xref: /netbsd-src/sys/dev/pci/if_vr.c (revision 89c5a767f8fc7a4633b2d409966e2becbb98ff92)
1 /*	$NetBSD: if_vr.c,v 1.33 2000/03/06 21:02:02 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1997, 1998
42  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Bill Paul.
55  * 4. Neither the name of the author nor the names of any co-contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69  * THE POSSIBILITY OF SUCH DAMAGE.
70  *
71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72  */
73 
74 /*
75  * VIA Rhine fast ethernet PCI NIC driver
76  *
77  * Supports various network adapters based on the VIA Rhine
78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
79  * Datasheets are available at http://www.via.com.tw.
80  *
81  * Written by Bill Paul <wpaul@ctr.columbia.edu>
82  * Electrical Engineering Department
83  * Columbia University, New York City
84  */
85 
86 /*
87  * The VIA Rhine controllers are similar in some respects to the
88  * the DEC tulip chips, except less complicated. The controller
89  * uses an MII bus and an external physical layer interface. The
90  * receiver has a one entry perfect filter and a 64-bit hash table
91  * multicast filter. Transmit and receive descriptors are similar
92  * to the tulip.
93  *
94  * The Rhine has a serious flaw in its transmit DMA mechanism:
95  * transmit buffers must be longword aligned. Unfortunately,
96  * the kernel doesn't guarantee that mbufs will be filled in starting
97  * at longword boundaries, so we have to do a buffer copy before
98  * transmission.
99  *
100  * Apparently, the receive DMA mechanism also has the same flaw.  This
101  * means that on systems with struct alignment requirements, incoming
102  * frames must be copied to a new buffer which shifts the data forward
103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
104  */
105 
106 #include "opt_inet.h"
107 
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/sockio.h>
111 #include <sys/mbuf.h>
112 #include <sys/malloc.h>
113 #include <sys/kernel.h>
114 #include <sys/socket.h>
115 #include <sys/device.h>
116 
117 #include <vm/vm.h>		/* for PAGE_SIZE */
118 
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_ether.h>
124 
125 #if defined(INET)
126 #include <netinet/in.h>
127 #include <netinet/if_inarp.h>
128 #endif
129 
130 #include "bpfilter.h"
131 #if NBPFILTER > 0
132 #include <net/bpf.h>
133 #endif
134 
135 #include <machine/bus.h>
136 #include <machine/intr.h>
137 #include <machine/endian.h>
138 
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141 #include <dev/mii/mii_bitbang.h>
142 
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145 #include <dev/pci/pcidevs.h>
146 
147 #include <dev/pci/if_vrreg.h>
148 
149 #define	VR_USEIOSPACE
150 
151 /*
152  * Various supported device vendors/types and their names.
153  */
154 static struct vr_type {
155 	pci_vendor_id_t		vr_vid;
156 	pci_product_id_t	vr_did;
157 	const char		*vr_name;
158 } vr_devs[] = {
159 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
160 		"VIA VT3043 (Rhine) 10/100" },
161 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
162 		"VIA VT86C100A (Rhine-II) 10/100" },
163 	{ 0, 0, NULL }
164 };
165 
166 /*
167  * Transmit descriptor list size.
168  */
169 #define	VR_NTXDESC		64
170 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
171 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
172 
173 /*
174  * Receive descriptor list size.
175  */
176 #define	VR_NRXDESC		64
177 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
178 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
179 
180 /*
181  * Control data structres that are DMA'd to the Rhine chip.  We allocate
182  * them in a single clump that maps to a single DMA segment to make several
183  * things easier.
184  *
185  * Note that since we always copy outgoing packets to aligned transmit
186  * buffers, we can reduce the transmit descriptors to one per packet.
187  */
188 struct vr_control_data {
189 	struct vr_desc		vr_txdescs[VR_NTXDESC];
190 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
191 };
192 
193 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
194 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
195 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
196 
197 /*
198  * Software state of transmit and receive descriptors.
199  */
200 struct vr_descsoft {
201 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
202 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
203 };
204 
205 struct vr_softc {
206 	struct device		vr_dev;		/* generic device glue */
207 	void			*vr_ih;		/* interrupt cookie */
208 	void			*vr_ats;	/* shutdown hook */
209 	bus_space_tag_t		vr_bst;		/* bus space tag */
210 	bus_space_handle_t	vr_bsh;		/* bus space handle */
211 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
212 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
213 	struct ethercom		vr_ec;		/* Ethernet common info */
214 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
215 	struct mii_data		vr_mii;		/* MII/media info */
216 
217 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
218 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
219 
220 	/*
221 	 * Software state for transmit and receive descriptors.
222 	 */
223 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
224 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
225 
226 	/*
227 	 * Control data structures.
228 	 */
229 	struct vr_control_data	*vr_control_data;
230 
231 	int	vr_txpending;		/* number of TX requests pending */
232 	int	vr_txdirty;		/* first dirty TX descriptor */
233 	int	vr_txlast;		/* last used TX descriptor */
234 
235 	int	vr_rxptr;		/* next ready RX descriptor */
236 };
237 
238 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
239 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
240 
241 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
242 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
243 
244 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
245 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
246 
247 #define	VR_CDTXSYNC(sc, x, ops)						\
248 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
249 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
250 
251 #define	VR_CDRXSYNC(sc, x, ops)						\
252 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
253 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
254 
255 /*
256  * Note we rely on MCLBYTES being a power of two below.
