sys/bus.h>
125 #include <sys/intr.h>
126 #include <machine/endian.h>
127 
128 #include <dev/mii/mii.h>
129 #include <dev/mii/miivar.h>
130 #include <dev/mii/mii_bitbang.h>
131 
132 #include <dev/pci/pcireg.h>
133 #include <dev/pci/pcivar.h>
134 #include <dev/pci/pcidevs.h>
135 
136 #include <dev/pci/if_vrreg.h>
137 
138 #define	VR_USEIOSPACE
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static const struct vr_type {
144 	pci_vendor_id_t		vr_vid;
145 	pci_product_id_t	vr_did;
146 } vr_devs[] = {
147 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
148 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
149 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
150 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
151 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
152 };
153 
154 /*
155  * Transmit descriptor list size.
156  */
157 #define	VR_NTXDESC		64
158 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
159 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
160 
161 /*
162  * Receive descriptor list size.
163  */
164 #define	VR_NRXDESC		64
165 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
166 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
167 
168 /*
169  * Control data structres that are DMA'd to the Rhine chip.  We allocate
170  * them in a single clump that maps to a single DMA segment to make several
171  * things easier.
172  *
173  * Note that since we always copy outgoing packets to aligned transmit
174  * buffers, we can reduce the transmit descriptors to one per packet.
175  */
176 struct vr_control_data {
177 	struct vr_desc		vr_txdescs[VR_NTXDESC];
178 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
179 };
180 
181 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
182 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
183 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
184 
185 /*
186  * Software state of transmit and receive descriptors.
187  */
188 struct vr_descsoft {
189 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
190 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
191 };
192 
193 struct vr_softc {
194 	device_t		vr_dev;
195 	void			*vr_ih;		/* interrupt cookie */
196 	bus_space_tag_t		vr_bst;		/* bus space tag */
197 	bus_space_handle_t	vr_bsh;		/* bus space handle */
198 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
199 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
200 	pcitag_t		vr_tag;		/* PCI tag */
201 	struct ethercom		vr_ec;		/* Ethernet common info */
202 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
203 	struct mii_data		vr_mii;		/* MII/media info */
204 
205 	pcireg_t		vr_id;		/* vendor/product ID */
206 	uint8_t			vr_revid;	/* Rhine chip revision */
207 
208 	callout_t		vr_tick_ch;	/* tick callout */
209 
210 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
211 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
212 
213 	/*
214 	 * Software state for transmit and receive descriptors.
215 	 */
216 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
217 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
218 
219 	/*
220 	 * Control data structures.
221 	 */
222 	struct vr_control_data	*vr_control_data;
223 
224 	int	vr_txpending;		/* number of TX requests pending */
225 	int	vr_txdirty;		/* first dirty TX descriptor */
226 	int	vr_txlast;		/* last used TX descriptor */
227 
228 	int	vr_rxptr;		/* next ready RX descriptor */
229 
230 	uint32_t	vr_save_iobase;
231 	uint32_t	vr_save_membase;
232 	uint32_t	vr_save_irq;
233 
234 	bool		vr_link;
235 	int		vr_flags;
236 #define VR_F_RESTART	0x1		/* restart on next tick */
237 	int		vr_if_flags;
238 
239 	krndsource_t rnd_source;	/* random source */
240 };
241 
242 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
243 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
244 
245 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
246 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
247 
248 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
249 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
250 
251 #define	VR_CDTXSYNC(sc, x, ops)						\
252 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
253 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
254 
255 #define	VR_CDRXSYNC(sc, x, ops)						\
256 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
257 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
258 
259 /*
260  * Note we rely on MCLBYTES being a power of two below.
261  */
262 #define	VR_INIT_RXDESC(sc, i)						\
263 do {									\
264 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
265 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
266 									\
267 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
268 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
269 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
270 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
271 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
272 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
273 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
274 } while (/* CONSTCOND */ 0)
275 
276 /*
277  * register space access macros
278  */
279 #define	CSR_WRITE_4(sc, reg, val)					\
280 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
281 #define	CSR_WRITE_2(sc, reg, val)					\
282 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
283 #define	CSR_WRITE_1(sc, reg, val)					\
284 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
285 
286 #define	CSR_READ_4(sc, reg)						\
287 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
288 #define	CSR_READ_2(sc, reg)						\
289 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
290 #define	CSR_READ_1(sc, reg)						\
291 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
292 
293 #define	VR_TIMEOUT		1000
294 
295 static int	vr_add_rxbuf(struct vr_softc *, int);
296 
297 static void	vr_rxeof(struct vr_softc *);
298 static void	vr_rxeoc(struct vr_softc *);
299 static void	vr_txeof(struct vr_softc *);
300 static int	vr_intr(void *);
301 static void	vr_start(struct ifnet *);
302 static int	vr_ioctl(struct ifnet *, u_long, void *);
303 static int	vr_init(struct ifnet *);
304 static void	vr_stop(struct ifnet *, int);
305 static void	vr_rxdrain(struct vr_softc *);
306 static void	vr_watchdog(struct ifnet *);
307 static void	vr_tick(void *);
308 
309 static int	vr_mii_readreg(device_t, int, int);
310 static void	vr_mii_writereg(device_t, int, int, int);
311 static void	vr_mii_statchg(struct ifnet *);
312 
313 static void	vr_setmulti(struct vr_softc *);
314 static void	vr_reset(struct vr_softc *);
315 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
316     pcireg_t);
317 static bool	vr_resume(device_t, const pmf_qual_t *);
318 
319 int	vr_copy_small = 0;
320 
321 #define	VR_SETBIT(sc, reg, x)				\
322 	CSR_WRITE_1(sc, reg,				\
323 	    CSR_READ_1(sc, reg) | (x))
324 
325 #define	VR_CLRBIT(sc, reg, x)				\
326 	CSR_WRITE_1(sc, reg,				\
327 	    CSR_READ_1(sc, reg) & ~(x))
328 
329 #define	VR_SETBIT16(sc, reg, x)				\
330 	CSR_WRITE_2(sc, reg,				\
331 	    CSR_READ_2(sc, reg) | (x))
332 
333 #define	VR_CLRBIT16(sc, reg, x)				\
334 	CSR_WRITE_2(sc, reg,				\
335 	    CSR_READ_2(sc, reg) & ~(x))
336 
337 #define	VR_SETBIT32(sc, reg, x)				\
338 	CSR_WRITE_4(sc, reg,				\
339 	    CSR_READ_4(sc, reg) | (x))
340 
341 #define	VR_CLRBIT32(sc, reg, x)				\
342 	CSR_WRITE_4(sc, reg,				\
343 	    CSR_READ_4(sc, reg) & ~(x))
344 
345 /*
346  * MII bit-bang glue.
