xref: /netbsd-src/sys/dev/pci/if_vr.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_vr.c,v 1.102 2010/01/19 22:07:02 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1997, 1998
35  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by Bill Paul.
48  * 4. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62  * THE POSSIBILITY OF SUCH DAMAGE.
63  *
64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65  */
66 
67 /*
68  * VIA Rhine fast ethernet PCI NIC driver
69  *
70  * Supports various network adapters based on the VIA Rhine
71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
72  * Datasheets are available at http://www.via.com.tw.
73  *
74  * Written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The VIA Rhine controllers are similar in some respects to the
81  * the DEC tulip chips, except less complicated. The controller
82  * uses an MII bus and an external physical layer interface. The
83  * receiver has a one entry perfect filter and a 64-bit hash table
84  * multicast filter. Transmit and receive descriptors are similar
85  * to the tulip.
86  *
87  * The Rhine has a serious flaw in its transmit DMA mechanism:
88  * transmit buffers must be longword aligned. Unfortunately,
89  * the kernel doesn't guarantee that mbufs will be filled in starting
90  * at longword boundaries, so we have to do a buffer copy before
91  * transmission.
92  *
93  * Apparently, the receive DMA mechanism also has the same flaw.  This
94  * means that on systems with struct alignment requirements, incoming
95  * frames must be copied to a new buffer which shifts the data forward
96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
97  */
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.102 2010/01/19 22:07:02 pooka Exp $");
101 
102 #include "rnd.h"
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113 
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117 
118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
119 
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125 
126 #include <net/bpf.h>
127 
128 #include <sys/bus.h>
129 #include <sys/intr.h>
130 #include <machine/endian.h>
131 
132 #include <dev/mii/mii.h>
133 #include <dev/mii/miivar.h>
134 #include <dev/mii/mii_bitbang.h>
135 
136 #include <dev/pci/pcireg.h>
137 #include <dev/pci/pcivar.h>
138 #include <dev/pci/pcidevs.h>
139 
140 #include <dev/pci/if_vrreg.h>
141 
142 #define	VR_USEIOSPACE
143 
144 /*
145  * Various supported device vendors/types and their names.
146  */
147 static const struct vr_type {
148 	pci_vendor_id_t		vr_vid;
149 	pci_product_id_t	vr_did;
150 } vr_devs[] = {
151 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
152 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
153 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
154 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
155 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
156 };
157 
158 /*
159  * Transmit descriptor list size.
160  */
161 #define	VR_NTXDESC		64
162 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
163 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
164 
165 /*
166  * Receive descriptor list size.
167  */
168 #define	VR_NRXDESC		64
169 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
170 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
171 
172 /*
173  * Control data structres that are DMA'd to the Rhine chip.  We allocate
174  * them in a single clump that maps to a single DMA segment to make several
175  * things easier.
176  *
177  * Note that since we always copy outgoing packets to aligned transmit
178  * buffers, we can reduce the transmit descriptors to one per packet.
179  */
180 struct vr_control_data {
181 	struct vr_desc		vr_txdescs[VR_NTXDESC];
182 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
183 };
184 
185 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
186 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
187 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
188 
189 /*
190  * Software state of transmit and receive descriptors.
191  */
192 struct vr_descsoft {
193 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
194 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
195 };
196 
197 struct vr_softc {
198 	device_t		vr_dev;
199 	void			*vr_ih;		/* interrupt cookie */
200 	bus_space_tag_t		vr_bst;		/* bus space tag */
201 	bus_space_handle_t	vr_bsh;		/* bus space handle */
202 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
203 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
204 	pcitag_t		vr_tag;		/* PCI tag */
205 	struct ethercom		vr_ec;		/* Ethernet common info */
206 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
207 	struct mii_data		vr_mii;		/* MII/media info */
208 
209 	pcireg_t		vr_id;		/* vendor/product ID */
210 	uint8_t			vr_revid;	/* Rhine chip revision */
211 
212 	callout_t		vr_tick_ch;	/* tick callout */
213 
214 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
215 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
216 
217 	/*
218 	 * Software state for transmit and receive descriptors.
219 	 */
220 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
221 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
222 
223 	/*
224 	 * Control data structures.
225 	 */
226 	struct vr_control_data	*vr_control_data;
227 
228 	int	vr_txpending;		/* number of TX requests pending */
229 	int	vr_txdirty;		/* first dirty TX descriptor */
230 	int	vr_txlast;		/* last used TX descriptor */
231 
232 	int	vr_rxptr;		/* next ready RX descriptor */
233 
234 	uint32_t	vr_save_iobase;
235 	uint32_t	vr_save_membase;
236 	uint32_t	vr_save_irq;
237 
238 #if NRND > 0
239 	rndsource_element_t rnd_source;	/* random source */
240 #endif
241 };
242 
243 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
245 
246 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
248 
249 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
250 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
251 
252 #define	VR_CDTXSYNC(sc, x, ops)						\
253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
254 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255 
256 #define	VR_CDRXSYNC(sc, x, ops)						\
257 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
258 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259 
260 /*
261  * Note we rely on MCLBYTES being a power of two below.
