xref: /netbsd-src/sys/dev/pci/if_vr.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: if_vr.c,v 1.51 2001/07/23 17:26:50 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1997, 1998
42  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Bill Paul.
55  * 4. Neither the name of the author nor the names of any co-contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69  * THE POSSIBILITY OF SUCH DAMAGE.
70  *
71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72  */
73 
74 /*
75  * VIA Rhine fast ethernet PCI NIC driver
76  *
77  * Supports various network adapters based on the VIA Rhine
78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
79  * Datasheets are available at http://www.via.com.tw.
80  *
81  * Written by Bill Paul <wpaul@ctr.columbia.edu>
82  * Electrical Engineering Department
83  * Columbia University, New York City
84  */
85 
86 /*
87  * The VIA Rhine controllers are similar in some respects to the
88  * the DEC tulip chips, except less complicated. The controller
89  * uses an MII bus and an external physical layer interface. The
90  * receiver has a one entry perfect filter and a 64-bit hash table
91  * multicast filter. Transmit and receive descriptors are similar
92  * to the tulip.
93  *
94  * The Rhine has a serious flaw in its transmit DMA mechanism:
95  * transmit buffers must be longword aligned. Unfortunately,
96  * the kernel doesn't guarantee that mbufs will be filled in starting
97  * at longword boundaries, so we have to do a buffer copy before
98  * transmission.
99  *
100  * Apparently, the receive DMA mechanism also has the same flaw.  This
101  * means that on systems with struct alignment requirements, incoming
102  * frames must be copied to a new buffer which shifts the data forward
103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
104  */
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/sockio.h>
110 #include <sys/mbuf.h>
111 #include <sys/malloc.h>
112 #include <sys/kernel.h>
113 #include <sys/socket.h>
114 #include <sys/device.h>
115 
116 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
117 
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123 
124 #include "bpfilter.h"
125 #if NBPFILTER > 0
126 #include <net/bpf.h>
127 #endif
128 
129 #include <machine/bus.h>
130 #include <machine/intr.h>
131 #include <machine/endian.h>
132 
133 #include <dev/mii/mii.h>
134 #include <dev/mii/miivar.h>
135 #include <dev/mii/mii_bitbang.h>
136 
137 #include <dev/pci/pcireg.h>
138 #include <dev/pci/pcivar.h>
139 #include <dev/pci/pcidevs.h>
140 
141 #include <dev/pci/if_vrreg.h>
142 
143 #define	VR_USEIOSPACE
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vr_type {
149 	pci_vendor_id_t		vr_vid;
150 	pci_product_id_t	vr_did;
151 	const char		*vr_name;
152 } vr_devs[] = {
153 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
154 		"VIA VT3043 (Rhine) 10/100" },
155 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
156 		"VIA VT6102 (Rhine II) 10/100" },
157 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
158 		"VIA VT86C100A (Rhine-II) 10/100" },
159 	{ 0, 0, NULL }
160 };
161 
162 /*
163  * Transmit descriptor list size.
164  */
165 #define	VR_NTXDESC		64
166 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
167 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
168 
169 /*
170  * Receive descriptor list size.
171  */
172 #define	VR_NRXDESC		64
173 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
174 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
175 
176 /*
177  * Control data structres that are DMA'd to the Rhine chip.  We allocate
178  * them in a single clump that maps to a single DMA segment to make several
179  * things easier.
180  *
181  * Note that since we always copy outgoing packets to aligned transmit
182  * buffers, we can reduce the transmit descriptors to one per packet.
183  */
184 struct vr_control_data {
185 	struct vr_desc		vr_txdescs[VR_NTXDESC];
186 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
187 };
188 
189 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
190 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
191 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
192 
193 /*
194  * Software state of transmit and receive descriptors.
195  */
196 struct vr_descsoft {
197 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
198 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
199 };
200 
201 struct vr_softc {
202 	struct device		vr_dev;		/* generic device glue */
203 	void			*vr_ih;		/* interrupt cookie */
204 	void			*vr_ats;	/* shutdown hook */
205 	bus_space_tag_t		vr_bst;		/* bus space tag */
206 	bus_space_handle_t	vr_bsh;		/* bus space handle */
207 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
208 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
209 	struct ethercom		vr_ec;		/* Ethernet common info */
210 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
211 	struct mii_data		vr_mii;		/* MII/media info */
212 
213 	struct callout		vr_tick_ch;	/* tick callout */
214 
215 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
216 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
217 
218 	/*
219 	 * Software state for transmit and receive descriptors.
220 	 */
221 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
222 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
223 
224 	/*
225 	 * Control data structures.
226 	 */
227 	struct vr_control_data	*vr_control_data;
228 
229 	int	vr_txpending;		/* number of TX requests pending */
230 	int	vr_txdirty;		/* first dirty TX descriptor */
231 	int	vr_txlast;		/* last used TX descriptor */
232 
233 	int	vr_rxptr;		/* next ready RX descriptor */
234 };
235 
236 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
237 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
238 
239 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
240 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
241 
242 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
243 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
244 
245 #define	VR_CDTXSYNC(sc, x, ops)						\
246 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
247 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
248 
249 #define	VR_CDRXSYNC(sc, x, ops)						\
250 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
251 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
252 
253 /*
254  * Note we rely on MCLBYTES being a power of two below.
