xref: /netbsd-src/sys/dev/pci/if_vr.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: if_vr.c,v 1.70 2004/10/30 18:09:22 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1997, 1998
42  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Bill Paul.
55  * 4. Neither the name of the author nor the names of any co-contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69  * THE POSSIBILITY OF SUCH DAMAGE.
70  *
71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72  */
73 
74 /*
75  * VIA Rhine fast ethernet PCI NIC driver
76  *
77  * Supports various network adapters based on the VIA Rhine
78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
79  * Datasheets are available at http://www.via.com.tw.
80  *
81  * Written by Bill Paul <wpaul@ctr.columbia.edu>
82  * Electrical Engineering Department
83  * Columbia University, New York City
84  */
85 
86 /*
87  * The VIA Rhine controllers are similar in some respects to the
88  * the DEC tulip chips, except less complicated. The controller
89  * uses an MII bus and an external physical layer interface. The
90  * receiver has a one entry perfect filter and a 64-bit hash table
91  * multicast filter. Transmit and receive descriptors are similar
92  * to the tulip.
93  *
94  * The Rhine has a serious flaw in its transmit DMA mechanism:
95  * transmit buffers must be longword aligned. Unfortunately,
96  * the kernel doesn't guarantee that mbufs will be filled in starting
97  * at longword boundaries, so we have to do a buffer copy before
98  * transmission.
99  *
100  * Apparently, the receive DMA mechanism also has the same flaw.  This
101  * means that on systems with struct alignment requirements, incoming
102  * frames must be copied to a new buffer which shifts the data forward
103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
104  */
105 
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.70 2004/10/30 18:09:22 thorpej Exp $");
108 
109 #include "rnd.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/callout.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/device.h>
120 
121 #if NRND > 0
122 #include <sys/rnd.h>
123 #endif
124 
125 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
126 
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_media.h>
131 #include <net/if_ether.h>
132 
133 #include "bpfilter.h"
134 #if NBPFILTER > 0
135 #include <net/bpf.h>
136 #endif
137 
138 #include <machine/bus.h>
139 #include <machine/intr.h>
140 #include <machine/endian.h>
141 
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144 #include <dev/mii/mii_bitbang.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149 
150 #include <dev/pci/if_vrreg.h>
151 
152 #define	VR_USEIOSPACE
153 
154 /*
155  * Various supported device vendors/types and their names.
156  */
157 static struct vr_type {
158 	pci_vendor_id_t		vr_vid;
159 	pci_product_id_t	vr_did;
160 	const char		*vr_name;
161 } vr_devs[] = {
162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
163 		"VIA VT3043 (Rhine) 10/100" },
164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
165 		"VIA VT6102 (Rhine II) 10/100" },
166 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
167 		"VIA VT6105 (Rhine III) 10/100" },
168 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
169 		"VIA VT86C100A (Rhine-II) 10/100" },
170 	{ 0, 0, NULL }
171 };
172 
173 /*
174  * Transmit descriptor list size.
175  */
176 #define	VR_NTXDESC		64
177 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
178 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
179 
180 /*
181  * Receive descriptor list size.
182  */
183 #define	VR_NRXDESC		64
184 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
185 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
186 
187 /*
188  * Control data structres that are DMA'd to the Rhine chip.  We allocate
189  * them in a single clump that maps to a single DMA segment to make several
190  * things easier.
191  *
192  * Note that since we always copy outgoing packets to aligned transmit
193  * buffers, we can reduce the transmit descriptors to one per packet.
194  */
195 struct vr_control_data {
196 	struct vr_desc		vr_txdescs[VR_NTXDESC];
197 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
198 };
199 
200 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
201 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
202 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
203 
204 /*
205  * Software state of transmit and receive descriptors.