347  */
348 static uint32_t vr_mii_bitbang_read(device_t);
349 static void	vr_mii_bitbang_write(device_t, uint32_t);
350 
351 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
352 	vr_mii_bitbang_read,
353 	vr_mii_bitbang_write,
354 	{
355 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
356 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
357 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
358 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
359 		0,			/* MII_BIT_DIR_PHY_HOST */
360 	}
361 };
362 
363 static uint32_t
364 vr_mii_bitbang_read(device_t self)
365 {
366 	struct vr_softc *sc = device_private(self);
367 
368 	return (CSR_READ_1(sc, VR_MIICMD));
369 }
370 
371 static void
372 vr_mii_bitbang_write(device_t self, uint32_t val)
373 {
374 	struct vr_softc *sc = device_private(self);
375 
376 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
377 }
378 
379 /*
380  * Read an PHY register through the MII.
381  */
382 static int
383 vr_mii_readreg(device_t self, int phy, int reg)
384 {
385 	struct vr_softc *sc = device_private(self);
386 
387 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
388 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
389 }
390 
391 /*
392  * Write to a PHY register through the MII.
393  */
394 static void
395 vr_mii_writereg(device_t self, int phy, int reg, int val)
396 {
397 	struct vr_softc *sc = device_private(self);
398 
399 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
400 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
401 }
402 
403 static void
404 vr_mii_statchg(struct ifnet *ifp)
405 {
406 	struct vr_softc *sc = ifp->if_softc;
407 	int i;
408 
409 	/*
410 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
411 	 * register, we first have to put the transmit and/or receive logic
412 	 * in the idle state.
413 	 */
414 	if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
415 	    IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
416 		sc->vr_link = true;
417 
418 		if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))
419 			VR_CLRBIT16(sc, VR_COMMAND,
420 			    (VR_CMD_TX_ON|VR_CMD_RX_ON));
421 
422 		if (sc->vr_mii.mii_media_active & IFM_FDX)
423 			VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424 		else
425 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
426 
427 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
428 	} else {
429 		sc->vr_link = false;
430 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
431 		for (i = VR_TIMEOUT; i > 0; i--) {
432 			delay(10);
433 			if (!(CSR_READ_2(sc, VR_COMMAND) &
434 			    (VR_CMD_TX_ON|VR_CMD_RX_ON)))
435 				break;
436 		}
437 		if (i == 0) {
438 #ifdef VR_DEBUG
439 			aprint_error_dev(sc->vr_dev, "rx shutdown error!\n");
440 #endif
441 			sc->vr_flags |= VR_F_RESTART;
442 		}
443 	}
444 }
445 
446 #define	vr_calchash(addr) \
447 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
448 
449 /*
450  * Program the 64-bit multicast hash filter.
451  */
452 static void
453 vr_setmulti(struct vr_softc *sc)
454 {
455 	struct ifnet *ifp;
456 	int h = 0;
457 	uint32_t hashes[2] = { 0, 0 };
458 	struct ether_multistep step;
459 	struct ether_multi *enm;
460 	int mcnt = 0;
461 	uint8_t rxfilt;
462 
463 	ifp = &sc->vr_ec.ec_if;
464 
465 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
466 
467 	if (ifp->if_flags & IFF_PROMISC) {
468 allmulti:
469 		ifp->if_flags |= IFF_ALLMULTI;
470 		rxfilt |= VR_RXCFG_RX_MULTI;
471 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
472 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
473 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
474 		return;
475 	}
476 
477 	/* first, zot all the existing hash bits */
478 	CSR_WRITE_4(sc, VR_MAR0, 0);
479 	CSR_WRITE_4(sc, VR_MAR1, 0);
480 
481 	/* now program new ones */
482 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
483 	while (enm != NULL) {
484 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
485 		    ETHER_ADDR_LEN) != 0)
486 			goto allmulti;
487 
488 		h = vr_calchash(enm->enm_addrlo);
489 
490 		if (h < 32)
491 			hashes[0] |= (1 << h);
492 		else
493 			hashes[1] |= (1 << (h - 32));
494 		ETHER_NEXT_MULTI(step, enm);
495 		mcnt++;
496 	}
497 
498 	ifp->if_flags &= ~IFF_ALLMULTI;
499 
500 	if (mcnt)
501 		rxfilt |= VR_RXCFG_RX_MULTI;
502 	else
503 		rxfilt &= ~VR_RXCFG_RX_MULTI;
504 
505 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
506 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
507 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
508 }
509 
510 static void
511 vr_reset(struct vr_softc *sc)
512 {
513 	int i;
514 
515 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
516 
517 	for (i = 0; i < VR_TIMEOUT; i++) {
518 		DELAY(10);
519 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
520 			break;
521 	}
522 	if (i == VR_TIMEOUT) {
523 		if (sc->vr_revid < REV_ID_VT3065_A) {
524 			aprint_error_dev(sc->vr_dev,
525 			    "reset never completed!\n");
526 		} else {
527 			/* Use newer force reset command */
528 			aprint_normal_dev(sc->vr_dev,
529 			    "using force reset command.\n");
530 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
531 		}
532 	}
533 
534 	/* Wait a little while for the chip to get its brains in order. */
535 	DELAY(1000);
536 }
537 
538 /*
539  * Initialize an RX descriptor and attach an MBUF cluster.
540  * Note: the length fields are only 11 bits wide, which means the
541  * largest size we can specify is 2047. This is important because
542  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
543  * overflow the field and make a mess.