255  */
256 #define	VR_INIT_RXDESC(sc, i)						\
257 do {									\
258 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
259 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
260 									\
261 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
262 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
263 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
264 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
265 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
266 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
267 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
268 } while (0)
269 
270 /*
271  * register space access macros
272  */
273 #define	CSR_WRITE_4(sc, reg, val)					\
274 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
275 #define	CSR_WRITE_2(sc, reg, val)					\
276 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
277 #define	CSR_WRITE_1(sc, reg, val)					\
278 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
279 
280 #define	CSR_READ_4(sc, reg)						\
281 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
282 #define	CSR_READ_2(sc, reg)						\
283 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
284 #define	CSR_READ_1(sc, reg)						\
285 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
286 
287 #define	VR_TIMEOUT		1000
288 
289 static int vr_add_rxbuf		__P((struct vr_softc *, int));
290 
291 static void vr_rxeof		__P((struct vr_softc *));
292 static void vr_rxeoc		__P((struct vr_softc *));
293 static void vr_txeof		__P((struct vr_softc *));
294 static int vr_intr		__P((void *));
295 static void vr_start		__P((struct ifnet *));
296 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
297 static int vr_init		__P((struct ifnet *));
298 static void vr_stop		__P((struct ifnet *, int));
299 static void vr_rxdrain		__P((struct vr_softc *));
300 static void vr_watchdog		__P((struct ifnet *));
301 static void vr_tick		__P((void *));
302 
303 static int vr_ifmedia_upd	__P((struct ifnet *));
304 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
305 
306 static int vr_mii_readreg	__P((struct device *, int, int));
307 static void vr_mii_writereg	__P((struct device *, int, int, int));
308 static void vr_mii_statchg	__P((struct device *));
309 
310 static void vr_setmulti		__P((struct vr_softc *));
311 static void vr_reset		__P((struct vr_softc *));
312 
313 int	vr_copy_small = 0;
314 
315 #define	VR_SETBIT(sc, reg, x)				\
316 	CSR_WRITE_1(sc, reg,				\
317 		CSR_READ_1(sc, reg) | x)
318 
319 #define	VR_CLRBIT(sc, reg, x)				\
320 	CSR_WRITE_1(sc, reg,				\
321 		CSR_READ_1(sc, reg) & ~x)
322 
323 #define	VR_SETBIT16(sc, reg, x)				\
324 	CSR_WRITE_2(sc, reg,				\
325 		CSR_READ_2(sc, reg) | x)
326 
327 #define	VR_CLRBIT16(sc, reg, x)				\
328 	CSR_WRITE_2(sc, reg,				\
329 		CSR_READ_2(sc, reg) & ~x)
330 
331 #define	VR_SETBIT32(sc, reg, x)				\
332 	CSR_WRITE_4(sc, reg,				\
333 		CSR_READ_4(sc, reg) | x)
334 
335 #define	VR_CLRBIT32(sc, reg, x)				\
336 	CSR_WRITE_4(sc, reg,				\
337 		CSR_READ_4(sc, reg) & ~x)
338 
339 /*
340  * MII bit-bang glue.
341  */
342 u_int32_t vr_mii_bitbang_read __P((struct device *));
343 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
344 
345 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
346 	vr_mii_bitbang_read,
347 	vr_mii_bitbang_write,
348 	{
349 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
350 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
351 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
352 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
353 		0,			/* MII_BIT_DIR_PHY_HOST */
354 	}
355 };
356 
357 u_int32_t
358 vr_mii_bitbang_read(self)
359 	struct device *self;
360 {
361 	struct vr_softc *sc = (void *) self;
362 
363 	return (CSR_READ_1(sc, VR_MIICMD));
364 }
365 
366 void
367 vr_mii_bitbang_write(self, val)
368 	struct device *self;
369 	u_int32_t val;
370 {
371 	struct vr_softc *sc = (void *) self;
372 
373 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
374 }
375 
376 /*
377  * Read an PHY register through the MII.
378  */
379 static int
380 vr_mii_readreg(self, phy, reg)
381 	struct device *self;
382 	int phy, reg;
383 {
384 	struct vr_softc *sc = (void *) self;
385 
386 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
387 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
388 }
389 
390 /*
391  * Write to a PHY register through the MII.
392  */
393 static void
394 vr_mii_writereg(self, phy, reg, val)
395 	struct device *self;
396 	int phy, reg, val;
397 {
398 	struct vr_softc *sc = (void *) self;
399 
400 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
401 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
402 }
403 
404 static void
405 vr_mii_statchg(self)
406 	struct device *self;
407 {
408 	struct vr_softc *sc = (struct vr_softc *)self;
409 
410 	/*
411 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
412 	 * register, we first have to put the transmit and/or receive logic
413 	 * in the idle state.
414 	 */
415 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
416 
417 	if (sc->vr_mii.mii_media_active & IFM_FDX)
418 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
419 	else
420 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
421 
422 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
423 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
424 }
425 
426 #define	vr_calchash(addr) \
427 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
428 
429 /*
430  * Program the 64-bit multicast hash filter.
431  */
432 static void
433 vr_setmulti(sc)
434 	struct vr_softc *sc;
435 {
436 	struct ifnet *ifp;
437 	int h = 0;
438 	u_int32_t hashes[2] = { 0, 0 };
439 	struct ether_multistep step;
440 	struct ether_multi *enm;
441 	int mcnt = 0;
442 	u_int8_t rxfilt;
443 
444 	ifp = &sc->vr_ec.ec_if;
445 
446 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
447 
448 	if (ifp->if_flags & IFF_PROMISC) {
449 allmulti:
450 		ifp->if_flags |= IFF_ALLMULTI;
451 		rxfilt |= VR_RXCFG_RX_MULTI;
452 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
453 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
454 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
455 		return;
456 	}
457 
458 	/* first, zot all the existing hash bits */
459 	CSR_WRITE_4(sc, VR_MAR0, 0);
460 	CSR_WRITE_4(sc, VR_MAR1, 0);
461 
462 	/* now program new ones */
463 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
464 	while (enm != NULL) {
465 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
466 		    ETHER_ADDR_LEN) != 0)
467 			goto allmulti;
468 
469 		h = vr_calchash(enm->enm_addrlo);
470 
471 		if (h < 32)
472 			hashes[0] |= (1 << h);
473 		else
474 			hashes[1] |= (1 << (h - 32));
475 		ETHER_NEXT_MULTI(step, enm);
476 		mcnt++;
477 	}
478 
479 	ifp->if_flags &= ~IFF_ALLMULTI;
480 
481 	if (mcnt)
482 		rxfilt |= VR_RXCFG_RX_MULTI;
483 	else
484 		rxfilt &= ~VR_RXCFG_RX_MULTI;
485 
486 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
487 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
488 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
489 }
490 
491 static void
492 vr_reset(sc)
493 	struct vr_softc *sc;
494 {
495 	int i;
496 
497 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
498 
499 	for (i = 0; i < VR_TIMEOUT; i++) {
500 		DELAY(10);
501 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
502 			break;
503 	}
504 	if (i == VR_TIMEOUT)
505 		printf("%s: reset never completed!\n",
506 			sc->vr_dev.dv_xname);
507 
508 	/* Wait a little while for the chip to get its brains in order. */
509 	DELAY(1000);
510 }
511 
512 /*
513  * Initialize an RX descriptor and attach an MBUF cluster.
