xref: /netbsd-src/sys/dev/pci/if_vr.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: if_vr.c,v 1.135 2021/07/24 22:30:59 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1997, 1998
35  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by Bill Paul.
48  * 4. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62  * THE POSSIBILITY OF SUCH DAMAGE.
63  *
64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65  */
66 
67 /*
68  * VIA Rhine fast ethernet PCI NIC driver
69  *
70  * Supports various network adapters based on the VIA Rhine
71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
72  * Datasheets are available at http://www.via.com.tw.
73  *
74  * Written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The VIA Rhine controllers are similar in some respects to the
81  * the DEC tulip chips, except less complicated. The controller
82  * uses an MII bus and an external physical layer interface. The
83  * receiver has a one entry perfect filter and a 64-bit hash table
84  * multicast filter. Transmit and receive descriptors are similar
85  * to the tulip.
86  *
87  * The Rhine has a serious flaw in its transmit DMA mechanism:
88  * transmit buffers must be longword aligned. Unfortunately,
89  * the kernel doesn't guarantee that mbufs will be filled in starting
90  * at longword boundaries, so we have to do a buffer copy before
91  * transmission.
92  *
93  * Apparently, the receive DMA mechanism also has the same flaw.  This
94  * means that on systems with struct alignment requirements, incoming
95  * frames must be copied to a new buffer which shifts the data forward
96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
97  */
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.135 2021/07/24 22:30:59 andvar Exp $");
101 
102 
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113 
114 #include <sys/rndsource.h>
115 
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_ether.h>
121 
122 #include <net/bpf.h>
123 
124 #include <sys/bus.h>
125 #include <sys/intr.h>
126 #include <machine/endian.h>
127 
128 #include <dev/mii/mii.h>
129 #include <dev/mii/miivar.h>
130 #include <dev/mii/mii_bitbang.h>
131 
132 #include <dev/pci/pcireg.h>
133 #include <dev/pci/pcivar.h>
134 #include <dev/pci/pcidevs.h>
135 
136 #include <dev/pci/if_vrreg.h>
137 
138 #define	VR_USEIOSPACE
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static const struct device_compatible_entry compat_data[] = {
144 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
145 		PCI_PRODUCT_VIATECH_VT3043) },
146 
147 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
148 		PCI_PRODUCT_VIATECH_VT6102) },
149 
150 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
151 		PCI_PRODUCT_VIATECH_VT6105) },
152 
153 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
154 		PCI_PRODUCT_VIATECH_VT6105M) },
155 
156 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
157 		PCI_PRODUCT_VIATECH_VT86C100A) },
158 
159 	PCI_COMPAT_EOL
160 };
161 
162 /*
163  * Transmit descriptor list size.
164  */
165 #define	VR_NTXDESC		64
166 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
167 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
168 
169 /*
170  * Receive descriptor list size.
171  */
172 #define	VR_NRXDESC		64
173 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
174 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
175 
176 /*
177  * Control data structures that are DMA'd to the Rhine chip.  We allocate
178  * them in a single clump that maps to a single DMA segment to make several
179  * things easier.
180  *
181  * Note that since we always copy outgoing packets to aligned transmit
182  * buffers, we can reduce the transmit descriptors to one per packet.
183  */
184 struct vr_control_data {
185 	struct vr_desc		vr_txdescs[VR_NTXDESC];
186 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
187 };
188 
189 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
190 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
191 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
192 
193 /*
194  * Software state of transmit and receive descriptors.
195  */
196 struct vr_descsoft {
197 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
198 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
199 };
200 
201 struct vr_softc {
202 	device_t		vr_dev;
203 	void			*vr_ih;		/* interrupt cookie */
204 	bus_space_tag_t		vr_bst;		/* bus space tag */
205 	bus_space_handle_t	vr_bsh;		/* bus space handle */
206 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
207 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
208 	pcitag_t		vr_tag;		/* PCI tag */
209 	struct ethercom		vr_ec;		/* Ethernet common info */
210 	uint8_t			vr_enaddr[ETHER_ADDR_LEN];
211 	struct mii_data		vr_mii;		/* MII/media info */
212 
213 	pcireg_t		vr_id;		/* vendor/product ID */
214 	uint8_t			vr_revid;	/* Rhine chip revision */
215 
216 	callout_t		vr_tick_ch;	/* tick callout */
217 
218 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
219 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
220 
221 	/*
222 	 * Software state for transmit and receive descriptors.
223 	 */
224 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
225 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
226 
227 	/*
228 	 * Control data structures.
229 	 */
230 	struct vr_control_data	*vr_control_data;
231 
232 	int	vr_txpending;		/* number of TX requests pending */
233 	int	vr_txdirty;		/* first dirty TX descriptor */
234 	int	vr_txlast;		/* last used TX descriptor */
235 
236 	int	vr_rxptr;		/* next ready RX descriptor */
237 
238 	uint32_t	vr_save_iobase;
239 	uint32_t	vr_save_membase;
240 	uint32_t	vr_save_irq;
241 
242 	bool		vr_link;
243 	int		vr_flags;
244 #define VR_F_RESTART	0x1		/* restart on next tick */
245 	u_short		vr_if_flags;
246 
247 	krndsource_t rnd_source;	/* random source */
248 };
249 
250 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
251 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
252 
253 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
254 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
255 
256 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
257 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
258 
259 #define	VR_CDTXSYNC(sc, x, ops)						\
260 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
261 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
262 
263 #define	VR_CDRXSYNC(sc, x, ops)						\
264 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
265 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
266 
267 /*
268  * Note we rely on MCLBYTES being a power of two below.
