1 /* $NetBSD: if_vr.c,v 1.115 2015/04/13 16:33:25 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1997, 1998 35 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by Bill Paul. 48 * 4. Neither the name of the author nor the names of any co-contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 62 * THE POSSIBILITY OF SUCH DAMAGE. 63 * 64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $ 65 */ 66 67 /* 68 * VIA Rhine fast ethernet PCI NIC driver 69 * 70 * Supports various network adapters based on the VIA Rhine 71 * and Rhine II PCI controllers, including the D-Link DFE530TX. 72 * Datasheets are available at http://www.via.com.tw. 73 * 74 * Written by Bill Paul <wpaul@ctr.columbia.edu> 75 * Electrical Engineering Department 76 * Columbia University, New York City 77 */ 78 79 /* 80 * The VIA Rhine controllers are similar in some respects to the 81 * the DEC tulip chips, except less complicated. The controller 82 * uses an MII bus and an external physical layer interface. The 83 * receiver has a one entry perfect filter and a 64-bit hash table 84 * multicast filter. Transmit and receive descriptors are similar 85 * to the tulip. 86 * 87 * The Rhine has a serious flaw in its transmit DMA mechanism: 88 * transmit buffers must be longword aligned. Unfortunately, 89 * the kernel doesn't guarantee that mbufs will be filled in starting 90 * at longword boundaries, so we have to do a buffer copy before 91 * transmission. 92 * 93 * Apparently, the receive DMA mechanism also has the same flaw. This 94 * means that on systems with struct alignment requirements, incoming 95 * frames must be copied to a new buffer which shifts the data forward 96 * 2 bytes so that the payload is aligned on a 4-byte boundary. 97 */ 98 99 #include <sys/cdefs.h> 100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.115 2015/04/13 16:33:25 riastradh Exp $"); 101 102 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/callout.h> 107 #include <sys/sockio.h> 108 #include <sys/mbuf.h> 109 #include <sys/malloc.h> 110 #include <sys/kernel.h> 111 #include <sys/socket.h> 112 #include <sys/device.h> 113 114 #include <sys/rndsource.h> 115 116 #include <net/if.h> 117 #include <net/if_arp.h> 118 #include <net/if_dl.h> 119 #include <net/if_media.h> 120 #include <net/if_ether.h> 121 122 #include <net/bpf.h> 123 124 #include <sys/bus.h> 125 #include <sys/intr.h> 126 #include <machine/endian.h> 127 128 #include <dev/mii/mii.h> 129 #include <dev/mii/miivar.h> 130 #include <dev/mii/mii_bitbang.h> 131 132 #include <dev/pci/pcireg.h> 133 #include <dev/pci/pcivar.h> 134 #include <dev/pci/pcidevs.h> 135 136 #include <dev/pci/if_vrreg.h> 137 138 #define VR_USEIOSPACE 139 140 /* 141 * Various supported device vendors/types and their names. 142 */ 143 static const struct vr_type { 144 pci_vendor_id_t vr_vid; 145 pci_product_id_t vr_did; 146 } vr_devs[] = { 147 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 }, 148 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 }, 149 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 }, 150 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M }, 151 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A } 152 }; 153 154 /* 155 * Transmit descriptor list size. 156 */ 157 #define VR_NTXDESC 64 158 #define VR_NTXDESC_MASK (VR_NTXDESC - 1) 159 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK) 160 161 /* 162 * Receive descriptor list size. 163 */ 164 #define VR_NRXDESC 64 165 #define VR_NRXDESC_MASK (VR_NRXDESC - 1) 166 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK) 167 168 /* 169 * Control data structres that are DMA'd to the Rhine chip. We allocate 170 * them in a single clump that maps to a single DMA segment to make several 171 * things easier. 172 * 173 * Note that since we always copy outgoing packets to aligned transmit 174 * buffers, we can reduce the transmit descriptors to one per packet. 175 */ 176 struct vr_control_data { 177 struct vr_desc vr_txdescs[VR_NTXDESC]; 178 struct vr_desc vr_rxdescs[VR_NRXDESC]; 179 }; 180 181 #define VR_CDOFF(x) offsetof(struct vr_control_data, x) 182 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)]) 183 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)]) 184 185 /* 186 * Software state of transmit and receive descriptors. 187 */ 188 struct vr_descsoft { 189 struct mbuf *ds_mbuf; /* head of mbuf chain */ 190 bus_dmamap_t ds_dmamap; /* our DMA map */ 191 }; 192 193 struct vr_softc { 194 device_t vr_dev; 195 void *vr_ih; /* interrupt cookie */ 196 bus_space_tag_t vr_bst; /* bus space tag */ 197 bus_space_handle_t vr_bsh; /* bus space handle */ 198 bus_dma_tag_t vr_dmat; /* bus DMA tag */ 199 pci_chipset_tag_t vr_pc; /* PCI chipset info */ 200 pcitag_t vr_tag; /* PCI tag */ 201 struct ethercom vr_ec; /* Ethernet common info */ 202 uint8_t vr_enaddr[ETHER_ADDR_LEN]; 203 struct mii_data vr_mii; /* MII/media info */ 204 205 pcireg_t vr_id; /* vendor/product ID */ 206 uint8_t vr_revid; /* Rhine chip revision */ 207 208 callout_t vr_tick_ch; /* tick callout */ 209 210 bus_dmamap_t vr_cddmamap; /* control data DMA map */ 211 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr 212 213 /* 214 * Software state for transmit and receive descriptors. 215 */ 216 struct vr_descsoft vr_txsoft[VR_NTXDESC]; 217 struct vr_descsoft vr_rxsoft[VR_NRXDESC]; 218 219 /* 220 * Control data structures. 221 */ 222 struct vr_control_data *vr_control_data; 223 224 int vr_txpending; /* number of TX requests pending */ 225 int vr_txdirty; /* first dirty TX descriptor */ 226 int vr_txlast; /* last used TX descriptor */ 227 228 int vr_rxptr; /* next ready RX descriptor */ 229 230 uint32_t vr_save_iobase; 231 uint32_t vr_save_membase; 232 uint32_t vr_save_irq; 233 234 bool vr_link; 235 int vr_flags; 236 #define VR_F_RESTART 0x1 /* restart on next tick */ 237 int vr_if_flags; 238 239 krndsource_t rnd_source; /* random source */ 240 }; 241 242 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x))) 243 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x))) 244 245 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)]) 246 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)]) 247 248 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)]) 249 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)]) 250 251 #define VR_CDTXSYNC(sc, x, ops) \ 252 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \ 253 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops)) 254 255 #define VR_CDRXSYNC(sc, x, ops) \ 256 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \ 257 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops)) 258 259 /* 260 * Note we rely on MCLBYTES being a power of two below. 