257  */
258 #define	VR_INIT_RXDESC(sc, i)						\
259 do {									\
260 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
261 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
262 									\
263 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
264 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
265 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
266 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
267 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
268 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
269 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
270 } while (0)
271 
272 /*
273  * register space access macros
274  */
275 #define	CSR_WRITE_4(sc, reg, val)					\
276 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
277 #define	CSR_WRITE_2(sc, reg, val)					\
278 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
279 #define	CSR_WRITE_1(sc, reg, val)					\
280 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
281 
282 #define	CSR_READ_4(sc, reg)						\
283 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
284 #define	CSR_READ_2(sc, reg)						\
285 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
286 #define	CSR_READ_1(sc, reg)						\
287 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
288 
289 #define	VR_TIMEOUT		1000
290 
291 static int vr_add_rxbuf		__P((struct vr_softc *, int));
292 
293 static void vr_rxeof		__P((struct vr_softc *));
294 static void vr_rxeoc		__P((struct vr_softc *));
295 static void vr_txeof		__P((struct vr_softc *));
296 static int vr_intr		__P((void *));
297 static void vr_start		__P((struct ifnet *));
298 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
299 static int vr_init		__P((struct vr_softc *));
300 static void vr_stop		__P((struct vr_softc *, int));
301 static void vr_rxdrain		__P((struct vr_softc *));
302 static void vr_watchdog		__P((struct ifnet *));
303 static void vr_tick		__P((void *));
304 
305 static int vr_ifmedia_upd	__P((struct ifnet *));
306 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
307 
308 static int vr_mii_readreg	__P((struct device *, int, int));
309 static void vr_mii_writereg	__P((struct device *, int, int, int));
310 static void vr_mii_statchg	__P((struct device *));
311 
312 static u_int8_t vr_calchash	__P((u_int8_t *));
313 static void vr_setmulti		__P((struct vr_softc *));
314 static void vr_reset		__P((struct vr_softc *));
315 
316 int	vr_copy_small = 0;
317 
318 #define	VR_SETBIT(sc, reg, x)				\
319 	CSR_WRITE_1(sc, reg,				\
320 		CSR_READ_1(sc, reg) | x)
321 
322 #define	VR_CLRBIT(sc, reg, x)				\
323 	CSR_WRITE_1(sc, reg,				\
324 		CSR_READ_1(sc, reg) & ~x)
325 
326 #define	VR_SETBIT16(sc, reg, x)				\
327 	CSR_WRITE_2(sc, reg,				\
328 		CSR_READ_2(sc, reg) | x)
329 
330 #define	VR_CLRBIT16(sc, reg, x)				\
331 	CSR_WRITE_2(sc, reg,				\
332 		CSR_READ_2(sc, reg) & ~x)
333 
334 #define	VR_SETBIT32(sc, reg, x)				\
335 	CSR_WRITE_4(sc, reg,				\
336 		CSR_READ_4(sc, reg) | x)
337 
338 #define	VR_CLRBIT32(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg,				\
340 		CSR_READ_4(sc, reg) & ~x)
341 
342 /*
343  * MII bit-bang glue.
344  */
345 u_int32_t vr_mii_bitbang_read __P((struct device *));
346 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
347 
348 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
349 	vr_mii_bitbang_read,
350 	vr_mii_bitbang_write,
351 	{
352 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
353 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
354 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
355 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
356 		0,			/* MII_BIT_DIR_PHY_HOST */
357 	}
358 };
359 
360 u_int32_t
361 vr_mii_bitbang_read(self)
362 	struct device *self;
363 {
364 	struct vr_softc *sc = (void *) self;
365 
366 	return (CSR_READ_1(sc, VR_MIICMD));
367 }
368 
369 void
370 vr_mii_bitbang_write(self, val)
371 	struct device *self;
372 	u_int32_t val;
373 {
374 	struct vr_softc *sc = (void *) self;
375 
376 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
377 }
378 
379 /*
380  * Read an PHY register through the MII.
381  */
382 static int
383 vr_mii_readreg(self, phy, reg)
384 	struct device *self;
385 	int phy, reg;
386 {
387 	struct vr_softc *sc = (void *) self;
388 
389 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
390 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
391 }
392 
393 /*
394  * Write to a PHY register through the MII.
395  */
396 static void
397 vr_mii_writereg(self, phy, reg, val)
398 	struct device *self;
399 	int phy, reg, val;
400 {
401 	struct vr_softc *sc = (void *) self;
402 
403 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
404 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
405 }
406 
407 static void
408 vr_mii_statchg(self)
409 	struct device *self;
410 {
411 	struct vr_softc *sc = (struct vr_softc *)self;
412 
413 	/*
414 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
415 	 * register, we first have to put the transmit and/or receive logic
416 	 * in the idle state.
417 	 */
418 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
419 
420 	if (sc->vr_mii.mii_media_active & IFM_FDX)
421 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
422 	else
423 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424 
425 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
427 }
428 
429 /*
430  * Calculate CRC of a multicast group address, return the lower 6 bits.
431  */
432 static u_int8_t
433 vr_calchash(addr)
434 	u_int8_t *addr;
435 {
436 	u_int32_t crc, carry;
437 	int i, j;
438 	u_int8_t c;
439 
440 	/* Compute CRC for the address value. */
441 	crc = 0xFFFFFFFF; /* initial value */
442 
443 	for (i = 0; i < 6; i++) {
444 		c = *(addr + i);
445 		for (j = 0; j < 8; j++) {
446 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
447 			crc <<= 1;
448 			c >>= 1;
449 			if (carry)
450 				crc = (crc ^ 0x04c11db6) | carry;
451 		}
452 	}
453 
454 	/* return the filter bit position */
455 	return ((crc >> 26) & 0x0000003F);
456 }
457 
458 /*
459  * Program the 64-bit multicast hash filter.
460  */
461 static void
462 vr_setmulti(sc)
463 	struct vr_softc *sc;
464 {
465 	struct ifnet *ifp;
466 	int h = 0;
467 	u_int32_t hashes[2] = { 0, 0 };
468 	struct ether_multistep step;
469 	struct ether_multi *enm;
470 	int mcnt = 0;
471 	u_int8_t rxfilt;
472 
473 	ifp = &sc->vr_ec.ec_if;
474 
475 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
476 
477 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
478 		rxfilt |= VR_RXCFG_RX_MULTI;
479 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
480 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
481 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
482 		return;
483 	}
484 
485 	/* first, zot all the existing hash bits */
486 	CSR_WRITE_4(sc, VR_MAR0, 0);
487 	CSR_WRITE_4(sc, VR_MAR1, 0);
488 
489 	/* now program new ones */
490 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
491 	while (enm != NULL) {
492 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
493 			continue;
494 
495 		h = vr_calchash(enm->enm_addrlo);
496 
497 		if (h < 32)
498 			hashes[0] |= (1 << h);
499 		else
500 			hashes[1] |= (1 << (h - 32));
501 		ETHER_NEXT_MULTI(step, enm);
502 		mcnt++;
503 	}
504 
505 	if (mcnt)
506 		rxfilt |= VR_RXCFG_RX_MULTI;
507 	else
508 		rxfilt &= ~VR_RXCFG_RX_MULTI;
509 
510 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
511 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
512 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
513 }
514 
515 static void
516 vr_reset(sc)
517 	struct vr_softc *sc;
518 {
519 	int i;
520 
521 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
522 
523 	for (i = 0; i < VR_TIMEOUT; i++) {
524 		DELAY(10);
525 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
526 			break;
527 	}
528 	if (i == VR_TIMEOUT)
529 		printf("%s: reset never completed!\n",
530 			sc->vr_dev.dv_xname);
531 
532 	/* Wait a little while for the chip to get its brains in order. */
533 	DELAY(1000);
534 }
535 
536 /*
537  * Initialize an RX descriptor and attach an MBUF cluster.