544  */
545 static int
546 vr_add_rxbuf(struct vr_softc *sc, int i)
547 {
548 	struct vr_descsoft *ds = VR_DSRX(sc, i);
549 	struct mbuf *m_new;
550 	int error;
551 
552 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
553 	if (m_new == NULL)
554 		return (ENOBUFS);
555 
556 	MCLGET(m_new, M_DONTWAIT);
557 	if ((m_new->m_flags & M_EXT) == 0) {
558 		m_freem(m_new);
559 		return (ENOBUFS);
560 	}
561 
562 	if (ds->ds_mbuf != NULL)
563 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
564 
565 	ds->ds_mbuf = m_new;
566 
567 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
568 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
569 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
570 	if (error) {
571 		aprint_error_dev(sc->vr_dev,
572 		    "unable to load rx DMA map %d, error = %d\n", i, error);
573 		panic("vr_add_rxbuf");		/* XXX */
574 	}
575 
576 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
577 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
578 
579 	VR_INIT_RXDESC(sc, i);
580 
581 	return (0);
582 }
583 
584 /*
585  * A frame has been uploaded: pass the resulting mbuf chain up to
586  * the higher level protocols.
587  */
588 static void
589 vr_rxeof(struct vr_softc *sc)
590 {
591 	struct mbuf *m;
592 	struct ifnet *ifp;
593 	struct vr_desc *d;
594 	struct vr_descsoft *ds;
595 	int i, total_len;
596 	uint32_t rxstat;
597 
598 	ifp = &sc->vr_ec.ec_if;
599 
600 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
601 		d = VR_CDRX(sc, i);
602 		ds = VR_DSRX(sc, i);
603 
604 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
605 
606 		rxstat = le32toh(d->vr_status);
607 
608 		if (rxstat & VR_RXSTAT_OWN) {
609 			/*
610 			 * We have processed all of the receive buffers.
611 			 */
612 			break;
613 		}
614 
615 		/*
616 		 * If an error occurs, update stats, clear the
617 		 * status word and leave the mbuf cluster in place:
618 		 * it should simply get re-used next time this descriptor
619 		 * comes up in the ring.
620 		 */
621 		if (rxstat & VR_RXSTAT_RXERR) {
622 			const char *errstr;
623 
624 			ifp->if_ierrors++;
625 			switch (rxstat & 0x000000FF) {
626 			case VR_RXSTAT_CRCERR:
627 				errstr = "crc error";
628 				break;
629 			case VR_RXSTAT_FRAMEALIGNERR:
630 				errstr = "frame alignment error";
631 				break;
632 			case VR_RXSTAT_FIFOOFLOW:
633 				errstr = "FIFO overflow";
634 				break;
635 			case VR_RXSTAT_GIANT:
636 				errstr = "received giant packet";
637 				break;
638 			case VR_RXSTAT_RUNT:
639 				errstr = "received runt packet";
640 				break;
641 			case VR_RXSTAT_BUSERR:
642 				errstr = "system bus error";
643 				break;
644 			case VR_RXSTAT_BUFFERR:
645 				errstr = "rx buffer error";
646 				break;
647 			default:
648 				errstr = "unknown rx error";
649 				break;
650 			}
651 			aprint_error_dev(sc->vr_dev, "receive error: %s\n",
652 			    errstr);
653 
654 			VR_INIT_RXDESC(sc, i);
655 
656 			continue;
657 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
658 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
659 			/*
660 			 * This driver expects to receive whole packets every
661 			 * time.  In case we receive a fragment that is not
662 			 * a complete packet, we discard it.
663 			 */
664 			ifp->if_ierrors++;
665 
666 			aprint_error_dev(sc->vr_dev,
667 			    "receive error: incomplete frame; "
668 			    "size = %d, status = 0x%x\n",
669 			    VR_RXBYTES(le32toh(d->vr_status)), rxstat);
670 
671 			VR_INIT_RXDESC(sc, i);
672 
673 			continue;
674 		}
675 
676 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
677 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
678 
679 		/* No errors; receive the packet. */
680 		total_len = VR_RXBYTES(le32toh(d->vr_status));
681 #ifdef DIAGNOSTIC
682 		if (total_len == 0) {
683 			/*
684 			 * If we receive a zero-length packet, we probably
685 			 * missed to handle an error condition above.
686 			 * Discard it to avoid a later crash.
687 			 */
688 			ifp->if_ierrors++;
689 
690 			aprint_error_dev(sc->vr_dev,
691 			    "receive error: zero-length packet; "
692 			    "status = 0x%x\n", rxstat);
693 
694 			VR_INIT_RXDESC(sc, i);
695 
696 			continue;
697 		}
698 #endif
699 
700 		/*
701 		 * The Rhine chip includes the CRC with every packet.
702 		 * Trim it off here.
703 		 */
704 		total_len -= ETHER_CRC_LEN;
705 
706 #ifdef __NO_STRICT_ALIGNMENT
707 		/*
708 		 * If the packet is small enough to fit in a
709 		 * single header mbuf, allocate one and copy
710 		 * the data into it.  This greatly reduces
711 		 * memory consumption when we receive lots
712 		 * of small packets.
713 		 *
714 		 * Otherwise, we add a new buffer to the receive
715 		 * chain.  If this fails, we drop the packet and
716 		 * recycle the old buffer.
717 		 */
718 		if (vr_copy_small != 0 && total_len <= MHLEN) {
719 			MGETHDR(m, M_DONTWAIT, MT_DATA);
720 			if (m == NULL)
721 				goto dropit;
722 			memcpy(mtod(m, void *),
723 			    mtod(ds->ds_mbuf, void *), total_len);
724 			VR_INIT_RXDESC(sc, i);
725 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
726 			    ds->ds_dmamap->dm_mapsize,
727 			    BUS_DMASYNC_PREREAD);
728 		} else {
729 			m = ds->ds_mbuf;
730 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
731  dropit:
732 				ifp->if_ierrors++;
733 				VR_INIT_RXDESC(sc, i);
734 				bus_dmamap_sync(sc->vr_dmat,
735 				    ds->ds_dmamap, 0,
736 				    ds->ds_dmamap->dm_mapsize,
737 				    BUS_DMASYNC_PREREAD);
738 				continue;
739 			}
740 		}
741 #else
742 		/*
743 		 * The Rhine's packet buffers must be 4-byte aligned.
744 		 * But this means that the data after the Ethernet header
745 		 * is misaligned.  We must allocate a new buffer and
746 		 * copy the data, shifted forward 2 bytes.