206  */
207 struct vr_descsoft {
208 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
209 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
210 };
211 
212 struct vr_softc {
213 	struct device		vr_dev;		/* generic device glue */
214 	void			*vr_ih;		/* interrupt cookie */
215 	void			*vr_ats;	/* shutdown hook */
216 	bus_space_tag_t		vr_bst;		/* bus space tag */
217 	bus_space_handle_t	vr_bsh;		/* bus space handle */
218 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
219 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
220 	struct ethercom		vr_ec;		/* Ethernet common info */
221 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
222 	struct mii_data		vr_mii;		/* MII/media info */
223 
224 	u_int8_t		vr_revid;	/* Rhine chip revision */
225 
226 	struct callout		vr_tick_ch;	/* tick callout */
227 
228 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
229 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
235 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct vr_control_data	*vr_control_data;
241 
242 	int	vr_txpending;		/* number of TX requests pending */
243 	int	vr_txdirty;		/* first dirty TX descriptor */
244 	int	vr_txlast;		/* last used TX descriptor */
245 
246 	int	vr_rxptr;		/* next ready RX descriptor */
247 
248 #if NRND > 0
249 	rndsource_element_t rnd_source;	/* random source */
250 #endif
251 };
252 
253 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
254 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
255 
256 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
257 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
258 
259 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
260 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
261 
262 #define	VR_CDTXSYNC(sc, x, ops)						\
263 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
264 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
265 
266 #define	VR_CDRXSYNC(sc, x, ops)						\
267 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
268 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
269 
270 /*
271  * Note we rely on MCLBYTES being a power of two below.
272  */
273 #define	VR_INIT_RXDESC(sc, i)						\
274 do {									\
275 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
276 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
277 									\
278 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
279 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
280 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
281 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
282 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
283 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
284 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
285 } while (/* CONSTCOND */ 0)
286 
287 /*
288  * register space access macros
289  */
290 #define	CSR_WRITE_4(sc, reg, val)					\
291 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
292 #define	CSR_WRITE_2(sc, reg, val)					\
293 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
294 #define	CSR_WRITE_1(sc, reg, val)					\
295 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
296 
297 #define	CSR_READ_4(sc, reg)						\
298 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
299 #define	CSR_READ_2(sc, reg)						\
300 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
301 #define	CSR_READ_1(sc, reg)						\
302 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
303 
304 #define	VR_TIMEOUT		1000
305 
306 static int	vr_add_rxbuf(struct vr_softc *, int);
307 
308 static void	vr_rxeof(struct vr_softc *);
309 static void	vr_rxeoc(struct vr_softc *);
310 static void	vr_txeof(struct vr_softc *);
311 static int	vr_intr(void *);
312 static void	vr_start(struct ifnet *);
313 static int	vr_ioctl(struct ifnet *, u_long, caddr_t);
314 static int	vr_init(struct ifnet *);
315 static void	vr_stop(struct ifnet *, int);
316 static void	vr_rxdrain(struct vr_softc *);
317 static void	vr_watchdog(struct ifnet *);
318 static void	vr_tick(void *);
319 
320 static int	vr_ifmedia_upd(struct ifnet *);
321 static void	vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
322 
323 static int	vr_mii_readreg(struct device *, int, int);
324 static void	vr_mii_writereg(struct device *, int, int, int);
325 static void	vr_mii_statchg(struct device *);
326 
327 static void	vr_setmulti(struct vr_softc *);
328 static void	vr_reset(struct vr_softc *);
329 
330 int	vr_copy_small = 0;
331 
332 #define	VR_SETBIT(sc, reg, x)				\
333 	CSR_WRITE_1(sc, reg,				\
334 	    CSR_READ_1(sc, reg) | (x))
335 
336 #define	VR_CLRBIT(sc, reg, x)				\
337 	CSR_WRITE_1(sc, reg,				\
338 	    CSR_READ_1(sc, reg) & ~(x))
339 
340 #define	VR_SETBIT16(sc, reg, x)				\
341 	CSR_WRITE_2(sc, reg,				\
342 	    CSR_READ_2(sc, reg) | (x))
343 
344 #define	VR_CLRBIT16(sc, reg, x)				\
345 	CSR_WRITE_2(sc, reg,				\
346 	    CSR_READ_2(sc, reg) & ~(x))
347 
348 #define	VR_SETBIT32(sc, reg, x)				\
349 	CSR_WRITE_4(sc, reg,				\
350 	    CSR_READ_4(sc, reg) | (x))
351 
352 #define	VR_CLRBIT32(sc, reg, x)				\
353 	CSR_WRITE_4(sc, reg,				\
354 	    CSR_READ_4(sc, reg) & ~(x))
355 
356 /*
357  * MII bit-bang glue.