538  * Note: the length fields are only 11 bits wide, which means the
539  * largest size we can specify is 2047. This is important because
540  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
541  * overflow the field and make a mess.
542  */
543 static int
544 vr_add_rxbuf(sc, i)
545 	struct vr_softc *sc;
546 	int i;
547 {
548 	struct vr_descsoft *ds = VR_DSRX(sc, i);
549 	struct mbuf *m_new;
550 	int error;
551 
552 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
553 	if (m_new == NULL)
554 		return (ENOBUFS);
555 
556 	MCLGET(m_new, M_DONTWAIT);
557 	if ((m_new->m_flags & M_EXT) == 0) {
558 		m_freem(m_new);
559 		return (ENOBUFS);
560 	}
561 
562 	if (ds->ds_mbuf != NULL)
563 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
564 
565 	ds->ds_mbuf = m_new;
566 
567 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
568 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
569 	if (error) {
570 		printf("%s: unable to load rx DMA map %d, error = %d\n",
571 		    sc->vr_dev.dv_xname, i, error);
572 		panic("vr_add_rxbuf");		/* XXX */
573 	}
574 
575 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
576 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
577 
578 	VR_INIT_RXDESC(sc, i);
579 
580 	return (0);
581 }
582 
583 /*
584  * A frame has been uploaded: pass the resulting mbuf chain up to
585  * the higher level protocols.
586  */
587 static void
588 vr_rxeof(sc)
589 	struct vr_softc *sc;
590 {
591 	struct ether_header *eh;
592 	struct mbuf *m;
593 	struct ifnet *ifp;
594 	struct vr_desc *d;
595 	struct vr_descsoft *ds;
596 	int i, total_len;
597 	u_int32_t rxstat;
598 
599 	ifp = &sc->vr_ec.ec_if;
600 
601 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
602 		d = VR_CDRX(sc, i);
603 		ds = VR_DSRX(sc, i);
604 
605 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
606 
607 		rxstat = le32toh(d->vr_status);
608 
609 		if (rxstat & VR_RXSTAT_OWN) {
610 			/*
611 			 * We have processed all of the receive buffers.
612 			 */
613 			break;
614 		}
615 
616 		/*
617 		 * If an error occurs, update stats, clear the
618 		 * status word and leave the mbuf cluster in place:
619 		 * it should simply get re-used next time this descriptor
620 		 * comes up in the ring.
621 		 */
622 		if (rxstat & VR_RXSTAT_RXERR) {
623 			const char *errstr;
624 
625 			ifp->if_ierrors++;
626 			switch (rxstat & 0x000000FF) {
627 			case VR_RXSTAT_CRCERR:
628 				errstr = "crc error";
629 				break;
630 			case VR_RXSTAT_FRAMEALIGNERR:
631 				errstr = "frame alignment error";
632 				break;
633 			case VR_RXSTAT_FIFOOFLOW:
634 				errstr = "FIFO overflow";
635 				break;
636 			case VR_RXSTAT_GIANT:
637 				errstr = "received giant packet";
638 				break;
639 			case VR_RXSTAT_RUNT:
640 				errstr = "received runt packet";
641 				break;
642 			case VR_RXSTAT_BUSERR:
643 				errstr = "system bus error";
644 				break;
645 			case VR_RXSTAT_BUFFERR:
646 				errstr = "rx buffer error";
647 				break;
648 			default:
649 				errstr = "unknown rx error";
650 				break;
651 			}
652 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
653 			    errstr);
654 
655 			VR_INIT_RXDESC(sc, i);
656 
657 			continue;
658 		}
659 
660 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
661 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
662 
663 		/* No errors; receive the packet. */
664 		total_len = VR_RXBYTES(le32toh(d->vr_status));
665 
666 		/*
667 		 * XXX The VIA Rhine chip includes the CRC with every
668 		 * received frame, and there's no way to turn this
669 		 * behavior off (at least, I can't find anything in
670 		 * the manual that explains how to do it) so we have
671 		 * to trim off the CRC manually.
672 		 */
673 		total_len -= ETHER_CRC_LEN;
674 
675 #ifdef __NO_STRICT_ALIGNMENT
676 		/*
677 		 * If the packet is small enough to fit in a
678 		 * single header mbuf, allocate one and copy
679 		 * the data into it.  This greatly reduces
680 		 * memory consumption when we receive lots
681 		 * of small packets.
682 		 *
683 		 * Otherwise, we add a new buffer to the receive
684 		 * chain.  If this fails, we drop the packet and
685 		 * recycle the old buffer.
686 		 */
687 		if (vr_copy_small != 0 && total_len <= MHLEN) {
688 			MGETHDR(m, M_DONTWAIT, MT_DATA);
689 			if (m == NULL)
690 				goto dropit;
691 			memcpy(mtod(m, caddr_t),
692 			    mtod(ds->ds_mbuf, caddr_t), total_len);
693 			VR_INIT_RXDESC(sc, i);
694 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
695 			    ds->ds_dmamap->dm_mapsize,
696 			    BUS_DMASYNC_PREREAD);
697 		} else {
698 			m = ds->ds_mbuf;
699 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
700  dropit:
701 				ifp->if_ierrors++;
702 				VR_INIT_RXDESC(sc, i);
703 				bus_dmamap_sync(sc->vr_dmat,
704 				    ds->ds_dmamap, 0,
705 				    ds->ds_dmamap->dm_mapsize,
706 				    BUS_DMASYNC_PREREAD);
707 				continue;
708 			}
709 		}
710 #else
711 		/*
712 		 * The Rhine's packet buffers must be 4-byte aligned.
713 		 * But this means that the data after the Ethernet header
714 		 * is misaligned.  We must allocate a new buffer and
715 		 * copy the data, shifted forward 2 bytes.