261 */ 262 #define VR_INIT_RXDESC(sc, i) \ 263 do { \ 264 struct vr_desc *__d = VR_CDRX((sc), (i)); \ 265 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \ 266 \ 267 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \ 268 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \ 269 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \ 270 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \ 271 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \ 272 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \ 273 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ 274 } while (/* CONSTCOND */ 0) 275 276 /* 277 * register space access macros 278 */ 279 #define CSR_WRITE_4(sc, reg, val) \ 280 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val) 281 #define CSR_WRITE_2(sc, reg, val) \ 282 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val) 283 #define CSR_WRITE_1(sc, reg, val) \ 284 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val) 285 286 #define CSR_READ_4(sc, reg) \ 287 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg) 288 #define CSR_READ_2(sc, reg) \ 289 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg) 290 #define CSR_READ_1(sc, reg) \ 291 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg) 292 293 #define VR_TIMEOUT 1000 294 295 static int vr_add_rxbuf(struct vr_softc *, int); 296 297 static void vr_rxeof(struct vr_softc *); 298 static void vr_rxeoc(struct vr_softc *); 299 static void vr_txeof(struct vr_softc *); 300 static int vr_intr(void *); 301 static void vr_start(struct ifnet *); 302 static int vr_ioctl(struct ifnet *, u_long, void *); 303 static int vr_init(struct ifnet *); 304 static void vr_stop(struct ifnet *, int); 305 static void vr_rxdrain(struct vr_softc *); 306 static void vr_watchdog(struct ifnet *); 307 static void vr_tick(void *); 308 309 static int vr_mii_readreg(device_t, int, int); 310 static void vr_mii_writereg(device_t, int, int, int); 311 static void vr_mii_statchg(struct ifnet *); 312 313 static void vr_setmulti(struct vr_softc *); 314 static void vr_reset(struct vr_softc *); 315 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t, 316 pcireg_t); 317 static bool vr_resume(device_t, const pmf_qual_t *); 318 319 int vr_copy_small = 0; 320 321 #define VR_SETBIT(sc, reg, x) \ 322 CSR_WRITE_1(sc, reg, \ 323 CSR_READ_1(sc, reg) | (x)) 324 325 #define VR_CLRBIT(sc, reg, x) \ 326 CSR_WRITE_1(sc, reg, \ 327 CSR_READ_1(sc, reg) & ~(x)) 328 329 #define VR_SETBIT16(sc, reg, x) \ 330 CSR_WRITE_2(sc, reg, \ 331 CSR_READ_2(sc, reg) | (x)) 332 333 #define VR_CLRBIT16(sc, reg, x) \ 334 CSR_WRITE_2(sc, reg, \ 335 CSR_READ_2(sc, reg) & ~(x)) 336 337 #define VR_SETBIT32(sc, reg, x) \ 338 CSR_WRITE_4(sc, reg, \ 339 CSR_READ_4(sc, reg) | (x)) 340 341 #define VR_CLRBIT32(sc, reg, x) \ 342 CSR_WRITE_4(sc, reg, \ 343 CSR_READ_4(sc, reg) & ~(x)) 344 345 /* 346 * MII bit-bang glue. 347 */ 348 static uint32_t vr_mii_bitbang_read(device_t); 349 static void vr_mii_bitbang_write(device_t, uint32_t); 350 351 static const struct mii_bitbang_ops vr_mii_bitbang_ops = { 352 vr_mii_bitbang_read, 353 vr_mii_bitbang_write, 354 { 355 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */ 356 VR_MIICMD_DATAIN, /* MII_BIT_MDI */ 357 VR_MIICMD_CLK, /* MII_BIT_MDC */ 358 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */ 359 0, /* MII_BIT_DIR_PHY_HOST */ 360 } 361 }; 362 363 static uint32_t 364 vr_mii_bitbang_read(device_t self) 365 { 366 struct vr_softc *sc = device_private(self); 367 368 return (CSR_READ_1(sc, VR_MIICMD)); 369 } 370 371 static void 372 vr_mii_bitbang_write(device_t self, uint32_t val) 373 { 374 struct vr_softc *sc = device_private(self); 375 376 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM); 377 } 378 379 /* 380 * Read an PHY register through the MII. 381 */ 382 static int 383 vr_mii_readreg(device_t self, int phy, int reg) 384 { 385 struct vr_softc *sc = device_private(self); 386 387 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); 388 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg)); 389 } 390 391 /* 392 * Write to a PHY register through the MII. 393 */ 394 static void 395 vr_mii_writereg(device_t self, int phy, int reg, int val) 396 { 397 struct vr_softc *sc = device_private(self); 398 399 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); 400 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val); 401 } 402 403 static void 404 vr_mii_statchg(struct ifnet *ifp) 405 { 406 struct vr_softc *sc = ifp->if_softc; 407 int i; 408 409 /* 410 * In order to fiddle with the 'full-duplex' bit in the netconfig 411 * register, we first have to put the transmit and/or receive logic 412 * in the idle state. 413 */ 414 if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) && 415 IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) { 416 sc->vr_link = true; 417 418 if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) 419 VR_CLRBIT16(sc, VR_COMMAND, 420 (VR_CMD_TX_ON|VR_CMD_RX_ON)); 421 422 if (sc->vr_mii.mii_media_active & IFM_FDX) 423 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); 424 else 425 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); 426 427 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON); 428 } else { 429 sc->vr_link = false; 430 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON); 431 for (i = VR_TIMEOUT; i > 0; i--) { 432 delay(10); 433 if (!(CSR_READ_2(sc, VR_COMMAND) & 434 (VR_CMD_TX_ON|VR_CMD_RX_ON))) 435 break; 436 } 437 if (i == 0) { 438 #ifdef VR_DEBUG 439 printf("%s: rx shutdown error!\n", 440 device_xname(sc->vr_dev)); 441 #endif 442 sc->vr_flags |= VR_F_RESTART; 443 } 444 } 445 } 446 447 #define vr_calchash(addr) \ 448 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26) 449 450 /* 451 * Program the 64-bit multicast hash filter. 