514  * Note: the length fields are only 11 bits wide, which means the
515  * largest size we can specify is 2047. This is important because
516  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
517  * overflow the field and make a mess.
518  */
519 static int
520 vr_add_rxbuf(sc, i)
521 	struct vr_softc *sc;
522 	int i;
523 {
524 	struct vr_descsoft *ds = VR_DSRX(sc, i);
525 	struct mbuf *m_new;
526 	int error;
527 
528 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
529 	if (m_new == NULL)
530 		return (ENOBUFS);
531 
532 	MCLGET(m_new, M_DONTWAIT);
533 	if ((m_new->m_flags & M_EXT) == 0) {
534 		m_freem(m_new);
535 		return (ENOBUFS);
536 	}
537 
538 	if (ds->ds_mbuf != NULL)
539 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
540 
541 	ds->ds_mbuf = m_new;
542 
543 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
544 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
545 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
546 	if (error) {
547 		printf("%s: unable to load rx DMA map %d, error = %d\n",
548 		    sc->vr_dev.dv_xname, i, error);
549 		panic("vr_add_rxbuf");		/* XXX */
550 	}
551 
552 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
553 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
554 
555 	VR_INIT_RXDESC(sc, i);
556 
557 	return (0);
558 }
559 
560 /*
561  * A frame has been uploaded: pass the resulting mbuf chain up to
562  * the higher level protocols.
563  */
564 static void
565 vr_rxeof(sc)
566 	struct vr_softc *sc;
567 {
568 	struct mbuf *m;
569 	struct ifnet *ifp;
570 	struct vr_desc *d;
571 	struct vr_descsoft *ds;
572 	int i, total_len;
573 	u_int32_t rxstat;
574 
575 	ifp = &sc->vr_ec.ec_if;
576 
577 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
578 		d = VR_CDRX(sc, i);
579 		ds = VR_DSRX(sc, i);
580 
581 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
582 
583 		rxstat = le32toh(d->vr_status);
584 
585 		if (rxstat & VR_RXSTAT_OWN) {
586 			/*
587 			 * We have processed all of the receive buffers.
588 			 */
589 			break;
590 		}
591 
592 		/*
593 		 * If an error occurs, update stats, clear the
594 		 * status word and leave the mbuf cluster in place:
595 		 * it should simply get re-used next time this descriptor
596 		 * comes up in the ring.
597 		 */
598 		if (rxstat & VR_RXSTAT_RXERR) {
599 			const char *errstr;
600 
601 			ifp->if_ierrors++;
602 			switch (rxstat & 0x000000FF) {
603 			case VR_RXSTAT_CRCERR:
604 				errstr = "crc error";
605 				break;
606 			case VR_RXSTAT_FRAMEALIGNERR:
607 				errstr = "frame alignment error";
608 				break;
609 			case VR_RXSTAT_FIFOOFLOW:
610 				errstr = "FIFO overflow";
611 				break;
612 			case VR_RXSTAT_GIANT:
613 				errstr = "received giant packet";
614 				break;
615 			case VR_RXSTAT_RUNT:
616 				errstr = "received runt packet";
617 				break;
618 			case VR_RXSTAT_BUSERR:
619 				errstr = "system bus error";
620 				break;
621 			case VR_RXSTAT_BUFFERR:
622 				errstr = "rx buffer error";
623 				break;
624 			default:
625 				errstr = "unknown rx error";
626 				break;
627 			}
628 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
629 			    errstr);
630 
631 			VR_INIT_RXDESC(sc, i);
632 
633 			continue;
634 		}
635 
636 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
637 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
638 
639 		/* No errors; receive the packet. */
640 		total_len = VR_RXBYTES(le32toh(d->vr_status));
641 
642 #ifdef __NO_STRICT_ALIGNMENT
643 		/*
644 		 * If the packet is small enough to fit in a
645 		 * single header mbuf, allocate one and copy
646 		 * the data into it.  This greatly reduces
647 		 * memory consumption when we receive lots
648 		 * of small packets.
649 		 *
650 		 * Otherwise, we add a new buffer to the receive
651 		 * chain.  If this fails, we drop the packet and
652 		 * recycle the old buffer.
653 		 */
654 		if (vr_copy_small != 0 && total_len <= MHLEN) {
655 			MGETHDR(m, M_DONTWAIT, MT_DATA);
656 			if (m == NULL)
657 				goto dropit;
658 			memcpy(mtod(m, caddr_t),
659 			    mtod(ds->ds_mbuf, caddr_t), total_len);
660 			VR_INIT_RXDESC(sc, i);
661 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
662 			    ds->ds_dmamap->dm_mapsize,
663 			    BUS_DMASYNC_PREREAD);
664 		} else {
665 			m = ds->ds_mbuf;
666 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
667  dropit:
668 				ifp->if_ierrors++;
669 				VR_INIT_RXDESC(sc, i);
670 				bus_dmamap_sync(sc->vr_dmat,
671 				    ds->ds_dmamap, 0,
672 				    ds->ds_dmamap->dm_mapsize,
673 				    BUS_DMASYNC_PREREAD);
674 				continue;
675 			}
676 		}
677 #else
678 		/*
679 		 * The Rhine's packet buffers must be 4-byte aligned.