262  */
263 #define	VR_INIT_RXDESC(sc, i)						\
264 do {									\
265 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
266 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
267 									\
268 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
269 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
270 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
271 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
272 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
273 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
274 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (/* CONSTCOND */ 0)
276 
277 /*
278  * register space access macros
279  */
280 #define	CSR_WRITE_4(sc, reg, val)					\
281 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define	CSR_WRITE_2(sc, reg, val)					\
283 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define	CSR_WRITE_1(sc, reg, val)					\
285 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286 
287 #define	CSR_READ_4(sc, reg)						\
288 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define	CSR_READ_2(sc, reg)						\
290 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define	CSR_READ_1(sc, reg)						\
292 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293 
294 #define	VR_TIMEOUT		1000
295 
296 static int	vr_add_rxbuf(struct vr_softc *, int);
297 
298 static void	vr_rxeof(struct vr_softc *);
299 static void	vr_rxeoc(struct vr_softc *);
300 static void	vr_txeof(struct vr_softc *);
301 static int	vr_intr(void *);
302 static void	vr_start(struct ifnet *);
303 static int	vr_ioctl(struct ifnet *, u_long, void *);
304 static int	vr_init(struct ifnet *);
305 static void	vr_stop(struct ifnet *, int);
306 static void	vr_rxdrain(struct vr_softc *);
307 static void	vr_watchdog(struct ifnet *);
308 static void	vr_tick(void *);
309 
310 static int	vr_mii_readreg(device_t, int, int);
311 static void	vr_mii_writereg(device_t, int, int, int);
312 static void	vr_mii_statchg(device_t);
313 
314 static void	vr_setmulti(struct vr_softc *);
315 static void	vr_reset(struct vr_softc *);
316 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
317     pcireg_t);
318 static bool	vr_resume(device_t, pmf_qual_t);
319 
320 int	vr_copy_small = 0;
321 
322 #define	VR_SETBIT(sc, reg, x)				\
323 	CSR_WRITE_1(sc, reg,				\
324 	    CSR_READ_1(sc, reg) | (x))
325 
326 #define	VR_CLRBIT(sc, reg, x)				\
327 	CSR_WRITE_1(sc, reg,				\
328 	    CSR_READ_1(sc, reg) & ~(x))
329 
330 #define	VR_SETBIT16(sc, reg, x)				\
331 	CSR_WRITE_2(sc, reg,				\
332 	    CSR_READ_2(sc, reg) | (x))
333 
334 #define	VR_CLRBIT16(sc, reg, x)				\
335 	CSR_WRITE_2(sc, reg,				\
336 	    CSR_READ_2(sc, reg) & ~(x))
337 
338 #define	VR_SETBIT32(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg,				\
340 	    CSR_READ_4(sc, reg) | (x))
341 
342 #define	VR_CLRBIT32(sc, reg, x)				\
343 	CSR_WRITE_4(sc, reg,				\
344 	    CSR_READ_4(sc, reg) & ~(x))
345 
346 /*
347  * MII bit-bang glue.
348  */
349 static uint32_t vr_mii_bitbang_read(device_t);
350 static void	vr_mii_bitbang_write(device_t, uint32_t);
351 
352 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
353 	vr_mii_bitbang_read,
354 	vr_mii_bitbang_write,
355 	{
356 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
357 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
358 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
359 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
360 		0,			/* MII_BIT_DIR_PHY_HOST */
361 	}
362 };
363 
364 static uint32_t
365 vr_mii_bitbang_read(device_t self)
366 {
367 	struct vr_softc *sc = device_private(self);
368 
369 	return (CSR_READ_1(sc, VR_MIICMD));
370 }
371 
372 static void
373 vr_mii_bitbang_write(device_t self, uint32_t val)
374 {
375 	struct vr_softc *sc = device_private(self);
376 
377 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
378 }
379 
380 /*
381  * Read an PHY register through the MII.
382  */
383 static int
384 vr_mii_readreg(device_t self, int phy, int reg)
385 {
386 	struct vr_softc *sc = device_private(self);
387 
388 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
389 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
390 }
391 
392 /*
393  * Write to a PHY register through the MII.
394  */
395 static void
396 vr_mii_writereg(device_t self, int phy, int reg, int val)
397 {
398 	struct vr_softc *sc = device_private(self);
399 
400 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
401 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
402 }
403 
404 static void
405 vr_mii_statchg(device_t self)
406 {
407 	struct vr_softc *sc = device_private(self);
408 
409 	/*
410 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
411 	 * register, we first have to put the transmit and/or receive logic
412 	 * in the idle state.
413 	 */
414 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
415 
416 	if (sc->vr_mii.mii_media_active & IFM_FDX)
417 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
418 	else
419 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
420 
421 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
422 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
423 }
424 
425 #define	vr_calchash(addr) \
426 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
427 
428 /*
429  * Program the 64-bit multicast hash filter.
430  */
431 static void
432 vr_setmulti(struct vr_softc *sc)
433 {
434 	struct ifnet *ifp;
435 	int h = 0;
436 	uint32_t hashes[2] = { 0, 0 };
437 	struct ether_multistep step;
438 	struct ether_multi *enm;
439 	int mcnt = 0;
440 	uint8_t rxfilt;
441 
442 	ifp = &sc->vr_ec.ec_if;
443 
444 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
445 
446 	if (ifp->if_flags & IFF_PROMISC) {
447 allmulti:
448 		ifp->if_flags |= IFF_ALLMULTI;
449 		rxfilt |= VR_RXCFG_RX_MULTI;
450 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
451 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
452 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
453 		return;
454 	}
455 
456 	/* first, zot all the existing hash bits */
457 	CSR_WRITE_4(sc, VR_MAR0, 0);
458 	CSR_WRITE_4(sc, VR_MAR1, 0);
459 
460 	/* now program new ones */
461 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
462 	while (enm != NULL) {
463 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
464 		    ETHER_ADDR_LEN) != 0)
465 			goto allmulti;
466 
467 		h = vr_calchash(enm->enm_addrlo);
468 
469 		if (h < 32)
470 			hashes[0] |= (1 << h);
471 		else
472 			hashes[1] |= (1 << (h - 32));
473 		ETHER_NEXT_MULTI(step, enm);
474 		mcnt++;
475 	}
476 
477 	ifp->if_flags &= ~IFF_ALLMULTI;
478 
479 	if (mcnt)
480 		rxfilt |= VR_RXCFG_RX_MULTI;
481 	else
482 		rxfilt &= ~VR_RXCFG_RX_MULTI;
483 
484 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
485 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
486 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
487 }
488 
489 static void
490 vr_reset(struct vr_softc *sc)
491 {
492 	int i;
493 
494 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
495 
496 	for (i = 0; i < VR_TIMEOUT; i++) {
497 		DELAY(10);
498 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
499 			break;
500 	}
501 	if (i == VR_TIMEOUT) {
502 		if (sc->vr_revid < REV_ID_VT3065_A) {
503 			printf("%s: reset never completed!\n",
504 			    device_xname(sc->vr_dev));
505 		} else {
506 			/* Use newer force reset command */
507 			printf("%s: using force reset command.\n",
508 			    device_xname(sc->vr_dev));
509 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
510 		}
511 	}
512 
513 	/* Wait a little while for the chip to get its brains in order. */
514 	DELAY(1000);
515 }
516 
517 /*
518  * Initialize an RX descriptor and attach an MBUF cluster.