452 */ 453 static void 454 vr_setmulti(struct vr_softc *sc) 455 { 456 struct ifnet *ifp; 457 int h = 0; 458 uint32_t hashes[2] = { 0, 0 }; 459 struct ether_multistep step; 460 struct ether_multi *enm; 461 int mcnt = 0; 462 uint8_t rxfilt; 463 464 ifp = &sc->vr_ec.ec_if; 465 466 rxfilt = CSR_READ_1(sc, VR_RXCFG); 467 468 if (ifp->if_flags & IFF_PROMISC) { 469 allmulti: 470 ifp->if_flags |= IFF_ALLMULTI; 471 rxfilt |= VR_RXCFG_RX_MULTI; 472 CSR_WRITE_1(sc, VR_RXCFG, rxfilt); 473 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF); 474 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF); 475 return; 476 } 477 478 /* first, zot all the existing hash bits */ 479 CSR_WRITE_4(sc, VR_MAR0, 0); 480 CSR_WRITE_4(sc, VR_MAR1, 0); 481 482 /* now program new ones */ 483 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm); 484 while (enm != NULL) { 485 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 486 ETHER_ADDR_LEN) != 0) 487 goto allmulti; 488 489 h = vr_calchash(enm->enm_addrlo); 490 491 if (h < 32) 492 hashes[0] |= (1 << h); 493 else 494 hashes[1] |= (1 << (h - 32)); 495 ETHER_NEXT_MULTI(step, enm); 496 mcnt++; 497 } 498 499 ifp->if_flags &= ~IFF_ALLMULTI; 500 501 if (mcnt) 502 rxfilt |= VR_RXCFG_RX_MULTI; 503 else 504 rxfilt &= ~VR_RXCFG_RX_MULTI; 505 506 CSR_WRITE_4(sc, VR_MAR0, hashes[0]); 507 CSR_WRITE_4(sc, VR_MAR1, hashes[1]); 508 CSR_WRITE_1(sc, VR_RXCFG, rxfilt); 509 } 510 511 static void 512 vr_reset(struct vr_softc *sc) 513 { 514 int i; 515 516 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET); 517 518 for (i = 0; i < VR_TIMEOUT; i++) { 519 DELAY(10); 520 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET)) 521 break; 522 } 523 if (i == VR_TIMEOUT) { 524 if (sc->vr_revid < REV_ID_VT3065_A) { 525 printf("%s: reset never completed!\n", 526 device_xname(sc->vr_dev)); 527 } else { 528 /* Use newer force reset command */ 529 printf("%s: using force reset command.\n", 530 device_xname(sc->vr_dev)); 531 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST); 532 } 533 } 534 535 /* Wait a little while for the chip to get its brains in order. */ 536 DELAY(1000); 537 } 538 539 /* 540 * Initialize an RX descriptor and attach an MBUF cluster. 541 * Note: the length fields are only 11 bits wide, which means the 542 * largest size we can specify is 2047. This is important because 543 * MCLBYTES is 2048, so we have to subtract one otherwise we'll 544 * overflow the field and make a mess. 545 */ 546 static int 547 vr_add_rxbuf(struct vr_softc *sc, int i) 548 { 549 struct vr_descsoft *ds = VR_DSRX(sc, i); 550 struct mbuf *m_new; 551 int error; 552 553 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 554 if (m_new == NULL) 555 return (ENOBUFS); 556 557 MCLGET(m_new, M_DONTWAIT); 558 if ((m_new->m_flags & M_EXT) == 0) { 559 m_freem(m_new); 560 return (ENOBUFS); 561 } 562 563 if (ds->ds_mbuf != NULL) 564 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); 565 566 ds->ds_mbuf = m_new; 567 568 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap, 569 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, 570 BUS_DMA_READ|BUS_DMA_NOWAIT); 571 if (error) { 572 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n", 573 i, error); 574 panic("vr_add_rxbuf"); /* XXX */ 575 } 576 577 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, 578 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 579 580 VR_INIT_RXDESC(sc, i); 581 582 return (0); 583 } 584 585 /* 586 * A frame has been uploaded: pass the resulting mbuf chain up to 587 * the higher level protocols. 588 */ 589 static void 590 vr_rxeof(struct vr_softc *sc) 591 { 592 struct mbuf *m; 593 struct ifnet *ifp; 594 struct vr_desc *d; 595 struct vr_descsoft *ds; 596 int i, total_len; 597 uint32_t rxstat; 598 599 ifp = &sc->vr_ec.ec_if; 600 601 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) { 602 d = VR_CDRX(sc, i); 603 ds = VR_DSRX(sc, i); 604 605 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 606 607 rxstat = le32toh(d->vr_status); 608 609 if (rxstat & VR_RXSTAT_OWN) { 610 /* 611 * We have processed all of the receive buffers. 612 */ 613 break; 614 } 615 616 /* 617 * If an error occurs, update stats, clear the 618 * status word and leave the mbuf cluster in place: 619 * it should simply get re-used next time this descriptor 620 * comes up in the ring. 621 */ 622 if (rxstat & VR_RXSTAT_RXERR) { 623 const char *errstr; 624 625 ifp->if_ierrors++; 626 switch (rxstat & 0x000000FF) { 627 case VR_RXSTAT_CRCERR: 628 errstr = "crc error"; 629 break; 630 case VR_RXSTAT_FRAMEALIGNERR: 631 errstr = "frame alignment error"; 632 break; 633 case VR_RXSTAT_FIFOOFLOW: 634 errstr = "FIFO overflow"; 635 break; 636 case VR_RXSTAT_GIANT: 637 errstr = "received giant packet"; 638 break; 639 case VR_RXSTAT_RUNT: 640 errstr = "received runt packet"; 641 break; 642 case VR_RXSTAT_BUSERR: 643 errstr = "system bus error"; 644 break; 645 case VR_RXSTAT_BUFFERR: 646 errstr = "rx buffer error"; 647 break; 648 default: 649 errstr = "unknown rx error"; 650 break; 651 } 652 printf("%s: receive error: %s\n", device_xname(sc->vr_dev), 653 errstr); 654 655 VR_INIT_RXDESC(sc, i); 656 657 continue; 658 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) || 659 !(rxstat & VR_RXSTAT_LASTFRAG)) { 660 /* 661 * This driver expects to receive whole packets every 662 * time. In case we receive a fragment that is not 663 * a complete packet, we discard it. 664 */ 665 ifp->if_ierrors++; 666 667 printf("%s: receive error: incomplete frame; " 668 "size = %d, status = 0x%x\n", 669 device_xname(sc->vr_dev), 670 VR_RXBYTES(le32toh(d->vr_status)), rxstat); 671 672 VR_INIT_RXDESC(sc, i); 673 674 continue; 675 } 676 677 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, 678 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 679 680 /* No errors; receive the packet. */ 681 total_len = VR_RXBYTES(le32toh(d->vr_status)); 682 #ifdef DIAGNOSTIC 683 if (total_len == 0) { 684 /* 685 * If we receive a zero-length packet, we probably 686 * missed to handle an error condition above. 687 * Discard it to avoid a later crash. 688 */ 689 ifp->if_ierrors++; 690 691 printf("%s: receive error: zero-length packet; " 692 "status = 0x%x\n", 693 device_xname(sc->vr_dev), rxstat); 694 695 VR_INIT_RXDESC(sc, i); 696 697 continue; 698 } 699 #endif 700 701 /* 702 * The Rhine chip includes the CRC with every packet. 