358  */
359 static u_int32_t vr_mii_bitbang_read(struct device *);
360 static void	vr_mii_bitbang_write(struct device *, u_int32_t);
361 
362 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
363 	vr_mii_bitbang_read,
364 	vr_mii_bitbang_write,
365 	{
366 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
367 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
368 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
369 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
370 		0,			/* MII_BIT_DIR_PHY_HOST */
371 	}
372 };
373 
374 static u_int32_t
375 vr_mii_bitbang_read(struct device *self)
376 {
377 	struct vr_softc *sc = (void *) self;
378 
379 	return (CSR_READ_1(sc, VR_MIICMD));
380 }
381 
382 static void
383 vr_mii_bitbang_write(struct device *self, u_int32_t val)
384 {
385 	struct vr_softc *sc = (void *) self;
386 
387 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
388 }
389 
390 /*
391  * Read an PHY register through the MII.
392  */
393 static int
394 vr_mii_readreg(struct device *self, int phy, int reg)
395 {
396 	struct vr_softc *sc = (void *) self;
397 
398 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
399 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
400 }
401 
402 /*
403  * Write to a PHY register through the MII.
404  */
405 static void
406 vr_mii_writereg(struct device *self, int phy, int reg, int val)
407 {
408 	struct vr_softc *sc = (void *) self;
409 
410 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
411 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
412 }
413 
414 static void
415 vr_mii_statchg(struct device *self)
416 {
417 	struct vr_softc *sc = (struct vr_softc *)self;
418 
419 	/*
420 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
421 	 * register, we first have to put the transmit and/or receive logic
422 	 * in the idle state.
423 	 */
424 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
425 
426 	if (sc->vr_mii.mii_media_active & IFM_FDX)
427 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
428 	else
429 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
430 
431 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
432 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
433 }
434 
435 #define	vr_calchash(addr) \
436 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
437 
438 /*
439  * Program the 64-bit multicast hash filter.
440  */
441 static void
442 vr_setmulti(struct vr_softc *sc)
443 {
444 	struct ifnet *ifp;
445 	int h = 0;
446 	u_int32_t hashes[2] = { 0, 0 };
447 	struct ether_multistep step;
448 	struct ether_multi *enm;
449 	int mcnt = 0;
450 	u_int8_t rxfilt;
451 
452 	ifp = &sc->vr_ec.ec_if;
453 
454 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
455 
456 	if (ifp->if_flags & IFF_PROMISC) {
457 allmulti:
458 		ifp->if_flags |= IFF_ALLMULTI;
459 		rxfilt |= VR_RXCFG_RX_MULTI;
460 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
461 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
462 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
463 		return;
464 	}
465 
466 	/* first, zot all the existing hash bits */
467 	CSR_WRITE_4(sc, VR_MAR0, 0);
468 	CSR_WRITE_4(sc, VR_MAR1, 0);
469 
470 	/* now program new ones */
471 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
472 	while (enm != NULL) {
473 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
474 		    ETHER_ADDR_LEN) != 0)
475 			goto allmulti;
476 
477 		h = vr_calchash(enm->enm_addrlo);
478 
479 		if (h < 32)
480 			hashes[0] |= (1 << h);
481 		else
482 			hashes[1] |= (1 << (h - 32));
483 		ETHER_NEXT_MULTI(step, enm);
484 		mcnt++;
485 	}
486 
487 	ifp->if_flags &= ~IFF_ALLMULTI;
488 
489 	if (mcnt)
490 		rxfilt |= VR_RXCFG_RX_MULTI;
491 	else
492 		rxfilt &= ~VR_RXCFG_RX_MULTI;
493 
494 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
495 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
496 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
497 }
498 
499 static void
500 vr_reset(struct vr_softc *sc)
501 {
502 	int i;
503 
504 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
505 
506 	for (i = 0; i < VR_TIMEOUT; i++) {
507 		DELAY(10);
508 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
509 			break;
510 	}
511 	if (i == VR_TIMEOUT) {
512 		if (sc->vr_revid < REV_ID_VT3065_A) {
513 			printf("%s: reset never completed!\n",
514 			    sc->vr_dev.dv_xname);
515 		} else {
516 			/* Use newer force reset command */
517 			printf("%s: using force reset command.\n",
518 			    sc->vr_dev.dv_xname);
519 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
520 		}
521 	}
522 
523 	/* Wait a little while for the chip to get its brains in order. */
524 	DELAY(1000);
525 }
526 
527 /*
528  * Initialize an RX descriptor and attach an MBUF cluster.