519  * Note: the length fields are only 11 bits wide, which means the
520  * largest size we can specify is 2047. This is important because
521  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
522  * overflow the field and make a mess.
523  */
524 static int
525 vr_add_rxbuf(struct vr_softc *sc, int i)
526 {
527 	struct vr_descsoft *ds = VR_DSRX(sc, i);
528 	struct mbuf *m_new;
529 	int error;
530 
531 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
532 	if (m_new == NULL)
533 		return (ENOBUFS);
534 
535 	MCLGET(m_new, M_DONTWAIT);
536 	if ((m_new->m_flags & M_EXT) == 0) {
537 		m_freem(m_new);
538 		return (ENOBUFS);
539 	}
540 
541 	if (ds->ds_mbuf != NULL)
542 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
543 
544 	ds->ds_mbuf = m_new;
545 
546 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
547 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
548 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
549 	if (error) {
550 		aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
551 		    i, error);
552 		panic("vr_add_rxbuf");		/* XXX */
553 	}
554 
555 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
556 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
557 
558 	VR_INIT_RXDESC(sc, i);
559 
560 	return (0);
561 }
562 
563 /*
564  * A frame has been uploaded: pass the resulting mbuf chain up to
565  * the higher level protocols.
566  */
567 static void
568 vr_rxeof(struct vr_softc *sc)
569 {
570 	struct mbuf *m;
571 	struct ifnet *ifp;
572 	struct vr_desc *d;
573 	struct vr_descsoft *ds;
574 	int i, total_len;
575 	uint32_t rxstat;
576 
577 	ifp = &sc->vr_ec.ec_if;
578 
579 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
580 		d = VR_CDRX(sc, i);
581 		ds = VR_DSRX(sc, i);
582 
583 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
584 
585 		rxstat = le32toh(d->vr_status);
586 
587 		if (rxstat & VR_RXSTAT_OWN) {
588 			/*
589 			 * We have processed all of the receive buffers.
590 			 */
591 			break;
592 		}
593 
594 		/*
595 		 * If an error occurs, update stats, clear the
596 		 * status word and leave the mbuf cluster in place:
597 		 * it should simply get re-used next time this descriptor
598 		 * comes up in the ring.
599 		 */
600 		if (rxstat & VR_RXSTAT_RXERR) {
601 			const char *errstr;
602 
603 			ifp->if_ierrors++;
604 			switch (rxstat & 0x000000FF) {
605 			case VR_RXSTAT_CRCERR:
606 				errstr = "crc error";
607 				break;
608 			case VR_RXSTAT_FRAMEALIGNERR:
609 				errstr = "frame alignment error";
610 				break;
611 			case VR_RXSTAT_FIFOOFLOW:
612 				errstr = "FIFO overflow";
613 				break;
614 			case VR_RXSTAT_GIANT:
615 				errstr = "received giant packet";
616 				break;
617 			case VR_RXSTAT_RUNT:
618 				errstr = "received runt packet";
619 				break;
620 			case VR_RXSTAT_BUSERR:
621 				errstr = "system bus error";
622 				break;
623 			case VR_RXSTAT_BUFFERR:
624 				errstr = "rx buffer error";
625 				break;
626 			default:
627 				errstr = "unknown rx error";
628 				break;
629 			}
630 			printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
631 			    errstr);
632 
633 			VR_INIT_RXDESC(sc, i);
634 
635 			continue;
636 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
637 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
638 			/*
639 			 * This driver expects to receive whole packets every
640 			 * time.  In case we receive a fragment that is not
641 			 * a complete packet, we discard it.
642 			 */
643 			ifp->if_ierrors++;
644 
645 			printf("%s: receive error: incomplete frame; "
646 			       "size = %d, status = 0x%x\n",
647 			       device_xname(sc->vr_dev),
648 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
649 
650 			VR_INIT_RXDESC(sc, i);
651 
652 			continue;
653 		}
654 
655 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
656 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
657 
658 		/* No errors; receive the packet. */
659 		total_len = VR_RXBYTES(le32toh(d->vr_status));
660 #ifdef DIAGNOSTIC
661 		if (total_len == 0) {
662 			/*
663 			 * If we receive a zero-length packet, we probably
664 			 * missed to handle an error condition above.
665 			 * Discard it to avoid a later crash.
666 			 */
667 			ifp->if_ierrors++;
668 
669 			printf("%s: receive error: zero-length packet; "
670 			       "status = 0x%x\n",
671 			       device_xname(sc->vr_dev), rxstat);
672 
673 			VR_INIT_RXDESC(sc, i);
674 
675 			continue;
676 		}
677 #endif
678 
679 		/*
680 		 * The Rhine chip includes the CRC with every packet.
681 		 * Trim it off here.
682 		 */
683 		total_len -= ETHER_CRC_LEN;
684 
685 #ifdef __NO_STRICT_ALIGNMENT
686 		/*
687 		 * If the packet is small enough to fit in a
688 		 * single header mbuf, allocate one and copy
689 		 * the data into it.  This greatly reduces
690 		 * memory consumption when we receive lots
691 		 * of small packets.
692 		 *
693 		 * Otherwise, we add a new buffer to the receive
694 		 * chain.  If this fails, we drop the packet and
695 		 * recycle the old buffer.
696 		 */
697 		if (vr_copy_small != 0 && total_len <= MHLEN) {
698 			MGETHDR(m, M_DONTWAIT, MT_DATA);
699 			if (m == NULL)
700 				goto dropit;
701 			memcpy(mtod(m, void *),
702 			    mtod(ds->ds_mbuf, void *), total_len);
703 			VR_INIT_RXDESC(sc, i);
704 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
705 			    ds->ds_dmamap->dm_mapsize,
706 			    BUS_DMASYNC_PREREAD);
707 		} else {
708 			m = ds->ds_mbuf;
709 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
710  dropit:
711 				ifp->if_ierrors++;
712 				VR_INIT_RXDESC(sc, i);
713 				bus_dmamap_sync(sc->vr_dmat,
714 				    ds->ds_dmamap, 0,
715 				    ds->ds_dmamap->dm_mapsize,
716 				    BUS_DMASYNC_PREREAD);
717 				continue;
718 			}
719 		}
720 #else
721 		/*
722 		 * The Rhine's packet buffers must be 4-byte aligned.