269  */
270 #define	VR_INIT_RXDESC(sc, i)						\
271 do {									\
272 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
273 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
274 									\
275 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
276 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
277 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
278 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
279 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
280 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
281 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
282 } while (/* CONSTCOND */ 0)
283 
284 /*
285  * register space access macros
286  */
287 #define	CSR_WRITE_4(sc, reg, val)					\
288 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
289 #define	CSR_WRITE_2(sc, reg, val)					\
290 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
291 #define	CSR_WRITE_1(sc, reg, val)					\
292 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
293 
294 #define	CSR_READ_4(sc, reg)						\
295 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
296 #define	CSR_READ_2(sc, reg)						\
297 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
298 #define	CSR_READ_1(sc, reg)						\
299 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
300 
301 #define	VR_TIMEOUT		1000
302 
303 static int	vr_add_rxbuf(struct vr_softc *, int);
304 
305 static void	vr_rxeof(struct vr_softc *);
306 static void	vr_rxeoc(struct vr_softc *);
307 static void	vr_txeof(struct vr_softc *);
308 static int	vr_intr(void *);
309 static void	vr_start(struct ifnet *);
310 static int	vr_ioctl(struct ifnet *, u_long, void *);
311 static int	vr_init(struct ifnet *);
312 static void	vr_stop(struct ifnet *, int);
313 static void	vr_rxdrain(struct vr_softc *);
314 static void	vr_watchdog(struct ifnet *);
315 static void	vr_tick(void *);
316 
317 static int	vr_mii_readreg(device_t, int, int, uint16_t *);
318 static int	vr_mii_writereg(device_t, int, int, uint16_t);
319 static void	vr_mii_statchg(struct ifnet *);
320 
321 static void	vr_setmulti(struct vr_softc *);
322 static void	vr_reset(struct vr_softc *);
323 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
324     pcireg_t);
325 static bool	vr_resume(device_t, const pmf_qual_t *);
326 
327 int	vr_copy_small = 0;
328 
329 #define	VR_SETBIT(sc, reg, x)				\
330 	CSR_WRITE_1(sc, reg,				\
331 	    CSR_READ_1(sc, reg) | (x))
332 
333 #define	VR_CLRBIT(sc, reg, x)				\
334 	CSR_WRITE_1(sc, reg,				\
335 	    CSR_READ_1(sc, reg) & ~(x))
336 
337 #define	VR_SETBIT16(sc, reg, x)				\
338 	CSR_WRITE_2(sc, reg,				\
339 	    CSR_READ_2(sc, reg) | (x))
340 
341 #define	VR_CLRBIT16(sc, reg, x)				\
342 	CSR_WRITE_2(sc, reg,				\
343 	    CSR_READ_2(sc, reg) & ~(x))
344 
345 #define	VR_SETBIT32(sc, reg, x)				\
346 	CSR_WRITE_4(sc, reg,				\
347 	    CSR_READ_4(sc, reg) | (x))
348 
349 #define	VR_CLRBIT32(sc, reg, x)				\
350 	CSR_WRITE_4(sc, reg,				\
351 	    CSR_READ_4(sc, reg) & ~(x))
352 
353 /*
354  * MII bit-bang glue.
355  */
356 static uint32_t vr_mii_bitbang_read(device_t);
357 static void	vr_mii_bitbang_write(device_t, uint32_t);
358 
359 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
360 	vr_mii_bitbang_read,
361 	vr_mii_bitbang_write,
362 	{
363 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
364 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
365 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
366 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
367 		0,			/* MII_BIT_DIR_PHY_HOST */
368 	}
369 };
370 
371 static uint32_t
372 vr_mii_bitbang_read(device_t self)
373 {
374 	struct vr_softc *sc = device_private(self);
375 
376 	return (CSR_READ_1(sc, VR_MIICMD));
377 }
378 
379 static void
380 vr_mii_bitbang_write(device_t self, uint32_t val)
381 {
382 	struct vr_softc *sc = device_private(self);
383 
384 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
385 }
386 
387 /*
388  * Read an PHY register through the MII.
389  */
390 static int
391 vr_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
392 {
393 	struct vr_softc *sc = device_private(self);
394 
395 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
396 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg, val));
397 }
398 
399 /*
400  * Write to a PHY register through the MII.
401  */
402 static int
403 vr_mii_writereg(device_t self, int phy, int reg, uint16_t val)
404 {
405 	struct vr_softc *sc = device_private(self);
406 
407 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
408 	return mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
409 }
410 
411 static void
412 vr_mii_statchg(struct ifnet *ifp)
413 {
414 	struct vr_softc *sc = ifp->if_softc;
415 	int i;
416 
417 	/*
418 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
419 	 * register, we first have to put the transmit and/or receive logic
420 	 * in the idle state.
421 	 */
422 	if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
423 	    IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
424 		sc->vr_link = true;
425 
426 		if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON | VR_CMD_RX_ON))
427 			VR_CLRBIT16(sc, VR_COMMAND,
428 			    (VR_CMD_TX_ON | VR_CMD_RX_ON));
429 
430 		if (sc->vr_mii.mii_media_active & IFM_FDX)
431 			VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
432 		else
433 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
434 
435 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
436 	} else {
437 		sc->vr_link = false;
438 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
439 		for (i = VR_TIMEOUT; i > 0; i--) {
440 			delay(10);
441 			if (!(CSR_READ_2(sc, VR_COMMAND) &
442 			    (VR_CMD_TX_ON | VR_CMD_RX_ON)))
443 				break;
444 		}
445 		if (i == 0) {
446 #ifdef VR_DEBUG
447 			aprint_error_dev(sc->vr_dev, "rx shutdown error!\n");
448 #endif
449 			sc->vr_flags |= VR_F_RESTART;
450 		}
451 	}
452 }
453 
454 #define	vr_calchash(addr) \
455 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
456 
457 /*
458  * Program the 64-bit multicast hash filter.
459  */
460 static void
461 vr_setmulti(struct vr_softc *sc)
462 {
463 	struct ethercom *ec = &sc->vr_ec;
464 	struct ifnet *ifp = &ec->ec_if;
465 	int h = 0;
466 	uint32_t hashes[2] = { 0, 0 };
467 	struct ether_multistep step;
468 	struct ether_multi *enm;
469 	int mcnt = 0;
470 	uint8_t rxfilt;
471 
472 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
473 
474 	if (ifp->if_flags & IFF_PROMISC) {
475 allmulti:
476 		ifp->if_flags |= IFF_ALLMULTI;
477 		rxfilt |= VR_RXCFG_RX_MULTI;
478 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
479 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
480 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
481 		return;
482 	}
483 
484 	/* first, zot all the existing hash bits */
485 	CSR_WRITE_4(sc, VR_MAR0, 0);
486 	CSR_WRITE_4(sc, VR_MAR1, 0);
487 
488 	/* now program new ones */
489 	ETHER_LOCK(ec);
490 	ETHER_FIRST_MULTI(step, ec, enm);
491 	while (enm != NULL) {
492 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
493 		    ETHER_ADDR_LEN) != 0) {
494 			ETHER_UNLOCK(ec);
495 			goto allmulti;
496 		}
497 
498 		h = vr_calchash(enm->enm_addrlo);
499 
500 		if (h < 32)
501 			hashes[0] |= (1 << h);
502 		else
503 			hashes[1] |= (1 << (h - 32));
504 		ETHER_NEXT_MULTI(step, enm);
505 		mcnt++;
506 	}
507 	ETHER_UNLOCK(ec);
508 
509 	ifp->if_flags &= ~IFF_ALLMULTI;
510 
511 	if (mcnt)
512 		rxfilt |= VR_RXCFG_RX_MULTI;
513 	else
514 		rxfilt &= ~VR_RXCFG_RX_MULTI;
515 
516 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
517 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
518 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
519 }
520 
521 static void
522 vr_reset(struct vr_softc *sc)
523 {
524 	int i;
525 
526 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
527 
528 	for (i = 0; i < VR_TIMEOUT; i++) {
529 		DELAY(10);
530 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
531 			break;
532 	}
533 	if (i == VR_TIMEOUT) {
534 		if (sc->vr_revid < REV_ID_VT3065_A) {
535 			aprint_error_dev(sc->vr_dev,
536 			    "reset never completed!\n");
537 		} else {
538 			/* Use newer force reset command */
539 			aprint_normal_dev(sc->vr_dev,
540 			    "using force reset command.\n");
541 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
542 		}
543 	}
544 
545 	/* Wait a little while for the chip to get its brains in order. */
546 	DELAY(1000);
547 }
548 
549 /*
550  * Initialize an RX descriptor and attach an MBUF cluster.
