xref: /netbsd-src/sys/dev/pci/if_vr.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: if_vr.c,v 1.105 2010/04/28 22:08:58 hubertf Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1997, 1998
35  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by Bill Paul.
48  * 4. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62  * THE POSSIBILITY OF SUCH DAMAGE.
63  *
64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65  */
66 
67 /*
68  * VIA Rhine fast ethernet PCI NIC driver
69  *
70  * Supports various network adapters based on the VIA Rhine
71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
72  * Datasheets are available at http://www.via.com.tw.
73  *
74  * Written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The VIA Rhine controllers are similar in some respects to the
81  * the DEC tulip chips, except less complicated. The controller
82  * uses an MII bus and an external physical layer interface. The
83  * receiver has a one entry perfect filter and a 64-bit hash table
84  * multicast filter. Transmit and receive descriptors are similar
85  * to the tulip.
86  *
87  * The Rhine has a serious flaw in its transmit DMA mechanism:
88  * transmit buffers must be longword aligned. Unfortunately,
89  * the kernel doesn't guarantee that mbufs will be filled in starting
90  * at longword boundaries, so we have to do a buffer copy before
91  * transmission.
92  *
93  * Apparently, the receive DMA mechanism also has the same flaw.  This
94  * means that on systems with struct alignment requirements, incoming
95  * frames must be copied to a new buffer which shifts the data forward
96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
97  */
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.105 2010/04/28 22:08:58 hubertf Exp $");
101 
102 #include "rnd.h"
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113 
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117 
118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
119 
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125 
126 #include <net/bpf.h>
127 
128 #include <sys/bus.h>
129 #include <sys/intr.h>
130 #include <machine/endian.h>
131 
132 #include <dev/mii/mii.h>
133 #include <dev/mii/miivar.h>
134 #include <dev/mii/mii_bitbang.h>
135 
136 #include <dev/pci/pcireg.h>
137 #include <dev/pci/pcivar.h>
138 #include <dev/pci/pcidevs.h>
139 
140 #include <dev/pci/if_vrreg.h>
141 
142 #define	VR_USEIOSPACE
143 
144 /*
145  * Various supported device vendors/types and their names.
146  */
147 static const struct vr_type {
148 	pci_vendor_id_t		vr_vid;
149 	pci_product_id_t	vr_did;
150 } vr_devs[] = {
151 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
152 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
153 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
154 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
155 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
156 };
157 
158 /*
159  * Transmit descriptor list size.
160  */
161 #define	VR_NTXDESC		64
162 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
163 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
164 
165 /*
166  * Receive descriptor list size.
167  */
168 #define	VR_NRXDESC		64
169 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
170 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
171 
172 /*
173  * Control data structres that are DMA'd to the Rhine chip.  We allocate
174  * them in a single clump that maps to a single DMA segment to make several
175  * things easier.
176  *
177  * Note that since we always copy outgoing packets to aligned transmit
178  * buffers, we can reduce the transmit descriptors to one per packet.
179  */
180 struct vr_control_data {
181 	struct vr_desc		vr_txdescs[VR_NTXDESC];
182 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
183 };
184 
185 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
186 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
187 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
188 
189 /*
190  * Software state of transmit and receive descriptors.
191  */
192 struct vr_descsoft {
193 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
194 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
195 };
196 
197 struct vr_softc {
198 	device_t		vr_dev;
199 	void			*vr_ih;		/* interrupt cookie */
200 	bus_space_tag_t		vr_bst;		/* bus space tag */
201 	bus_space_handle_t	vr_bsh;		/* bus space handle */
202 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
203 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
204 	pcitag_t		vr_tag;		/* PCI tag */
205 	struct ethercom		vr_ec;		/* Ethernet common info */
206 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
207 	struct mii_data		vr_mii;		/* MII/media info */
208 
209 	pcireg_t		vr_id;		/* vendor/product ID */
210 	uint8_t			vr_revid;	/* Rhine chip revision */
211 
212 	callout_t		vr_tick_ch;	/* tick callout */
213 
214 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
215 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
216 
217 	/*
218 	 * Software state for transmit and receive descriptors.
219 	 */
220 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
221 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
222 
223 	/*
224 	 * Control data structures.
225 	 */
226 	struct vr_control_data	*vr_control_data;
227 
228 	int	vr_txpending;		/* number of TX requests pending */
229 	int	vr_txdirty;		/* first dirty TX descriptor */
230 	int	vr_txlast;		/* last used TX descriptor */
231 
232 	int	vr_rxptr;		/* next ready RX descriptor */
233 
234 	uint32_t	vr_save_iobase;
235 	uint32_t	vr_save_membase;
236 	uint32_t	vr_save_irq;
237 
238 #if NRND > 0
239 	rndsource_element_t rnd_source;	/* random source */
240 #endif
241 };
242 
243 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
245 
246 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
248 
249 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
250 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
251 
252 #define	VR_CDTXSYNC(sc, x, ops)						\
253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
254 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255 
256 #define	VR_CDRXSYNC(sc, x, ops)						\
257 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
258 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259 
260 /*
261  * Note we rely on MCLBYTES being a power of two below.