703 * Trim it off here. 704 */ 705 total_len -= ETHER_CRC_LEN; 706 707 #ifdef __NO_STRICT_ALIGNMENT 708 /* 709 * If the packet is small enough to fit in a 710 * single header mbuf, allocate one and copy 711 * the data into it. This greatly reduces 712 * memory consumption when we receive lots 713 * of small packets. 714 * 715 * Otherwise, we add a new buffer to the receive 716 * chain. If this fails, we drop the packet and 717 * recycle the old buffer. 718 */ 719 if (vr_copy_small != 0 && total_len <= MHLEN) { 720 MGETHDR(m, M_DONTWAIT, MT_DATA); 721 if (m == NULL) 722 goto dropit; 723 memcpy(mtod(m, void *), 724 mtod(ds->ds_mbuf, void *), total_len); 725 VR_INIT_RXDESC(sc, i); 726 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, 727 ds->ds_dmamap->dm_mapsize, 728 BUS_DMASYNC_PREREAD); 729 } else { 730 m = ds->ds_mbuf; 731 if (vr_add_rxbuf(sc, i) == ENOBUFS) { 732 dropit: 733 ifp->if_ierrors++; 734 VR_INIT_RXDESC(sc, i); 735 bus_dmamap_sync(sc->vr_dmat, 736 ds->ds_dmamap, 0, 737 ds->ds_dmamap->dm_mapsize, 738 BUS_DMASYNC_PREREAD); 739 continue; 740 } 741 } 742 #else 743 /* 744 * The Rhine's packet buffers must be 4-byte aligned. 745 * But this means that the data after the Ethernet header 746 * is misaligned. We must allocate a new buffer and 747 * copy the data, shifted forward 2 bytes. 748 */ 749 MGETHDR(m, M_DONTWAIT, MT_DATA); 750 if (m == NULL) { 751 dropit: 752 ifp->if_ierrors++; 753 VR_INIT_RXDESC(sc, i); 754 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, 755 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 756 continue; 757 } 758 if (total_len > (MHLEN - 2)) { 759 MCLGET(m, M_DONTWAIT); 760 if ((m->m_flags & M_EXT) == 0) { 761 m_freem(m); 762 goto dropit; 763 } 764 } 765 m->m_data += 2; 766 767 /* 768 * Note that we use clusters for incoming frames, so the 769 * buffer is virtually contiguous. 770 */ 771 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), 772 total_len); 773 774 /* Allow the receive descriptor to continue using its mbuf. */ 775 VR_INIT_RXDESC(sc, i); 776 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, 777 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 778 #endif /* __NO_STRICT_ALIGNMENT */ 779 780 ifp->if_ipackets++; 781 m->m_pkthdr.rcvif = ifp; 782 m->m_pkthdr.len = m->m_len = total_len; 783 /* 784 * Handle BPF listeners. Let the BPF user see the packet, but 785 * don't pass it up to the ether_input() layer unless it's 786 * a broadcast packet, multicast packet, matches our ethernet 787 * address or the interface is in promiscuous mode. 788 */ 789 bpf_mtap(ifp, m); 790 /* Pass it on. */ 791 (*ifp->if_input)(ifp, m); 792 } 793 794 /* Update the receive pointer. */ 795 sc->vr_rxptr = i; 796 } 797 798 void 799 vr_rxeoc(struct vr_softc *sc) 800 { 801 struct ifnet *ifp; 802 int i; 803 804 ifp = &sc->vr_ec.ec_if; 805 806 ifp->if_ierrors++; 807 808 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); 809 for (i = 0; i < VR_TIMEOUT; i++) { 810 DELAY(10); 811 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0) 812 break; 813 } 814 if (i == VR_TIMEOUT) { 815 /* XXX need reset? */ 816 printf("%s: RX shutdown never complete\n", 817 device_xname(sc->vr_dev)); 818 } 819 820 vr_rxeof(sc); 821 822 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr)); 823 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); 824 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO); 825 } 826 827 /* 828 * A frame was downloaded to the chip. It's safe for us to clean up 829 * the list buffers. 830 */ 831 static void 832 vr_txeof(struct vr_softc *sc) 833 { 834 struct ifnet *ifp = &sc->vr_ec.ec_if; 835 struct vr_desc *d; 836 struct vr_descsoft *ds; 837 uint32_t txstat; 838 int i, j; 839 840 ifp->if_flags &= ~IFF_OACTIVE; 841 842 /* 843 * Go through our tx list and free mbufs for those 844 * frames that have been transmitted. 845 */ 846 for (i = sc->vr_txdirty; sc->vr_txpending != 0; 847 i = VR_NEXTTX(i), sc->vr_txpending--) { 848 d = VR_CDTX(sc, i); 849 ds = VR_DSTX(sc, i); 850 851 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 852 853 txstat = le32toh(d->vr_status); 854 855 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) { 856 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); 857 for (j = 0; j < VR_TIMEOUT; j++) { 858 DELAY(10); 859 if ((CSR_READ_2(sc, VR_COMMAND) & 860 VR_CMD_TX_ON) == 0) 861 break; 862 } 863 if (j == VR_TIMEOUT) { 864 /* XXX need reset? */ 865 printf("%s: TX shutdown never complete\n", 866 device_xname(sc->vr_dev)); 867 } 868 d->vr_status = htole32(VR_TXSTAT_OWN); 869 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i)); 870 break; 871 } 872 873 if (txstat & VR_TXSTAT_OWN) 874 break; 875 876 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 877 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 878 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); 879 m_freem(ds->ds_mbuf); 880 ds->ds_mbuf = NULL; 881 882 if (txstat & VR_TXSTAT_ERRSUM) { 883 ifp->if_oerrors++; 884 if (txstat & VR_TXSTAT_DEFER) 885 ifp->if_collisions++; 886 if (txstat & VR_TXSTAT_LATECOLL) 887 ifp->if_collisions++; 888 } 889 890 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3; 891 ifp->if_opackets++; 892 } 893 894 /* Update the dirty transmit buffer pointer. */ 895 sc->vr_txdirty = i; 896 897 /* 898 * Cancel the watchdog timer if there are no pending 899 * transmissions. 