551  * Note: the length fields are only 11 bits wide, which means the
552  * largest size we can specify is 2047. This is important because
553  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
554  * overflow the field and make a mess.
555  */
556 static int
557 vr_add_rxbuf(struct vr_softc *sc, int i)
558 {
559 	struct vr_descsoft *ds = VR_DSRX(sc, i);
560 	struct mbuf *m_new;
561 	int error;
562 
563 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
564 	if (m_new == NULL)
565 		return (ENOBUFS);
566 
567 	MCLGET(m_new, M_DONTWAIT);
568 	if ((m_new->m_flags & M_EXT) == 0) {
569 		m_freem(m_new);
570 		return (ENOBUFS);
571 	}
572 
573 	if (ds->ds_mbuf != NULL)
574 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
575 
576 	ds->ds_mbuf = m_new;
577 
578 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
579 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
580 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
581 	if (error) {
582 		aprint_error_dev(sc->vr_dev,
583 		    "unable to load rx DMA map %d, error = %d\n", i, error);
584 		panic("vr_add_rxbuf");		/* XXX */
585 	}
586 
587 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
588 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
589 
590 	VR_INIT_RXDESC(sc, i);
591 
592 	return (0);
593 }
594 
595 /*
596  * A frame has been uploaded: pass the resulting mbuf chain up to
597  * the higher level protocols.
598  */
599 static void
600 vr_rxeof(struct vr_softc *sc)
601 {
602 	struct mbuf *m;
603 	struct ifnet *ifp;
604 	struct vr_desc *d;
605 	struct vr_descsoft *ds;
606 	int i, total_len;
607 	uint32_t rxstat;
608 
609 	ifp = &sc->vr_ec.ec_if;
610 
611 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
612 		d = VR_CDRX(sc, i);
613 		ds = VR_DSRX(sc, i);
614 
615 		VR_CDRXSYNC(sc, i,
616 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
617 
618 		rxstat = le32toh(d->vr_status);
619 
620 		if (rxstat & VR_RXSTAT_OWN) {
621 			/*
622 			 * We have processed all of the receive buffers.
623 			 */
624 			break;
625 		}
626 
627 		/*
628 		 * If an error occurs, update stats, clear the
629 		 * status word and leave the mbuf cluster in place:
630 		 * it should simply get re-used next time this descriptor
631 		 * comes up in the ring.
632 		 */
633 		if (rxstat & VR_RXSTAT_RXERR) {
634 			const char *errstr;
635 
636 			if_statinc(ifp, if_ierrors);
637 			switch (rxstat & 0x000000FF) {
638 			case VR_RXSTAT_CRCERR:
639 				errstr = "crc error";
640 				break;
641 			case VR_RXSTAT_FRAMEALIGNERR:
642 				errstr = "frame alignment error";
643 				break;
644 			case VR_RXSTAT_FIFOOFLOW:
645 				errstr = "FIFO overflow";
646 				break;
647 			case VR_RXSTAT_GIANT:
648 				errstr = "received giant packet";
649 				break;
650 			case VR_RXSTAT_RUNT:
651 				errstr = "received runt packet";
652 				break;
653 			case VR_RXSTAT_BUSERR:
654 				errstr = "system bus error";
655 				break;
656 			case VR_RXSTAT_BUFFERR:
657 				errstr = "rx buffer error";
658 				break;
659 			default:
660 				errstr = "unknown rx error";
661 				break;
662 			}
663 			aprint_error_dev(sc->vr_dev, "receive error: %s\n",
664 			    errstr);
665 
666 			VR_INIT_RXDESC(sc, i);
667 
668 			continue;
669 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
670 			   !(rxstat & VR_RXSTAT_LASTFRAG)) {
671 			/*
672 			 * This driver expects to receive whole packets every
673 			 * time.  In case we receive a fragment that is not
674 			 * a complete packet, we discard it.
675 			 */
676 			if_statinc(ifp, if_ierrors);
677 
678 			aprint_error_dev(sc->vr_dev,
679 			    "receive error: incomplete frame; "
680 			    "size = %d, status = 0x%x\n",
681 			    VR_RXBYTES(le32toh(d->vr_status)), rxstat);
682 
683 			VR_INIT_RXDESC(sc, i);
684 
685 			continue;
686 		}
687 
688 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
689 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
690 
691 		/* No errors; receive the packet. */
692 		total_len = VR_RXBYTES(le32toh(d->vr_status));
693 #ifdef DIAGNOSTIC
694 		if (total_len == 0) {
695 			/*
696 			 * If we receive a zero-length packet, we probably
697 			 * missed to handle an error condition above.
698 			 * Discard it to avoid a later crash.
699 			 */
700 			if_statinc(ifp, if_ierrors);
701 
702 			aprint_error_dev(sc->vr_dev,
703 			    "receive error: zero-length packet; "
704 			    "status = 0x%x\n", rxstat);
705 
706 			VR_INIT_RXDESC(sc, i);
707 
708 			continue;
709 		}
710 #endif
711 
712 		/*
713 		 * The Rhine chip includes the CRC with every packet.
714 		 * Trim it off here.
715 		 */
716 		total_len -= ETHER_CRC_LEN;
717 
718 #ifdef __NO_STRICT_ALIGNMENT
719 		/*
720 		 * If the packet is small enough to fit in a
721 		 * single header mbuf, allocate one and copy
722 		 * the data into it.  This greatly reduces
723 		 * memory consumption when we receive lots
724 		 * of small packets.
725 		 *
726 		 * Otherwise, we add a new buffer to the receive
727 		 * chain.  If this fails, we drop the packet and
728 		 * recycle the old buffer.