716 		 */
717 		MGETHDR(m, M_DONTWAIT, MT_DATA);
718 		if (m == NULL) {
719  dropit:
720 			ifp->if_ierrors++;
721 			VR_INIT_RXDESC(sc, i);
722 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
723 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
724 			continue;
725 		}
726 		if (total_len > (MHLEN - 2)) {
727 			MCLGET(m, M_DONTWAIT);
728 			if ((m->m_flags & M_EXT) == 0) {
729 				m_freem(m);
730 				goto dropit;
731 			}
732 		}
733 		m->m_data += 2;
734 
735 		/*
736 		 * Note that we use clusters for incoming frames, so the
737 		 * buffer is virtually contiguous.
738 		 */
739 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
740 		    total_len);
741 
742 		/* Allow the recieve descriptor to continue using its mbuf. */
743 		VR_INIT_RXDESC(sc, i);
744 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
745 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
746 #endif /* __NO_STRICT_ALIGNMENT */
747 
748 		ifp->if_ipackets++;
749 		eh = mtod(m, struct ether_header *);
750 		m->m_pkthdr.rcvif = ifp;
751 		m->m_pkthdr.len = m->m_len = total_len;
752 #if NBPFILTER > 0
753 		/*
754 		 * Handle BPF listeners. Let the BPF user see the packet, but
755 		 * don't pass it up to the ether_input() layer unless it's
756 		 * a broadcast packet, multicast packet, matches our ethernet
757 		 * address or the interface is in promiscuous mode.
758 		 */
759 		if (ifp->if_bpf) {
760 			bpf_mtap(ifp->if_bpf, m);
761 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
762 			    ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
763 			    memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
764 				   ETHER_ADDR_LEN) != 0) {
765 				m_freem(m);
766 				continue;
767 			}
768 		}
769 #endif
770 		/* Pass it on. */
771 		(*ifp->if_input)(ifp, m);
772 	}
773 
774 	/* Update the receive pointer. */
775 	sc->vr_rxptr = i;
776 }
777 
778 void
779 vr_rxeoc(sc)
780 	struct vr_softc *sc;
781 {
782 
783 	vr_rxeof(sc);
784 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
785 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
786 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
787 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
788 }
789 
790 /*
791  * A frame was downloaded to the chip. It's safe for us to clean up
792  * the list buffers.
793  */
794 static void
795 vr_txeof(sc)
796 	struct vr_softc *sc;
797 {
798 	struct ifnet *ifp = &sc->vr_ec.ec_if;
799 	struct vr_desc *d;
800 	struct vr_descsoft *ds;
801 	u_int32_t txstat;
802 	int i;
803 
804 	ifp->if_flags &= ~IFF_OACTIVE;
805 
806 	/*
807 	 * Go through our tx list and free mbufs for those
808 	 * frames that have been transmitted.
809 	 */
810 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
811 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
812 		d = VR_CDTX(sc, i);
813 		ds = VR_DSTX(sc, i);
814 
815 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
816 
817 		txstat = le32toh(d->vr_status);
818 		if (txstat & VR_TXSTAT_OWN)
819 			break;
820 
821 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
822 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
823 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
824 		m_freem(ds->ds_mbuf);
825 		ds->ds_mbuf = NULL;
826 
827 		if (txstat & VR_TXSTAT_ERRSUM) {
828 			ifp->if_oerrors++;
829 			if (txstat & VR_TXSTAT_DEFER)
830 				ifp->if_collisions++;
831 			if (txstat & VR_TXSTAT_LATECOLL)
832 				ifp->if_collisions++;
833 		}
834 
835 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
836 		ifp->if_opackets++;
837 	}
838 
839 	/* Update the dirty transmit buffer pointer. */
840 	sc->vr_txdirty = i;
841 
842 	/*
843 	 * Cancel the watchdog timer if there are no pending
844 	 * transmissions.
845 	 */
846 	if (sc->vr_txpending == 0)
847 		ifp->if_timer = 0;
848 }
849 
850 static int
851 vr_intr(arg)
852 	void *arg;
853 {
854 	struct vr_softc *sc;
855 	struct ifnet *ifp;
856 	u_int16_t status;
857 	int handled = 0, dotx = 0;
858 
859 	sc = arg;
860 	ifp = &sc->vr_ec.ec_if;
861 
862 	/* Suppress unwanted interrupts. */
863 	if ((ifp->if_flags & IFF_UP) == 0) {
864 		vr_stop(sc, 1);
865 		return (0);
866 	}
867 
868 	/* Disable interrupts. */
869 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
870 
871 	for (;;) {
872 		status = CSR_READ_2(sc, VR_ISR);
873 		if (status)
874 			CSR_WRITE_2(sc, VR_ISR, status);
875 
876 		if ((status & VR_INTRS) == 0)
877 			break;
878 
879 		handled = 1;
880 
881 		if (status & VR_ISR_RX_OK)
882 			vr_rxeof(sc);
883 
884 		if (status &
885 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
886 		     VR_ISR_RX_DROPPED))
887 			vr_rxeoc(sc);
888 
889 		if (status & VR_ISR_TX_OK) {
890 			dotx = 1;
891 			vr_txeof(sc);
892 		}
893 
894 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
895 			if (status & VR_ISR_TX_UNDERRUN)
896 				printf("%s: transmit underrun\n",
897 				    sc->vr_dev.dv_xname);
898 			if (status & VR_ISR_TX_ABRT)
899 				printf("%s: transmit aborted\n",
900 				    sc->vr_dev.dv_xname);
901 			ifp->if_oerrors++;
902 			dotx = 1;
903 			vr_txeof(sc);
904 			if (sc->vr_txpending) {
905 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
906 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
907 			}
908 		}
909 
910 		if (status & VR_ISR_BUSERR) {
911 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
912 			/* vr_init() calls vr_start() */
913 			dotx = 0;
914 			(void) vr_init(sc);
915 		}
916 	}
917 
918 	/* Re-enable interrupts. */
919 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
920 
921 	if (dotx)
922 		vr_start(ifp);
923 
924 	return (handled);
925 }
926 
927 /*
928  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
929  * to the mbuf data regions directly in the transmit lists. We also save a
930  * copy of the pointers since the transmit list fragment pointers are
931  * physical addresses.