529  * Note: the length fields are only 11 bits wide, which means the
530  * largest size we can specify is 2047. This is important because
531  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
532  * overflow the field and make a mess.
533  */
534 static int
535 vr_add_rxbuf(struct vr_softc *sc, int i)
536 {
537 	struct vr_descsoft *ds = VR_DSRX(sc, i);
538 	struct mbuf *m_new;
539 	int error;
540 
541 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
542 	if (m_new == NULL)
543 		return (ENOBUFS);
544 
545 	MCLGET(m_new, M_DONTWAIT);
546 	if ((m_new->m_flags & M_EXT) == 0) {
547 		m_freem(m_new);
548 		return (ENOBUFS);
549 	}
550 
551 	if (ds->ds_mbuf != NULL)
552 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
553 
554 	ds->ds_mbuf = m_new;
555 
556 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
557 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
558 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
559 	if (error) {
560 		printf("%s: unable to load rx DMA map %d, error = %d\n",
561 		    sc->vr_dev.dv_xname, i, error);
562 		panic("vr_add_rxbuf");		/* XXX */
563 	}
564 
565 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
566 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
567 
568 	VR_INIT_RXDESC(sc, i);
569 
570 	return (0);
571 }
572 
573 /*
574  * A frame has been uploaded: pass the resulting mbuf chain up to
575  * the higher level protocols.
576  */
577 static void
578 vr_rxeof(struct vr_softc *sc)
579 {
580 	struct mbuf *m;
581 	struct ifnet *ifp;
582 	struct vr_desc *d;
583 	struct vr_descsoft *ds;
584 	int i, total_len;
585 	u_int32_t rxstat;
586 
587 	ifp = &sc->vr_ec.ec_if;
588 
589 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
590 		d = VR_CDRX(sc, i);
591 		ds = VR_DSRX(sc, i);
592 
593 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
594 
595 		rxstat = le32toh(d->vr_status);
596 
597 		if (rxstat & VR_RXSTAT_OWN) {
598 			/*
599 			 * We have processed all of the receive buffers.
600 			 */
601 			break;
602 		}
603 
604 		/*
605 		 * If an error occurs, update stats, clear the
606 		 * status word and leave the mbuf cluster in place:
607 		 * it should simply get re-used next time this descriptor
608 		 * comes up in the ring.
609 		 */
610 		if (rxstat & VR_RXSTAT_RXERR) {
611 			const char *errstr;
612 
613 			ifp->if_ierrors++;
614 			switch (rxstat & 0x000000FF) {
615 			case VR_RXSTAT_CRCERR:
616 				errstr = "crc error";
617 				break;
618 			case VR_RXSTAT_FRAMEALIGNERR:
619 				errstr = "frame alignment error";
620 				break;
621 			case VR_RXSTAT_FIFOOFLOW:
622 				errstr = "FIFO overflow";
623 				break;
624 			case VR_RXSTAT_GIANT:
625 				errstr = "received giant packet";
626 				break;
627 			case VR_RXSTAT_RUNT:
628 				errstr = "received runt packet";
629 				break;
630 			case VR_RXSTAT_BUSERR:
631 				errstr = "system bus error";
632 				break;
633 			case VR_RXSTAT_BUFFERR:
634 				errstr = "rx buffer error";
635 				break;
636 			default:
637 				errstr = "unknown rx error";
638 				break;
639 			}
640 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
641 			    errstr);
642 
643 			VR_INIT_RXDESC(sc, i);
644 
645 			continue;
646 		}
647 
648 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
649 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
650 
651 		/* No errors; receive the packet. */
652 		total_len = VR_RXBYTES(le32toh(d->vr_status));
653 
654 #ifdef __NO_STRICT_ALIGNMENT
655 		/*
656 		 * If the packet is small enough to fit in a
657 		 * single header mbuf, allocate one and copy
658 		 * the data into it.  This greatly reduces
659 		 * memory consumption when we receive lots
660 		 * of small packets.