729 		 */
730 		if (vr_copy_small != 0 && total_len <= MHLEN) {
731 			MGETHDR(m, M_DONTWAIT, MT_DATA);
732 			if (m == NULL)
733 				goto dropit;
734 			memcpy(mtod(m, void *),
735 			    mtod(ds->ds_mbuf, void *), total_len);
736 			VR_INIT_RXDESC(sc, i);
737 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
738 			    ds->ds_dmamap->dm_mapsize,
739 			    BUS_DMASYNC_PREREAD);
740 		} else {
741 			m = ds->ds_mbuf;
742 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
743  dropit:
744 				if_statinc(ifp, if_ierrors);
745 				VR_INIT_RXDESC(sc, i);
746 				bus_dmamap_sync(sc->vr_dmat,
747 				    ds->ds_dmamap, 0,
748 				    ds->ds_dmamap->dm_mapsize,
749 				    BUS_DMASYNC_PREREAD);
750 				continue;
751 			}
752 		}
753 #else
754 		/*
755 		 * The Rhine's packet buffers must be 4-byte aligned.
756 		 * But this means that the data after the Ethernet header
757 		 * is misaligned.  We must allocate a new buffer and
758 		 * copy the data, shifted forward 2 bytes.
759 		 */
760 		MGETHDR(m, M_DONTWAIT, MT_DATA);
761 		if (m == NULL) {
762  dropit:
763 			if_statinc(ifp, if_ierrors);
764 			VR_INIT_RXDESC(sc, i);
765 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
766 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
767 			continue;
768 		}
769 		if (total_len > (MHLEN - 2)) {
770 			MCLGET(m, M_DONTWAIT);
771 			if ((m->m_flags & M_EXT) == 0) {
772 				m_freem(m);
773 				goto dropit;
774 			}
775 		}
776 		m->m_data += 2;
777 
778 		/*
779 		 * Note that we use clusters for incoming frames, so the
780 		 * buffer is virtually contiguous.
781 		 */
782 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
783 		    total_len);
784 
785 		/* Allow the receive descriptor to continue using its mbuf. */
786 		VR_INIT_RXDESC(sc, i);
787 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
788 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
789 #endif /* __NO_STRICT_ALIGNMENT */
790 
791 		m_set_rcvif(m, ifp);
792 		m->m_pkthdr.len = m->m_len = total_len;
793 		/* Pass it on. */
794 		if_percpuq_enqueue(ifp->if_percpuq, m);
795 	}
796 
797 	/* Update the receive pointer. */
798 	sc->vr_rxptr = i;
799 }
800 
801 void
802 vr_rxeoc(struct vr_softc *sc)
803 {
804 	struct ifnet *ifp;
805 	int i;
806 
807 	ifp = &sc->vr_ec.ec_if;
808 
809 	if_statinc(ifp, if_ierrors);
810 
811 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
812 	for (i = 0; i < VR_TIMEOUT; i++) {
813 		DELAY(10);
814 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
815 			break;
816 	}
817 	if (i == VR_TIMEOUT) {
818 		/* XXX need reset? */
819 		aprint_error_dev(sc->vr_dev, "RX shutdown never completed\n");
820 	}
821 
822 	vr_rxeof(sc);
823 
824 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
825 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
826 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
827 }
828 
829 /*
830  * A frame was downloaded to the chip. It's safe for us to clean up
831  * the list buffers.
832  */
833 static void
834 vr_txeof(struct vr_softc *sc)
835 {
836 	struct ifnet *ifp = &sc->vr_ec.ec_if;
837 	struct vr_desc *d;
838 	struct vr_descsoft *ds;
839 	uint32_t txstat;
840 	int i, j;
841 
842 	ifp->if_flags &= ~IFF_OACTIVE;
843 
844 	/*
845 	 * Go through our tx list and free mbufs for those
846 	 * frames that have been transmitted.
847 	 */
848 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
849 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
850 		d = VR_CDTX(sc, i);
851 		ds = VR_DSTX(sc, i);
852 
853 		VR_CDTXSYNC(sc, i,
854 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
855 
856 		txstat = le32toh(d->vr_status);
857 
858 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
859 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
860 			for (j = 0; j < VR_TIMEOUT; j++) {
861 				DELAY(10);
862 				if ((CSR_READ_2(sc, VR_COMMAND) &
863 				    VR_CMD_TX_ON) == 0)
864 					break;
865 			}
866 			if (j == VR_TIMEOUT) {
867 				/* XXX need reset? */
868 				aprint_error_dev(sc->vr_dev,
869 				    "TX shutdown never completed\n");
870 			}
871 			d->vr_status = htole32(VR_TXSTAT_OWN);
872 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
873 			break;
874 		}
875 
876 		if (txstat & VR_TXSTAT_OWN)
877 			break;
878 
879 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
880 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
881 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
882 		m_freem(ds->ds_mbuf);
883 		ds->ds_mbuf = NULL;
884 
885 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
886 		if (txstat & VR_TXSTAT_ERRSUM) {
887 			if_statinc_ref(nsr, if_oerrors);
888 			if (txstat & VR_TXSTAT_DEFER)
889 				if_statinc_ref(nsr, if_collisions);
890 			if (txstat & VR_TXSTAT_LATECOLL)
891 				if_statinc_ref(nsr, if_collisions);
892 		}
893 
894 		if_statadd_ref(nsr, if_collisions,
895 		    (txstat & VR_TXSTAT_COLLCNT) >> 3);
896 		if_statinc_ref(nsr, if_opackets);
897 		IF_STAT_PUTREF(ifp);
898 	}
899 
900 	/* Update the dirty transmit buffer pointer. */
901 	sc->vr_txdirty = i;
902 
903 	/*
904 	 * Cancel the watchdog timer if there are no pending
905 	 * transmissions.