723 		 * But this means that the data after the Ethernet header
724 		 * is misaligned.  We must allocate a new buffer and
725 		 * copy the data, shifted forward 2 bytes.
726 		 */
727 		MGETHDR(m, M_DONTWAIT, MT_DATA);
728 		if (m == NULL) {
729  dropit:
730 			ifp->if_ierrors++;
731 			VR_INIT_RXDESC(sc, i);
732 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
733 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
734 			continue;
735 		}
736 		if (total_len > (MHLEN - 2)) {
737 			MCLGET(m, M_DONTWAIT);
738 			if ((m->m_flags & M_EXT) == 0) {
739 				m_freem(m);
740 				goto dropit;
741 			}
742 		}
743 		m->m_data += 2;
744 
745 		/*
746 		 * Note that we use clusters for incoming frames, so the
747 		 * buffer is virtually contiguous.
748 		 */
749 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
750 		    total_len);
751 
752 		/* Allow the receive descriptor to continue using its mbuf. */
753 		VR_INIT_RXDESC(sc, i);
754 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
755 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
756 #endif /* __NO_STRICT_ALIGNMENT */
757 
758 		ifp->if_ipackets++;
759 		m->m_pkthdr.rcvif = ifp;
760 		m->m_pkthdr.len = m->m_len = total_len;
761 		/*
762 		 * Handle BPF listeners. Let the BPF user see the packet, but
763 		 * don't pass it up to the ether_input() layer unless it's
764 		 * a broadcast packet, multicast packet, matches our ethernet
765 		 * address or the interface is in promiscuous mode.
766 		 */
767 		if (ifp->if_bpf)
768 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
769 		/* Pass it on. */
770 		(*ifp->if_input)(ifp, m);
771 	}
772 
773 	/* Update the receive pointer. */
774 	sc->vr_rxptr = i;
775 }
776 
777 void
778 vr_rxeoc(struct vr_softc *sc)
779 {
780 	struct ifnet *ifp;
781 	int i;
782 
783 	ifp = &sc->vr_ec.ec_if;
784 
785 	ifp->if_ierrors++;
786 
787 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
788 	for (i = 0; i < VR_TIMEOUT; i++) {
789 		DELAY(10);
790 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
791 			break;
792 	}
793 	if (i == VR_TIMEOUT) {
794 		/* XXX need reset? */
795 		printf("%s: RX shutdown never complete\n",
796 		    device_xname(sc->vr_dev));
797 	}
798 
799 	vr_rxeof(sc);
800 
801 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
802 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
803 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
804 }
805 
806 /*
807  * A frame was downloaded to the chip. It's safe for us to clean up
808  * the list buffers.
809  */
810 static void
811 vr_txeof(struct vr_softc *sc)
812 {
813 	struct ifnet *ifp = &sc->vr_ec.ec_if;
814 	struct vr_desc *d;
815 	struct vr_descsoft *ds;
816 	uint32_t txstat;
817 	int i, j;
818 
819 	ifp->if_flags &= ~IFF_OACTIVE;
820 
821 	/*
822 	 * Go through our tx list and free mbufs for those
823 	 * frames that have been transmitted.
824 	 */
825 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
826 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
827 		d = VR_CDTX(sc, i);
828 		ds = VR_DSTX(sc, i);
829 
830 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
831 
832 		txstat = le32toh(d->vr_status);
833 
834 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
835 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
836 			for (j = 0; j < VR_TIMEOUT; j++) {
837 				DELAY(10);
838 				if ((CSR_READ_2(sc, VR_COMMAND) &
839 				    VR_CMD_TX_ON) == 0)
840 					break;
841 			}
842 			if (j == VR_TIMEOUT) {
843 				/* XXX need reset? */
844 				printf("%s: TX shutdown never complete\n",
845 				    device_xname(sc->vr_dev));
846 			}
847 			d->vr_status = htole32(VR_TXSTAT_OWN);
848 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
849 			break;
850 		}
851 
852 		if (txstat & VR_TXSTAT_OWN)
853 			break;
854 
855 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
856 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
857 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
858 		m_freem(ds->ds_mbuf);
859 		ds->ds_mbuf = NULL;
860 
861 		if (txstat & VR_TXSTAT_ERRSUM) {
862 			ifp->if_oerrors++;
863 			if (txstat & VR_TXSTAT_DEFER)
864 				ifp->if_collisions++;
865 			if (txstat & VR_TXSTAT_LATECOLL)
866 				ifp->if_collisions++;
867 		}
868 
869 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
870 		ifp->if_opackets++;
871 	}
872 
873 	/* Update the dirty transmit buffer pointer. */
874 	sc->vr_txdirty = i;
875 
876 	/*
877 	 * Cancel the watchdog timer if there are no pending
878 	 * transmissions.
879 	 */
880 	if (sc->vr_txpending == 0)
881 		ifp->if_timer = 0;
882 }
883 
884 static int
885 vr_intr(void *arg)
886 {
887 	struct vr_softc *sc;
888 	struct ifnet *ifp;
889 	uint16_t status;
890 	int handled = 0, dotx = 0;
891 
892 	sc = arg;
893 	ifp = &sc->vr_ec.ec_if;
894 
895 	/* Suppress unwanted interrupts. */
896 	if ((ifp->if_flags & IFF_UP) == 0) {
897 		vr_stop(ifp, 1);
898 		return (0);
899 	}
900 
901 	/* Disable interrupts. */
902 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
903 
904 	for (;;) {
905 		status = CSR_READ_2(sc, VR_ISR);
906 		if (status)
907 			CSR_WRITE_2(sc, VR_ISR, status);
908 
909 		if ((status & VR_INTRS) == 0)
910 			break;
911 
912 		handled = 1;
913 
914 #if NRND > 0
915 		if (RND_ENABLED(&sc->rnd_source))
916 			rnd_add_uint32(&sc->rnd_source, status);
917 #endif
918 
919 		if (status & VR_ISR_RX_OK)
920 			vr_rxeof(sc);
921 
922 		if (status & VR_ISR_RX_DROPPED) {
923 			printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
924 			ifp->if_ierrors++;
925 		}
926 
927 		if (status &
928 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
929 			vr_rxeoc(sc);
930 
931 
932 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
933 			if (status & VR_ISR_BUSERR)
934 				printf("%s: PCI bus error\n",
935 				    device_xname(sc->vr_dev));
936 			if (status & VR_ISR_TX_UNDERRUN)
937 				printf("%s: transmit underrun\n",
938 				    device_xname(sc->vr_dev));
939 			/* vr_init() calls vr_start() */
940 			dotx = 0;
941 			(void)vr_init(ifp);
942 
943 		}
944 
945 		if (status & VR_ISR_TX_OK) {
946 			dotx = 1;
947 			vr_txeof(sc);
948 		}
949 
950 		if (status &
951 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
952 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
953 				printf("%s: transmit aborted\n",
954 				    device_xname(sc->vr_dev));
955 			if (status & VR_ISR_TX_UDFI)
956 				printf("%s: transmit underflow\n",
957 				    device_xname(sc->vr_dev));
958 			ifp->if_oerrors++;
959 			dotx = 1;
960 			vr_txeof(sc);
961 			if (sc->vr_txpending) {
962 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
963 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
964 			}
965 		}
966 	}
967 
968 	/* Re-enable interrupts. */
969 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
970 
971 	if (dotx)
972 		vr_start(ifp);
973 
974 	return (handled);
975 }
976 
977 /*
978  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
979  * to the mbuf data regions directly in the transmit lists. We also save a
980  * copy of the pointers since the transmit list fragment pointers are
981  * physical addresses.