262  */
263 #define	VR_INIT_RXDESC(sc, i)						\
264 do {									\
265 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
266 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
267 									\
268 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
269 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
270 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
271 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
272 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
273 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
274 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (/* CONSTCOND */ 0)
276 
277 /*
278  * register space access macros
279  */
280 #define	CSR_WRITE_4(sc, reg, val)					\
281 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define	CSR_WRITE_2(sc, reg, val)					\
283 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define	CSR_WRITE_1(sc, reg, val)					\
285 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286 
287 #define	CSR_READ_4(sc, reg)						\
288 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define	CSR_READ_2(sc, reg)						\
290 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define	CSR_READ_1(sc, reg)						\
292 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293 
294 #define	VR_TIMEOUT		1000
295 
296 static int	vr_add_rxbuf(struct vr_softc *, int);
297 
298 static void	vr_rxeof(struct vr_softc *);
299 static void	vr_rxeoc(struct vr_softc *);
300 static void	vr_txeof(struct vr_softc *);
301 static int	vr_intr(void *);
302 static void	vr_start(struct ifnet *);
303 static int	vr_ioctl(struct ifnet *, u_long, void *);
304 static int	vr_init(struct ifnet *);
305 static void	vr_stop(struct ifnet *, int);
306 static void	vr_rxdrain(struct vr_softc *);
307 static void	vr_watchdog(struct ifnet *);
308 static void	vr_tick(void *);
309 
310 static int	vr_mii_readreg(device_t, int, int);
311 static void	vr_mii_writereg(device_t, int, int, int);
312 static void	vr_mii_statchg(device_t);
313 
314 static void	vr_setmulti(struct vr_softc *);
315 static void	vr_reset(struct vr_softc *);
316 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
317     pcireg_t);
318 static bool	vr_resume(device_t, const pmf_qual_t *);
319 
320 int	vr_copy_small = 0;
321 
322 #define	VR_SETBIT(sc, reg, x)				\
323 	CSR_WRITE_1(sc, reg,				\
324 	    CSR_READ_1(sc, reg) | (x))
325 
326 #define	VR_CLRBIT(sc, reg, x)				\
327 	CSR_WRITE_1(sc, reg,				\
328 	    CSR_READ_1(sc, reg) & ~(x))
329 
330 #define	VR_SETBIT16(sc, reg, x)				\
331 	CSR_WRITE_2(sc, reg,				\
332 	    CSR_READ_2(sc, reg) | (x))
333 
334 #define	VR_CLRBIT16(sc, reg, x)				\
335 	CSR_WRITE_2(sc, reg,				\
336 	    CSR_READ_2(sc, reg) & ~(x))
337 
338 #define	VR_SETBIT32(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg,				\
340 	    CSR_READ_4(sc, reg) | (x))
341 
342 #define	VR_CLRBIT32(sc, reg, x)				\
343 	CSR_WRITE_4(sc, reg,				\
344 	    CSR_READ_4(sc, reg) & ~(x))
345 
346 /*
347  * MII bit-bang glue.
348  */
349 static uint32_t vr_mii_bitbang_read(device_t);
350 static void	vr_mii_bitbang_write(device_t, uint32_t);
351 
352 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
353 	vr_mii_bitbang_read,
354 	vr_mii_bitbang_write,
355 	{
356 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
357 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
358 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
359 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
360 		0,			/* MII_BIT_DIR_PHY_HOST */
361 	}
362 };
363 
364 static uint32_t
365 vr_mii_bitbang_read(device_t self)
366 {
367 	struct vr_softc *sc = device_private(self);
368 
369 	return (CSR_READ_1(sc, VR_MIICMD));
370 }
371 
372 static void
373 vr_mii_bitbang_write(device_t self, uint32_t val)
374 {
375 	struct vr_softc *sc = device_private(self);
376 
377 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
378 }
379 
380 /*
381  * Read an PHY register through the MII.
382  */
383 static int
384 vr_mii_readreg(device_t self, int phy, int reg)
385 {
386 	struct vr_softc *sc = device_private(self);
387 
388 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
389 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
390 }
391 
392 /*
393  * Write to a PHY register through the MII.
394  */
395 static void
396 vr_mii_writereg(device_t self, int phy, int reg, int val)
397 {
398 	struct vr_softc *sc = device_private(self);
399 
400 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
401 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
402 }
403 
404 static void
405 vr_mii_statchg(device_t self)
406 {
407 	struct vr_softc *sc = device_private(self);
408 
409 	/*
410 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
411 	 * register, we first have to put the transmit and/or receive logic
412 	 * in the idle state.
413 	 */
414 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
415 
416 	if (sc->vr_mii.mii_media_active & IFM_FDX)
417 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
418 	else
419 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
420 
421 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
422 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
423 }
424 
425 #define	vr_calchash(addr) \
426 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
427 
428 /*
429  * Program the 64-bit multicast hash filter.
430  */
431 static void
432 vr_setmulti(struct vr_softc *sc)
433 {
434 	struct ifnet *ifp;
435 	int h = 0;
436 	uint32_t hashes[2] = { 0, 0 };
437 	struct ether_multistep step;
438 	struct ether_multi *enm;
439 	int mcnt = 0;
440 	uint8_t rxfilt;
441 
442 	ifp = &sc->vr_ec.ec_if;
443 
444 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
445 
446 	if (ifp->if_flags & IFF_PROMISC) {
447 allmulti:
448 		ifp->if_flags |= IFF_ALLMULTI;
449 		rxfilt |= VR_RXCFG_RX_MULTI;
450 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
451 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
452 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
453 		return;
454 	}
455 
456 	/* first, zot all the existing hash bits */
457 	CSR_WRITE_4(sc, VR_MAR0, 0);
458 	CSR_WRITE_4(sc, VR_MAR1, 0);
459 
460 	/* now program new ones */
461 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
462 	while (enm != NULL) {
463 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
464 		    ETHER_ADDR_LEN) != 0)
465 			goto allmulti;
466 
467 		h = vr_calchash(enm->enm_addrlo);
468 
469 		if (h < 32)
470 			hashes[0] |= (1 << h);
471 		else
472 			hashes[1] |= (1 << (h - 32));
473 		ETHER_NEXT_MULTI(step, enm);
474 		mcnt++;
475 	}
476 
477 	ifp->if_flags &= ~IFF_ALLMULTI;
478 
479 	if (mcnt)
480 		rxfilt |= VR_RXCFG_RX_MULTI;
481 	else
482 		rxfilt &= ~VR_RXCFG_RX_MULTI;
483 
484 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
485 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
486 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
487 }
488 
489 static void
490 vr_reset(struct vr_softc *sc)
491 {
492 	int i;
493 
494 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
495 
496 	for (i = 0; i < VR_TIMEOUT; i++) {
497 		DELAY(10);
498 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
499 			break;
500 	}
501 	if (i == VR_TIMEOUT) {
502 		if (sc->vr_revid < REV_ID_VT3065_A) {
503 			printf("%s: reset never completed!\n",
504 			    device_xname(sc->vr_dev));
505 		} else {
506 			/* Use newer force reset command */
507 			printf("%s: using force reset command.\n",
508 			    device_xname(sc->vr_dev));
509 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
510 		}
511 	}
512 
513 	/* Wait a little while for the chip to get its brains in order. */
514 	DELAY(1000);
515 }
516 
517 /*
518  * Initialize an RX descriptor and attach an MBUF cluster.