906 	 */
907 	if (sc->vr_txpending == 0)
908 		ifp->if_timer = 0;
909 }
910 
911 static int
912 vr_intr(void *arg)
913 {
914 	struct vr_softc *sc;
915 	struct ifnet *ifp;
916 	uint16_t status;
917 	int handled = 0, dotx = 0;
918 
919 	sc = arg;
920 	ifp = &sc->vr_ec.ec_if;
921 
922 	/* Suppress unwanted interrupts. */
923 	if ((ifp->if_flags & IFF_UP) == 0) {
924 		vr_stop(ifp, 1);
925 		return (0);
926 	}
927 
928 	/* Disable interrupts. */
929 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
930 
931 	for (;;) {
932 		status = CSR_READ_2(sc, VR_ISR);
933 		if (status)
934 			CSR_WRITE_2(sc, VR_ISR, status);
935 
936 		if ((status & VR_INTRS) == 0)
937 			break;
938 
939 		handled = 1;
940 
941 		rnd_add_uint32(&sc->rnd_source, status);
942 
943 		if (status & VR_ISR_RX_OK)
944 			vr_rxeof(sc);
945 
946 		if (status & VR_ISR_RX_DROPPED) {
947 			aprint_error_dev(sc->vr_dev, "rx packet lost\n");
948 			if_statinc(ifp, if_ierrors);
949 		}
950 
951 		if (status &
952 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
953 			vr_rxeoc(sc);
954 
955 
956 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
957 			if (status & VR_ISR_BUSERR)
958 				aprint_error_dev(sc->vr_dev, "PCI bus error\n");
959 			if (status & VR_ISR_TX_UNDERRUN)
960 				aprint_error_dev(sc->vr_dev,
961 				    "transmit underrun\n");
962 			/* vr_init() calls vr_start() */
963 			dotx = 0;
964 			(void)vr_init(ifp);
965 
966 		}
967 
968 		if (status & VR_ISR_TX_OK) {
969 			dotx = 1;
970 			vr_txeof(sc);
971 		}
972 
973 		if (status &
974 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
975 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
976 				aprint_error_dev(sc->vr_dev,
977 				    "transmit aborted\n");
978 			if (status & VR_ISR_TX_UDFI)
979 				aprint_error_dev(sc->vr_dev,
980 				    "transmit underflow\n");
981 			if_statinc(ifp, if_oerrors);
982 			dotx = 1;
983 			vr_txeof(sc);
984 			if (sc->vr_txpending) {
985 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
986 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
987 			}
988 		}
989 	}
990 
991 	/* Re-enable interrupts. */
992 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
993 
994 	if (dotx)
995 		if_schedule_deferred_start(ifp);
996 
997 	return (handled);
998 }
999 
1000 /*
1001  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1002  * to the mbuf data regions directly in the transmit lists. We also save a
1003  * copy of the pointers since the transmit list fragment pointers are
1004  * physical addresses.
1005  */
1006 static void
1007 vr_start(struct ifnet *ifp)
1008 {
1009 	struct vr_softc *sc = ifp->if_softc;
1010 	struct mbuf *m0, *m;
1011 	struct vr_desc *d;
1012 	struct vr_descsoft *ds;
1013 	int error, firsttx, nexttx, opending;
1014 
1015 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1016 		return;
1017 	if (sc->vr_link == false)
1018 		return;
1019 
1020 	/*
1021 	 * Remember the previous txpending and the first transmit
1022 	 * descriptor we use.
1023 	 */
1024 	opending = sc->vr_txpending;
1025 	firsttx = VR_NEXTTX(sc->vr_txlast);
1026 
1027 	/*
1028 	 * Loop through the send queue, setting up transmit descriptors
1029 	 * until we drain the queue, or use up all available transmit
1030 	 * descriptors.
1031 	 */
1032 	while (sc->vr_txpending < VR_NTXDESC) {
1033 		/*
1034 		 * Grab a packet off the queue.
1035 		 */
1036 		IFQ_POLL(&ifp->if_snd, m0);
1037 		if (m0 == NULL)
1038 			break;
1039 		m = NULL;
1040 
1041 		/*
1042 		 * Get the next available transmit descriptor.
1043 		 */
1044 		nexttx = VR_NEXTTX(sc->vr_txlast);
1045 		d = VR_CDTX(sc, nexttx);
1046 		ds = VR_DSTX(sc, nexttx);
1047 
1048 		/*
1049 		 * Load the DMA map.  If this fails, the packet didn't
1050 		 * fit in one DMA segment, and we need to copy.  Note,
1051 		 * the packet must also be aligned.
1052 		 * if the packet is too small, copy it too, so we're sure
1053 		 * we have enough room for the pad buffer.
1054 		 */
1055 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1056 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1057 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1058 		     BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1059 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1060 			if (m == NULL) {
1061 				aprint_error_dev(sc->vr_dev,
1062 				    "unable to allocate Tx mbuf\n");
1063 				break;
1064 			}
1065 			if (m0->m_pkthdr.len > MHLEN) {
1066 				MCLGET(m, M_DONTWAIT);
1067 				if ((m->m_flags & M_EXT) == 0) {
1068 					aprint_error_dev(sc->vr_dev,
1069 					    "unable to allocate Tx cluster\n");
1070 					m_freem(m);
1071 					break;
1072 				}
1073 			}
1074 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1075 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1076 			/*
1077 			 * The Rhine doesn't auto-pad, so we have to do this
1078 			 * ourselves.
1079 			 */
1080 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1081 				memset(mtod(m, char *) + m0->m_pkthdr.len,
1082 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1083 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1084 			}
1085 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1086 			    ds->ds_dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1087 			if (error) {
1088 				m_freem(m);
1089 				aprint_error_dev(sc->vr_dev, "unable to load "
1090 				    "Tx buffer, error = %d\n", error);
1091 				break;
1092 			}
1093 		}
1094 
1095 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1096 		if (m != NULL) {
1097 			m_freem(m0);
1098 			m0 = m;
1099 		}
1100 
1101 		/* Sync the DMA map. */
1102 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1103 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1104 
1105 		/*
1106 		 * Store a pointer to the packet so we can free it later.
1107 		 */
1108 		ds->ds_mbuf = m0;
1109 
1110 		/*
1111 		 * If there's a BPF listener, bounce a copy of this frame
1112 		 * to him.
1113 		 */
1114 		bpf_mtap(ifp, m0, BPF_D_OUT);
1115 
1116 		/*
1117 		 * Fill in the transmit descriptor.
1118 		 */
1119 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1120 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1121 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1122 
1123 		/*
1124 		 * If this is the first descriptor we're enqueuing,
1125 		 * don't give it to the Rhine yet.  That could cause
1126 		 * a race condition.  We'll do it below.
1127 		 */
1128 		if (nexttx == firsttx)
1129 			d->vr_status = 0;
1130 		else
1131 			d->vr_status = htole32(VR_TXSTAT_OWN);
1132 
1133 		VR_CDTXSYNC(sc, nexttx,
1134 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1135 
1136 		/* Advance the tx pointer. */
1137 		sc->vr_txpending++;
1138 		sc->vr_txlast = nexttx;
1139 	}
1140 
1141 	if (sc->vr_txpending == VR_NTXDESC) {
1142 		/* No more slots left; notify upper layer. */
1143 		ifp->if_flags |= IFF_OACTIVE;
1144 	}
1145 
1146 	if (sc->vr_txpending != opending) {
1147 		/*
1148 		 * We enqueued packets.  If the transmitter was idle,
1149 		 * reset the txdirty pointer.