661 		 *
662 		 * Otherwise, we add a new buffer to the receive
663 		 * chain.  If this fails, we drop the packet and
664 		 * recycle the old buffer.
665 		 */
666 		if (vr_copy_small != 0 && total_len <= MHLEN) {
667 			MGETHDR(m, M_DONTWAIT, MT_DATA);
668 			if (m == NULL)
669 				goto dropit;
670 			memcpy(mtod(m, caddr_t),
671 			    mtod(ds->ds_mbuf, caddr_t), total_len);
672 			VR_INIT_RXDESC(sc, i);
673 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
674 			    ds->ds_dmamap->dm_mapsize,
675 			    BUS_DMASYNC_PREREAD);
676 		} else {
677 			m = ds->ds_mbuf;
678 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
679  dropit:
680 				ifp->if_ierrors++;
681 				VR_INIT_RXDESC(sc, i);
682 				bus_dmamap_sync(sc->vr_dmat,
683 				    ds->ds_dmamap, 0,
684 				    ds->ds_dmamap->dm_mapsize,
685 				    BUS_DMASYNC_PREREAD);
686 				continue;
687 			}
688 		}
689 #else
690 		/*
691 		 * The Rhine's packet buffers must be 4-byte aligned.
692 		 * But this means that the data after the Ethernet header
693 		 * is misaligned.  We must allocate a new buffer and
694 		 * copy the data, shifted forward 2 bytes.
695 		 */
696 		MGETHDR(m, M_DONTWAIT, MT_DATA);
697 		if (m == NULL) {
698  dropit:
699 			ifp->if_ierrors++;
700 			VR_INIT_RXDESC(sc, i);
701 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
702 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
703 			continue;
704 		}
705 		if (total_len > (MHLEN - 2)) {
706 			MCLGET(m, M_DONTWAIT);
707 			if ((m->m_flags & M_EXT) == 0) {
708 				m_freem(m);
709 				goto dropit;
710 			}
711 		}
712 		m->m_data += 2;
713 
714 		/*
715 		 * Note that we use clusters for incoming frames, so the
716 		 * buffer is virtually contiguous.
717 		 */
718 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
719 		    total_len);
720 
721 		/* Allow the receive descriptor to continue using its mbuf. */
722 		VR_INIT_RXDESC(sc, i);
723 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
724 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
725 #endif /* __NO_STRICT_ALIGNMENT */
726 
727 		/*
728 		 * The Rhine chip includes the FCS with every
729 		 * received packet.
730 		 */
731 		m->m_flags |= M_HASFCS;
732 
733 		ifp->if_ipackets++;
734 		m->m_pkthdr.rcvif = ifp;
735 		m->m_pkthdr.len = m->m_len = total_len;
736 #if NBPFILTER > 0
737 		/*
738 		 * Handle BPF listeners. Let the BPF user see the packet, but
739 		 * don't pass it up to the ether_input() layer unless it's
740 		 * a broadcast packet, multicast packet, matches our ethernet
741 		 * address or the interface is in promiscuous mode.
742 		 */
743 		if (ifp->if_bpf)
744 			bpf_mtap(ifp->if_bpf, m);
745 #endif
746 		/* Pass it on. */
747 		(*ifp->if_input)(ifp, m);
748 	}
749 
750 	/* Update the receive pointer. */
751 	sc->vr_rxptr = i;
752 }
753 
754 void
755 vr_rxeoc(struct vr_softc *sc)
756 {
757 
758 	vr_rxeof(sc);
759 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
760 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
761 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
762 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
763 }
764 
765 /*
766  * A frame was downloaded to the chip. It's safe for us to clean up
767  * the list buffers.
768  */
769 static void
770 vr_txeof(struct vr_softc *sc)
771 {
772 	struct ifnet *ifp = &sc->vr_ec.ec_if;
773 	struct vr_desc *d;
774 	struct vr_descsoft *ds;
775 	u_int32_t txstat;
776 	int i;
777 
778 	ifp->if_flags &= ~IFF_OACTIVE;
779 
780 	/*
781 	 * Go through our tx list and free mbufs for those
782 	 * frames that have been transmitted.