519  * Note: the length fields are only 11 bits wide, which means the
520  * largest size we can specify is 2047. This is important because
521  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
522  * overflow the field and make a mess.
523  */
524 static int
525 vr_add_rxbuf(struct vr_softc *sc, int i)
526 {
527 	struct vr_descsoft *ds = VR_DSRX(sc, i);
528 	struct mbuf *m_new;
529 	int error;
530 
531 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
532 	if (m_new == NULL)
533 		return (ENOBUFS);
534 
535 	MCLGET(m_new, M_DONTWAIT);
536 	if ((m_new->m_flags & M_EXT) == 0) {
537 		m_freem(m_new);
538 		return (ENOBUFS);
539 	}
540 
541 	if (ds->ds_mbuf != NULL)
542 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
543 
544 	ds->ds_mbuf = m_new;
545 
546 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
547 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
548 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
549 	if (error) {
550 		aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
551 		    i, error);
552 		panic("vr_add_rxbuf");		/* XXX */
553 	}
554 
555 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
556 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
557 
558 	VR_INIT_RXDESC(sc, i);
559 
560 	return (0);
561 }
562 
563 /*
564  * A frame has been uploaded: pass the resulting mbuf chain up to
565  * the higher level protocols.
566  */
567 static void
568 vr_rxeof(struct vr_softc *sc)
569 {
570 	struct mbuf *m;
571 	struct ifnet *ifp;
572 	struct vr_desc *d;
573 	struct vr_descsoft *ds;
574 	int i, total_len;
575 	uint32_t rxstat;
576 
577 	ifp = &sc->vr_ec.ec_if;
578 
579 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
580 		d = VR_CDRX(sc, i);
581 		ds = VR_DSRX(sc, i);
582 
583 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
584 
585 		rxstat = le32toh(d->vr_status);
586 
587 		if (rxstat & VR_RXSTAT_OWN) {
588 			/*
589 			 * We have processed all of the receive buffers.
590 			 */
591 			break;
592 		}
593 
594 		/*
595 		 * If an error occurs, update stats, clear the
596 		 * status word and leave the mbuf cluster in place:
597 		 * it should simply get re-used next time this descriptor
598 		 * comes up in the ring.
599 		 */
600 		if (rxstat & VR_RXSTAT_RXERR) {
601 			const char *errstr;
602 
603 			ifp->if_ierrors++;
604 			switch (rxstat & 0x000000FF) {
605 			case VR_RXSTAT_CRCERR:
606 				errstr = "crc error";
607 				break;
608 			case VR_RXSTAT_FRAMEALIGNERR:
609 				errstr = "frame alignment error";
610 				break;
611 			case VR_RXSTAT_FIFOOFLOW:
612 				errstr = "FIFO overflow";
613 				break;
614 			case VR_RXSTAT_GIANT:
615 				errstr = "received giant packet";
616 				break;
617 			case VR_RXSTAT_RUNT:
618 				errstr = "received runt packet";
619 				break;
620 			case VR_RXSTAT_BUSERR:
621 				errstr = "system bus error";
622 				break;
623 			case VR_RXSTAT_BUFFERR:
624 				errstr = "rx buffer error";
625 				break;
626 			default:
627 				errstr = "unknown rx error";
628 				break;
629 			}
630 			printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
631 			    errstr);
632 
633 			VR_INIT_RXDESC(sc, i);
634 
635 			continue;
636 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
637 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
638 			/*
639 			 * This driver expects to receive whole packets every
640 			 * time.  In case we receive a fragment that is not
641 			 * a complete packet, we discard it.
642 			 */
643 			ifp->if_ierrors++;
644 
645 			printf("%s: receive error: incomplete frame; "
646 			       "size = %d, status = 0x%x\n",
647 			       device_xname(sc->vr_dev),
648 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
649 
650 			VR_INIT_RXDESC(sc, i);
651 
652 			continue;
653 		}
654 
655 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
656 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
657 
658 		/* No errors; receive the packet. */
659 		total_len = VR_RXBYTES(le32toh(d->vr_status));
660 #ifdef DIAGNOSTIC
661 		if (total_len == 0) {
662 			/*
663 			 * If we receive a zero-length packet, we probably
664 			 * missed to handle an error condition above.
665 			 * Discard it to avoid a later crash.
666 			 */
667 			ifp->if_ierrors++;
668 
669 			printf("%s: receive error: zero-length packet; "
670 			       "status = 0x%x\n",
671 			       device_xname(sc->vr_dev), rxstat);
672 
673 			VR_INIT_RXDESC(sc, i);
674 
675 			continue;
676 		}
677 #endif
678 
679 		/*
680 		 * The Rhine chip includes the CRC with every packet.
681 		 * Trim it off here.
682 		 */
683 		total_len -= ETHER_CRC_LEN;
684 
685 #ifdef __NO_STRICT_ALIGNMENT
686 		/*
687 		 * If the packet is small enough to fit in a
688 		 * single header mbuf, allocate one and copy
689 		 * the data into it.  This greatly reduces
690 		 * memory consumption when we receive lots
691 		 * of small packets.
692 		 *
693 		 * Otherwise, we add a new buffer to the receive
694 		 * chain.  If this fails, we drop the packet and
695 		 * recycle the old buffer.
696 		 */
697 		if (vr_copy_small != 0 && total_len <= MHLEN) {
698 			MGETHDR(m, M_DONTWAIT, MT_DATA);
699 			if (m == NULL)
700 				goto dropit;
701 			memcpy(mtod(m, void *),
702 			    mtod(ds->ds_mbuf, void *), total_len);
703 			VR_INIT_RXDESC(sc, i);
704 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
705 			    ds->ds_dmamap->dm_mapsize,
706 			    BUS_DMASYNC_PREREAD);
707 		} else {
708 			m = ds->ds_mbuf;
709 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
710  dropit:
711 				ifp->if_ierrors++;
712 				VR_INIT_RXDESC(sc, i);
713 				bus_dmamap_sync(sc->vr_dmat,
714 				    ds->ds_dmamap, 0,
715 				    ds->ds_dmamap->dm_mapsize,
716 				    BUS_DMASYNC_PREREAD);
717 				continue;
718 			}
719 		}
720 #else
721 		/*
722 		 * The Rhine's packet buffers must be 4-byte aligned.