1150 		 */
1151 		if (opending == 0)
1152 			sc->vr_txdirty = firsttx;
1153 
1154 		/*
1155 		 * Cause a transmit interrupt to happen on the
1156 		 * last packet we enqueued.
1157 		 */
1158 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1159 		VR_CDTXSYNC(sc, sc->vr_txlast,
1160 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1161 
1162 		/*
1163 		 * The entire packet chain is set up.  Give the
1164 		 * first descriptor to the Rhine now.
1165 		 */
1166 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1167 		VR_CDTXSYNC(sc, firsttx,
1168 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1169 
1170 		/* Start the transmitter. */
1171 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1172 
1173 		/* Set the watchdog timer in case the chip flakes out. */
1174 		ifp->if_timer = 5;
1175 	}
1176 }
1177 
1178 /*
1179  * Initialize the interface.  Must be called at splnet.
1180  */
1181 static int
1182 vr_init(struct ifnet *ifp)
1183 {
1184 	struct vr_softc *sc = ifp->if_softc;
1185 	struct vr_desc *d;
1186 	struct vr_descsoft *ds;
1187 	int i, error = 0;
1188 
1189 	/* Cancel pending I/O. */
1190 	vr_stop(ifp, 0);
1191 
1192 	/* Reset the Rhine to a known state. */
1193 	vr_reset(sc);
1194 
1195 	/* set DMA length in BCR0 and BCR1 */
1196 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1197 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1198 
1199 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1200 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1201 
1202 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1203 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1204 
1205 	/* set DMA threshold length in RXCFG and TXCFG */
1206 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1207 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1208 
1209 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1210 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1211 
1212 	/*
1213 	 * Initialize the transmit descriptor ring.  txlast is initialized
1214 	 * to the end of the list so that it will wrap around to the first
1215 	 * descriptor when the first packet is transmitted.
1216 	 */
1217 	for (i = 0; i < VR_NTXDESC; i++) {
1218 		d = VR_CDTX(sc, i);
1219 		memset(d, 0, sizeof(struct vr_desc));
1220 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1221 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1222 	}
1223 	sc->vr_txpending = 0;
1224 	sc->vr_txdirty = 0;
1225 	sc->vr_txlast = VR_NTXDESC - 1;
1226 
1227 	/*
1228 	 * Initialize the receive descriptor ring.
1229 	 */
1230 	for (i = 0; i < VR_NRXDESC; i++) {
1231 		ds = VR_DSRX(sc, i);
1232 		if (ds->ds_mbuf == NULL) {
1233 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1234 				aprint_error_dev(sc->vr_dev,
1235 				    "unable to allocate or map rx buffer %d, "
1236 				    "error = %d\n", i, error);
1237 				/*
1238 				 * XXX Should attempt to run with fewer receive
1239 				 * XXX buffers instead of just failing.
1240 				 */
1241 				vr_rxdrain(sc);
1242 				goto out;
1243 			}
1244 		} else
1245 			VR_INIT_RXDESC(sc, i);
1246 	}
1247 	sc->vr_rxptr = 0;
1248 
1249 	/* If we want promiscuous mode, set the allframes bit. */
1250 	if (ifp->if_flags & IFF_PROMISC)
1251 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1252 	else
1253 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1254 
1255 	/* Set capture broadcast bit to capture broadcast frames. */
1256 	if (ifp->if_flags & IFF_BROADCAST)
1257 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1258 	else
1259 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1260 
1261 	/* Program the multicast filter, if necessary. */
1262 	vr_setmulti(sc);
1263 
1264 	/* Give the transmit and receive rings to the Rhine. */
1265 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1266 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1267 
1268 	/* Set current media. */
1269 	sc->vr_link = true;
1270 	if ((error = ether_mediachange(ifp)) != 0)
1271 		goto out;
1272 
1273 	/* Enable receiver and transmitter. */
1274 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL | VR_CMD_START |
1275 				    VR_CMD_TX_ON | VR_CMD_RX_ON |
1276 				    VR_CMD_RX_GO);
1277 
1278 	/* Enable interrupts. */
1279 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1280 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1281 
1282 	ifp->if_flags |= IFF_RUNNING;
1283 	ifp->if_flags &= ~IFF_OACTIVE;
1284 
1285 	/* Start one second timer. */
1286 	callout_schedule(&sc->vr_tick_ch, hz);
1287 
1288 	/* Attempt to start output on the interface. */
1289 	vr_start(ifp);
1290 
1291  out:
1292 	if (error)
1293 		aprint_error_dev(sc->vr_dev, "interface not running\n");
1294 	return (error);
1295 }
1296 
1297 static int
1298 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1299 {
1300 	struct vr_softc *sc = ifp->if_softc;
1301 	int s, error = 0;
1302 
1303 	s = splnet();
1304 
1305 	switch (command) {
1306 	case SIOCSIFFLAGS:
1307 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1308 			break;
1309 
1310 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1311 		case IFF_RUNNING:
1312 			vr_stop(ifp, 1);
1313 			break;
1314 		case IFF_UP:
1315 			vr_init(ifp);
1316 			break;
1317 		case IFF_UP | IFF_RUNNING:
1318 			if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
1319 				vr_setmulti(sc);
1320 			else
1321 				vr_init(ifp);
1322 			break;
1323 		}
1324 		sc->vr_if_flags = ifp->if_flags;
1325 		break;
1326 	default:
1327 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1328 			break;
1329 		error = 0;
1330 		if (command == SIOCADDMULTI || command == SIOCDELMULTI)
1331 			vr_setmulti(sc);
1332 	}
1333 	splx(s);
1334 
1335 	return error;
1336 }
1337 
1338 static void
1339 vr_watchdog(struct ifnet *ifp)
1340 {
1341 	struct vr_softc *sc = ifp->if_softc;
1342 
1343 	aprint_error_dev(sc->vr_dev, "device timeout\n");
1344 	if_statinc(ifp, if_oerrors);
1345 
1346 	(void) vr_init(ifp);
1347 }
1348 
1349 /*
1350  * One second timer, used to tick MII.
1351  */
1352 static void
1353 vr_tick(void *arg)
1354 {
1355 	struct vr_softc *sc = arg;
1356 	int s;
1357 
1358 	s = splnet();
1359 	if (sc->vr_flags & VR_F_RESTART) {
1360 		aprint_normal_dev(sc->vr_dev, "restarting\n");
1361 		vr_init(&sc->vr_ec.ec_if);
1362 		sc->vr_flags &= ~VR_F_RESTART;
1363 	}
1364 	mii_tick(&sc->vr_mii);
1365 	splx(s);
1366 
1367 	callout_schedule(&sc->vr_tick_ch, hz);
1368 }
1369 
1370 /*
1371  * Drain the receive queue.