932  */
933 static void
934 vr_start(ifp)
935 	struct ifnet *ifp;
936 {
937 	struct vr_softc *sc = ifp->if_softc;
938 	struct mbuf *m0, *m;
939 	struct vr_desc *d;
940 	struct vr_descsoft *ds;
941 	int error, firsttx, nexttx, opending;
942 
943 	/*
944 	 * Remember the previous txpending and the first transmit
945 	 * descriptor we use.
946 	 */
947 	opending = sc->vr_txpending;
948 	firsttx = VR_NEXTTX(sc->vr_txlast);
949 
950 	/*
951 	 * Loop through the send queue, setting up transmit descriptors
952 	 * until we drain the queue, or use up all available transmit
953 	 * descriptors.
954 	 */
955 	while (sc->vr_txpending < VR_NTXDESC) {
956 		/*
957 		 * Grab a packet off the queue.
958 		 */
959 		IF_DEQUEUE(&ifp->if_snd, m0);
960 		if (m0 == NULL)
961 			break;
962 
963 		/*
964 		 * Get the next available transmit descriptor.
965 		 */
966 		nexttx = VR_NEXTTX(sc->vr_txlast);
967 		d = VR_CDTX(sc, nexttx);
968 		ds = VR_DSTX(sc, nexttx);
969 
970 		/*
971 		 * Load the DMA map.  If this fails, the packet didn't
972 		 * fit in one DMA segment, and we need to copy.  Note,
973 		 * the packet must also be aligned.
974 		 */
975 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
976 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
977 		     BUS_DMA_NOWAIT) != 0) {
978 			MGETHDR(m, M_DONTWAIT, MT_DATA);
979 			if (m == NULL) {
980 				printf("%s: unable to allocate Tx mbuf\n",
981 				    sc->vr_dev.dv_xname);
982 				IF_PREPEND(&ifp->if_snd, m0);
983 				break;
984 			}
985 			if (m0->m_pkthdr.len > MHLEN) {
986 				MCLGET(m, M_DONTWAIT);
987 				if ((m->m_flags & M_EXT) == 0) {
988 					printf("%s: unable to allocate Tx "
989 					    "cluster\n", sc->vr_dev.dv_xname);
990 					m_freem(m);
991 					IF_PREPEND(&ifp->if_snd, m0);
992 					break;
993 				}
994 			}
995 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
996 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
997 			m_freem(m0);
998 			m0 = m;
999 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1000 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
1001 			if (error) {
1002 				printf("%s: unable to load Tx buffer, "
1003 				    "error = %d\n", sc->vr_dev.dv_xname, error);
1004 				IF_PREPEND(&ifp->if_snd, m0);
1005 				break;
1006 			}
1007 		}
1008 
1009 		/* Sync the DMA map. */
1010 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1011 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1012 
1013 		/*
1014 		 * Store a pointer to the packet so we can free it later.
1015 		 */
1016 		ds->ds_mbuf = m0;
1017 
1018 #if NBPFILTER > 0
1019 		/*
1020 		 * If there's a BPF listener, bounce a copy of this frame
1021 		 * to him.
1022 		 */
1023 		if (ifp->if_bpf)
1024 			bpf_mtap(ifp->if_bpf, m0);
1025 #endif
1026 
1027 		/*
1028 		 * Fill in the transmit descriptor.  The Rhine
1029 		 * doesn't auto-pad, so we have to do this ourselves.
1030 		 */
1031 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1032 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1033 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1034 		d->vr_ctl |=
1035 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1036 		    VR_TXCTL_LASTFRAG);
1037 
1038 		/*
1039 		 * If this is the first descriptor we're enqueuing,
1040 		 * don't give it to the Rhine yet.  That could cause
1041 		 * a race condition.  We'll do it below.
1042 		 */
1043 		if (nexttx == firsttx)
1044 			d->vr_status = 0;
1045 		else
1046 			d->vr_status = htole32(VR_TXSTAT_OWN);
1047 
1048 		VR_CDTXSYNC(sc, nexttx,
1049 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050 
1051 		/* Advance the tx pointer. */
1052 		sc->vr_txpending++;
1053 		sc->vr_txlast = nexttx;
1054 	}
1055 
1056 	if (sc->vr_txpending == VR_NTXDESC) {
1057 		/* No more slots left; notify upper layer. */
1058 		ifp->if_flags |= IFF_OACTIVE;
1059 	}
1060 
1061 	if (sc->vr_txpending != opending) {
1062 		/*
1063 		 * We enqueued packets.  If the transmitter was idle,
1064 		 * reset the txdirty pointer.
1065 		 */
1066 		if (opending == 0)
1067 			sc->vr_txdirty = firsttx;
1068 
1069 		/*
1070 		 * Cause a transmit interrupt to happen on the
1071 		 * last packet we enqueued.
1072 		 */
1073 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1074 		VR_CDTXSYNC(sc, sc->vr_txlast,
1075 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1076 
1077 		/*
1078 		 * The entire packet chain is set up.  Give the
1079 		 * first descriptor to the Rhine now.
1080 		 */
1081 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1082 		VR_CDTXSYNC(sc, firsttx,
1083 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1084 
1085 		/* Start the transmitter. */
1086 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1087 
1088 		/* Set the watchdog timer in case the chip flakes out. */
1089 		ifp->if_timer = 5;
1090 	}
1091 }
1092 
1093 /*
1094  * Initialize the interface.  Must be called at splnet.
1095  */
1096 static int
1097 vr_init(sc)
1098 	struct vr_softc *sc;
1099 {
1100 	struct ifnet *ifp = &sc->vr_ec.ec_if;
1101 	struct vr_desc *d;
1102 	struct vr_descsoft *ds;
1103 	int i, error = 0;
1104 
1105 	/* Cancel pending I/O. */
1106 	vr_stop(sc, 0);
1107 
1108 	/* Reset the Rhine to a known state. */
1109 	vr_reset(sc);
1110 
1111 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1112 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1113 
1114 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1115 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1116 
1117 	/*
1118 	 * Initialize the transmit desciptor ring.  txlast is initialized
1119 	 * to the end of the list so that it will wrap around to the first
1120 	 * descriptor when the first packet is transmitted.