747 		 */
748 		MGETHDR(m, M_DONTWAIT, MT_DATA);
749 		if (m == NULL) {
750  dropit:
751 			ifp->if_ierrors++;
752 			VR_INIT_RXDESC(sc, i);
753 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
754 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
755 			continue;
756 		}
757 		if (total_len > (MHLEN - 2)) {
758 			MCLGET(m, M_DONTWAIT);
759 			if ((m->m_flags & M_EXT) == 0) {
760 				m_freem(m);
761 				goto dropit;
762 			}
763 		}
764 		m->m_data += 2;
765 
766 		/*
767 		 * Note that we use clusters for incoming frames, so the
768 		 * buffer is virtually contiguous.
769 		 */
770 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
771 		    total_len);
772 
773 		/* Allow the receive descriptor to continue using its mbuf. */
774 		VR_INIT_RXDESC(sc, i);
775 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
776 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
777 #endif /* __NO_STRICT_ALIGNMENT */
778 
779 		m_set_rcvif(m, ifp);
780 		m->m_pkthdr.len = m->m_len = total_len;
781 		/* Pass it on. */
782 		if_percpuq_enqueue(ifp->if_percpuq, m);
783 	}
784 
785 	/* Update the receive pointer. */
786 	sc->vr_rxptr = i;
787 }
788 
789 void
790 vr_rxeoc(struct vr_softc *sc)
791 {
792 	struct ifnet *ifp;
793 	int i;
794 
795 	ifp = &sc->vr_ec.ec_if;
796 
797 	ifp->if_ierrors++;
798 
799 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
800 	for (i = 0; i < VR_TIMEOUT; i++) {
801 		DELAY(10);
802 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
803 			break;
804 	}
805 	if (i == VR_TIMEOUT) {
806 		/* XXX need reset? */
807 		aprint_error_dev(sc->vr_dev, "RX shutdown never completed\n");
808 	}
809 
810 	vr_rxeof(sc);
811 
812 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
813 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
814 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
815 }
816 
817 /*
818  * A frame was downloaded to the chip. It's safe for us to clean up
819  * the list buffers.
820  */
821 static void
822 vr_txeof(struct vr_softc *sc)
823 {
824 	struct ifnet *ifp = &sc->vr_ec.ec_if;
825 	struct vr_desc *d;
826 	struct vr_descsoft *ds;
827 	uint32_t txstat;
828 	int i, j;
829 
830 	ifp->if_flags &= ~IFF_OACTIVE;
831 
832 	/*
833 	 * Go through our tx list and free mbufs for those
834 	 * frames that have been transmitted.
835 	 */
836 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
837 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
838 		d = VR_CDTX(sc, i);
839 		ds = VR_DSTX(sc, i);
840 
841 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
842 
843 		txstat = le32toh(d->vr_status);
844 
845 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
846 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
847 			for (j = 0; j < VR_TIMEOUT; j++) {
848 				DELAY(10);
849 				if ((CSR_READ_2(sc, VR_COMMAND) &
850 				    VR_CMD_TX_ON) == 0)
851 					break;
852 			}
853 			if (j == VR_TIMEOUT) {
854 				/* XXX need reset? */
855 				aprint_error_dev(sc->vr_dev,
856 				    "TX shutdown never completed\n");
857 			}
858 			d->vr_status = htole32(VR_TXSTAT_OWN);
859 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
860 			break;
861 		}
862 
863 		if (txstat & VR_TXSTAT_OWN)
864 			break;
865 
866 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
867 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
868 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
869 		m_freem(ds->ds_mbuf);
870 		ds->ds_mbuf = NULL;
871 
872 		if (txstat & VR_TXSTAT_ERRSUM) {
873 			ifp->if_oerrors++;
874 			if (txstat & VR_TXSTAT_DEFER)
875 				ifp->if_collisions++;
876 			if (txstat & VR_TXSTAT_LATECOLL)
877 				ifp->if_collisions++;
878 		}
879 
880 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
881 		ifp->if_opackets++;
882 	}
883 
884 	/* Update the dirty transmit buffer pointer. */
885 	sc->vr_txdirty = i;
886 
887 	/*
888 	 * Cancel the watchdog timer if there are no pending
889 	 * transmissions.
890 	 */
891 	if (sc->vr_txpending == 0)
892 		ifp->if_timer = 0;
893 }
894 
895 static int
896 vr_intr(void *arg)
897 {
898 	struct vr_softc *sc;
899 	struct ifnet *ifp;
900 	uint16_t status;
901 	int handled = 0, dotx = 0;
902 
903 	sc = arg;
904 	ifp = &sc->vr_ec.ec_if;
905 
906 	/* Suppress unwanted interrupts. */
907 	if ((ifp->if_flags & IFF_UP) == 0) {
908 		vr_stop(ifp, 1);
909 		return (0);
910 	}
911 
912 	/* Disable interrupts. */
913 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
914 
915 	for (;;) {
916 		status = CSR_READ_2(sc, VR_ISR);
917 		if (status)
918 			CSR_WRITE_2(sc, VR_ISR, status);
919 
920 		if ((status & VR_INTRS) == 0)
921 			break;
922 
923 		handled = 1;
924 
925 		rnd_add_uint32(&sc->rnd_source, status);
926 
927 		if (status & VR_ISR_RX_OK)
928 			vr_rxeof(sc);
929 
930 		if (status & VR_ISR_RX_DROPPED) {
931 			aprint_error_dev(sc->vr_dev, "rx packet lost\n");
932 			ifp->if_ierrors++;
933 		}
934 
935 		if (status &
936 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
937 			vr_rxeoc(sc);
938 
939 
940 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
941 			if (status & VR_ISR_BUSERR)
942 				aprint_error_dev(sc->vr_dev, "PCI bus error\n");
943 			if (status & VR_ISR_TX_UNDERRUN)
944 				aprint_error_dev(sc->vr_dev,
945 				    "transmit underrun\n");
946 			/* vr_init() calls vr_start() */
947 			dotx = 0;
948 			(void)vr_init(ifp);
949 
950 		}
951 
952 		if (status & VR_ISR_TX_OK) {
953 			dotx = 1;
954 			vr_txeof(sc);
955 		}
956 
957 		if (status &
958 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
959 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
960 				aprint_error_dev(sc->vr_dev,
961 				    "transmit aborted\n");
962 			if (status & VR_ISR_TX_UDFI)
963 				aprint_error_dev(sc->vr_dev,
964 				    "transmit underflow\n");
965 			ifp->if_oerrors++;
966 			dotx = 1;
967 			vr_txeof(sc);
968 			if (sc->vr_txpending) {
969 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
970 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
971 			}
972 		}
973 	}
974 
975 	/* Re-enable interrupts. */
976 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
977 
978 	if (dotx)
979 		if_schedule_deferred_start(ifp);
980 
981 	return (handled);
982 }
983 
984 /*
985  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
986  * to the mbuf data regions directly in the transmit lists. We also save a
987  * copy of the pointers since the transmit list fragment pointers are
988  * physical addresses.