1372  */
1373 static void
1374 vr_rxdrain(struct vr_softc *sc)
1375 {
1376 	struct vr_descsoft *ds;
1377 	int i;
1378 
1379 	for (i = 0; i < VR_NRXDESC; i++) {
1380 		ds = VR_DSRX(sc, i);
1381 		if (ds->ds_mbuf != NULL) {
1382 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1383 			m_freem(ds->ds_mbuf);
1384 			ds->ds_mbuf = NULL;
1385 		}
1386 	}
1387 }
1388 
1389 /*
1390  * Stop the adapter and free any mbufs allocated to the
1391  * transmit lists.
1392  */
1393 static void
1394 vr_stop(struct ifnet *ifp, int disable)
1395 {
1396 	struct vr_softc *sc = ifp->if_softc;
1397 	struct vr_descsoft *ds;
1398 	int i;
1399 
1400 	/* Cancel one second timer. */
1401 	callout_stop(&sc->vr_tick_ch);
1402 
1403 	/* Down the MII. */
1404 	mii_down(&sc->vr_mii);
1405 
1406 	ifp = &sc->vr_ec.ec_if;
1407 	ifp->if_timer = 0;
1408 
1409 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1410 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON | VR_CMD_TX_ON));
1411 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1412 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1413 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1414 
1415 	/*
1416 	 * Release any queued transmit buffers.
1417 	 */
1418 	for (i = 0; i < VR_NTXDESC; i++) {
1419 		ds = VR_DSTX(sc, i);
1420 		if (ds->ds_mbuf != NULL) {
1421 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1422 			m_freem(ds->ds_mbuf);
1423 			ds->ds_mbuf = NULL;
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * Mark the interface down and cancel the watchdog timer.
1429 	 */
1430 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1431 	ifp->if_timer = 0;
1432 
1433 	if (disable)
1434 		vr_rxdrain(sc);
1435 }
1436 
1437 static int	vr_probe(device_t, cfdata_t, void *);
1438 static void	vr_attach(device_t, device_t, void *);
1439 static bool	vr_shutdown(device_t, int);
1440 
1441 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1442     vr_probe, vr_attach, NULL, NULL);
1443 
1444 static int
1445 vr_probe(device_t parent, cfdata_t match, void *aux)
1446 {
1447 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1448 
1449 	return pci_compatible_match(pa, compat_data);
1450 }
1451 
1452 /*
1453  * Stop all chip I/O so that the kernel's probe routines don't
1454  * get confused by errant DMAs when rebooting.
1455  */
1456 static bool
1457 vr_shutdown(device_t self, int howto)
1458 {
1459 	struct vr_softc *sc = device_private(self);
1460 
1461 	vr_stop(&sc->vr_ec.ec_if, 1);
1462 
1463 	return true;
1464 }
1465 
1466 /*
1467  * Attach the interface. Allocate softc structures, do ifmedia
1468  * setup and ethernet/BPF attach.
1469  */
1470 static void
1471 vr_attach(device_t parent, device_t self, void *aux)
1472 {
1473 	struct vr_softc *sc = device_private(self);
1474 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1475 	bus_dma_segment_t seg;
1476 	uint32_t reg;
1477 	struct ifnet *ifp;
1478 	struct mii_data * const mii = &sc->vr_mii;
1479 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
1480 	int i, rseg, error;
1481 	char intrbuf[PCI_INTRSTR_LEN];
1482 
1483 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1484 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1485 
1486 	sc->vr_dev = self;
1487 	sc->vr_pc = pa->pa_pc;
1488 	sc->vr_tag = pa->pa_tag;
1489 	sc->vr_id = pa->pa_id;
1490 	callout_init(&sc->vr_tick_ch, 0);
1491 	callout_setfunc(&sc->vr_tick_ch, vr_tick, sc);
1492 
1493 	pci_aprint_devinfo(pa, NULL);
1494 
1495 	/*
1496 	 * Handle power management nonsense.
1497 	 */
1498 
1499 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1500 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1501 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1502 
1503 	/* power up chip */
1504 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1505 	    vr_restore_state)) && error != EOPNOTSUPP) {
1506 		aprint_error_dev(self, "cannot activate %d\n", error);
1507 		return;
1508 	}
1509 
1510 	/* Make sure bus mastering is enabled. */
1511 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1512 	reg |= PCI_COMMAND_MASTER_ENABLE;
1513 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1514 
1515 	/* Get revision */
1516 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1517 
1518 	/*
1519 	 * Map control/status registers.
1520 	 */
1521 	{
1522 		bus_space_tag_t iot, memt;
1523 		bus_space_handle_t ioh, memh;
1524 		int ioh_valid, memh_valid;
1525 		pci_intr_handle_t intrhandle;
1526 		const char *intrstr;
1527 
1528 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1529 			PCI_MAPREG_TYPE_IO, 0,
1530 			&iot, &ioh, NULL, NULL) == 0);
1531 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1532 			PCI_MAPREG_TYPE_MEM |
1533 			PCI_MAPREG_MEM_TYPE_32BIT,
1534 			0, &memt, &memh, NULL, NULL) == 0);
1535 #if defined(VR_USEIOSPACE)
1536 		if (ioh_valid) {
1537 			sc->vr_bst = iot;
1538 			sc->vr_bsh = ioh;
1539 		} else if (memh_valid) {
1540 			sc->vr_bst = memt;
1541 			sc->vr_bsh = memh;
1542 		}
1543 #else
1544 		if (memh_valid) {
1545 			sc->vr_bst = memt;
1546 			sc->vr_bsh = memh;
1547 		} else if (ioh_valid) {
1548 			sc->vr_bst = iot;
1549 			sc->vr_bsh = ioh;
1550 		}
1551 #endif
1552 		else {
1553 			aprint_error_dev(self,
1554 			    "unable to map device registers\n");
1555 			return;
1556 		}
1557 
1558 		/* Allocate interrupt */
1559 		if (pci_intr_map(pa, &intrhandle)) {
1560 			aprint_error_dev(self, "couldn't map interrupt\n");
1561 			return;
1562 		}
1563 		intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
1564 		    sizeof(intrbuf));
1565 		sc->vr_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle,
1566 		    IPL_NET, vr_intr, sc, device_xname(self));
1567 		if (sc->vr_ih == NULL) {
1568 			aprint_error_dev(self, "couldn't establish interrupt");
1569 			if (intrstr != NULL)
1570 				aprint_error(" at %s", intrstr);
1571 			aprint_error("\n");
1572 			return;
1573 		}
1574 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1575 	}
1576 
1577 	/*
1578 	 * Windows may put the chip in suspend mode when it
1579 	 * shuts down. Be sure to kick it in the head to wake it
1580 	 * up again.