723 		 * But this means that the data after the Ethernet header
724 		 * is misaligned.  We must allocate a new buffer and
725 		 * copy the data, shifted forward 2 bytes.
726 		 */
727 		MGETHDR(m, M_DONTWAIT, MT_DATA);
728 		if (m == NULL) {
729  dropit:
730 			ifp->if_ierrors++;
731 			VR_INIT_RXDESC(sc, i);
732 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
733 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
734 			continue;
735 		}
736 		if (total_len > (MHLEN - 2)) {
737 			MCLGET(m, M_DONTWAIT);
738 			if ((m->m_flags & M_EXT) == 0) {
739 				m_freem(m);
740 				goto dropit;
741 			}
742 		}
743 		m->m_data += 2;
744 
745 		/*
746 		 * Note that we use clusters for incoming frames, so the
747 		 * buffer is virtually contiguous.
748 		 */
749 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
750 		    total_len);
751 
752 		/* Allow the receive descriptor to continue using its mbuf. */
753 		VR_INIT_RXDESC(sc, i);
754 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
755 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
756 #endif /* __NO_STRICT_ALIGNMENT */
757 
758 		ifp->if_ipackets++;
759 		m->m_pkthdr.rcvif = ifp;
760 		m->m_pkthdr.len = m->m_len = total_len;
761 		/*
762 		 * Handle BPF listeners. Let the BPF user see the packet, but
763 		 * don't pass it up to the ether_input() layer unless it's
764 		 * a broadcast packet, multicast packet, matches our ethernet
765 		 * address or the interface is in promiscuous mode.
766 		 */
767 		bpf_mtap(ifp, m);
768 		/* Pass it on. */
769 		(*ifp->if_input)(ifp, m);
770 	}
771 
772 	/* Update the receive pointer. */
773 	sc->vr_rxptr = i;
774 }
775 
776 void
777 vr_rxeoc(struct vr_softc *sc)
778 {
779 	struct ifnet *ifp;
780 	int i;
781 
782 	ifp = &sc->vr_ec.ec_if;
783 
784 	ifp->if_ierrors++;
785 
786 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
787 	for (i = 0; i < VR_TIMEOUT; i++) {
788 		DELAY(10);
789 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
790 			break;
791 	}
792 	if (i == VR_TIMEOUT) {
793 		/* XXX need reset? */
794 		printf("%s: RX shutdown never complete\n",
795 		    device_xname(sc->vr_dev));
796 	}
797 
798 	vr_rxeof(sc);
799 
800 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
801 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
802 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
803 }
804 
805 /*
806  * A frame was downloaded to the chip. It's safe for us to clean up
807  * the list buffers.
808  */
809 static void
810 vr_txeof(struct vr_softc *sc)
811 {
812 	struct ifnet *ifp = &sc->vr_ec.ec_if;
813 	struct vr_desc *d;
814 	struct vr_descsoft *ds;
815 	uint32_t txstat;
816 	int i, j;
817 
818 	ifp->if_flags &= ~IFF_OACTIVE;
819 
820 	/*
821 	 * Go through our tx list and free mbufs for those
822 	 * frames that have been transmitted.
823 	 */
824 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
825 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
826 		d = VR_CDTX(sc, i);
827 		ds = VR_DSTX(sc, i);
828 
829 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
830 
831 		txstat = le32toh(d->vr_status);
832 
833 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
834 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
835 			for (j = 0; j < VR_TIMEOUT; j++) {
836 				DELAY(10);
837 				if ((CSR_READ_2(sc, VR_COMMAND) &
838 				    VR_CMD_TX_ON) == 0)
839 					break;
840 			}
841 			if (j == VR_TIMEOUT) {
842 				/* XXX need reset? */
843 				printf("%s: TX shutdown never complete\n",
844 				    device_xname(sc->vr_dev));
845 			}
846 			d->vr_status = htole32(VR_TXSTAT_OWN);
847 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
848 			break;
849 		}
850 
851 		if (txstat & VR_TXSTAT_OWN)
852 			break;
853 
854 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
855 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
856 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
857 		m_freem(ds->ds_mbuf);
858 		ds->ds_mbuf = NULL;
859 
860 		if (txstat & VR_TXSTAT_ERRSUM) {
861 			ifp->if_oerrors++;
862 			if (txstat & VR_TXSTAT_DEFER)
863 				ifp->if_collisions++;
864 			if (txstat & VR_TXSTAT_LATECOLL)
865 				ifp->if_collisions++;
866 		}
867 
868 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
869 		ifp->if_opackets++;
870 	}
871 
872 	/* Update the dirty transmit buffer pointer. */
873 	sc->vr_txdirty = i;
874 
875 	/*
876 	 * Cancel the watchdog timer if there are no pending
877 	 * transmissions.
878 	 */
879 	if (sc->vr_txpending == 0)
880 		ifp->if_timer = 0;
881 }
882 
883 static int
884 vr_intr(void *arg)
885 {
886 	struct vr_softc *sc;
887 	struct ifnet *ifp;
888 	uint16_t status;
889 	int handled = 0, dotx = 0;
890 
891 	sc = arg;
892 	ifp = &sc->vr_ec.ec_if;
893 
894 	/* Suppress unwanted interrupts. */
895 	if ((ifp->if_flags & IFF_UP) == 0) {
896 		vr_stop(ifp, 1);
897 		return (0);
898 	}
899 
900 	/* Disable interrupts. */
901 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
902 
903 	for (;;) {
904 		status = CSR_READ_2(sc, VR_ISR);
905 		if (status)
906 			CSR_WRITE_2(sc, VR_ISR, status);
907 
908 		if ((status & VR_INTRS) == 0)
909 			break;
910 
911 		handled = 1;
912 
913 #if NRND > 0
914 		if (RND_ENABLED(&sc->rnd_source))
915 			rnd_add_uint32(&sc->rnd_source, status);
916 #endif
917 
918 		if (status & VR_ISR_RX_OK)
919 			vr_rxeof(sc);
920 
921 		if (status & VR_ISR_RX_DROPPED) {
922 			printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
923 			ifp->if_ierrors++;
924 		}
925 
926 		if (status &
927 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
928 			vr_rxeoc(sc);
929 
930 
931 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
932 			if (status & VR_ISR_BUSERR)
933 				printf("%s: PCI bus error\n",
934 				    device_xname(sc->vr_dev));
935 			if (status & VR_ISR_TX_UNDERRUN)
936 				printf("%s: transmit underrun\n",
937 				    device_xname(sc->vr_dev));
938 			/* vr_init() calls vr_start() */
939 			dotx = 0;
940 			(void)vr_init(ifp);
941 
942 		}
943 
944 		if (status & VR_ISR_TX_OK) {
945 			dotx = 1;
946 			vr_txeof(sc);
947 		}
948 
949 		if (status &
950 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
951 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
952 				printf("%s: transmit aborted\n",
953 				    device_xname(sc->vr_dev));
954 			if (status & VR_ISR_TX_UDFI)
955 				printf("%s: transmit underflow\n",
956 				    device_xname(sc->vr_dev));
957 			ifp->if_oerrors++;
958 			dotx = 1;
959 			vr_txeof(sc);
960 			if (sc->vr_txpending) {
961 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
962 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
963 			}
964 		}
965 	}
966 
967 	/* Re-enable interrupts. */
968 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
969 
970 	if (dotx)
971 		vr_start(ifp);
972 
973 	return (handled);
974 }
975 
976 /*
977  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
978  * to the mbuf data regions directly in the transmit lists. We also save a
979  * copy of the pointers since the transmit list fragment pointers are
980  * physical addresses.