989  */
990 static void
991 vr_start(struct ifnet *ifp)
992 {
993 	struct vr_softc *sc = ifp->if_softc;
994 	struct mbuf *m0, *m;
995 	struct vr_desc *d;
996 	struct vr_descsoft *ds;
997 	int error, firsttx, nexttx, opending;
998 
999 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1000 		return;
1001 	if (sc->vr_link == false)
1002 		return;
1003 
1004 	/*
1005 	 * Remember the previous txpending and the first transmit
1006 	 * descriptor we use.
1007 	 */
1008 	opending = sc->vr_txpending;
1009 	firsttx = VR_NEXTTX(sc->vr_txlast);
1010 
1011 	/*
1012 	 * Loop through the send queue, setting up transmit descriptors
1013 	 * until we drain the queue, or use up all available transmit
1014 	 * descriptors.
1015 	 */
1016 	while (sc->vr_txpending < VR_NTXDESC) {
1017 		/*
1018 		 * Grab a packet off the queue.
1019 		 */
1020 		IFQ_POLL(&ifp->if_snd, m0);
1021 		if (m0 == NULL)
1022 			break;
1023 		m = NULL;
1024 
1025 		/*
1026 		 * Get the next available transmit descriptor.
1027 		 */
1028 		nexttx = VR_NEXTTX(sc->vr_txlast);
1029 		d = VR_CDTX(sc, nexttx);
1030 		ds = VR_DSTX(sc, nexttx);
1031 
1032 		/*
1033 		 * Load the DMA map.  If this fails, the packet didn't
1034 		 * fit in one DMA segment, and we need to copy.  Note,
1035 		 * the packet must also be aligned.
1036 		 * if the packet is too small, copy it too, so we're sure
1037 		 * we have enough room for the pad buffer.
1038 		 */
1039 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1040 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1041 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1042 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1043 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1044 			if (m == NULL) {
1045 				aprint_error_dev(sc->vr_dev,
1046 				    "unable to allocate Tx mbuf\n");
1047 				break;
1048 			}
1049 			if (m0->m_pkthdr.len > MHLEN) {
1050 				MCLGET(m, M_DONTWAIT);
1051 				if ((m->m_flags & M_EXT) == 0) {
1052 					aprint_error_dev(sc->vr_dev,
1053 					    "unable to allocate Tx cluster\n");
1054 					m_freem(m);
1055 					break;
1056 				}
1057 			}
1058 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1059 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1060 			/*
1061 			 * The Rhine doesn't auto-pad, so we have to do this
1062 			 * ourselves.
1063 			 */
1064 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1065 				memset(mtod(m, char *) + m0->m_pkthdr.len,
1066 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1067 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1068 			}
1069 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1070 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1071 			if (error) {
1072 				m_freem(m);
1073 				aprint_error_dev(sc->vr_dev, "unable to load "
1074 				    "Tx buffer, error = %d\n", error);
1075 				break;
1076 			}
1077 		}
1078 
1079 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1080 		if (m != NULL) {
1081 			m_freem(m0);
1082 			m0 = m;
1083 		}
1084 
1085 		/* Sync the DMA map. */
1086 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1087 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1088 
1089 		/*
1090 		 * Store a pointer to the packet so we can free it later.
1091 		 */
1092 		ds->ds_mbuf = m0;
1093 
1094 		/*
1095 		 * If there's a BPF listener, bounce a copy of this frame
1096 		 * to him.
1097 		 */
1098 		bpf_mtap(ifp, m0, BPF_D_OUT);
1099 
1100 		/*
1101 		 * Fill in the transmit descriptor.
1102 		 */
1103 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1104 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1105 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1106 
1107 		/*
1108 		 * If this is the first descriptor we're enqueuing,
1109 		 * don't give it to the Rhine yet.  That could cause
1110 		 * a race condition.  We'll do it below.
1111 		 */
1112 		if (nexttx == firsttx)
1113 			d->vr_status = 0;
1114 		else
1115 			d->vr_status = htole32(VR_TXSTAT_OWN);
1116 
1117 		VR_CDTXSYNC(sc, nexttx,
1118 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 
1120 		/* Advance the tx pointer. */
1121 		sc->vr_txpending++;
1122 		sc->vr_txlast = nexttx;
1123 	}
1124 
1125 	if (sc->vr_txpending == VR_NTXDESC) {
1126 		/* No more slots left; notify upper layer. */
1127 		ifp->if_flags |= IFF_OACTIVE;
1128 	}
1129 
1130 	if (sc->vr_txpending != opending) {
1131 		/*
1132 		 * We enqueued packets.  If the transmitter was idle,
1133 		 * reset the txdirty pointer.
1134 		 */
1135 		if (opending == 0)
1136 			sc->vr_txdirty = firsttx;
1137 
1138 		/*
1139 		 * Cause a transmit interrupt to happen on the
1140 		 * last packet we enqueued.
1141 		 */
1142 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1143 		VR_CDTXSYNC(sc, sc->vr_txlast,
1144 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1145 
1146 		/*
1147 		 * The entire packet chain is set up.  Give the
1148 		 * first descriptor to the Rhine now.
1149 		 */
1150 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1151 		VR_CDTXSYNC(sc, firsttx,
1152 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1153 
1154 		/* Start the transmitter. */
1155 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1156 
1157 		/* Set the watchdog timer in case the chip flakes out. */
1158 		ifp->if_timer = 5;
1159 	}
1160 }
1161 
1162 /*
1163  * Initialize the interface.  Must be called at splnet.