783 	 */
784 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
785 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
786 		d = VR_CDTX(sc, i);
787 		ds = VR_DSTX(sc, i);
788 
789 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
790 
791 		txstat = le32toh(d->vr_status);
792 		if (txstat & VR_TXSTAT_OWN)
793 			break;
794 
795 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
796 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
797 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
798 		m_freem(ds->ds_mbuf);
799 		ds->ds_mbuf = NULL;
800 
801 		if (txstat & VR_TXSTAT_ERRSUM) {
802 			ifp->if_oerrors++;
803 			if (txstat & VR_TXSTAT_DEFER)
804 				ifp->if_collisions++;
805 			if (txstat & VR_TXSTAT_LATECOLL)
806 				ifp->if_collisions++;
807 		}
808 
809 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
810 		ifp->if_opackets++;
811 	}
812 
813 	/* Update the dirty transmit buffer pointer. */
814 	sc->vr_txdirty = i;
815 
816 	/*
817 	 * Cancel the watchdog timer if there are no pending
818 	 * transmissions.
819 	 */
820 	if (sc->vr_txpending == 0)
821 		ifp->if_timer = 0;
822 }
823 
824 static int
825 vr_intr(void *arg)
826 {
827 	struct vr_softc *sc;
828 	struct ifnet *ifp;
829 	u_int16_t status;
830 	int handled = 0, dotx = 0;
831 
832 	sc = arg;
833 	ifp = &sc->vr_ec.ec_if;
834 
835 	/* Suppress unwanted interrupts. */
836 	if ((ifp->if_flags & IFF_UP) == 0) {
837 		vr_stop(ifp, 1);
838 		return (0);
839 	}
840 
841 	/* Disable interrupts. */
842 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
843 
844 	for (;;) {
845 		status = CSR_READ_2(sc, VR_ISR);
846 		if (status)
847 			CSR_WRITE_2(sc, VR_ISR, status);
848 
849 		if ((status & VR_INTRS) == 0)
850 			break;
851 
852 		handled = 1;
853 
854 #if NRND > 0
855 		if (RND_ENABLED(&sc->rnd_source))
856 			rnd_add_uint32(&sc->rnd_source, status);
857 #endif
858 
859 		if (status & VR_ISR_RX_OK)
860 			vr_rxeof(sc);
861 
862 		if (status &
863 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
864 		     VR_ISR_RX_DROPPED))
865 			vr_rxeoc(sc);
866 
867 		if (status & VR_ISR_TX_OK) {
868 			dotx = 1;
869 			vr_txeof(sc);
870 		}
871 
872 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
873 			if (status & VR_ISR_TX_UNDERRUN)
874 				printf("%s: transmit underrun\n",
875 				    sc->vr_dev.dv_xname);
876 			if (status & VR_ISR_TX_ABRT)
877 				printf("%s: transmit aborted\n",
878 				    sc->vr_dev.dv_xname);
879 			ifp->if_oerrors++;
880 			dotx = 1;
881 			vr_txeof(sc);
882 			if (sc->vr_txpending) {
883 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
884 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
885 			}
886 			/*
887 			 * Unfortunately many cards get stuck after
888 			 * aborted transmits, so we reset them.
889 			 */
890 			if (status & VR_ISR_TX_ABRT) {
891 				printf("%s: restarting\n", sc->vr_dev.dv_xname);
892 				dotx = 0;
893 				(void) vr_init(ifp);
894 			}
895 		}
896 
897 		if (status & VR_ISR_BUSERR) {
898 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
899 			/* vr_init() calls vr_start() */
900 			dotx = 0;
901 			(void) vr_init(ifp);
902 		}
903 	}
904 
905 	/* Re-enable interrupts. */
906 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
907 
908 	if (dotx)
909 		vr_start(ifp);
910 
911 	return (handled);
912 }
913 
914 /*
915  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
916  * to the mbuf data regions directly in the transmit lists. We also save a
917  * copy of the pointers since the transmit list fragment pointers are
918  * physical addresses.