1581 	 *
1582 	 * Don't touch this register on VT3043 since it causes
1583 	 * kernel MCHK trap on macppc.
1584 	 * (Note some VT86C100A chip returns a product ID of VT3043)
1585 	 */
1586 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1587 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1588 
1589 	/* Reset the adapter. */
1590 	vr_reset(sc);
1591 
1592 	/*
1593 	 * Get station address. The way the Rhine chips work,
1594 	 * you're not allowed to directly access the EEPROM once
1595 	 * they've been programmed a special way. Consequently,
1596 	 * we need to read the node address from the PAR registers.
1597 	 *
1598 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1599 	 *         of the *whole* EEPROM, not just the MAC address. This is
1600 	 *         pretty pointless since the chip does this automatically
1601 	 *         at powerup/reset.
1602 	 *         I suspect the same thing applies to the other Rhine
1603 	 *         variants, but in the absence of a data sheet for those
1604 	 *         (and the lack of anyone else noticing the problems this
1605 	 *         causes) I'm going to retain the old behaviour for the
1606 	 *         other parts.
1607 	 *         In some cases, the chip really does startup without having
1608 	 *         read the EEPROM (kern/34812). To handle this case, we force
1609 	 *         a reload if we see an all-zeroes MAC address.
1610 	 */
1611 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1612 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1613 
1614 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1615 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1616 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1617 		DELAY(200);
1618 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1619 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1620 	}
1621 
1622 	/*
1623 	 * A Rhine chip was detected. Inform the world.
1624 	 */
1625 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1626 
1627 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1628 
1629 	sc->vr_dmat = pa->pa_dmat;
1630 
1631 	/*
1632 	 * Allocate the control data structures, and create and load
1633 	 * the DMA map for it.
1634 	 */
1635 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1636 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1637 	    0)) != 0) {
1638 		aprint_error_dev(self,
1639 		    "unable to allocate control data, error = %d\n", error);
1640 		goto fail_0;
1641 	}
1642 
1643 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1644 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1645 	    BUS_DMA_COHERENT)) != 0) {
1646 		aprint_error_dev(self,
1647 		    "unable to map control data, error = %d\n", error);
1648 		goto fail_1;
1649 	}
1650 
1651 	if ((error = bus_dmamap_create(sc->vr_dmat,
1652 	    sizeof(struct vr_control_data), 1,
1653 	    sizeof(struct vr_control_data), 0, 0,
1654 	    &sc->vr_cddmamap)) != 0) {
1655 		aprint_error_dev(self,
1656 		    "unable to create control data DMA map, error = %d\n",
1657 		    error);
1658 		goto fail_2;
1659 	}
1660 
1661 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1662 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1663 	    0)) != 0) {
1664 		aprint_error_dev(self,
1665 		    "unable to load control data DMA map, error = %d\n",
1666 		    error);
1667 		goto fail_3;
1668 	}
1669 
1670 	/*
1671 	 * Create the transmit buffer DMA maps.
1672 	 */
1673 	for (i = 0; i < VR_NTXDESC; i++) {
1674 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1675 		    1, MCLBYTES, 0, 0,
1676 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1677 			aprint_error_dev(self,
1678 			    "unable to create tx DMA map %d, error = %d\n", i,
1679 			    error);
1680 			goto fail_4;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * Create the receive buffer DMA maps.
1686 	 */
1687 	for (i = 0; i < VR_NRXDESC; i++) {
1688 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1689 		    MCLBYTES, 0, 0,
1690 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1691 			aprint_error_dev(self,
1692 			    "unable to create rx DMA map %d, error = %d\n", i,
1693 			    error);
1694 			goto fail_5;
1695 		}
1696 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1697 	}
1698 
1699 	ifp = &sc->vr_ec.ec_if;
1700 	ifp->if_softc = sc;
1701 	ifp->if_mtu = ETHERMTU;
1702 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1703 	ifp->if_ioctl = vr_ioctl;
1704 	ifp->if_start = vr_start;
1705 	ifp->if_watchdog = vr_watchdog;
1706 	ifp->if_init = vr_init;
1707 	ifp->if_stop = vr_stop;
1708 	IFQ_SET_READY(&ifp->if_snd);
1709 
1710 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1711 
1712 	/*
1713 	 * Initialize MII/media info.
1714 	 */
1715 	mii->mii_ifp = ifp;
1716 	mii->mii_readreg = vr_mii_readreg;
1717 	mii->mii_writereg = vr_mii_writereg;
1718 	mii->mii_statchg = vr_mii_statchg;
1719 
1720 	sc->vr_ec.ec_mii = mii;
1721 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1722 		ether_mediastatus);
1723 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1724 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1725 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1726 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1727 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1728 	} else
1729 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1730 
1731 	sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1732 
1733 	/*
1734 	 * Call MI attach routines.
1735 	 */
1736 	if_attach(ifp);
1737 	if_deferred_start_init(ifp, NULL);
1738 	ether_ifattach(ifp, sc->vr_enaddr);
1739 
1740 	rnd_attach_source(&sc->rnd_source, device_xname(self),
1741 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1742 
1743 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1744 		pmf_class_network_register(self, ifp);
1745 	else
1746 		aprint_error_dev(self, "couldn't establish power handler\n");
1747 
1748 	return;
1749 
1750  fail_5:
1751 	for (i = 0; i < VR_NRXDESC; i++) {
1752 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1753 			bus_dmamap_destroy(sc->vr_dmat,
1754 			    sc->vr_rxsoft[i].ds_dmamap);
1755 	}
1756  fail_4:
1757 	for (i = 0; i < VR_NTXDESC; i++) {
1758 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1759 			bus_dmamap_destroy(sc->vr_dmat,
1760 			    sc->vr_txsoft[i].ds_dmamap);
1761 	}
1762 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1763  fail_3:
1764 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1765  fail_2:
1766 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1767 	    sizeof(struct vr_control_data));
1768  fail_1:
1769 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1770  fail_0:
1771 	return;
1772 }
1773 
1774 static int
1775 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1776     pcireg_t state)
1777 {
1778 	struct vr_softc *sc = device_private(self);
1779 	int error;
1780 
1781 	if (state == PCI_PMCSR_STATE_D0)
1782 		return 0;
1783 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1784 		return error;
1785 
1786 	/* Restore PCI config data. */
1787 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1788 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1789 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1790 	return 0;
1791 }
1792 
1793 static bool
1794 vr_resume(device_t self, const pmf_qual_t *qual)
1795 {
1796 	struct vr_softc *sc = device_private(self);
1797 
1798 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1799 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1800 
1801 	return true;
1802 }
1803