1164  */
1165 static int
1166 vr_init(struct ifnet *ifp)
1167 {
1168 	struct vr_softc *sc = ifp->if_softc;
1169 	struct vr_desc *d;
1170 	struct vr_descsoft *ds;
1171 	int i, error = 0;
1172 
1173 	/* Cancel pending I/O. */
1174 	vr_stop(ifp, 0);
1175 
1176 	/* Reset the Rhine to a known state. */
1177 	vr_reset(sc);
1178 
1179 	/* set DMA length in BCR0 and BCR1 */
1180 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1181 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1182 
1183 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1184 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1185 
1186 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1187 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1188 
1189 	/* set DMA threshold length in RXCFG and TXCFG */
1190 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1191 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1192 
1193 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1194 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1195 
1196 	/*
1197 	 * Initialize the transmit descriptor ring.  txlast is initialized
1198 	 * to the end of the list so that it will wrap around to the first
1199 	 * descriptor when the first packet is transmitted.
1200 	 */
1201 	for (i = 0; i < VR_NTXDESC; i++) {
1202 		d = VR_CDTX(sc, i);
1203 		memset(d, 0, sizeof(struct vr_desc));
1204 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1205 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1206 	}
1207 	sc->vr_txpending = 0;
1208 	sc->vr_txdirty = 0;
1209 	sc->vr_txlast = VR_NTXDESC - 1;
1210 
1211 	/*
1212 	 * Initialize the receive descriptor ring.
1213 	 */
1214 	for (i = 0; i < VR_NRXDESC; i++) {
1215 		ds = VR_DSRX(sc, i);
1216 		if (ds->ds_mbuf == NULL) {
1217 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1218 				aprint_error_dev(sc->vr_dev,
1219 				    "unable to allocate or map rx buffer %d, "
1220 				    "error = %d\n", i, error);
1221 				/*
1222 				 * XXX Should attempt to run with fewer receive
1223 				 * XXX buffers instead of just failing.
1224 				 */
1225 				vr_rxdrain(sc);
1226 				goto out;
1227 			}
1228 		} else
1229 			VR_INIT_RXDESC(sc, i);
1230 	}
1231 	sc->vr_rxptr = 0;
1232 
1233 	/* If we want promiscuous mode, set the allframes bit. */
1234 	if (ifp->if_flags & IFF_PROMISC)
1235 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1236 	else
1237 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1238 
1239 	/* Set capture broadcast bit to capture broadcast frames. */
1240 	if (ifp->if_flags & IFF_BROADCAST)
1241 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1242 	else
1243 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1244 
1245 	/* Program the multicast filter, if necessary. */
1246 	vr_setmulti(sc);
1247 
1248 	/* Give the transmit and receive rings to the Rhine. */
1249 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1250 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1251 
1252 	/* Set current media. */
1253 	sc->vr_link = true;
1254 	if ((error = ether_mediachange(ifp)) != 0)
1255 		goto out;
1256 
1257 	/* Enable receiver and transmitter. */
1258 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1259 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1260 				    VR_CMD_RX_GO);
1261 
1262 	/* Enable interrupts. */
1263 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1264 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1265 
1266 	ifp->if_flags |= IFF_RUNNING;
1267 	ifp->if_flags &= ~IFF_OACTIVE;
1268 
1269 	/* Start one second timer. */
1270 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1271 
1272 	/* Attempt to start output on the interface. */
1273 	vr_start(ifp);
1274 
1275  out:
1276 	if (error)
1277 		aprint_error_dev(sc->vr_dev, "interface not running\n");
1278 	return (error);
1279 }
1280 
1281 static int
1282 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1283 {
1284 	struct vr_softc *sc = ifp->if_softc;
1285 	int s, error = 0;
1286 
1287 	s = splnet();
1288 
1289 	switch (command) {
1290 	case SIOCSIFFLAGS:
1291 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1292 			break;
1293 
1294 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1295 		case IFF_RUNNING:
1296 			vr_stop(ifp, 1);
1297 			break;
1298 		case IFF_UP:
1299 			vr_init(ifp);
1300 			break;
1301 		case IFF_UP | IFF_RUNNING:
1302 			if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
1303 				vr_setmulti(sc);
1304 			else
1305 				vr_init(ifp);
1306 			break;
1307 		}
1308 		sc->vr_if_flags = ifp->if_flags;
1309 		break;
1310 	default:
1311 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1312 			break;
1313 		error = 0;
1314 		if (command == SIOCADDMULTI || command == SIOCDELMULTI)
1315 			vr_setmulti(sc);
1316 	}
1317 	splx(s);
1318 
1319 	return error;
1320 }
1321 
1322 static void
1323 vr_watchdog(struct ifnet *ifp)
1324 {
1325 	struct vr_softc *sc = ifp->if_softc;
1326 
1327 	aprint_error_dev(sc->vr_dev, "device timeout\n");
1328 	ifp->if_oerrors++;
1329 
1330 	(void) vr_init(ifp);
1331 }
1332 
1333 /*
1334  * One second timer, used to tick MII.
1335  */
1336 static void
1337 vr_tick(void *arg)
1338 {
1339 	struct vr_softc *sc = arg;
1340 	int s;
1341 
1342 	s = splnet();
1343 	if (sc->vr_flags & VR_F_RESTART) {
1344 		aprint_normal_dev(sc->vr_dev, "restarting\n");
1345 		vr_init(&sc->vr_ec.ec_if);
1346 		sc->vr_flags &= ~VR_F_RESTART;
1347 	}
1348 	mii_tick(&sc->vr_mii);
1349 	splx(s);
1350 
1351 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1352 }
1353 
1354 /*
1355  * Drain the receive queue.
1356  */
1357 static void
1358 vr_rxdrain(struct vr_softc *sc)
1359 {
1360 	struct vr_descsoft *ds;
1361 	int i;
1362 
1363 	for (i = 0; i < VR_NRXDESC; i++) {
1364 		ds = VR_DSRX(sc, i);
1365 		if (ds->ds_mbuf != NULL) {
1366 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1367 			m_freem(ds->ds_mbuf);
1368 			ds->ds_mbuf = NULL;
1369 		}
1370 	}
1371 }
1372 
1373 /*
1374  * Stop the adapter and free any mbufs allocated to the
1375  * transmit lists.