919  */
920 static void
921 vr_start(struct ifnet *ifp)
922 {
923 	struct vr_softc *sc = ifp->if_softc;
924 	struct mbuf *m0, *m;
925 	struct vr_desc *d;
926 	struct vr_descsoft *ds;
927 	int error, firsttx, nexttx, opending;
928 
929 	/*
930 	 * Remember the previous txpending and the first transmit
931 	 * descriptor we use.
932 	 */
933 	opending = sc->vr_txpending;
934 	firsttx = VR_NEXTTX(sc->vr_txlast);
935 
936 	/*
937 	 * Loop through the send queue, setting up transmit descriptors
938 	 * until we drain the queue, or use up all available transmit
939 	 * descriptors.
940 	 */
941 	while (sc->vr_txpending < VR_NTXDESC) {
942 		/*
943 		 * Grab a packet off the queue.
944 		 */
945 		IFQ_POLL(&ifp->if_snd, m0);
946 		if (m0 == NULL)
947 			break;
948 		m = NULL;
949 
950 		/*
951 		 * Get the next available transmit descriptor.
952 		 */
953 		nexttx = VR_NEXTTX(sc->vr_txlast);
954 		d = VR_CDTX(sc, nexttx);
955 		ds = VR_DSTX(sc, nexttx);
956 
957 		/*
958 		 * Load the DMA map.  If this fails, the packet didn't
959 		 * fit in one DMA segment, and we need to copy.  Note,
960 		 * the packet must also be aligned.
961 		 * if the packet is too small, copy it too, so we're sure
962 		 * so have enouth room for the pad buffer.
963 		 */
964 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
965 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
966 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
967 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
968 			MGETHDR(m, M_DONTWAIT, MT_DATA);
969 			if (m == NULL) {
970 				printf("%s: unable to allocate Tx mbuf\n",
971 				    sc->vr_dev.dv_xname);
972 				break;
973 			}
974 			if (m0->m_pkthdr.len > MHLEN) {
975 				MCLGET(m, M_DONTWAIT);
976 				if ((m->m_flags & M_EXT) == 0) {
977 					printf("%s: unable to allocate Tx "
978 					    "cluster\n", sc->vr_dev.dv_xname);
979 					m_freem(m);
980 					break;
981 				}
982 			}
983 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
984 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
985 			/*
986 			 * The Rhine doesn't auto-pad, so we have to do this
987 			 * ourselves.
988 			 */
989 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
990 				memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
991 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
992 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
993 			}
994 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
995 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
996 			if (error) {
997 				printf("%s: unable to load Tx buffer, "
998 				    "error = %d\n", sc->vr_dev.dv_xname, error);
999 				break;
1000 			}
1001 		}
1002 
1003 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1004 		if (m != NULL) {
1005 			m_freem(m0);
1006 			m0 = m;
1007 		}
1008 
1009 		/* Sync the DMA map. */
1010 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1011 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1012 
1013 		/*
1014 		 * Store a pointer to the packet so we can free it later.
1015 		 */
1016 		ds->ds_mbuf = m0;
1017 
1018 #if NBPFILTER > 0
1019 		/*
1020 		 * If there's a BPF listener, bounce a copy of this frame
1021 		 * to him.
1022 		 */
1023 		if (ifp->if_bpf)
1024 			bpf_mtap(ifp->if_bpf, m0);
1025 #endif
1026 
1027 		/*
1028 		 * Fill in the transmit descriptor.
1029 		 */
1030 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1031 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1032 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1033 
1034 		/*
1035 		 * If this is the first descriptor we're enqueuing,
1036 		 * don't give it to the Rhine yet.  That could cause
1037 		 * a race condition.  We'll do it below.
1038 		 */
1039 		if (nexttx == firsttx)
1040 			d->vr_status = 0;
1041 		else
1042 			d->vr_status = htole32(VR_TXSTAT_OWN);
1043 
1044 		VR_CDTXSYNC(sc, nexttx,
1045 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1046 
1047 		/* Advance the tx pointer. */
1048 		sc->vr_txpending++;
1049 		sc->vr_txlast = nexttx;
1050 	}
1051 
1052 	if (sc->vr_txpending == VR_NTXDESC) {
1053 		/* No more slots left; notify upper layer. */
1054 		ifp->if_flags |= IFF_OACTIVE;
1055 	}
1056 
1057 	if (sc->vr_txpending != opending) {
1058 		/*
1059 		 * We enqueued packets.  If the transmitter was idle,
1060 		 * reset the txdirty pointer.