680 		 * But this means that the data after the Ethernet header
681 		 * is misaligned.  We must allocate a new buffer and
682 		 * copy the data, shifted forward 2 bytes.
683 		 */
684 		MGETHDR(m, M_DONTWAIT, MT_DATA);
685 		if (m == NULL) {
686  dropit:
687 			ifp->if_ierrors++;
688 			VR_INIT_RXDESC(sc, i);
689 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
690 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
691 			continue;
692 		}
693 		if (total_len > (MHLEN - 2)) {
694 			MCLGET(m, M_DONTWAIT);
695 			if ((m->m_flags & M_EXT) == 0) {
696 				m_freem(m);
697 				goto dropit;
698 			}
699 		}
700 		m->m_data += 2;
701 
702 		/*
703 		 * Note that we use clusters for incoming frames, so the
704 		 * buffer is virtually contiguous.
705 		 */
706 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
707 		    total_len);
708 
709 		/* Allow the receive descriptor to continue using its mbuf. */
710 		VR_INIT_RXDESC(sc, i);
711 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
712 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
713 #endif /* __NO_STRICT_ALIGNMENT */
714 
715 		/*
716 		 * The Rhine chip includes the FCS with every
717 		 * received packet.
718 		 */
719 		m->m_flags |= M_HASFCS;
720 
721 		ifp->if_ipackets++;
722 		m->m_pkthdr.rcvif = ifp;
723 		m->m_pkthdr.len = m->m_len = total_len;
724 #if NBPFILTER > 0
725 		/*
726 		 * Handle BPF listeners. Let the BPF user see the packet, but
727 		 * don't pass it up to the ether_input() layer unless it's
728 		 * a broadcast packet, multicast packet, matches our ethernet
729 		 * address or the interface is in promiscuous mode.
730 		 */
731 		if (ifp->if_bpf)
732 			bpf_mtap(ifp->if_bpf, m);
733 #endif
734 		/* Pass it on. */
735 		(*ifp->if_input)(ifp, m);
736 	}
737 
738 	/* Update the receive pointer. */
739 	sc->vr_rxptr = i;
740 }
741 
742 void
743 vr_rxeoc(sc)
744 	struct vr_softc *sc;
745 {
746 
747 	vr_rxeof(sc);
748 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
749 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
750 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
751 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
752 }
753 
754 /*
755  * A frame was downloaded to the chip. It's safe for us to clean up
756  * the list buffers.
757  */
758 static void
759 vr_txeof(sc)
760 	struct vr_softc *sc;
761 {
762 	struct ifnet *ifp = &sc->vr_ec.ec_if;
763 	struct vr_desc *d;
764 	struct vr_descsoft *ds;
765 	u_int32_t txstat;
766 	int i;
767 
768 	ifp->if_flags &= ~IFF_OACTIVE;
769 
770 	/*
771 	 * Go through our tx list and free mbufs for those
772 	 * frames that have been transmitted.
773 	 */
774 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
775 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
776 		d = VR_CDTX(sc, i);
777 		ds = VR_DSTX(sc, i);
778 
779 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
780 
781 		txstat = le32toh(d->vr_status);
782 		if (txstat & VR_TXSTAT_OWN)
783 			break;
784 
785 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
786 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
787 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
788 		m_freem(ds->ds_mbuf);
789 		ds->ds_mbuf = NULL;
790 
791 		if (txstat & VR_TXSTAT_ERRSUM) {
792 			ifp->if_oerrors++;
793 			if (txstat & VR_TXSTAT_DEFER)
794 				ifp->if_collisions++;
795 			if (txstat & VR_TXSTAT_LATECOLL)
796 				ifp->if_collisions++;
797 		}
798 
799 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
800 		ifp->if_opackets++;
801 	}
802 
803 	/* Update the dirty transmit buffer pointer. */
804 	sc->vr_txdirty = i;
805 
806 	/*
807 	 * Cancel the watchdog timer if there are no pending
808 	 * transmissions.
809 	 */
810 	if (sc->vr_txpending == 0)
811 		ifp->if_timer = 0;
812 }
813 
814 static int
815 vr_intr(arg)
816 	void *arg;
817 {
818 	struct vr_softc *sc;
819 	struct ifnet *ifp;
820 	u_int16_t status;
821 	int handled = 0, dotx = 0;
822 
823 	sc = arg;
824 	ifp = &sc->vr_ec.ec_if;
825 
826 	/* Suppress unwanted interrupts. */
827 	if ((ifp->if_flags & IFF_UP) == 0) {
828 		vr_stop(ifp, 1);
829 		return (0);
830 	}
831 
832 	/* Disable interrupts. */
833 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
834 
835 	for (;;) {
836 		status = CSR_READ_2(sc, VR_ISR);
837 		if (status)
838 			CSR_WRITE_2(sc, VR_ISR, status);
839 
840 		if ((status & VR_INTRS) == 0)
841 			break;
842 
843 		handled = 1;
844 
845 		if (status & VR_ISR_RX_OK)
846 			vr_rxeof(sc);
847 
848 		if (status &
849 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
850 		     VR_ISR_RX_DROPPED))
851 			vr_rxeoc(sc);
852 
853 		if (status & VR_ISR_TX_OK) {
854 			dotx = 1;
855 			vr_txeof(sc);
856 		}
857 
858 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
859 			if (status & VR_ISR_TX_UNDERRUN)
860 				printf("%s: transmit underrun\n",
861 				    sc->vr_dev.dv_xname);
862 			if (status & VR_ISR_TX_ABRT)
863 				printf("%s: transmit aborted\n",
864 				    sc->vr_dev.dv_xname);
865 			ifp->if_oerrors++;
866 			dotx = 1;
867 			vr_txeof(sc);
868 			if (sc->vr_txpending) {
869 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
870 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
871 			}
872 		}
873 
874 		if (status & VR_ISR_BUSERR) {
875 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
876 			/* vr_init() calls vr_start() */
877 			dotx = 0;
878 			(void) vr_init(ifp);
879 		}
880 	}
881 
882 	/* Re-enable interrupts. */
883 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
884 
885 	if (dotx)
886 		vr_start(ifp);
887 
888 	return (handled);
889 }
890 
891 /*
892  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
893  * to the mbuf data regions directly in the transmit lists. We also save a
894  * copy of the pointers since the transmit list fragment pointers are
895  * physical addresses.