1121 	 */
1122 	for (i = 0; i < VR_NTXDESC; i++) {
1123 		d = VR_CDTX(sc, i);
1124 		memset(d, 0, sizeof(struct vr_desc));
1125 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1126 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1127 	}
1128 	sc->vr_txpending = 0;
1129 	sc->vr_txdirty = 0;
1130 	sc->vr_txlast = VR_NTXDESC - 1;
1131 
1132 	/*
1133 	 * Initialize the receive descriptor ring.
1134 	 */
1135 	for (i = 0; i < VR_NRXDESC; i++) {
1136 		ds = VR_DSRX(sc, i);
1137 		if (ds->ds_mbuf == NULL) {
1138 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1139 				printf("%s: unable to allocate or map rx "
1140 				    "buffer %d, error = %d\n",
1141 				    sc->vr_dev.dv_xname, i, error);
1142 				/*
1143 				 * XXX Should attempt to run with fewer receive
1144 				 * XXX buffers instead of just failing.
1145 				 */
1146 				vr_rxdrain(sc);
1147 				goto out;
1148 			}
1149 		}
1150 	}
1151 	sc->vr_rxptr = 0;
1152 
1153 	/* If we want promiscuous mode, set the allframes bit. */
1154 	if (ifp->if_flags & IFF_PROMISC)
1155 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1156 	else
1157 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1158 
1159 	/* Set capture broadcast bit to capture broadcast frames. */
1160 	if (ifp->if_flags & IFF_BROADCAST)
1161 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1162 	else
1163 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1164 
1165 	/* Program the multicast filter, if necessary. */
1166 	vr_setmulti(sc);
1167 
1168 	/* Give the transmit and recieve rings to the Rhine. */
1169 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1170 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1171 
1172 	/* Set current media. */
1173 	mii_mediachg(&sc->vr_mii);
1174 
1175 	/* Enable receiver and transmitter. */
1176 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1177 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1178 				    VR_CMD_RX_GO);
1179 
1180 	/* Enable interrupts. */
1181 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1182 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1183 
1184 	ifp->if_flags |= IFF_RUNNING;
1185 	ifp->if_flags &= ~IFF_OACTIVE;
1186 
1187 	/* Start one second timer. */
1188 	timeout(vr_tick, sc, hz);
1189 
1190 	/* Attempt to start output on the interface. */
1191 	vr_start(ifp);
1192 
1193  out:
1194 	if (error)
1195 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1196 	return (error);
1197 }
1198 
1199 /*
1200  * Set media options.
1201  */
1202 static int
1203 vr_ifmedia_upd(ifp)
1204 	struct ifnet *ifp;
1205 {
1206 	struct vr_softc *sc = ifp->if_softc;
1207 
1208 	if (ifp->if_flags & IFF_UP)
1209 		mii_mediachg(&sc->vr_mii);
1210 	return (0);
1211 }
1212 
1213 /*
1214  * Report current media status.
1215  */
1216 static void
1217 vr_ifmedia_sts(ifp, ifmr)
1218 	struct ifnet *ifp;
1219 	struct ifmediareq *ifmr;
1220 {
1221 	struct vr_softc *sc = ifp->if_softc;
1222 
1223 	mii_pollstat(&sc->vr_mii);
1224 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
1225 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
1226 }
1227 
1228 static int
1229 vr_ioctl(ifp, command, data)
1230 	struct ifnet *ifp;
1231 	u_long command;
1232 	caddr_t data;
1233 {
1234 	struct vr_softc *sc = ifp->if_softc;
1235 	struct ifreq *ifr = (struct ifreq *)data;
1236 	struct ifaddr *ifa = (struct ifaddr *)data;
1237 	int s, error = 0;
1238 
1239 	s = splnet();
1240 
1241 	switch (command) {
1242 	case SIOCSIFADDR:
1243 		ifp->if_flags |= IFF_UP;
1244 
1245 		switch (ifa->ifa_addr->sa_family) {
1246 #ifdef INET
1247 		case AF_INET:
1248 			if ((error = vr_init(sc)) != 0)
1249 				break;
1250 			arp_ifinit(ifp, ifa);
1251 			break;
1252 #endif /* INET */
1253 		default:
1254 			error = vr_init(sc);
1255 			break;
1256 		}
1257 		break;
1258 
1259 	case SIOCGIFADDR:
1260 		bcopy((caddr_t) sc->vr_enaddr,
1261 			(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1262 			ETHER_ADDR_LEN);
1263 		break;
1264 
1265 	case SIOCSIFMTU:
1266 		if (ifr->ifr_mtu > ETHERMTU)
1267 			error = EINVAL;
1268 		else
1269 			ifp->if_mtu = ifr->ifr_mtu;
1270 		break;
1271 
1272 	case SIOCSIFFLAGS:
1273 		if ((ifp->if_flags & IFF_UP) == 0 &&
1274 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1275 			/*
1276 			 * If interface is marked down and it is running, then
1277 			 * stop it.
1278 			 */
1279 			vr_stop(sc, 1);
1280 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1281 			   (ifp->if_flags & IFF_RUNNING) == 0) {
1282 			/*
1283 			 * If interface is marked up and it is stopped, then
1284 			 * start it.
1285 			 */
1286 			error = vr_init(sc);
1287 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1288 			/*
1289 			 * Reset the interface to pick up changes in any other
1290 			 * flags that affect the hardware state.
1291 			 */
1292 			error = vr_init(sc);
1293 		}
1294 		break;
1295 
1296 	case SIOCADDMULTI:
1297 	case SIOCDELMULTI:
1298 		if (command == SIOCADDMULTI)
1299 			error = ether_addmulti(ifr, &sc->vr_ec);
1300 		else
1301 			error = ether_delmulti(ifr, &sc->vr_ec);
1302 
1303 		if (error == ENETRESET) {
1304 			/*
1305 			 * Multicast list has changed; set the hardware filter
1306 			 * accordingly.
1307 			 */
1308 			vr_setmulti(sc);
1309 			error = 0;
1310 		}
1311 		break;
1312 
1313 	case SIOCGIFMEDIA:
1314 	case SIOCSIFMEDIA:
1315 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1316 		break;
1317 
1318 	default:
1319 		error = EINVAL;
1320 		break;
1321 	}
1322 
1323 	splx(s);
1324 	return (error);
1325 }
1326 
1327 static void
1328 vr_watchdog(ifp)
1329 	struct ifnet *ifp;
1330 {
1331 	struct vr_softc *sc = ifp->if_softc;
1332 
1333 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1334 	ifp->if_oerrors++;
1335 
1336 	(void) vr_init(sc);
1337 }
1338 
1339 /*
1340  * One second timer, used to tick MII.