982  */
983 static void
984 vr_start(struct ifnet *ifp)
985 {
986 	struct vr_softc *sc = ifp->if_softc;
987 	struct mbuf *m0, *m;
988 	struct vr_desc *d;
989 	struct vr_descsoft *ds;
990 	int error, firsttx, nexttx, opending;
991 
992 	/*
993 	 * Remember the previous txpending and the first transmit
994 	 * descriptor we use.
995 	 */
996 	opending = sc->vr_txpending;
997 	firsttx = VR_NEXTTX(sc->vr_txlast);
998 
999 	/*
1000 	 * Loop through the send queue, setting up transmit descriptors
1001 	 * until we drain the queue, or use up all available transmit
1002 	 * descriptors.
1003 	 */
1004 	while (sc->vr_txpending < VR_NTXDESC) {
1005 		/*
1006 		 * Grab a packet off the queue.
1007 		 */
1008 		IFQ_POLL(&ifp->if_snd, m0);
1009 		if (m0 == NULL)
1010 			break;
1011 		m = NULL;
1012 
1013 		/*
1014 		 * Get the next available transmit descriptor.
1015 		 */
1016 		nexttx = VR_NEXTTX(sc->vr_txlast);
1017 		d = VR_CDTX(sc, nexttx);
1018 		ds = VR_DSTX(sc, nexttx);
1019 
1020 		/*
1021 		 * Load the DMA map.  If this fails, the packet didn't
1022 		 * fit in one DMA segment, and we need to copy.  Note,
1023 		 * the packet must also be aligned.
1024 		 * if the packet is too small, copy it too, so we're sure
1025 		 * we have enough room for the pad buffer.
1026 		 */
1027 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1028 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1029 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1030 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1031 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1032 			if (m == NULL) {
1033 				printf("%s: unable to allocate Tx mbuf\n",
1034 				    device_xname(sc->vr_dev));
1035 				break;
1036 			}
1037 			if (m0->m_pkthdr.len > MHLEN) {
1038 				MCLGET(m, M_DONTWAIT);
1039 				if ((m->m_flags & M_EXT) == 0) {
1040 					printf("%s: unable to allocate Tx "
1041 					    "cluster\n", device_xname(sc->vr_dev));
1042 					m_freem(m);
1043 					break;
1044 				}
1045 			}
1046 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1047 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1048 			/*
1049 			 * The Rhine doesn't auto-pad, so we have to do this
1050 			 * ourselves.
1051 			 */
1052 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1053 				memset(mtod(m, char *) + m0->m_pkthdr.len,
1054 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1055 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1056 			}
1057 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1058 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1059 			if (error) {
1060 				m_freem(m);
1061 				printf("%s: unable to load Tx buffer, "
1062 				    "error = %d\n", device_xname(sc->vr_dev), error);
1063 				break;
1064 			}
1065 		}
1066 
1067 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1068 		if (m != NULL) {
1069 			m_freem(m0);
1070 			m0 = m;
1071 		}
1072 
1073 		/* Sync the DMA map. */
1074 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1075 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1076 
1077 		/*
1078 		 * Store a pointer to the packet so we can free it later.
1079 		 */
1080 		ds->ds_mbuf = m0;
1081 
1082 		/*
1083 		 * If there's a BPF listener, bounce a copy of this frame
1084 		 * to him.
1085 		 */
1086 		if (ifp->if_bpf)
1087 			bpf_ops->bpf_mtap(ifp->if_bpf, m0);
1088 
1089 		/*
1090 		 * Fill in the transmit descriptor.
1091 		 */
1092 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1093 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1094 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1095 
1096 		/*
1097 		 * If this is the first descriptor we're enqueuing,
1098 		 * don't give it to the Rhine yet.  That could cause
1099 		 * a race condition.  We'll do it below.
1100 		 */
1101 		if (nexttx == firsttx)
1102 			d->vr_status = 0;
1103 		else
1104 			d->vr_status = htole32(VR_TXSTAT_OWN);
1105 
1106 		VR_CDTXSYNC(sc, nexttx,
1107 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1108 
1109 		/* Advance the tx pointer. */
1110 		sc->vr_txpending++;
1111 		sc->vr_txlast = nexttx;
1112 	}
1113 
1114 	if (sc->vr_txpending == VR_NTXDESC) {
1115 		/* No more slots left; notify upper layer. */
1116 		ifp->if_flags |= IFF_OACTIVE;
1117 	}
1118 
1119 	if (sc->vr_txpending != opending) {
1120 		/*
1121 		 * We enqueued packets.  If the transmitter was idle,
1122 		 * reset the txdirty pointer.
1123 		 */
1124 		if (opending == 0)
1125 			sc->vr_txdirty = firsttx;
1126 
1127 		/*
1128 		 * Cause a transmit interrupt to happen on the
1129 		 * last packet we enqueued.