896  */
897 static void
898 vr_start(ifp)
899 	struct ifnet *ifp;
900 {
901 	struct vr_softc *sc = ifp->if_softc;
902 	struct mbuf *m0, *m;
903 	struct vr_desc *d;
904 	struct vr_descsoft *ds;
905 	int error, firsttx, nexttx, opending;
906 
907 	/*
908 	 * Remember the previous txpending and the first transmit
909 	 * descriptor we use.
910 	 */
911 	opending = sc->vr_txpending;
912 	firsttx = VR_NEXTTX(sc->vr_txlast);
913 
914 	/*
915 	 * Loop through the send queue, setting up transmit descriptors
916 	 * until we drain the queue, or use up all available transmit
917 	 * descriptors.
918 	 */
919 	while (sc->vr_txpending < VR_NTXDESC) {
920 		/*
921 		 * Grab a packet off the queue.
922 		 */
923 		IFQ_POLL(&ifp->if_snd, m0);
924 		if (m0 == NULL)
925 			break;
926 		m = NULL;
927 
928 		/*
929 		 * Get the next available transmit descriptor.
930 		 */
931 		nexttx = VR_NEXTTX(sc->vr_txlast);
932 		d = VR_CDTX(sc, nexttx);
933 		ds = VR_DSTX(sc, nexttx);
934 
935 		/*
936 		 * Load the DMA map.  If this fails, the packet didn't
937 		 * fit in one DMA segment, and we need to copy.  Note,
938 		 * the packet must also be aligned.
939 		 */
940 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
941 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
942 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
943 			MGETHDR(m, M_DONTWAIT, MT_DATA);
944 			if (m == NULL) {
945 				printf("%s: unable to allocate Tx mbuf\n",
946 				    sc->vr_dev.dv_xname);
947 				break;
948 			}
949 			if (m0->m_pkthdr.len > MHLEN) {
950 				MCLGET(m, M_DONTWAIT);
951 				if ((m->m_flags & M_EXT) == 0) {
952 					printf("%s: unable to allocate Tx "
953 					    "cluster\n", sc->vr_dev.dv_xname);
954 					m_freem(m);
955 					break;
956 				}
957 			}
958 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
959 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
960 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
961 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
962 			if (error) {
963 				printf("%s: unable to load Tx buffer, "
964 				    "error = %d\n", sc->vr_dev.dv_xname, error);
965 				break;
966 			}
967 		}
968 
969 		IFQ_DEQUEUE(&ifp->if_snd, m0);
970 		if (m != NULL) {
971 			m_freem(m0);
972 			m0 = m;
973 		}
974 
975 		/* Sync the DMA map. */
976 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
977 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
978 
979 		/*
980 		 * Store a pointer to the packet so we can free it later.
981 		 */
982 		ds->ds_mbuf = m0;
983 
984 #if NBPFILTER > 0
985 		/*
986 		 * If there's a BPF listener, bounce a copy of this frame
987 		 * to him.
988 		 */
989 		if (ifp->if_bpf)
990 			bpf_mtap(ifp->if_bpf, m0);
991 #endif
992 
993 		/*
994 		 * Fill in the transmit descriptor.  The Rhine
995 		 * doesn't auto-pad, so we have to do this ourselves.
996 		 */
997 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
998 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
999 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1000 		d->vr_ctl |=
1001 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1002 		    VR_TXCTL_LASTFRAG);
1003 
1004 		/*
1005 		 * If this is the first descriptor we're enqueuing,
1006 		 * don't give it to the Rhine yet.  That could cause
1007 		 * a race condition.  We'll do it below.
1008 		 */
1009 		if (nexttx == firsttx)
1010 			d->vr_status = 0;
1011 		else
1012 			d->vr_status = htole32(VR_TXSTAT_OWN);
1013 
1014 		VR_CDTXSYNC(sc, nexttx,
1015 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1016 
1017 		/* Advance the tx pointer. */
1018 		sc->vr_txpending++;
1019 		sc->vr_txlast = nexttx;
1020 	}
1021 
1022 	if (sc->vr_txpending == VR_NTXDESC) {
1023 		/* No more slots left; notify upper layer. */
1024 		ifp->if_flags |= IFF_OACTIVE;
1025 	}
1026 
1027 	if (sc->vr_txpending != opending) {
1028 		/*
1029 		 * We enqueued packets.  If the transmitter was idle,
1030 		 * reset the txdirty pointer.
1031 		 */
1032 		if (opending == 0)
1033 			sc->vr_txdirty = firsttx;
1034 
1035 		/*
1036 		 * Cause a transmit interrupt to happen on the
1037 		 * last packet we enqueued.
1038 		 */
1039 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1040 		VR_CDTXSYNC(sc, sc->vr_txlast,
1041 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1042 
1043 		/*
1044 		 * The entire packet chain is set up.  Give the
1045 		 * first descriptor to the Rhine now.
1046 		 */
1047 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1048 		VR_CDTXSYNC(sc, firsttx,
1049 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050 
1051 		/* Start the transmitter. */
1052 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1053 
1054 		/* Set the watchdog timer in case the chip flakes out. */
1055 		ifp->if_timer = 5;
1056 	}
1057 }
1058 
1059 /*
1060  * Initialize the interface.  Must be called at splnet.