900 */ 901 if (sc->vr_txpending == 0) 902 ifp->if_timer = 0; 903 } 904 905 static int 906 vr_intr(void *arg) 907 { 908 struct vr_softc *sc; 909 struct ifnet *ifp; 910 uint16_t status; 911 int handled = 0, dotx = 0; 912 913 sc = arg; 914 ifp = &sc->vr_ec.ec_if; 915 916 /* Suppress unwanted interrupts. */ 917 if ((ifp->if_flags & IFF_UP) == 0) { 918 vr_stop(ifp, 1); 919 return (0); 920 } 921 922 /* Disable interrupts. */ 923 CSR_WRITE_2(sc, VR_IMR, 0x0000); 924 925 for (;;) { 926 status = CSR_READ_2(sc, VR_ISR); 927 if (status) 928 CSR_WRITE_2(sc, VR_ISR, status); 929 930 if ((status & VR_INTRS) == 0) 931 break; 932 933 handled = 1; 934 935 rnd_add_uint32(&sc->rnd_source, status); 936 937 if (status & VR_ISR_RX_OK) 938 vr_rxeof(sc); 939 940 if (status & VR_ISR_RX_DROPPED) { 941 printf("%s: rx packet lost\n", device_xname(sc->vr_dev)); 942 ifp->if_ierrors++; 943 } 944 945 if (status & 946 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) 947 vr_rxeoc(sc); 948 949 950 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) { 951 if (status & VR_ISR_BUSERR) 952 printf("%s: PCI bus error\n", 953 device_xname(sc->vr_dev)); 954 if (status & VR_ISR_TX_UNDERRUN) 955 printf("%s: transmit underrun\n", 956 device_xname(sc->vr_dev)); 957 /* vr_init() calls vr_start() */ 958 dotx = 0; 959 (void)vr_init(ifp); 960 961 } 962 963 if (status & VR_ISR_TX_OK) { 964 dotx = 1; 965 vr_txeof(sc); 966 } 967 968 if (status & 969 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) { 970 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2)) 971 printf("%s: transmit aborted\n", 972 device_xname(sc->vr_dev)); 973 if (status & VR_ISR_TX_UDFI) 974 printf("%s: transmit underflow\n", 975 device_xname(sc->vr_dev)); 976 ifp->if_oerrors++; 977 dotx = 1; 978 vr_txeof(sc); 979 if (sc->vr_txpending) { 980 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); 981 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); 982 } 983 } 984 } 985 986 /* Re-enable interrupts. */ 987 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 988 989 if (dotx) 990 vr_start(ifp); 991 992 return (handled); 993 } 994 995 /* 996 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 997 * to the mbuf data regions directly in the transmit lists. We also save a 998 * copy of the pointers since the transmit list fragment pointers are 999 * physical addresses. 1000 */ 1001 static void 1002 vr_start(struct ifnet *ifp) 1003 { 1004 struct vr_softc *sc = ifp->if_softc; 1005 struct mbuf *m0, *m; 1006 struct vr_desc *d; 1007 struct vr_descsoft *ds; 1008 int error, firsttx, nexttx, opending; 1009 1010 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1011 return; 1012 if (sc->vr_link == false) 1013 return; 1014 1015 /* 1016 * Remember the previous txpending and the first transmit 1017 * descriptor we use. 1018 */ 1019 opending = sc->vr_txpending; 1020 firsttx = VR_NEXTTX(sc->vr_txlast); 1021 1022 /* 1023 * Loop through the send queue, setting up transmit descriptors 1024 * until we drain the queue, or use up all available transmit 1025 * descriptors. 1026 */ 1027 while (sc->vr_txpending < VR_NTXDESC) { 1028 /* 1029 * Grab a packet off the queue. 1030 */ 1031 IFQ_POLL(&ifp->if_snd, m0); 1032 if (m0 == NULL) 1033 break; 1034 m = NULL; 1035 1036 /* 1037 * Get the next available transmit descriptor. 1038 */ 1039 nexttx = VR_NEXTTX(sc->vr_txlast); 1040 d = VR_CDTX(sc, nexttx); 1041 ds = VR_DSTX(sc, nexttx); 1042 1043 /* 1044 * Load the DMA map. If this fails, the packet didn't 1045 * fit in one DMA segment, and we need to copy. Note, 1046 * the packet must also be aligned. 1047 * if the packet is too small, copy it too, so we're sure 1048 * we have enough room for the pad buffer. 1049 */ 1050 if ((mtod(m0, uintptr_t) & 3) != 0 || 1051 m0->m_pkthdr.len < VR_MIN_FRAMELEN || 1052 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0, 1053 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) { 1054 MGETHDR(m, M_DONTWAIT, MT_DATA); 1055 if (m == NULL) { 1056 printf("%s: unable to allocate Tx mbuf\n", 1057 device_xname(sc->vr_dev)); 1058 break; 1059 } 1060 if (m0->m_pkthdr.len > MHLEN) { 1061 MCLGET(m, M_DONTWAIT); 1062 if ((m->m_flags & M_EXT) == 0) { 1063 printf("%s: unable to allocate Tx " 1064 "cluster\n", device_xname(sc->vr_dev)); 1065 m_freem(m); 1066 break; 1067 } 1068 } 1069 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1070 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1071 /* 1072 * The Rhine doesn't auto-pad, so we have to do this 1073 * ourselves. 1074 */ 1075 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) { 1076 memset(mtod(m, char *) + m0->m_pkthdr.len, 1077 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len); 1078 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN; 1079 } 1080 error = bus_dmamap_load_mbuf(sc->vr_dmat, 1081 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1082 if (error) { 1083 m_freem(m); 1084 printf("%s: unable to load Tx buffer, " 1085 "error = %d\n", device_xname(sc->vr_dev), error); 1086 break; 1087 } 1088 } 1089 1090 IFQ_DEQUEUE(&ifp->if_snd, m0); 1091 if (m != NULL) { 1092 m_freem(m0); 1093 m0 = m; 1094 } 1095 1096 /* Sync the DMA map. */ 1097 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, 1098 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 1099 1100 /* 1101 * Store a pointer to the packet so we can free it later. 1102 */ 1103 ds->ds_mbuf = m0; 1104 1105 /* 1106 * If there's a BPF listener, bounce a copy of this frame 1107 * to him. 1108 */ 1109 bpf_mtap(ifp, m0); 1110 1111 /* 1112 * Fill in the transmit descriptor. 1113 */ 1114 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr); 1115 d->vr_ctl = htole32(m0->m_pkthdr.len); 1116 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG); 1117 1118 /* 1119 * If this is the first descriptor we're enqueuing, 1120 * don't give it to the Rhine yet. That could cause 1121 * a race condition. We'll do it below. 1122 */ 1123 if (nexttx == firsttx) 1124 d->vr_status = 0; 1125 else 1126 d->vr_status = htole32(VR_TXSTAT_OWN); 1127 1128 VR_CDTXSYNC(sc, nexttx, 1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1130 1131 /* Advance the tx pointer. */ 1132 sc->vr_txpending++; 1133 sc->vr_txlast = nexttx; 1134 } 1135 1136 if (sc->vr_txpending == VR_NTXDESC) { 1137 /* No more slots left; notify upper layer. */ 1138 ifp->if_flags |= IFF_OACTIVE; 1139 } 1140 1141 if (sc->vr_txpending != opending) { 1142 /* 1143 * We enqueued packets. If the transmitter was idle, 1144 * reset the txdirty pointer. 1145 */ 1146 if (opending == 0) 1147 sc->vr_txdirty = firsttx; 1148 1149 /* 1150 * Cause a transmit interrupt to happen on the 1151 * last packet we enqueued. 1152 */ 1153 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT); 1154 VR_CDTXSYNC(sc, sc->vr_txlast, 1155 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1156 1157 /* 1158 * The entire packet chain is set up. Give the 1159 * first descriptor to the Rhine now. 1160 */ 1161 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN); 1162 VR_CDTXSYNC(sc, firsttx, 1163 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1164 1165 /* Start the transmitter. */ 1166 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); 1167 1168 /* Set the watchdog timer in case the chip flakes out. */ 1169 ifp->if_timer = 5; 1170 } 1171 } 1172 1173 /* 1174 * Initialize the interface. Must be called at splnet. 