1130 		 */
1131 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1132 		VR_CDTXSYNC(sc, sc->vr_txlast,
1133 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1134 
1135 		/*
1136 		 * The entire packet chain is set up.  Give the
1137 		 * first descriptor to the Rhine now.
1138 		 */
1139 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1140 		VR_CDTXSYNC(sc, firsttx,
1141 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1142 
1143 		/* Start the transmitter. */
1144 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1145 
1146 		/* Set the watchdog timer in case the chip flakes out. */
1147 		ifp->if_timer = 5;
1148 	}
1149 }
1150 
1151 /*
1152  * Initialize the interface.  Must be called at splnet.
1153  */
1154 static int
1155 vr_init(struct ifnet *ifp)
1156 {
1157 	struct vr_softc *sc = ifp->if_softc;
1158 	struct vr_desc *d;
1159 	struct vr_descsoft *ds;
1160 	int i, error = 0;
1161 
1162 	/* Cancel pending I/O. */
1163 	vr_stop(ifp, 0);
1164 
1165 	/* Reset the Rhine to a known state. */
1166 	vr_reset(sc);
1167 
1168 	/* set DMA length in BCR0 and BCR1 */
1169 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1170 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1171 
1172 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1173 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1174 
1175 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1176 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1177 
1178 	/* set DMA threshold length in RXCFG and TXCFG */
1179 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1180 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1181 
1182 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1183 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1184 
1185 	/*
1186 	 * Initialize the transmit descriptor ring.  txlast is initialized
1187 	 * to the end of the list so that it will wrap around to the first
1188 	 * descriptor when the first packet is transmitted.
1189 	 */
1190 	for (i = 0; i < VR_NTXDESC; i++) {
1191 		d = VR_CDTX(sc, i);
1192 		memset(d, 0, sizeof(struct vr_desc));
1193 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1194 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1195 	}
1196 	sc->vr_txpending = 0;
1197 	sc->vr_txdirty = 0;
1198 	sc->vr_txlast = VR_NTXDESC - 1;
1199 
1200 	/*
1201 	 * Initialize the receive descriptor ring.
1202 	 */
1203 	for (i = 0; i < VR_NRXDESC; i++) {
1204 		ds = VR_DSRX(sc, i);
1205 		if (ds->ds_mbuf == NULL) {
1206 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1207 				printf("%s: unable to allocate or map rx "
1208 				    "buffer %d, error = %d\n",
1209 				    device_xname(sc->vr_dev), i, error);
1210 				/*
1211 				 * XXX Should attempt to run with fewer receive
1212 				 * XXX buffers instead of just failing.
1213 				 */
1214 				vr_rxdrain(sc);
1215 				goto out;
1216 			}
1217 		} else
1218 			VR_INIT_RXDESC(sc, i);
1219 	}
1220 	sc->vr_rxptr = 0;
1221 
1222 	/* If we want promiscuous mode, set the allframes bit. */
1223 	if (ifp->if_flags & IFF_PROMISC)
1224 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1225 	else
1226 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1227 
1228 	/* Set capture broadcast bit to capture broadcast frames. */
1229 	if (ifp->if_flags & IFF_BROADCAST)
1230 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1231 	else
1232 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1233 
1234 	/* Program the multicast filter, if necessary. */
1235 	vr_setmulti(sc);
1236 
1237 	/* Give the transmit and receive rings to the Rhine. */
1238 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1239 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1240 
1241 	/* Set current media. */
1242 	if ((error = ether_mediachange(ifp)) != 0)
1243 		goto out;
1244 
1245 	/* Enable receiver and transmitter. */
1246 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1247 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1248 				    VR_CMD_RX_GO);
1249 
1250 	/* Enable interrupts. */
1251 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1252 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1253 
1254 	ifp->if_flags |= IFF_RUNNING;
1255 	ifp->if_flags &= ~IFF_OACTIVE;
1256 
1257 	/* Start one second timer. */
1258 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1259 
1260 	/* Attempt to start output on the interface. */
1261 	vr_start(ifp);
1262 
1263  out:
1264 	if (error)
1265 		printf("%s: interface not running\n", device_xname(sc->vr_dev));
1266 	return (error);
1267 }
1268 
1269 static int
1270 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1271 {
1272 	struct vr_softc *sc = ifp->if_softc;
1273 	int s, error = 0;
1274 
1275 	s = splnet();
1276 
1277 	error = ether_ioctl(ifp, command, data);
1278 	if (error == ENETRESET) {
1279 		/*
1280 		 * Multicast list has changed; set the hardware filter
1281 		 * accordingly.
1282 		 */
1283 		if (ifp->if_flags & IFF_RUNNING)
1284 			vr_setmulti(sc);
1285 		error = 0;
1286 	}
1287 
1288 	splx(s);
1289 	return (error);
1290 }
1291 
1292 static void
1293 vr_watchdog(struct ifnet *ifp)
1294 {
1295 	struct vr_softc *sc = ifp->if_softc;
1296 
1297 	printf("%s: device timeout\n", device_xname(sc->vr_dev));
1298 	ifp->if_oerrors++;
1299 
1300 	(void) vr_init(ifp);
1301 }
1302 
1303 /*
1304  * One second timer, used to tick MII.
1305  */
1306 static void
1307 vr_tick(void *arg)
1308 {
1309 	struct vr_softc *sc = arg;
1310 	int s;
1311 
1312 	s = splnet();
1313 	mii_tick(&sc->vr_mii);
1314 	splx(s);
1315 
1316 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1317 }
1318 
1319 /*
1320  * Drain the receive queue.
1321  */
1322 static void
1323 vr_rxdrain(struct vr_softc *sc)
1324 {
1325 	struct vr_descsoft *ds;
1326 	int i;
1327 
1328 	for (i = 0; i < VR_NRXDESC; i++) {
1329 		ds = VR_DSRX(sc, i);
1330 		if (ds->ds_mbuf != NULL) {
1331 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1332 			m_freem(ds->ds_mbuf);
1333 			ds->ds_mbuf = NULL;
1334 		}
1335 	}
1336 }
1337 
1338 /*
1339  * Stop the adapter and free any mbufs allocated to the
1340  * transmit lists.