1061  */
1062 static int
1063 vr_init(ifp)
1064 	struct ifnet *ifp;
1065 {
1066 	struct vr_softc *sc = ifp->if_softc;
1067 	struct vr_desc *d;
1068 	struct vr_descsoft *ds;
1069 	int i, error = 0;
1070 
1071 	/* Cancel pending I/O. */
1072 	vr_stop(ifp, 0);
1073 
1074 	/* Reset the Rhine to a known state. */
1075 	vr_reset(sc);
1076 
1077 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1078 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1079 
1080 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1081 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1082 
1083 	/*
1084 	 * Initialize the transmit desciptor ring.  txlast is initialized
1085 	 * to the end of the list so that it will wrap around to the first
1086 	 * descriptor when the first packet is transmitted.
1087 	 */
1088 	for (i = 0; i < VR_NTXDESC; i++) {
1089 		d = VR_CDTX(sc, i);
1090 		memset(d, 0, sizeof(struct vr_desc));
1091 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1092 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1093 	}
1094 	sc->vr_txpending = 0;
1095 	sc->vr_txdirty = 0;
1096 	sc->vr_txlast = VR_NTXDESC - 1;
1097 
1098 	/*
1099 	 * Initialize the receive descriptor ring.
1100 	 */
1101 	for (i = 0; i < VR_NRXDESC; i++) {
1102 		ds = VR_DSRX(sc, i);
1103 		if (ds->ds_mbuf == NULL) {
1104 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1105 				printf("%s: unable to allocate or map rx "
1106 				    "buffer %d, error = %d\n",
1107 				    sc->vr_dev.dv_xname, i, error);
1108 				/*
1109 				 * XXX Should attempt to run with fewer receive
1110 				 * XXX buffers instead of just failing.
1111 				 */
1112 				vr_rxdrain(sc);
1113 				goto out;
1114 			}
1115 		} else
1116 			VR_INIT_RXDESC(sc, i);
1117 	}
1118 	sc->vr_rxptr = 0;
1119 
1120 	/* If we want promiscuous mode, set the allframes bit. */
1121 	if (ifp->if_flags & IFF_PROMISC)
1122 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1123 	else
1124 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1125 
1126 	/* Set capture broadcast bit to capture broadcast frames. */
1127 	if (ifp->if_flags & IFF_BROADCAST)
1128 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1129 	else
1130 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1131 
1132 	/* Program the multicast filter, if necessary. */
1133 	vr_setmulti(sc);
1134 
1135 	/* Give the transmit and receive rings to the Rhine. */
1136 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1137 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1138 
1139 	/* Set current media. */
1140 	mii_mediachg(&sc->vr_mii);
1141 
1142 	/* Enable receiver and transmitter. */
1143 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1144 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1145 				    VR_CMD_RX_GO);
1146 
1147 	/* Enable interrupts. */
1148 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1149 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1150 
1151 	ifp->if_flags |= IFF_RUNNING;
1152 	ifp->if_flags &= ~IFF_OACTIVE;
1153 
1154 	/* Start one second timer. */
1155 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1156 
1157 	/* Attempt to start output on the interface. */
1158 	vr_start(ifp);
1159 
1160  out:
1161 	if (error)
1162 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1163 	return (error);
1164 }
1165 
1166 /*
1167  * Set media options.
1168  */
1169 static int
1170 vr_ifmedia_upd(ifp)
1171 	struct ifnet *ifp;
1172 {
1173 	struct vr_softc *sc = ifp->if_softc;
1174 
1175 	if (ifp->if_flags & IFF_UP)
1176 		mii_mediachg(&sc->vr_mii);
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Report current media status.
1182  */
1183 static void
1184 vr_ifmedia_sts(ifp, ifmr)
1185 	struct ifnet *ifp;
1186 	struct ifmediareq *ifmr;
1187 {
1188 	struct vr_softc *sc = ifp->if_softc;
1189 
1190 	mii_pollstat(&sc->vr_mii);
1191 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
1192 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
1193 }
1194 
1195 static int
1196 vr_ioctl(ifp, command, data)
1197 	struct ifnet *ifp;
1198 	u_long command;
1199 	caddr_t data;
1200 {
1201 	struct vr_softc *sc = ifp->if_softc;
1202 	struct ifreq *ifr = (struct ifreq *)data;
1203 	int s, error = 0;
1204 
1205 	s = splnet();
1206 
1207 	switch (command) {
1208 	case SIOCGIFMEDIA:
1209 	case SIOCSIFMEDIA:
1210 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1211 		break;
1212 
1213 	default:
1214 		error = ether_ioctl(ifp, command, data);
1215 		if (error == ENETRESET) {
1216 			/*
1217 			 * Multicast list has changed; set the hardware filter
1218 			 * accordingly.
1219 			 */
1220 			vr_setmulti(sc);
1221 			error = 0;
1222 		}
1223 		break;
1224 	}
1225 
1226 	splx(s);
1227 	return (error);
1228 }
1229 
1230 static void
1231 vr_watchdog(ifp)
1232 	struct ifnet *ifp;
1233 {
1234 	struct vr_softc *sc = ifp->if_softc;
1235 
1236 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1237 	ifp->if_oerrors++;
1238 
1239 	(void) vr_init(ifp);
1240 }
1241 
1242 /*
1243  * One second timer, used to tick MII.
1244  */
1245 static void
1246 vr_tick(arg)
1247 	void *arg;
1248 {
1249 	struct vr_softc *sc = arg;
1250 	int s;
1251 
1252 	s = splnet();
1253 	mii_tick(&sc->vr_mii);
1254 	splx(s);
1255 
1256 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1257 }
1258 
1259 /*
1260  * Drain the receive queue.