1175 */ 1176 static int 1177 vr_init(struct ifnet *ifp) 1178 { 1179 struct vr_softc *sc = ifp->if_softc; 1180 struct vr_desc *d; 1181 struct vr_descsoft *ds; 1182 int i, error = 0; 1183 1184 /* Cancel pending I/O. */ 1185 vr_stop(ifp, 0); 1186 1187 /* Reset the Rhine to a known state. */ 1188 vr_reset(sc); 1189 1190 /* set DMA length in BCR0 and BCR1 */ 1191 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH); 1192 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD); 1193 1194 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH); 1195 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES); 1196 1197 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH); 1198 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD); 1199 1200 /* set DMA threshold length in RXCFG and TXCFG */ 1201 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); 1202 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES); 1203 1204 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); 1205 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD); 1206 1207 /* 1208 * Initialize the transmit descriptor ring. txlast is initialized 1209 * to the end of the list so that it will wrap around to the first 1210 * descriptor when the first packet is transmitted. 1211 */ 1212 for (i = 0; i < VR_NTXDESC; i++) { 1213 d = VR_CDTX(sc, i); 1214 memset(d, 0, sizeof(struct vr_desc)); 1215 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i))); 1216 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1217 } 1218 sc->vr_txpending = 0; 1219 sc->vr_txdirty = 0; 1220 sc->vr_txlast = VR_NTXDESC - 1; 1221 1222 /* 1223 * Initialize the receive descriptor ring. 1224 */ 1225 for (i = 0; i < VR_NRXDESC; i++) { 1226 ds = VR_DSRX(sc, i); 1227 if (ds->ds_mbuf == NULL) { 1228 if ((error = vr_add_rxbuf(sc, i)) != 0) { 1229 printf("%s: unable to allocate or map rx " 1230 "buffer %d, error = %d\n", 1231 device_xname(sc->vr_dev), i, error); 1232 /* 1233 * XXX Should attempt to run with fewer receive 1234 * XXX buffers instead of just failing. 1235 */ 1236 vr_rxdrain(sc); 1237 goto out; 1238 } 1239 } else 1240 VR_INIT_RXDESC(sc, i); 1241 } 1242 sc->vr_rxptr = 0; 1243 1244 /* If we want promiscuous mode, set the allframes bit. */ 1245 if (ifp->if_flags & IFF_PROMISC) 1246 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); 1247 else 1248 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); 1249 1250 /* Set capture broadcast bit to capture broadcast frames. */ 1251 if (ifp->if_flags & IFF_BROADCAST) 1252 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); 1253 else 1254 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); 1255 1256 /* Program the multicast filter, if necessary. */ 1257 vr_setmulti(sc); 1258 1259 /* Give the transmit and receive rings to the Rhine. */ 1260 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr)); 1261 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast))); 1262 1263 /* Set current media. */ 1264 sc->vr_link = true; 1265 if ((error = ether_mediachange(ifp)) != 0) 1266 goto out; 1267 1268 /* Enable receiver and transmitter. */ 1269 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START| 1270 VR_CMD_TX_ON|VR_CMD_RX_ON| 1271 VR_CMD_RX_GO); 1272 1273 /* Enable interrupts. */ 1274 CSR_WRITE_2(sc, VR_ISR, 0xFFFF); 1275 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 1276 1277 ifp->if_flags |= IFF_RUNNING; 1278 ifp->if_flags &= ~IFF_OACTIVE; 1279 1280 /* Start one second timer. */ 1281 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc); 1282 1283 /* Attempt to start output on the interface. */ 1284 vr_start(ifp); 1285 1286 out: 1287 if (error) 1288 printf("%s: interface not running\n", device_xname(sc->vr_dev)); 1289 return (error); 1290 } 1291 1292 static int 1293 vr_ioctl(struct ifnet *ifp, u_long command, void *data) 1294 { 1295 struct vr_softc *sc = ifp->if_softc; 1296 int s, error = 0; 1297 1298 s = splnet(); 1299 1300 switch (command) { 1301 case SIOCSIFFLAGS: 1302 if ((error = ifioctl_common(ifp, command, data)) != 0) 1303 break; 1304 1305 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1306 case IFF_RUNNING: 1307 vr_stop(ifp, 1); 1308 break; 1309 case IFF_UP: 1310 vr_init(ifp); 1311 break; 1312 case IFF_UP | IFF_RUNNING: 1313 if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC) 1314 vr_setmulti(sc); 1315 else 1316 vr_init(ifp); 1317 break; 1318 } 1319 sc->vr_if_flags = ifp->if_flags; 1320 break; 1321 default: 1322 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 1323 break; 1324 error = 0; 1325 if (command == SIOCADDMULTI || command == SIOCDELMULTI) 1326 vr_setmulti(sc); 1327 } 1328 splx(s); 1329 1330 return error; 1331 } 1332 1333 static void 1334 vr_watchdog(struct ifnet *ifp) 1335 { 1336 struct vr_softc *sc = ifp->if_softc; 1337 1338 printf("%s: device timeout\n", device_xname(sc->vr_dev)); 1339 ifp->if_oerrors++; 1340 1341 (void) vr_init(ifp); 1342 } 1343 1344 /* 1345 * One second timer, used to tick MII. 1346 */ 1347 static void 1348 vr_tick(void *arg) 1349 { 1350 struct vr_softc *sc = arg; 1351 int s; 1352 1353 s = splnet(); 1354 if (sc->vr_flags & VR_F_RESTART) { 1355 printf("%s: restarting\n", device_xname(sc->vr_dev)); 1356 vr_init(&sc->vr_ec.ec_if); 1357 sc->vr_flags &= ~VR_F_RESTART; 1358 } 1359 mii_tick(&sc->vr_mii); 1360 splx(s); 1361 1362 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc); 1363 } 1364 1365 /* 1366 * Drain the receive queue. 1367 */ 1368 static void 1369 vr_rxdrain(struct vr_softc *sc) 1370 { 1371 struct vr_descsoft *ds; 1372 int i; 1373 1374 for (i = 0; i < VR_NRXDESC; i++) { 1375 ds = VR_DSRX(sc, i); 1376 if (ds->ds_mbuf != NULL) { 1377 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); 1378 m_freem(ds->ds_mbuf); 1379 ds->ds_mbuf = NULL; 1380 } 1381 } 1382 } 1383 1384 /* 1385 * Stop the adapter and free any mbufs allocated to the 1386 * transmit lists. 