1341  */
1342 static void
1343 vr_stop(struct ifnet *ifp, int disable)
1344 {
1345 	struct vr_softc *sc = ifp->if_softc;
1346 	struct vr_descsoft *ds;
1347 	int i;
1348 
1349 	/* Cancel one second timer. */
1350 	callout_stop(&sc->vr_tick_ch);
1351 
1352 	/* Down the MII. */
1353 	mii_down(&sc->vr_mii);
1354 
1355 	ifp = &sc->vr_ec.ec_if;
1356 	ifp->if_timer = 0;
1357 
1358 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1359 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1360 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1361 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1362 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1363 
1364 	/*
1365 	 * Release any queued transmit buffers.
1366 	 */
1367 	for (i = 0; i < VR_NTXDESC; i++) {
1368 		ds = VR_DSTX(sc, i);
1369 		if (ds->ds_mbuf != NULL) {
1370 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1371 			m_freem(ds->ds_mbuf);
1372 			ds->ds_mbuf = NULL;
1373 		}
1374 	}
1375 
1376 	/*
1377 	 * Mark the interface down and cancel the watchdog timer.
1378 	 */
1379 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1380 	ifp->if_timer = 0;
1381 
1382 	if (disable)
1383 		vr_rxdrain(sc);
1384 }
1385 
1386 static int	vr_probe(device_t, cfdata_t, void *);
1387 static void	vr_attach(device_t, device_t, void *);
1388 static bool	vr_shutdown(device_t, int);
1389 
1390 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1391     vr_probe, vr_attach, NULL, NULL);
1392 
1393 static const struct vr_type *
1394 vr_lookup(struct pci_attach_args *pa)
1395 {
1396 	const struct vr_type *vrt;
1397 	int i;
1398 
1399 	for (i = 0; i < __arraycount(vr_devs); i++) {
1400 		vrt = &vr_devs[i];
1401 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1402 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1403 			return (vrt);
1404 	}
1405 	return (NULL);
1406 }
1407 
1408 static int
1409 vr_probe(device_t parent, cfdata_t match, void *aux)
1410 {
1411 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1412 
1413 	if (vr_lookup(pa) != NULL)
1414 		return (1);
1415 
1416 	return (0);
1417 }
1418 
1419 /*
1420  * Stop all chip I/O so that the kernel's probe routines don't
1421  * get confused by errant DMAs when rebooting.
1422  */
1423 static bool
1424 vr_shutdown(device_t self, int howto)
1425 {
1426 	struct vr_softc *sc = device_private(self);
1427 
1428 	vr_stop(&sc->vr_ec.ec_if, 1);
1429 
1430 	return true;
1431 }
1432 
1433 /*
1434  * Attach the interface. Allocate softc structures, do ifmedia
1435  * setup and ethernet/BPF attach.
1436  */
1437 static void
1438 vr_attach(device_t parent, device_t self, void *aux)
1439 {
1440 	struct vr_softc *sc = device_private(self);
1441 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1442 	bus_dma_segment_t seg;
1443 	uint32_t reg;
1444 	struct ifnet *ifp;
1445 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
1446 	int i, rseg, error;
1447 	char devinfo[256];
1448 
1449 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1450 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1451 
1452 	sc->vr_dev = self;
1453 	sc->vr_pc = pa->pa_pc;
1454 	sc->vr_tag = pa->pa_tag;
1455 	sc->vr_id = pa->pa_id;
1456 	callout_init(&sc->vr_tick_ch, 0);
1457 
1458 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1459 	aprint_naive("\n");
1460 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1461 	    PCI_REVISION(pa->pa_class));
1462 
1463 	/*
1464 	 * Handle power management nonsense.
1465 	 */
1466 
1467 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1468 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1469 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1470 
1471 	/* power up chip */
1472 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1473 	    vr_restore_state)) && error != EOPNOTSUPP) {
1474 		aprint_error_dev(self, "cannot activate %d\n",
1475 		    error);
1476 		return;
1477 	}
1478 
1479 	/* Make sure bus mastering is enabled. */
1480 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1481 	reg |= PCI_COMMAND_MASTER_ENABLE;
1482 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1483 
1484 	/* Get revision */
1485 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1486 
1487 	/*
1488 	 * Map control/status registers.
1489 	 */
1490 	{
1491 		bus_space_tag_t iot, memt;
1492 		bus_space_handle_t ioh, memh;
1493 		int ioh_valid, memh_valid;
1494 		pci_intr_handle_t intrhandle;
1495 		const char *intrstr;
1496 
1497 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1498 			PCI_MAPREG_TYPE_IO, 0,
1499 			&iot, &ioh, NULL, NULL) == 0);
1500 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1501 			PCI_MAPREG_TYPE_MEM |
1502 			PCI_MAPREG_MEM_TYPE_32BIT,
1503 			0, &memt, &memh, NULL, NULL) == 0);
1504 #if defined(VR_USEIOSPACE)
1505 		if (ioh_valid) {
1506 			sc->vr_bst = iot;
1507 			sc->vr_bsh = ioh;
1508 		} else if (memh_valid) {
1509 			sc->vr_bst = memt;
1510 			sc->vr_bsh = memh;
1511 		}
1512 #else
1513 		if (memh_valid) {
1514 			sc->vr_bst = memt;
1515 			sc->vr_bsh = memh;
1516 		} else if (ioh_valid) {
1517 			sc->vr_bst = iot;
1518 			sc->vr_bsh = ioh;
1519 		}
1520 #endif
1521 		else {
1522 			printf(": unable to map device registers\n");
1523 			return;
1524 		}
1525 
1526 		/* Allocate interrupt */
1527 		if (pci_intr_map(pa, &intrhandle)) {
1528 			aprint_error_dev(self, "couldn't map interrupt\n");
1529 			return;
1530 		}
1531 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1532 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1533 						vr_intr, sc);
1534 		if (sc->vr_ih == NULL) {
1535 			aprint_error_dev(self, "couldn't establish interrupt");
1536 			if (intrstr != NULL)
1537 				aprint_error(" at %s", intrstr);
1538 			aprint_error("\n");
1539 		}
1540 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1541 	}
1542 
1543 	/*
1544 	 * Windows may put the chip in suspend mode when it
1545 	 * shuts down. Be sure to kick it in the head to wake it
1546 	 * up again.
1547 	 *
1548 	 * Don't touch this register on VT3043 since it causes
1549 	 * kernel MCHK trap on macppc.