981  */
982 static void
983 vr_start(struct ifnet *ifp)
984 {
985 	struct vr_softc *sc = ifp->if_softc;
986 	struct mbuf *m0, *m;
987 	struct vr_desc *d;
988 	struct vr_descsoft *ds;
989 	int error, firsttx, nexttx, opending;
990 
991 	/*
992 	 * Remember the previous txpending and the first transmit
993 	 * descriptor we use.
994 	 */
995 	opending = sc->vr_txpending;
996 	firsttx = VR_NEXTTX(sc->vr_txlast);
997 
998 	/*
999 	 * Loop through the send queue, setting up transmit descriptors
1000 	 * until we drain the queue, or use up all available transmit
1001 	 * descriptors.
1002 	 */
1003 	while (sc->vr_txpending < VR_NTXDESC) {
1004 		/*
1005 		 * Grab a packet off the queue.
1006 		 */
1007 		IFQ_POLL(&ifp->if_snd, m0);
1008 		if (m0 == NULL)
1009 			break;
1010 		m = NULL;
1011 
1012 		/*
1013 		 * Get the next available transmit descriptor.
1014 		 */
1015 		nexttx = VR_NEXTTX(sc->vr_txlast);
1016 		d = VR_CDTX(sc, nexttx);
1017 		ds = VR_DSTX(sc, nexttx);
1018 
1019 		/*
1020 		 * Load the DMA map.  If this fails, the packet didn't
1021 		 * fit in one DMA segment, and we need to copy.  Note,
1022 		 * the packet must also be aligned.
1023 		 * if the packet is too small, copy it too, so we're sure
1024 		 * we have enough room for the pad buffer.
1025 		 */
1026 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1027 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1028 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1029 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1030 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1031 			if (m == NULL) {
1032 				printf("%s: unable to allocate Tx mbuf\n",
1033 				    device_xname(sc->vr_dev));
1034 				break;
1035 			}
1036 			if (m0->m_pkthdr.len > MHLEN) {
1037 				MCLGET(m, M_DONTWAIT);
1038 				if ((m->m_flags & M_EXT) == 0) {
1039 					printf("%s: unable to allocate Tx "
1040 					    "cluster\n", device_xname(sc->vr_dev));
1041 					m_freem(m);
1042 					break;
1043 				}
1044 			}
1045 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1046 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1047 			/*
1048 			 * The Rhine doesn't auto-pad, so we have to do this
1049 			 * ourselves.
1050 			 */
1051 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1052 				memset(mtod(m, char *) + m0->m_pkthdr.len,
1053 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1054 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1055 			}
1056 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1057 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1058 			if (error) {
1059 				m_freem(m);
1060 				printf("%s: unable to load Tx buffer, "
1061 				    "error = %d\n", device_xname(sc->vr_dev), error);
1062 				break;
1063 			}
1064 		}
1065 
1066 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1067 		if (m != NULL) {
1068 			m_freem(m0);
1069 			m0 = m;
1070 		}
1071 
1072 		/* Sync the DMA map. */
1073 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1074 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1075 
1076 		/*
1077 		 * Store a pointer to the packet so we can free it later.
1078 		 */
1079 		ds->ds_mbuf = m0;
1080 
1081 		/*
1082 		 * If there's a BPF listener, bounce a copy of this frame
1083 		 * to him.
1084 		 */
1085 		bpf_mtap(ifp, m0);
1086 
1087 		/*
1088 		 * Fill in the transmit descriptor.
1089 		 */
1090 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1091 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1092 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1093 
1094 		/*
1095 		 * If this is the first descriptor we're enqueuing,
1096 		 * don't give it to the Rhine yet.  That could cause
1097 		 * a race condition.  We'll do it below.
1098 		 */
1099 		if (nexttx == firsttx)
1100 			d->vr_status = 0;
1101 		else
1102 			d->vr_status = htole32(VR_TXSTAT_OWN);
1103 
1104 		VR_CDTXSYNC(sc, nexttx,
1105 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1106 
1107 		/* Advance the tx pointer. */
1108 		sc->vr_txpending++;
1109 		sc->vr_txlast = nexttx;
1110 	}
1111 
1112 	if (sc->vr_txpending == VR_NTXDESC) {
1113 		/* No more slots left; notify upper layer. */
1114 		ifp->if_flags |= IFF_OACTIVE;
1115 	}
1116 
1117 	if (sc->vr_txpending != opending) {
1118 		/*
1119 		 * We enqueued packets.  If the transmitter was idle,
1120 		 * reset the txdirty pointer.
1121 		 */
1122 		if (opending == 0)
1123 			sc->vr_txdirty = firsttx;
1124 
1125 		/*
1126 		 * Cause a transmit interrupt to happen on the
1127 		 * last packet we enqueued.