1387 */ 1388 static void 1389 vr_stop(struct ifnet *ifp, int disable) 1390 { 1391 struct vr_softc *sc = ifp->if_softc; 1392 struct vr_descsoft *ds; 1393 int i; 1394 1395 /* Cancel one second timer. */ 1396 callout_stop(&sc->vr_tick_ch); 1397 1398 /* Down the MII. */ 1399 mii_down(&sc->vr_mii); 1400 1401 ifp = &sc->vr_ec.ec_if; 1402 ifp->if_timer = 0; 1403 1404 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP); 1405 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON)); 1406 CSR_WRITE_2(sc, VR_IMR, 0x0000); 1407 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); 1408 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); 1409 1410 /* 1411 * Release any queued transmit buffers. 1412 */ 1413 for (i = 0; i < VR_NTXDESC; i++) { 1414 ds = VR_DSTX(sc, i); 1415 if (ds->ds_mbuf != NULL) { 1416 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); 1417 m_freem(ds->ds_mbuf); 1418 ds->ds_mbuf = NULL; 1419 } 1420 } 1421 1422 /* 1423 * Mark the interface down and cancel the watchdog timer. 1424 */ 1425 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1426 ifp->if_timer = 0; 1427 1428 if (disable) 1429 vr_rxdrain(sc); 1430 } 1431 1432 static int vr_probe(device_t, cfdata_t, void *); 1433 static void vr_attach(device_t, device_t, void *); 1434 static bool vr_shutdown(device_t, int); 1435 1436 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc), 1437 vr_probe, vr_attach, NULL, NULL); 1438 1439 static const struct vr_type * 1440 vr_lookup(struct pci_attach_args *pa) 1441 { 1442 const struct vr_type *vrt; 1443 int i; 1444 1445 for (i = 0; i < __arraycount(vr_devs); i++) { 1446 vrt = &vr_devs[i]; 1447 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid && 1448 PCI_PRODUCT(pa->pa_id) == vrt->vr_did) 1449 return (vrt); 1450 } 1451 return (NULL); 1452 } 1453 1454 static int 1455 vr_probe(device_t parent, cfdata_t match, void *aux) 1456 { 1457 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 1458 1459 if (vr_lookup(pa) != NULL) 1460 return (1); 1461 1462 return (0); 1463 } 1464 1465 /* 1466 * Stop all chip I/O so that the kernel's probe routines don't 1467 * get confused by errant DMAs when rebooting. 1468 */ 1469 static bool 1470 vr_shutdown(device_t self, int howto) 1471 { 1472 struct vr_softc *sc = device_private(self); 1473 1474 vr_stop(&sc->vr_ec.ec_if, 1); 1475 1476 return true; 1477 } 1478 1479 /* 1480 * Attach the interface. Allocate softc structures, do ifmedia 1481 * setup and ethernet/BPF attach. 1482 */ 1483 static void 1484 vr_attach(device_t parent, device_t self, void *aux) 1485 { 1486 struct vr_softc *sc = device_private(self); 1487 struct pci_attach_args *pa = (struct pci_attach_args *) aux; 1488 bus_dma_segment_t seg; 1489 uint32_t reg; 1490 struct ifnet *ifp; 1491 uint8_t eaddr[ETHER_ADDR_LEN], mac; 1492 int i, rseg, error; 1493 char intrbuf[PCI_INTRSTR_LEN]; 1494 1495 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v)) 1496 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r)) 1497 1498 sc->vr_dev = self; 1499 sc->vr_pc = pa->pa_pc; 1500 sc->vr_tag = pa->pa_tag; 1501 sc->vr_id = pa->pa_id; 1502 callout_init(&sc->vr_tick_ch, 0); 1503 1504 pci_aprint_devinfo(pa, NULL); 1505 1506 /* 1507 * Handle power management nonsense. 1508 */ 1509 1510 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO); 1511 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM); 1512 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG); 1513 1514 /* power up chip */ 1515 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, 1516 vr_restore_state)) && error != EOPNOTSUPP) { 1517 aprint_error_dev(self, "cannot activate %d\n", 1518 error); 1519 return; 1520 } 1521 1522 /* Make sure bus mastering is enabled. */ 1523 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG); 1524 reg |= PCI_COMMAND_MASTER_ENABLE; 1525 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg); 1526 1527 /* Get revision */ 1528 sc->vr_revid = PCI_REVISION(pa->pa_class); 1529 1530 /* 1531 * Map control/status registers. 1532 */ 1533 { 1534 bus_space_tag_t iot, memt; 1535 bus_space_handle_t ioh, memh; 1536 int ioh_valid, memh_valid; 1537 pci_intr_handle_t intrhandle; 1538 const char *intrstr; 1539 1540 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO, 1541 PCI_MAPREG_TYPE_IO, 0, 1542 &iot, &ioh, NULL, NULL) == 0); 1543 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM, 1544 PCI_MAPREG_TYPE_MEM | 1545 PCI_MAPREG_MEM_TYPE_32BIT, 1546 0, &memt, &memh, NULL, NULL) == 0); 1547 #if defined(VR_USEIOSPACE) 1548 if (ioh_valid) { 1549 sc->vr_bst = iot; 1550 sc->vr_bsh = ioh; 1551 } else if (memh_valid) { 1552 sc->vr_bst = memt; 1553 sc->vr_bsh = memh; 1554 } 1555 #else 1556 if (memh_valid) { 1557 sc->vr_bst = memt; 1558 sc->vr_bsh = memh; 1559 } else if (ioh_valid) { 1560 sc->vr_bst = iot; 1561 sc->vr_bsh = ioh; 1562 } 1563 #endif 1564 else { 1565 printf(": unable to map device registers\n"); 1566 return; 1567 } 1568 1569 /* Allocate interrupt */ 1570 if (pci_intr_map(pa, &intrhandle)) { 1571 aprint_error_dev(self, "couldn't map interrupt\n"); 1572 return; 1573 } 1574 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf)); 1575 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET, 1576 vr_intr, sc); 1577 if (sc->vr_ih == NULL) { 1578 aprint_error_dev(self, "couldn't establish interrupt"); 1579 if (intrstr != NULL) 1580 aprint_error(" at %s", intrstr); 1581 aprint_error("\n"); 1582 } 1583 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 1584 } 1585 1586 /* 1587 * Windows may put the chip in suspend mode when it 1588 * shuts down. Be sure to kick it in the head to wake it 1589 * up again. 1590 * 1591 * Don't touch this register on VT3043 since it causes 1592 * kernel MCHK trap on macppc. 1593 * (Note some VT86C100A chip returns a product ID of VT3043) 1594 */ 1595 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043) 1596 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1)); 1597 1598 /* Reset the adapter. */ 1599 vr_reset(sc); 1600 1601 /* 1602 * Get station address. The way the Rhine chips work, 1603 * you're not allowed to directly access the EEPROM once 1604 * they've been programmed a special way. Consequently, 1605 * we need to read the node address from the PAR0 and PAR1 1606 * registers. 1607 * 1608 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload 1609 * of the *whole* EEPROM, not just the MAC address. This is 1610 * pretty pointless since the chip does this automatically 1611 * at powerup/reset. 