1261  */
1262 static void
1263 vr_rxdrain(sc)
1264 	struct vr_softc *sc;
1265 {
1266 	struct vr_descsoft *ds;
1267 	int i;
1268 
1269 	for (i = 0; i < VR_NRXDESC; i++) {
1270 		ds = VR_DSRX(sc, i);
1271 		if (ds->ds_mbuf != NULL) {
1272 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1273 			m_freem(ds->ds_mbuf);
1274 			ds->ds_mbuf = NULL;
1275 		}
1276 	}
1277 }
1278 
1279 /*
1280  * Stop the adapter and free any mbufs allocated to the
1281  * transmit lists.
1282  */
1283 static void
1284 vr_stop(ifp, disable)
1285 	struct ifnet *ifp;
1286 	int disable;
1287 {
1288 	struct vr_softc *sc = ifp->if_softc;
1289 	struct vr_descsoft *ds;
1290 	int i;
1291 
1292 	/* Cancel one second timer. */
1293 	callout_stop(&sc->vr_tick_ch);
1294 
1295 	/* Down the MII. */
1296 	mii_down(&sc->vr_mii);
1297 
1298 	ifp = &sc->vr_ec.ec_if;
1299 	ifp->if_timer = 0;
1300 
1301 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1302 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1303 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1304 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1305 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1306 
1307 	/*
1308 	 * Release any queued transmit buffers.
1309 	 */
1310 	for (i = 0; i < VR_NTXDESC; i++) {
1311 		ds = VR_DSTX(sc, i);
1312 		if (ds->ds_mbuf != NULL) {
1313 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1314 			m_freem(ds->ds_mbuf);
1315 			ds->ds_mbuf = NULL;
1316 		}
1317 	}
1318 
1319 	if (disable)
1320 		vr_rxdrain(sc);
1321 
1322 	/*
1323 	 * Mark the interface down and cancel the watchdog timer.
1324 	 */
1325 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1326 	ifp->if_timer = 0;
1327 }
1328 
1329 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1330 static int vr_probe __P((struct device *, struct cfdata *, void *));
1331 static void vr_attach __P((struct device *, struct device *, void *));
1332 static void vr_shutdown __P((void *));
1333 
1334 struct cfattach vr_ca = {
1335 	sizeof (struct vr_softc), vr_probe, vr_attach
1336 };
1337 
1338 static struct vr_type *
1339 vr_lookup(pa)
1340 	struct pci_attach_args *pa;
1341 {
1342 	struct vr_type *vrt;
1343 
1344 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1345 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1346 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1347 			return (vrt);
1348 	}
1349 	return (NULL);
1350 }
1351 
1352 static int
1353 vr_probe(parent, match, aux)
1354 	struct device *parent;
1355 	struct cfdata *match;
1356 	void *aux;
1357 {
1358 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1359 
1360 	if (vr_lookup(pa) != NULL)
1361 		return (1);
1362 
1363 	return (0);
1364 }
1365 
1366 /*
1367  * Stop all chip I/O so that the kernel's probe routines don't
1368  * get confused by errant DMAs when rebooting.
1369  */
1370 static void
1371 vr_shutdown(arg)
1372 	void *arg;
1373 {
1374 	struct vr_softc *sc = (struct vr_softc *)arg;
1375 
1376 	vr_stop(&sc->vr_ec.ec_if, 1);
1377 }
1378 
1379 /*
1380  * Attach the interface. Allocate softc structures, do ifmedia
1381  * setup and ethernet/BPF attach.
1382  */
1383 static void
1384 vr_attach(parent, self, aux)
1385 	struct device *parent;
1386 	struct device *self;
1387 	void *aux;
1388 {
1389 	struct vr_softc *sc = (struct vr_softc *) self;
1390 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1391 	bus_dma_segment_t seg;
1392 	struct vr_type *vrt;
1393 	u_int32_t command;
1394 	struct ifnet *ifp;
1395 	u_char eaddr[ETHER_ADDR_LEN];
1396 	int i, rseg, error;
1397 
1398 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1399 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1400 
1401 	callout_init(&sc->vr_tick_ch);
1402 
1403 	vrt = vr_lookup(pa);
1404 	if (vrt == NULL) {
1405 		printf("\n");
1406 		panic("vr_attach: impossible");
1407 	}
1408 
1409 	printf(": %s Ethernet\n", vrt->vr_name);
1410 
1411 	/*
1412 	 * Handle power management nonsense.
1413 	 */
1414 
1415 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1416 	if (command == 0x01) {
1417 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1418 		if (command & VR_PSTATE_MASK) {
1419 			u_int32_t iobase, membase, irq;
1420 
1421 			/* Save important PCI config data. */
1422 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
1423 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
1424 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
1425 
1426 			/* Reset the power state. */
1427 			printf("%s: chip is in D%d power mode "
1428 				"-- setting to D0\n",
1429 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1430 			command &= 0xFFFFFFFC;
1431 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1432 
1433 			/* Restore PCI config data. */
1434 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1435 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1436 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1437 		}
1438 	}
1439 
1440 	/* Make sure bus mastering is enabled. */
1441 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1442 	command |= PCI_COMMAND_MASTER_ENABLE;
1443 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1444 
1445 	/*
1446 	 * Map control/status registers.