1341  */
1342 static void
1343 vr_tick(arg)
1344 	void *arg;
1345 {
1346 	struct vr_softc *sc = arg;
1347 	int s;
1348 
1349 	s = splnet();
1350 	mii_tick(&sc->vr_mii);
1351 	splx(s);
1352 
1353 	timeout(vr_tick, sc, hz);
1354 }
1355 
1356 /*
1357  * Drain the receive queue.
1358  */
1359 static void
1360 vr_rxdrain(sc)
1361 	struct vr_softc *sc;
1362 {
1363 	struct vr_descsoft *ds;
1364 	int i;
1365 
1366 	for (i = 0; i < VR_NRXDESC; i++) {
1367 		ds = VR_DSRX(sc, i);
1368 		if (ds->ds_mbuf != NULL) {
1369 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1370 			m_freem(ds->ds_mbuf);
1371 			ds->ds_mbuf = NULL;
1372 		}
1373 	}
1374 }
1375 
1376 /*
1377  * Stop the adapter and free any mbufs allocated to the
1378  * transmit lists.
1379  */
1380 static void
1381 vr_stop(sc, drain)
1382 	struct vr_softc *sc;
1383 	int drain;
1384 {
1385 	struct vr_descsoft *ds;
1386 	struct ifnet *ifp;
1387 	int i;
1388 
1389 	/* Cancel one second timer. */
1390 	untimeout(vr_tick, sc);
1391 
1392 	/* Down the MII. */
1393 	mii_down(&sc->vr_mii);
1394 
1395 	ifp = &sc->vr_ec.ec_if;
1396 	ifp->if_timer = 0;
1397 
1398 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1399 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1400 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1401 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1402 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1403 
1404 	/*
1405 	 * Release any queued transmit buffers.
1406 	 */
1407 	for (i = 0; i < VR_NTXDESC; i++) {
1408 		ds = VR_DSTX(sc, i);
1409 		if (ds->ds_mbuf != NULL) {
1410 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1411 			m_freem(ds->ds_mbuf);
1412 			ds->ds_mbuf = NULL;
1413 		}
1414 	}
1415 
1416 	if (drain) {
1417 		/*
1418 		 * Release the receive buffers.
1419 		 */
1420 		vr_rxdrain(sc);
1421 	}
1422 
1423 	/*
1424 	 * Mark the interface down and cancel the watchdog timer.
1425 	 */
1426 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1427 	ifp->if_timer = 0;
1428 }
1429 
1430 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1431 static int vr_probe __P((struct device *, struct cfdata *, void *));
1432 static void vr_attach __P((struct device *, struct device *, void *));
1433 static void vr_shutdown __P((void *));
1434 
1435 struct cfattach vr_ca = {
1436 	sizeof (struct vr_softc), vr_probe, vr_attach
1437 };
1438 
1439 static struct vr_type *
1440 vr_lookup(pa)
1441 	struct pci_attach_args *pa;
1442 {
1443 	struct vr_type *vrt;
1444 
1445 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1446 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1447 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1448 			return (vrt);
1449 	}
1450 	return (NULL);
1451 }
1452 
1453 static int
1454 vr_probe(parent, match, aux)
1455 	struct device *parent;
1456 	struct cfdata *match;
1457 	void *aux;
1458 {
1459 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1460 
1461 	if (vr_lookup(pa) != NULL)
1462 		return (1);
1463 
1464 	return (0);
1465 }
1466 
1467 /*
1468  * Stop all chip I/O so that the kernel's probe routines don't
1469  * get confused by errant DMAs when rebooting.
1470  */
1471 static void
1472 vr_shutdown(arg)
1473 	void *arg;
1474 {
1475 	struct vr_softc *sc = (struct vr_softc *)arg;
1476 
1477 	vr_stop(sc, 1);
1478 }
1479 
1480 /*
1481  * Attach the interface. Allocate softc structures, do ifmedia
1482  * setup and ethernet/BPF attach.
1483  */
1484 static void
1485 vr_attach(parent, self, aux)
1486 	struct device *parent;
1487 	struct device *self;
1488 	void *aux;
1489 {
1490 	struct vr_softc *sc = (struct vr_softc *) self;
1491 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1492 	bus_dma_segment_t seg;
1493 	struct vr_type *vrt;
1494 	u_int32_t command;
1495 	struct ifnet *ifp;
1496 	u_char eaddr[ETHER_ADDR_LEN];
1497 	int i, rseg, error;
1498 
1499 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1500 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1501 
1502 	vrt = vr_lookup(pa);
1503 	if (vrt == NULL) {
1504 		printf("\n");
1505 		panic("vr_attach: impossible");
1506 	}
1507 
1508 	printf(": %s Ethernet\n", vrt->vr_name);
1509 
1510 	/*
1511 	 * Handle power management nonsense.
1512 	 */
1513 
1514 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1515 	if (command == 0x01) {
1516 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1517 		if (command & VR_PSTATE_MASK) {
1518 			u_int32_t iobase, membase, irq;
1519 
1520 			/* Save important PCI config data. */
1521 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
1522 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
1523 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
1524 
1525 			/* Reset the power state. */
1526 			printf("%s: chip is in D%d power mode "
1527 				"-- setting to D0\n",
1528 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1529 			command &= 0xFFFFFFFC;
1530 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1531 
1532 			/* Restore PCI config data. */
1533 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1534 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1535 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1536 		}
1537 	}
1538 
1539 	/* Make sure bus mastering is enabled. */
1540 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1541 	command |= PCI_COMMAND_MASTER_ENABLE;
1542 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1543 
1544 	/*
1545 	 * Map control/status registers.