1612 * I suspect the same thing applies to the other Rhine 1613 * variants, but in the absence of a data sheet for those 1614 * (and the lack of anyone else noticing the problems this 1615 * causes) I'm going to retain the old behaviour for the 1616 * other parts. 1617 * In some cases, the chip really does startup without having 1618 * read the EEPROM (kern/34812). To handle this case, we force 1619 * a reload if we see an all-zeroes MAC address. 1620 */ 1621 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++) 1622 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i)); 1623 1624 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 && 1625 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) { 1626 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); 1627 DELAY(200); 1628 for (i = 0; i < ETHER_ADDR_LEN; i++) 1629 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); 1630 } 1631 1632 /* 1633 * A Rhine chip was detected. Inform the world. 1634 */ 1635 aprint_normal("%s: Ethernet address: %s\n", 1636 device_xname(self), ether_sprintf(eaddr)); 1637 1638 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN); 1639 1640 sc->vr_dmat = pa->pa_dmat; 1641 1642 /* 1643 * Allocate the control data structures, and create and load 1644 * the DMA map for it. 1645 */ 1646 if ((error = bus_dmamem_alloc(sc->vr_dmat, 1647 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 1648 0)) != 0) { 1649 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error); 1650 goto fail_0; 1651 } 1652 1653 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg, 1654 sizeof(struct vr_control_data), (void **)&sc->vr_control_data, 1655 BUS_DMA_COHERENT)) != 0) { 1656 aprint_error_dev(self, "unable to map control data, error = %d\n", error); 1657 goto fail_1; 1658 } 1659 1660 if ((error = bus_dmamap_create(sc->vr_dmat, 1661 sizeof(struct vr_control_data), 1, 1662 sizeof(struct vr_control_data), 0, 0, 1663 &sc->vr_cddmamap)) != 0) { 1664 aprint_error_dev(self, "unable to create control data DMA map, " 1665 "error = %d\n", error); 1666 goto fail_2; 1667 } 1668 1669 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap, 1670 sc->vr_control_data, sizeof(struct vr_control_data), NULL, 1671 0)) != 0) { 1672 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n", 1673 error); 1674 goto fail_3; 1675 } 1676 1677 /* 1678 * Create the transmit buffer DMA maps. 1679 */ 1680 for (i = 0; i < VR_NTXDESC; i++) { 1681 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1682 1, MCLBYTES, 0, 0, 1683 &VR_DSTX(sc, i)->ds_dmamap)) != 0) { 1684 aprint_error_dev(self, "unable to create tx DMA map %d, " 1685 "error = %d\n", i, error); 1686 goto fail_4; 1687 } 1688 } 1689 1690 /* 1691 * Create the receive buffer DMA maps. 1692 */ 1693 for (i = 0; i < VR_NRXDESC; i++) { 1694 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1, 1695 MCLBYTES, 0, 0, 1696 &VR_DSRX(sc, i)->ds_dmamap)) != 0) { 1697 aprint_error_dev(self, "unable to create rx DMA map %d, " 1698 "error = %d\n", i, error); 1699 goto fail_5; 1700 } 1701 VR_DSRX(sc, i)->ds_mbuf = NULL; 1702 } 1703 1704 ifp = &sc->vr_ec.ec_if; 1705 ifp->if_softc = sc; 1706 ifp->if_mtu = ETHERMTU; 1707 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1708 ifp->if_ioctl = vr_ioctl; 1709 ifp->if_start = vr_start; 1710 ifp->if_watchdog = vr_watchdog; 1711 ifp->if_init = vr_init; 1712 ifp->if_stop = vr_stop; 1713 IFQ_SET_READY(&ifp->if_snd); 1714 1715 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1716 1717 /* 1718 * Initialize MII/media info. 1719 */ 1720 sc->vr_mii.mii_ifp = ifp; 1721 sc->vr_mii.mii_readreg = vr_mii_readreg; 1722 sc->vr_mii.mii_writereg = vr_mii_writereg; 1723 sc->vr_mii.mii_statchg = vr_mii_statchg; 1724 1725 sc->vr_ec.ec_mii = &sc->vr_mii; 1726 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange, 1727 ether_mediastatus); 1728 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY, 1729 MII_OFFSET_ANY, MIIF_FORCEANEG); 1730 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) { 1731 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 1732 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE); 1733 } else 1734 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO); 1735 1736 sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 1737 1738 /* 1739 * Call MI attach routines. 1740 */ 1741 if_attach(ifp); 1742 ether_ifattach(ifp, sc->vr_enaddr); 1743 1744 rnd_attach_source(&sc->rnd_source, device_xname(self), 1745 RND_TYPE_NET, RND_FLAG_DEFAULT); 1746 1747 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown)) 1748 pmf_class_network_register(self, ifp); 1749 else 1750 aprint_error_dev(self, "couldn't establish power handler\n"); 1751 1752 return; 1753 1754 fail_5: 1755 for (i = 0; i < VR_NRXDESC; i++) { 1756 if (sc->vr_rxsoft[i].ds_dmamap != NULL) 1757 bus_dmamap_destroy(sc->vr_dmat, 1758 sc->vr_rxsoft[i].ds_dmamap); 1759 } 1760 fail_4: 1761 for (i = 0; i < VR_NTXDESC; i++) { 1762 if (sc->vr_txsoft[i].ds_dmamap != NULL) 1763 bus_dmamap_destroy(sc->vr_dmat, 1764 sc->vr_txsoft[i].ds_dmamap); 1765 } 1766 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap); 1767 fail_3: 1768 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap); 1769 fail_2: 1770 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data, 1771 sizeof(struct vr_control_data)); 1772 fail_1: 1773 bus_dmamem_free(sc->vr_dmat, &seg, rseg); 1774 fail_0: 1775 return; 1776 } 1777 1778 static int 1779 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self, 1780 pcireg_t state) 1781 { 1782 struct vr_softc *sc = device_private(self); 1783 int error; 1784 1785 if (state == PCI_PMCSR_STATE_D0) 1786 return 0; 1787 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0))) 1788 return error; 1789 1790 /* Restore PCI config data. */ 1791 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase); 1792 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase); 1793 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq); 1794 return 0; 1795 } 1796 1797 static bool 1798 vr_resume(device_t self, const pmf_qual_t *qual) 1799 { 1800 struct vr_softc *sc = device_private(self); 1801 1802 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043) 1803 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1)); 1804 1805 return true; 1806 } 1807