1447 	 */
1448 	{
1449 		bus_space_tag_t iot, memt;
1450 		bus_space_handle_t ioh, memh;
1451 		int ioh_valid, memh_valid;
1452 		pci_intr_handle_t intrhandle;
1453 		const char *intrstr;
1454 
1455 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1456 			PCI_MAPREG_TYPE_IO, 0,
1457 			&iot, &ioh, NULL, NULL) == 0);
1458 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1459 			PCI_MAPREG_TYPE_MEM |
1460 			PCI_MAPREG_MEM_TYPE_32BIT,
1461 			0, &memt, &memh, NULL, NULL) == 0);
1462 #if defined(VR_USEIOSPACE)
1463 		if (ioh_valid) {
1464 			sc->vr_bst = iot;
1465 			sc->vr_bsh = ioh;
1466 		} else if (memh_valid) {
1467 			sc->vr_bst = memt;
1468 			sc->vr_bsh = memh;
1469 		}
1470 #else
1471 		if (memh_valid) {
1472 			sc->vr_bst = memt;
1473 			sc->vr_bsh = memh;
1474 		} else if (ioh_valid) {
1475 			sc->vr_bst = iot;
1476 			sc->vr_bsh = ioh;
1477 		}
1478 #endif
1479 		else {
1480 			printf(": unable to map device registers\n");
1481 			return;
1482 		}
1483 
1484 		/* Allocate interrupt */
1485 		if (pci_intr_map(pa, &intrhandle)) {
1486 			printf("%s: couldn't map interrupt\n",
1487 				sc->vr_dev.dv_xname);
1488 			return;
1489 		}
1490 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1491 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1492 						vr_intr, sc);
1493 		if (sc->vr_ih == NULL) {
1494 			printf("%s: couldn't establish interrupt",
1495 				sc->vr_dev.dv_xname);
1496 			if (intrstr != NULL)
1497 				printf(" at %s", intrstr);
1498 			printf("\n");
1499 		}
1500 		printf("%s: interrupting at %s\n",
1501 			sc->vr_dev.dv_xname, intrstr);
1502 	}
1503 
1504 	/* Reset the adapter. */
1505 	vr_reset(sc);
1506 
1507 	/*
1508 	 * Get station address. The way the Rhine chips work,
1509 	 * you're not allowed to directly access the EEPROM once
1510 	 * they've been programmed a special way. Consequently,
1511 	 * we need to read the node address from the PAR0 and PAR1
1512 	 * registers.
1513 	 */
1514 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1515 	DELAY(200);
1516 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1517 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1518 
1519 	/*
1520 	 * A Rhine chip was detected. Inform the world.
1521 	 */
1522 	printf("%s: Ethernet address: %s\n",
1523 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1524 
1525 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1526 
1527 	sc->vr_dmat = pa->pa_dmat;
1528 
1529 	/*
1530 	 * Allocate the control data structures, and create and load
1531 	 * the DMA map for it.
1532 	 */
1533 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1534 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1535 	    0)) != 0) {
1536 		printf("%s: unable to allocate control data, error = %d\n",
1537 		    sc->vr_dev.dv_xname, error);
1538 		goto fail_0;
1539 	}
1540 
1541 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1542 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1543 	    BUS_DMA_COHERENT)) != 0) {
1544 		printf("%s: unable to map control data, error = %d\n",
1545 		    sc->vr_dev.dv_xname, error);
1546 		goto fail_1;
1547 	}
1548 
1549 	if ((error = bus_dmamap_create(sc->vr_dmat,
1550 	    sizeof(struct vr_control_data), 1,
1551 	    sizeof(struct vr_control_data), 0, 0,
1552 	    &sc->vr_cddmamap)) != 0) {
1553 		printf("%s: unable to create control data DMA map, "
1554 		    "error = %d\n", sc->vr_dev.dv_xname, error);
1555 		goto fail_2;
1556 	}
1557 
1558 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1559 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1560 	    0)) != 0) {
1561 		printf("%s: unable to load control data DMA map, error = %d\n",
1562 		    sc->vr_dev.dv_xname, error);
1563 		goto fail_3;
1564 	}
1565 
1566 	/*
1567 	 * Create the transmit buffer DMA maps.
1568 	 */
1569 	for (i = 0; i < VR_NTXDESC; i++) {
1570 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1571 		    1, MCLBYTES, 0, 0,
1572 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1573 			printf("%s: unable to create tx DMA map %d, "
1574 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1575 			goto fail_4;
1576 		}
1577 	}
1578 
1579 	/*
1580 	 * Create the receive buffer DMA maps.
1581 	 */
1582 	for (i = 0; i < VR_NRXDESC; i++) {
1583 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1584 		    MCLBYTES, 0, 0,
1585 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1586 			printf("%s: unable to create rx DMA map %d, "
1587 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1588 			goto fail_5;
1589 		}
1590 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1591 	}
1592 
1593 	ifp = &sc->vr_ec.ec_if;
1594 	ifp->if_softc = sc;
1595 	ifp->if_mtu = ETHERMTU;
1596 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1597 	ifp->if_ioctl = vr_ioctl;
1598 	ifp->if_start = vr_start;
1599 	ifp->if_watchdog = vr_watchdog;
1600 	ifp->if_init = vr_init;
1601 	ifp->if_stop = vr_stop;
1602 	IFQ_SET_READY(&ifp->if_snd);
1603 
1604 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1605 
1606 	/*
1607 	 * Initialize MII/media info.
1608 	 */
1609 	sc->vr_mii.mii_ifp = ifp;
1610 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1611 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1612 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1613 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1614 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1615 	    MII_OFFSET_ANY, 0);
1616 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1617 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1618 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1619 	} else
1620 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1621 
1622 	/*
1623 	 * Call MI attach routines.
1624 	 */
1625 	if_attach(ifp);
1626 	ether_ifattach(ifp, sc->vr_enaddr);
1627 
1628 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1629 	if (sc->vr_ats == NULL)
1630 		printf("%s: warning: couldn't establish shutdown hook\n",
1631 			sc->vr_dev.dv_xname);
1632 	return;
1633 
1634  fail_5:
1635 	for (i = 0; i < VR_NRXDESC; i++) {
1636 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1637 			bus_dmamap_destroy(sc->vr_dmat,
1638 			    sc->vr_rxsoft[i].ds_dmamap);
1639 	}
1640  fail_4:
1641 	for (i = 0; i < VR_NTXDESC; i++) {
1642 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1643 			bus_dmamap_destroy(sc->vr_dmat,
1644 			    sc->vr_txsoft[i].ds_dmamap);
1645 	}
1646 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1647  fail_3:
1648 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1649  fail_2:
1650 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1651 	    sizeof(struct vr_control_data));
1652  fail_1:
1653 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1654  fail_0:
1655 	return;
1656 }
1657