1550 	 * (Note some VT86C100A chip returns a product ID of VT3043)
1551 	 */
1552 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1553 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1554 
1555 	/* Reset the adapter. */
1556 	vr_reset(sc);
1557 
1558 	/*
1559 	 * Get station address. The way the Rhine chips work,
1560 	 * you're not allowed to directly access the EEPROM once
1561 	 * they've been programmed a special way. Consequently,
1562 	 * we need to read the node address from the PAR0 and PAR1
1563 	 * registers.
1564 	 *
1565 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1566 	 *         of the *whole* EEPROM, not just the MAC address. This is
1567 	 *         pretty pointless since the chip does this automatically
1568 	 *         at powerup/reset.
1569 	 *         I suspect the same thing applies to the other Rhine
1570 	 *         variants, but in the absence of a data sheet for those
1571 	 *         (and the lack of anyone else noticing the problems this
1572 	 *         causes) I'm going to retain the old behaviour for the
1573 	 *         other parts.
1574 	 *         In some cases, the chip really does startup without having
1575 	 *         read the EEPROM (kern/34812). To handle this case, we force
1576 	 *         a reload if we see an all-zeroes MAC address.
1577 	 */
1578 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1579 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1580 
1581 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1582 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1583 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1584 		DELAY(200);
1585 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1586 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1587 	}
1588 
1589 	/*
1590 	 * A Rhine chip was detected. Inform the world.
1591 	 */
1592 	printf("%s: Ethernet address: %s\n",
1593 		device_xname(self), ether_sprintf(eaddr));
1594 
1595 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1596 
1597 	sc->vr_dmat = pa->pa_dmat;
1598 
1599 	/*
1600 	 * Allocate the control data structures, and create and load
1601 	 * the DMA map for it.
1602 	 */
1603 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1604 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1605 	    0)) != 0) {
1606 		aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1607 		goto fail_0;
1608 	}
1609 
1610 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1611 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1612 	    BUS_DMA_COHERENT)) != 0) {
1613 		aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1614 		goto fail_1;
1615 	}
1616 
1617 	if ((error = bus_dmamap_create(sc->vr_dmat,
1618 	    sizeof(struct vr_control_data), 1,
1619 	    sizeof(struct vr_control_data), 0, 0,
1620 	    &sc->vr_cddmamap)) != 0) {
1621 		aprint_error_dev(self, "unable to create control data DMA map, "
1622 		    "error = %d\n", error);
1623 		goto fail_2;
1624 	}
1625 
1626 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1627 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1628 	    0)) != 0) {
1629 		aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1630 		    error);
1631 		goto fail_3;
1632 	}
1633 
1634 	/*
1635 	 * Create the transmit buffer DMA maps.
1636 	 */
1637 	for (i = 0; i < VR_NTXDESC; i++) {
1638 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1639 		    1, MCLBYTES, 0, 0,
1640 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1641 			aprint_error_dev(self, "unable to create tx DMA map %d, "
1642 			    "error = %d\n", i, error);
1643 			goto fail_4;
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * Create the receive buffer DMA maps.
1649 	 */
1650 	for (i = 0; i < VR_NRXDESC; i++) {
1651 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1652 		    MCLBYTES, 0, 0,
1653 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1654 			aprint_error_dev(self, "unable to create rx DMA map %d, "
1655 			    "error = %d\n", i, error);
1656 			goto fail_5;
1657 		}
1658 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1659 	}
1660 
1661 	ifp = &sc->vr_ec.ec_if;
1662 	ifp->if_softc = sc;
1663 	ifp->if_mtu = ETHERMTU;
1664 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1665 	ifp->if_ioctl = vr_ioctl;
1666 	ifp->if_start = vr_start;
1667 	ifp->if_watchdog = vr_watchdog;
1668 	ifp->if_init = vr_init;
1669 	ifp->if_stop = vr_stop;
1670 	IFQ_SET_READY(&ifp->if_snd);
1671 
1672 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1673 
1674 	/*
1675 	 * Initialize MII/media info.
1676 	 */
1677 	sc->vr_mii.mii_ifp = ifp;
1678 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1679 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1680 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1681 
1682 	sc->vr_ec.ec_mii = &sc->vr_mii;
1683 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1684 		ether_mediastatus);
1685 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1686 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1687 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1688 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1689 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1690 	} else
1691 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1692 
1693 	/*
1694 	 * Call MI attach routines.
1695 	 */
1696 	if_attach(ifp);
1697 	ether_ifattach(ifp, sc->vr_enaddr);
1698 #if NRND > 0
1699 	rnd_attach_source(&sc->rnd_source, device_xname(self),
1700 	    RND_TYPE_NET, 0);
1701 #endif
1702 
1703 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1704 		pmf_class_network_register(self, ifp);
1705 	else
1706 		aprint_error_dev(self, "couldn't establish power handler\n");
1707 
1708 	return;
1709 
1710  fail_5:
1711 	for (i = 0; i < VR_NRXDESC; i++) {
1712 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1713 			bus_dmamap_destroy(sc->vr_dmat,
1714 			    sc->vr_rxsoft[i].ds_dmamap);
1715 	}
1716  fail_4:
1717 	for (i = 0; i < VR_NTXDESC; i++) {
1718 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1719 			bus_dmamap_destroy(sc->vr_dmat,
1720 			    sc->vr_txsoft[i].ds_dmamap);
1721 	}
1722 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1723  fail_3:
1724 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1725  fail_2:
1726 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1727 	    sizeof(struct vr_control_data));
1728  fail_1:
1729 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1730  fail_0:
1731 	return;
1732 }
1733 
1734 static int
1735 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1736     pcireg_t state)
1737 {
1738 	struct vr_softc *sc = device_private(self);
1739 	int error;
1740 
1741 	if (state == PCI_PMCSR_STATE_D0)
1742 		return 0;
1743 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1744 		return error;
1745 
1746 	/* Restore PCI config data. */
1747 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1748 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1749 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1750 	return 0;
1751 }
1752 
1753 static bool
1754 vr_resume(device_t self, pmf_qual_t qual)
1755 {
1756 	struct vr_softc *sc = device_private(self);
1757 
1758 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1759 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1760 
1761 	return true;
1762 }
1763