1376  */
1377 static void
1378 vr_stop(struct ifnet *ifp, int disable)
1379 {
1380 	struct vr_softc *sc = ifp->if_softc;
1381 	struct vr_descsoft *ds;
1382 	int i;
1383 
1384 	/* Cancel one second timer. */
1385 	callout_stop(&sc->vr_tick_ch);
1386 
1387 	/* Down the MII. */
1388 	mii_down(&sc->vr_mii);
1389 
1390 	ifp = &sc->vr_ec.ec_if;
1391 	ifp->if_timer = 0;
1392 
1393 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1394 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1395 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1396 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1397 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1398 
1399 	/*
1400 	 * Release any queued transmit buffers.
1401 	 */
1402 	for (i = 0; i < VR_NTXDESC; i++) {
1403 		ds = VR_DSTX(sc, i);
1404 		if (ds->ds_mbuf != NULL) {
1405 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1406 			m_freem(ds->ds_mbuf);
1407 			ds->ds_mbuf = NULL;
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * Mark the interface down and cancel the watchdog timer.
1413 	 */
1414 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1415 	ifp->if_timer = 0;
1416 
1417 	if (disable)
1418 		vr_rxdrain(sc);
1419 }
1420 
1421 static int	vr_probe(device_t, cfdata_t, void *);
1422 static void	vr_attach(device_t, device_t, void *);
1423 static bool	vr_shutdown(device_t, int);
1424 
1425 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1426     vr_probe, vr_attach, NULL, NULL);
1427 
1428 static const struct vr_type *
1429 vr_lookup(struct pci_attach_args *pa)
1430 {
1431 	const struct vr_type *vrt;
1432 	int i;
1433 
1434 	for (i = 0; i < __arraycount(vr_devs); i++) {
1435 		vrt = &vr_devs[i];
1436 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1437 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1438 			return (vrt);
1439 	}
1440 	return (NULL);
1441 }
1442 
1443 static int
1444 vr_probe(device_t parent, cfdata_t match, void *aux)
1445 {
1446 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1447 
1448 	if (vr_lookup(pa) != NULL)
1449 		return (1);
1450 
1451 	return (0);
1452 }
1453 
1454 /*
1455  * Stop all chip I/O so that the kernel's probe routines don't
1456  * get confused by errant DMAs when rebooting.
1457  */
1458 static bool
1459 vr_shutdown(device_t self, int howto)
1460 {
1461 	struct vr_softc *sc = device_private(self);
1462 
1463 	vr_stop(&sc->vr_ec.ec_if, 1);
1464 
1465 	return true;
1466 }
1467 
1468 /*
1469  * Attach the interface. Allocate softc structures, do ifmedia
1470  * setup and ethernet/BPF attach.
1471  */
1472 static void
1473 vr_attach(device_t parent, device_t self, void *aux)
1474 {
1475 	struct vr_softc *sc = device_private(self);
1476 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1477 	bus_dma_segment_t seg;
1478 	uint32_t reg;
1479 	struct ifnet *ifp;
1480 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
1481 	int i, rseg, error;
1482 	char intrbuf[PCI_INTRSTR_LEN];
1483 
1484 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1485 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1486 
1487 	sc->vr_dev = self;
1488 	sc->vr_pc = pa->pa_pc;
1489 	sc->vr_tag = pa->pa_tag;
1490 	sc->vr_id = pa->pa_id;
1491 	callout_init(&sc->vr_tick_ch, 0);
1492 
1493 	pci_aprint_devinfo(pa, NULL);
1494 
1495 	/*
1496 	 * Handle power management nonsense.
1497 	 */
1498 
1499 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1500 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1501 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1502 
1503 	/* power up chip */
1504 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1505 	    vr_restore_state)) && error != EOPNOTSUPP) {
1506 		aprint_error_dev(self, "cannot activate %d\n", error);
1507 		return;
1508 	}
1509 
1510 	/* Make sure bus mastering is enabled. */
1511 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1512 	reg |= PCI_COMMAND_MASTER_ENABLE;
1513 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1514 
1515 	/* Get revision */
1516 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1517 
1518 	/*
1519 	 * Map control/status registers.
1520 	 */
1521 	{
1522 		bus_space_tag_t iot, memt;
1523 		bus_space_handle_t ioh, memh;
1524 		int ioh_valid, memh_valid;
1525 		pci_intr_handle_t intrhandle;
1526 		const char *intrstr;
1527 
1528 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1529 			PCI_MAPREG_TYPE_IO, 0,
1530 			&iot, &ioh, NULL, NULL) == 0);
1531 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1532 			PCI_MAPREG_TYPE_MEM |
1533 			PCI_MAPREG_MEM_TYPE_32BIT,
1534 			0, &memt, &memh, NULL, NULL) == 0);
1535 #if defined(VR_USEIOSPACE)
1536 		if (ioh_valid) {
1537 			sc->vr_bst = iot;
1538 			sc->vr_bsh = ioh;
1539 		} else if (memh_valid) {
1540 			sc->vr_bst = memt;
1541 			sc->vr_bsh = memh;
1542 		}
1543 #else
1544 		if (memh_valid) {
1545 			sc->vr_bst = memt;
1546 			sc->vr_bsh = memh;
1547 		} else if (ioh_valid) {
1548 			sc->vr_bst = iot;
1549 			sc->vr_bsh = ioh;
1550 		}
1551 #endif
1552 		else {
1553 			aprint_error_dev(self,
1554 			    "unable to map device registers\n");
1555 			return;
1556 		}
1557 
1558 		/* Allocate interrupt */
1559 		if (pci_intr_map(pa, &intrhandle)) {
1560 			aprint_error_dev(self, "couldn't map interrupt\n");
1561 			return;
1562 		}
1563 		intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
1564 		    sizeof(intrbuf));
1565 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1566 						vr_intr, sc);
1567 		if (sc->vr_ih == NULL) {
1568 			aprint_error_dev(self, "couldn't establish interrupt");
1569 			if (intrstr != NULL)
1570 				aprint_error(" at %s", intrstr);
1571 			aprint_error("\n");
1572 			return;
1573 		}
1574 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1575 	}
1576 
1577 	/*
1578 	 * Windows may put the chip in suspend mode when it
1579 	 * shuts down. Be sure to kick it in the head to wake it
1580 	 * up again.
1581 	 *
1582 	 * Don't touch this register on VT3043 since it causes
1583 	 * kernel MCHK trap on macppc.