1128 		 */
1129 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1130 		VR_CDTXSYNC(sc, sc->vr_txlast,
1131 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1132 
1133 		/*
1134 		 * The entire packet chain is set up.  Give the
1135 		 * first descriptor to the Rhine now.
1136 		 */
1137 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1138 		VR_CDTXSYNC(sc, firsttx,
1139 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1140 
1141 		/* Start the transmitter. */
1142 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1143 
1144 		/* Set the watchdog timer in case the chip flakes out. */
1145 		ifp->if_timer = 5;
1146 	}
1147 }
1148 
1149 /*
1150  * Initialize the interface.  Must be called at splnet.
1151  */
1152 static int
1153 vr_init(struct ifnet *ifp)
1154 {
1155 	struct vr_softc *sc = ifp->if_softc;
1156 	struct vr_desc *d;
1157 	struct vr_descsoft *ds;
1158 	int i, error = 0;
1159 
1160 	/* Cancel pending I/O. */
1161 	vr_stop(ifp, 0);
1162 
1163 	/* Reset the Rhine to a known state. */
1164 	vr_reset(sc);
1165 
1166 	/* set DMA length in BCR0 and BCR1 */
1167 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1168 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1169 
1170 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1171 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1172 
1173 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1174 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1175 
1176 	/* set DMA threshold length in RXCFG and TXCFG */
1177 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1178 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1179 
1180 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1181 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1182 
1183 	/*
1184 	 * Initialize the transmit descriptor ring.  txlast is initialized
1185 	 * to the end of the list so that it will wrap around to the first
1186 	 * descriptor when the first packet is transmitted.
1187 	 */
1188 	for (i = 0; i < VR_NTXDESC; i++) {
1189 		d = VR_CDTX(sc, i);
1190 		memset(d, 0, sizeof(struct vr_desc));
1191 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1192 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1193 	}
1194 	sc->vr_txpending = 0;
1195 	sc->vr_txdirty = 0;
1196 	sc->vr_txlast = VR_NTXDESC - 1;
1197 
1198 	/*
1199 	 * Initialize the receive descriptor ring.
1200 	 */
1201 	for (i = 0; i < VR_NRXDESC; i++) {
1202 		ds = VR_DSRX(sc, i);
1203 		if (ds->ds_mbuf == NULL) {
1204 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1205 				printf("%s: unable to allocate or map rx "
1206 				    "buffer %d, error = %d\n",
1207 				    device_xname(sc->vr_dev), i, error);
1208 				/*
1209 				 * XXX Should attempt to run with fewer receive
1210 				 * XXX buffers instead of just failing.
1211 				 */
1212 				vr_rxdrain(sc);
1213 				goto out;
1214 			}
1215 		} else
1216 			VR_INIT_RXDESC(sc, i);
1217 	}
1218 	sc->vr_rxptr = 0;
1219 
1220 	/* If we want promiscuous mode, set the allframes bit. */
1221 	if (ifp->if_flags & IFF_PROMISC)
1222 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1223 	else
1224 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1225 
1226 	/* Set capture broadcast bit to capture broadcast frames. */
1227 	if (ifp->if_flags & IFF_BROADCAST)
1228 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1229 	else
1230 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1231 
1232 	/* Program the multicast filter, if necessary. */
1233 	vr_setmulti(sc);
1234 
1235 	/* Give the transmit and receive rings to the Rhine. */
1236 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1237 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1238 
1239 	/* Set current media. */
1240 	if ((error = ether_mediachange(ifp)) != 0)
1241 		goto out;
1242 
1243 	/* Enable receiver and transmitter. */
1244 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1245 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1246 				    VR_CMD_RX_GO);
1247 
1248 	/* Enable interrupts. */
1249 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1250 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1251 
1252 	ifp->if_flags |= IFF_RUNNING;
1253 	ifp->if_flags &= ~IFF_OACTIVE;
1254 
1255 	/* Start one second timer. */
1256 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1257 
1258 	/* Attempt to start output on the interface. */
1259 	vr_start(ifp);
1260 
1261  out:
1262 	if (error)
1263 		printf("%s: interface not running\n", device_xname(sc->vr_dev));
1264 	return (error);
1265 }
1266 
1267 static int
1268 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1269 {
1270 	struct vr_softc *sc = ifp->if_softc;
1271 	int s, error = 0;
1272 
1273 	s = splnet();
1274 
1275 	error = ether_ioctl(ifp, command, data);
1276 	if (error == ENETRESET) {
1277 		/*
1278 		 * Multicast list has changed; set the hardware filter
1279 		 * accordingly.
1280 		 */
1281 		if (ifp->if_flags & IFF_RUNNING)
1282 			vr_setmulti(sc);
1283 		error = 0;
1284 	}
1285 
1286 	splx(s);
1287 	return (error);
1288 }
1289 
1290 static void
1291 vr_watchdog(struct ifnet *ifp)
1292 {
1293 	struct vr_softc *sc = ifp->if_softc;
1294 
1295 	printf("%s: device timeout\n", device_xname(sc->vr_dev));
1296 	ifp->if_oerrors++;
1297 
1298 	(void) vr_init(ifp);
1299 }
1300 
1301 /*
1302  * One second timer, used to tick MII.
1303  */
1304 static void
1305 vr_tick(void *arg)
1306 {
1307 	struct vr_softc *sc = arg;
1308 	int s;
1309 
1310 	s = splnet();
1311 	mii_tick(&sc->vr_mii);
1312 	splx(s);
1313 
1314 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1315 }
1316 
1317 /*
1318  * Drain the receive queue.
1319  */
1320 static void
1321 vr_rxdrain(struct vr_softc *sc)
1322 {
1323 	struct vr_descsoft *ds;
1324 	int i;
1325 
1326 	for (i = 0; i < VR_NRXDESC; i++) {
1327 		ds = VR_DSRX(sc, i);
1328 		if (ds->ds_mbuf != NULL) {
1329 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1330 			m_freem(ds->ds_mbuf);
1331 			ds->ds_mbuf = NULL;
1332 		}
1333 	}
1334 }
1335 
1336 /*
1337  * Stop the adapter and free any mbufs allocated to the
1338  * transmit lists.