1546 	 */
1547 	{
1548 		bus_space_tag_t iot, memt;
1549 		bus_space_handle_t ioh, memh;
1550 		int ioh_valid, memh_valid;
1551 		pci_intr_handle_t intrhandle;
1552 		const char *intrstr;
1553 
1554 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1555 			PCI_MAPREG_TYPE_IO, 0,
1556 			&iot, &ioh, NULL, NULL) == 0);
1557 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1558 			PCI_MAPREG_TYPE_MEM |
1559 			PCI_MAPREG_MEM_TYPE_32BIT,
1560 			0, &memt, &memh, NULL, NULL) == 0);
1561 #if defined(VR_USEIOSPACE)
1562 		if (ioh_valid) {
1563 			sc->vr_bst = iot;
1564 			sc->vr_bsh = ioh;
1565 		} else if (memh_valid) {
1566 			sc->vr_bst = memt;
1567 			sc->vr_bsh = memh;
1568 		}
1569 #else
1570 		if (memh_valid) {
1571 			sc->vr_bst = memt;
1572 			sc->vr_bsh = memh;
1573 		} else if (ioh_valid) {
1574 			sc->vr_bst = iot;
1575 			sc->vr_bsh = ioh;
1576 		}
1577 #endif
1578 		else {
1579 			printf(": unable to map device registers\n");
1580 			return;
1581 		}
1582 
1583 		/* Allocate interrupt */
1584 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1585 				pa->pa_intrline, &intrhandle)) {
1586 			printf("%s: couldn't map interrupt\n",
1587 				sc->vr_dev.dv_xname);
1588 			return;
1589 		}
1590 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1591 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1592 						vr_intr, sc);
1593 		if (sc->vr_ih == NULL) {
1594 			printf("%s: couldn't establish interrupt",
1595 				sc->vr_dev.dv_xname);
1596 			if (intrstr != NULL)
1597 				printf(" at %s", intrstr);
1598 			printf("\n");
1599 		}
1600 		printf("%s: interrupting at %s\n",
1601 			sc->vr_dev.dv_xname, intrstr);
1602 	}
1603 
1604 	/* Reset the adapter. */
1605 	vr_reset(sc);
1606 
1607 	/*
1608 	 * Get station address. The way the Rhine chips work,
1609 	 * you're not allowed to directly access the EEPROM once
1610 	 * they've been programmed a special way. Consequently,
1611 	 * we need to read the node address from the PAR0 and PAR1
1612 	 * registers.
1613 	 */
1614 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1615 	DELAY(200);
1616 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1617 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1618 
1619 	/*
1620 	 * A Rhine chip was detected. Inform the world.
1621 	 */
1622 	printf("%s: Ethernet address: %s\n",
1623 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1624 
1625 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1626 
1627 	sc->vr_dmat = pa->pa_dmat;
1628 
1629 	/*
1630 	 * Allocate the control data structures, and create and load
1631 	 * the DMA map for it.
1632 	 */
1633 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1634 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1635 	    0)) != 0) {
1636 		printf("%s: unable to allocate control data, error = %d\n",
1637 		    sc->vr_dev.dv_xname, error);
1638 		goto fail_0;
1639 	}
1640 
1641 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1642 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1643 	    BUS_DMA_COHERENT)) != 0) {
1644 		printf("%s: unable to map control data, error = %d\n",
1645 		    sc->vr_dev.dv_xname, error);
1646 		goto fail_1;
1647 	}
1648 
1649 	if ((error = bus_dmamap_create(sc->vr_dmat,
1650 	    sizeof(struct vr_control_data), 1,
1651 	    sizeof(struct vr_control_data), 0, 0,
1652 	    &sc->vr_cddmamap)) != 0) {
1653 		printf("%s: unable to create control data DMA map, "
1654 		    "error = %d\n", sc->vr_dev.dv_xname, error);
1655 		goto fail_2;
1656 	}
1657 
1658 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1659 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1660 	    0)) != 0) {
1661 		printf("%s: unable to load control data DMA map, error = %d\n",
1662 		    sc->vr_dev.dv_xname, error);
1663 		goto fail_3;
1664 	}
1665 
1666 	/*
1667 	 * Create the transmit buffer DMA maps.
1668 	 */
1669 	for (i = 0; i < VR_NTXDESC; i++) {
1670 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1671 		    1, MCLBYTES, 0, 0,
1672 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1673 			printf("%s: unable to create tx DMA map %d, "
1674 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1675 			goto fail_4;
1676 		}
1677 	}
1678 
1679 	/*
1680 	 * Create the receive buffer DMA maps.
1681 	 */
1682 	for (i = 0; i < VR_NRXDESC; i++) {
1683 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1684 		    MCLBYTES, 0, 0,
1685 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1686 			printf("%s: unable to create rx DMA map %d, "
1687 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1688 			goto fail_5;
1689 		}
1690 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1691 	}
1692 
1693 	ifp = &sc->vr_ec.ec_if;
1694 	ifp->if_softc = sc;
1695 	ifp->if_mtu = ETHERMTU;
1696 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1697 	ifp->if_ioctl = vr_ioctl;
1698 	ifp->if_start = vr_start;
1699 	ifp->if_watchdog = vr_watchdog;
1700 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1701 
1702 	/*
1703 	 * Initialize MII/media info.
1704 	 */
1705 	sc->vr_mii.mii_ifp = ifp;
1706 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1707 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1708 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1709 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1710 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1711 	    MII_OFFSET_ANY, 0);
1712 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1713 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1714 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1715 	} else
1716 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1717 
1718 	/*
1719 	 * Call MI attach routines.
1720 	 */
1721 	if_attach(ifp);
1722 	ether_ifattach(ifp, sc->vr_enaddr);
1723 
1724 #if NBPFILTER > 0
1725 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
1726 		ifp, DLT_EN10MB, sizeof (struct ether_header));
1727 #endif
1728 
1729 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1730 	if (sc->vr_ats == NULL)
1731 		printf("%s: warning: couldn't establish shutdown hook\n",
1732 			sc->vr_dev.dv_xname);
1733 	return;
1734 
1735  fail_5:
1736 	for (i = 0; i < VR_NRXDESC; i++) {
1737 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1738 			bus_dmamap_destroy(sc->vr_dmat,
1739 			    sc->vr_rxsoft[i].ds_dmamap);
1740 	}
1741  fail_4:
1742 	for (i = 0; i < VR_NTXDESC; i++) {
1743 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1744 			bus_dmamap_destroy(sc->vr_dmat,
1745 			    sc->vr_txsoft[i].ds_dmamap);
1746 	}
1747 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1748  fail_3:
1749 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1750  fail_2:
1751 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1752 	    sizeof(struct vr_control_data));
1753  fail_1:
1754 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1755  fail_0:
1756 	return;
1757 }
1758