1584 	 * (Note some VT86C100A chip returns a product ID of VT3043)
1585 	 */
1586 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1587 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1588 
1589 	/* Reset the adapter. */
1590 	vr_reset(sc);
1591 
1592 	/*
1593 	 * Get station address. The way the Rhine chips work,
1594 	 * you're not allowed to directly access the EEPROM once
1595 	 * they've been programmed a special way. Consequently,
1596 	 * we need to read the node address from the PAR registers.
1597 	 *
1598 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1599 	 *         of the *whole* EEPROM, not just the MAC address. This is
1600 	 *         pretty pointless since the chip does this automatically
1601 	 *         at powerup/reset.
1602 	 *         I suspect the same thing applies to the other Rhine
1603 	 *         variants, but in the absence of a data sheet for those
1604 	 *         (and the lack of anyone else noticing the problems this
1605 	 *         causes) I'm going to retain the old behaviour for the
1606 	 *         other parts.
1607 	 *         In some cases, the chip really does startup without having
1608 	 *         read the EEPROM (kern/34812). To handle this case, we force
1609 	 *         a reload if we see an all-zeroes MAC address.
1610 	 */
1611 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1612 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1613 
1614 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1615 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1616 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1617 		DELAY(200);
1618 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1619 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1620 	}
1621 
1622 	/*
1623 	 * A Rhine chip was detected. Inform the world.
1624 	 */
1625 	aprint_normal_dev(self, "Ethernet address: %s\n", ether_sprintf(eaddr));
1626 
1627 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1628 
1629 	sc->vr_dmat = pa->pa_dmat;
1630 
1631 	/*
1632 	 * Allocate the control data structures, and create and load
1633 	 * the DMA map for it.
1634 	 */
1635 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1636 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1637 	    0)) != 0) {
1638 		aprint_error_dev(self,
1639 		    "unable to allocate control data, error = %d\n", error);
1640 		goto fail_0;
1641 	}
1642 
1643 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1644 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1645 	    BUS_DMA_COHERENT)) != 0) {
1646 		aprint_error_dev(self,
1647 		    "unable to map control data, error = %d\n", error);
1648 		goto fail_1;
1649 	}
1650 
1651 	if ((error = bus_dmamap_create(sc->vr_dmat,
1652 	    sizeof(struct vr_control_data), 1,
1653 	    sizeof(struct vr_control_data), 0, 0,
1654 	    &sc->vr_cddmamap)) != 0) {
1655 		aprint_error_dev(self,
1656 		    "unable to create control data DMA map, error = %d\n",
1657 		    error);
1658 		goto fail_2;
1659 	}
1660 
1661 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1662 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1663 	    0)) != 0) {
1664 		aprint_error_dev(self,
1665 		    "unable to load control data DMA map, error = %d\n",
1666 		    error);
1667 		goto fail_3;
1668 	}
1669 
1670 	/*
1671 	 * Create the transmit buffer DMA maps.
1672 	 */
1673 	for (i = 0; i < VR_NTXDESC; i++) {
1674 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1675 		    1, MCLBYTES, 0, 0,
1676 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1677 			aprint_error_dev(self,
1678 			    "unable to create tx DMA map %d, error = %d\n", i,
1679 			    error);
1680 			goto fail_4;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * Create the receive buffer DMA maps.
1686 	 */
1687 	for (i = 0; i < VR_NRXDESC; i++) {
1688 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1689 		    MCLBYTES, 0, 0,
1690 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1691 			aprint_error_dev(self,
1692 			    "unable to create rx DMA map %d, error = %d\n", i,
1693 			    error);
1694 			goto fail_5;
1695 		}
1696 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1697 	}
1698 
1699 	ifp = &sc->vr_ec.ec_if;
1700 	ifp->if_softc = sc;
1701 	ifp->if_mtu = ETHERMTU;
1702 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1703 	ifp->if_ioctl = vr_ioctl;
1704 	ifp->if_start = vr_start;
1705 	ifp->if_watchdog = vr_watchdog;
1706 	ifp->if_init = vr_init;
1707 	ifp->if_stop = vr_stop;
1708 	IFQ_SET_READY(&ifp->if_snd);
1709 
1710 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1711 
1712 	/*
1713 	 * Initialize MII/media info.
1714 	 */
1715 	sc->vr_mii.mii_ifp = ifp;
1716 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1717 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1718 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1719 
1720 	sc->vr_ec.ec_mii = &sc->vr_mii;
1721 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1722 		ether_mediastatus);
1723 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1724 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1725 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1726 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1727 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1728 	} else
1729 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1730 
1731 	sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1732 
1733 	/*
1734 	 * Call MI attach routines.
1735 	 */
1736 	if_attach(ifp);
1737 	if_deferred_start_init(ifp, NULL);
1738 	ether_ifattach(ifp, sc->vr_enaddr);
1739 
1740 	rnd_attach_source(&sc->rnd_source, device_xname(self),
1741 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1742 
1743 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1744 		pmf_class_network_register(self, ifp);
1745 	else
1746 		aprint_error_dev(self, "couldn't establish power handler\n");
1747 
1748 	return;
1749 
1750  fail_5:
1751 	for (i = 0; i < VR_NRXDESC; i++) {
1752 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1753 			bus_dmamap_destroy(sc->vr_dmat,
1754 			    sc->vr_rxsoft[i].ds_dmamap);
1755 	}
1756  fail_4:
1757 	for (i = 0; i < VR_NTXDESC; i++) {
1758 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1759 			bus_dmamap_destroy(sc->vr_dmat,
1760 			    sc->vr_txsoft[i].ds_dmamap);
1761 	}
1762 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1763  fail_3:
1764 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1765  fail_2:
1766 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1767 	    sizeof(struct vr_control_data));
1768  fail_1:
1769 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1770  fail_0:
1771 	return;
1772 }
1773 
1774 static int
1775 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1776     pcireg_t state)
1777 {
1778 	struct vr_softc *sc = device_private(self);
1779 	int error;
1780 
1781 	if (state == PCI_PMCSR_STATE_D0)
1782 		return 0;
1783 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1784 		return error;
1785 
1786 	/* Restore PCI config data. */
1787 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1788 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1789 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1790 	return 0;
1791 }
1792 
1793 static bool
1794 vr_resume(device_t self, const pmf_qual_t *qual)
1795 {
1796 	struct vr_softc *sc = device_private(self);
1797 
1798 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1799 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1800 
1801 	return true;
1802 }
1803