1339  */
1340 static void
1341 vr_stop(struct ifnet *ifp, int disable)
1342 {
1343 	struct vr_softc *sc = ifp->if_softc;
1344 	struct vr_descsoft *ds;
1345 	int i;
1346 
1347 	/* Cancel one second timer. */
1348 	callout_stop(&sc->vr_tick_ch);
1349 
1350 	/* Down the MII. */
1351 	mii_down(&sc->vr_mii);
1352 
1353 	ifp = &sc->vr_ec.ec_if;
1354 	ifp->if_timer = 0;
1355 
1356 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1357 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1358 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1359 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1360 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1361 
1362 	/*
1363 	 * Release any queued transmit buffers.
1364 	 */
1365 	for (i = 0; i < VR_NTXDESC; i++) {
1366 		ds = VR_DSTX(sc, i);
1367 		if (ds->ds_mbuf != NULL) {
1368 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1369 			m_freem(ds->ds_mbuf);
1370 			ds->ds_mbuf = NULL;
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * Mark the interface down and cancel the watchdog timer.
1376 	 */
1377 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1378 	ifp->if_timer = 0;
1379 
1380 	if (disable)
1381 		vr_rxdrain(sc);
1382 }
1383 
1384 static int	vr_probe(device_t, cfdata_t, void *);
1385 static void	vr_attach(device_t, device_t, void *);
1386 static bool	vr_shutdown(device_t, int);
1387 
1388 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1389     vr_probe, vr_attach, NULL, NULL);
1390 
1391 static const struct vr_type *
1392 vr_lookup(struct pci_attach_args *pa)
1393 {
1394 	const struct vr_type *vrt;
1395 	int i;
1396 
1397 	for (i = 0; i < __arraycount(vr_devs); i++) {
1398 		vrt = &vr_devs[i];
1399 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1400 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1401 			return (vrt);
1402 	}
1403 	return (NULL);
1404 }
1405 
1406 static int
1407 vr_probe(device_t parent, cfdata_t match, void *aux)
1408 {
1409 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1410 
1411 	if (vr_lookup(pa) != NULL)
1412 		return (1);
1413 
1414 	return (0);
1415 }
1416 
1417 /*
1418  * Stop all chip I/O so that the kernel's probe routines don't
1419  * get confused by errant DMAs when rebooting.
1420  */
1421 static bool
1422 vr_shutdown(device_t self, int howto)
1423 {
1424 	struct vr_softc *sc = device_private(self);
1425 
1426 	vr_stop(&sc->vr_ec.ec_if, 1);
1427 
1428 	return true;
1429 }
1430 
1431 /*
1432  * Attach the interface. Allocate softc structures, do ifmedia
1433  * setup and ethernet/BPF attach.
1434  */
1435 static void
1436 vr_attach(device_t parent, device_t self, void *aux)
1437 {
1438 	struct vr_softc *sc = device_private(self);
1439 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1440 	bus_dma_segment_t seg;
1441 	uint32_t reg;
1442 	struct ifnet *ifp;
1443 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
1444 	int i, rseg, error;
1445 	char devinfo[256];
1446 
1447 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1448 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1449 
1450 	sc->vr_dev = self;
1451 	sc->vr_pc = pa->pa_pc;
1452 	sc->vr_tag = pa->pa_tag;
1453 	sc->vr_id = pa->pa_id;
1454 	callout_init(&sc->vr_tick_ch, 0);
1455 
1456 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1457 	aprint_naive("\n");
1458 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1459 	    PCI_REVISION(pa->pa_class));
1460 
1461 	/*
1462 	 * Handle power management nonsense.
1463 	 */
1464 
1465 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1466 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1467 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1468 
1469 	/* power up chip */
1470 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1471 	    vr_restore_state)) && error != EOPNOTSUPP) {
1472 		aprint_error_dev(self, "cannot activate %d\n",
1473 		    error);
1474 		return;
1475 	}
1476 
1477 	/* Make sure bus mastering is enabled. */
1478 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1479 	reg |= PCI_COMMAND_MASTER_ENABLE;
1480 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1481 
1482 	/* Get revision */
1483 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1484 
1485 	/*
1486 	 * Map control/status registers.
1487 	 */
1488 	{
1489 		bus_space_tag_t iot, memt;
1490 		bus_space_handle_t ioh, memh;
1491 		int ioh_valid, memh_valid;
1492 		pci_intr_handle_t intrhandle;
1493 		const char *intrstr;
1494 
1495 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1496 			PCI_MAPREG_TYPE_IO, 0,
1497 			&iot, &ioh, NULL, NULL) == 0);
1498 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1499 			PCI_MAPREG_TYPE_MEM |
1500 			PCI_MAPREG_MEM_TYPE_32BIT,
1501 			0, &memt, &memh, NULL, NULL) == 0);
1502 #if defined(VR_USEIOSPACE)
1503 		if (ioh_valid) {
1504 			sc->vr_bst = iot;
1505 			sc->vr_bsh = ioh;
1506 		} else if (memh_valid) {
1507 			sc->vr_bst = memt;
1508 			sc->vr_bsh = memh;
1509 		}
1510 #else
1511 		if (memh_valid) {
1512 			sc->vr_bst = memt;
1513 			sc->vr_bsh = memh;
1514 		} else if (ioh_valid) {
1515 			sc->vr_bst = iot;
1516 			sc->vr_bsh = ioh;
1517 		}
1518 #endif
1519 		else {
1520 			printf(": unable to map device registers\n");
1521 			return;
1522 		}
1523 
1524 		/* Allocate interrupt */
1525 		if (pci_intr_map(pa, &intrhandle)) {
1526 			aprint_error_dev(self, "couldn't map interrupt\n");
1527 			return;
1528 		}
1529 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1530 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1531 						vr_intr, sc);
1532 		if (sc->vr_ih == NULL) {
1533 			aprint_error_dev(self, "couldn't establish interrupt");
1534 			if (intrstr != NULL)
1535 				aprint_error(" at %s", intrstr);
1536 			aprint_error("\n");
1537 		}
1538 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1539 	}
1540 
1541 	/*
1542 	 * Windows may put the chip in suspend mode when it
1543 	 * shuts down. Be sure to kick it in the head to wake it
1544 	 * up again.
1545 	 *
1546 	 * Don't touch this register on VT3043 since it causes
1547 	 * kernel MCHK trap on macppc.
1548 	 * (Note some VT86C100A chip returns a product ID of VT3043)
1549 	 */
1550 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1551 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1552 
1553 	/* Reset the adapter. */
1554 	vr_reset(sc);
1555 
1556 	/*
1557 	 * Get station address. The way the Rhine chips work,
1558 	 * you're not allowed to directly access the EEPROM once
1559 	 * they've been programmed a special way. Consequently,
1560 	 * we need to read the node address from the PAR0 and PAR1
1561 	 * registers.
1562 	 *
1563 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1564 	 *         of the *whole* EEPROM, not just the MAC address. This is
1565 	 *         pretty pointless since the chip does this automatically
1566 	 *         at powerup/reset.
1567 	 *         I suspect the same thing applies to the other Rhine
1568 	 *         variants, but in the absence of a data sheet for those
1569 	 *         (and the lack of anyone else noticing the problems this
1570 	 *         causes) I'm going to retain the old behaviour for the
1571 	 *         other parts.
1572 	 *         In some cases, the chip really does startup without having
1573 	 *         read the EEPROM (kern/34812). To handle this case, we force
1574 	 *         a reload if we see an all-zeroes MAC address.
1575 	 */
1576 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1577 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1578 
1579 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1580 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1581 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1582 		DELAY(200);
1583 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1584 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1585 	}
1586 
1587 	/*
1588 	 * A Rhine chip was detected. Inform the world.
1589 	 */
1590 	aprint_normal("%s: Ethernet address: %s\n",
1591 		device_xname(self), ether_sprintf(eaddr));
1592 
1593 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1594 
1595 	sc->vr_dmat = pa->pa_dmat;
1596 
1597 	/*
1598 	 * Allocate the control data structures, and create and load
1599 	 * the DMA map for it.
1600 	 */
1601 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1602 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1603 	    0)) != 0) {
1604 		aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1605 		goto fail_0;
1606 	}
1607 
1608 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1609 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1610 	    BUS_DMA_COHERENT)) != 0) {
1611 		aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1612 		goto fail_1;
1613 	}
1614 
1615 	if ((error = bus_dmamap_create(sc->vr_dmat,
1616 	    sizeof(struct vr_control_data), 1,
1617 	    sizeof(struct vr_control_data), 0, 0,
1618 	    &sc->vr_cddmamap)) != 0) {
1619 		aprint_error_dev(self, "unable to create control data DMA map, "
1620 		    "error = %d\n", error);
1621 		goto fail_2;
1622 	}
1623 
1624 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1625 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1626 	    0)) != 0) {
1627 		aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1628 		    error);
1629 		goto fail_3;
1630 	}
1631 
1632 	/*
1633 	 * Create the transmit buffer DMA maps.
1634 	 */
1635 	for (i = 0; i < VR_NTXDESC; i++) {
1636 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1637 		    1, MCLBYTES, 0, 0,
1638 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1639 			aprint_error_dev(self, "unable to create tx DMA map %d, "
1640 			    "error = %d\n", i, error);
1641 			goto fail_4;
1642 		}
1643 	}
1644 
1645 	/*
1646 	 * Create the receive buffer DMA maps.
1647 	 */
1648 	for (i = 0; i < VR_NRXDESC; i++) {
1649 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1650 		    MCLBYTES, 0, 0,
1651 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1652 			aprint_error_dev(self, "unable to create rx DMA map %d, "
1653 			    "error = %d\n", i, error);
1654 			goto fail_5;
1655 		}
1656 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1657 	}
1658 
1659 	ifp = &sc->vr_ec.ec_if;
1660 	ifp->if_softc = sc;
1661 	ifp->if_mtu = ETHERMTU;
1662 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1663 	ifp->if_ioctl = vr_ioctl;
1664 	ifp->if_start = vr_start;
1665 	ifp->if_watchdog = vr_watchdog;
1666 	ifp->if_init = vr_init;
1667 	ifp->if_stop = vr_stop;
1668 	IFQ_SET_READY(&ifp->if_snd);
1669 
1670 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1671 
1672 	/*
1673 	 * Initialize MII/media info.
1674 	 */
1675 	sc->vr_mii.mii_ifp = ifp;
1676 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1677 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1678 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1679 
1680 	sc->vr_ec.ec_mii = &sc->vr_mii;
1681 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1682 		ether_mediastatus);
1683 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1684 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1685 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1686 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1687 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1688 	} else
1689 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1690 
1691 	/*
1692 	 * Call MI attach routines.
1693 	 */
1694 	if_attach(ifp);
1695 	ether_ifattach(ifp, sc->vr_enaddr);
1696 #if NRND > 0
1697 	rnd_attach_source(&sc->rnd_source, device_xname(self),
1698 	    RND_TYPE_NET, 0);
1699 #endif
1700 
1701 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1702 		pmf_class_network_register(self, ifp);
1703 	else
1704 		aprint_error_dev(self, "couldn't establish power handler\n");
1705 
1706 	return;
1707 
1708  fail_5:
1709 	for (i = 0; i < VR_NRXDESC; i++) {
1710 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1711 			bus_dmamap_destroy(sc->vr_dmat,
1712 			    sc->vr_rxsoft[i].ds_dmamap);
1713 	}
1714  fail_4:
1715 	for (i = 0; i < VR_NTXDESC; i++) {
1716 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1717 			bus_dmamap_destroy(sc->vr_dmat,
1718 			    sc->vr_txsoft[i].ds_dmamap);
1719 	}
1720 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1721  fail_3:
1722 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1723  fail_2:
1724 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1725 	    sizeof(struct vr_control_data));
1726  fail_1:
1727 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1728  fail_0:
1729 	return;
1730 }
1731 
1732 static int
1733 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1734     pcireg_t state)
1735 {
1736 	struct vr_softc *sc = device_private(self);
1737 	int error;
1738 
1739 	if (state == PCI_PMCSR_STATE_D0)
1740 		return 0;
1741 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1742 		return error;
1743 
1744 	/* Restore PCI config data. */
1745 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1746 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1747 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1748 	return 0;
1749 }
1750 
1751 static bool
1752 vr_resume(device_t self, const pmf_qual_t *qual)
1753 {
1754 	struct vr_softc *sc = device_private(self);
1755 
1756 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1757 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1758 
1759 	return true;
1760 }
1761