1061 		 */
1062 		if (opending == 0)
1063 			sc->vr_txdirty = firsttx;
1064 
1065 		/*
1066 		 * Cause a transmit interrupt to happen on the
1067 		 * last packet we enqueued.
1068 		 */
1069 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1070 		VR_CDTXSYNC(sc, sc->vr_txlast,
1071 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072 
1073 		/*
1074 		 * The entire packet chain is set up.  Give the
1075 		 * first descriptor to the Rhine now.
1076 		 */
1077 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1078 		VR_CDTXSYNC(sc, firsttx,
1079 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1080 
1081 		/* Start the transmitter. */
1082 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1083 
1084 		/* Set the watchdog timer in case the chip flakes out. */
1085 		ifp->if_timer = 5;
1086 	}
1087 }
1088 
1089 /*
1090  * Initialize the interface.  Must be called at splnet.
1091  */
1092 static int
1093 vr_init(struct ifnet *ifp)
1094 {
1095 	struct vr_softc *sc = ifp->if_softc;
1096 	struct vr_desc *d;
1097 	struct vr_descsoft *ds;
1098 	int i, error = 0;
1099 
1100 	/* Cancel pending I/O. */
1101 	vr_stop(ifp, 0);
1102 
1103 	/* Reset the Rhine to a known state. */
1104 	vr_reset(sc);
1105 
1106 	/* set DMA length in BCR0 and BCR1 */
1107 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1108 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1109 
1110 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1111 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1112 
1113 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1114 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1115 
1116 	/* set DMA threshold length in RXCFG and TXCFG */
1117 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1118 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1119 
1120 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1121 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1122 
1123 	/*
1124 	 * Initialize the transmit desciptor ring.  txlast is initialized
1125 	 * to the end of the list so that it will wrap around to the first
1126 	 * descriptor when the first packet is transmitted.
1127 	 */
1128 	for (i = 0; i < VR_NTXDESC; i++) {
1129 		d = VR_CDTX(sc, i);
1130 		memset(d, 0, sizeof(struct vr_desc));
1131 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1132 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1133 	}
1134 	sc->vr_txpending = 0;
1135 	sc->vr_txdirty = 0;
1136 	sc->vr_txlast = VR_NTXDESC - 1;
1137 
1138 	/*
1139 	 * Initialize the receive descriptor ring.
1140 	 */
1141 	for (i = 0; i < VR_NRXDESC; i++) {
1142 		ds = VR_DSRX(sc, i);
1143 		if (ds->ds_mbuf == NULL) {
1144 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1145 				printf("%s: unable to allocate or map rx "
1146 				    "buffer %d, error = %d\n",
1147 				    sc->vr_dev.dv_xname, i, error);
1148 				/*
1149 				 * XXX Should attempt to run with fewer receive
1150 				 * XXX buffers instead of just failing.
1151 				 */
1152 				vr_rxdrain(sc);
1153 				goto out;
1154 			}
1155 		} else
1156 			VR_INIT_RXDESC(sc, i);
1157 	}
1158 	sc->vr_rxptr = 0;
1159 
1160 	/* If we want promiscuous mode, set the allframes bit. */
1161 	if (ifp->if_flags & IFF_PROMISC)
1162 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1163 	else
1164 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1165 
1166 	/* Set capture broadcast bit to capture broadcast frames. */
1167 	if (ifp->if_flags & IFF_BROADCAST)
1168 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1169 	else
1170 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1171 
1172 	/* Program the multicast filter, if necessary. */
1173 	vr_setmulti(sc);
1174 
1175 	/* Give the transmit and receive rings to the Rhine. */
1176 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1177 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1178 
1179 	/* Set current media. */
1180 	mii_mediachg(&sc->vr_mii);
1181 
1182 	/* Enable receiver and transmitter. */
1183 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1184 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1185 				    VR_CMD_RX_GO);
1186 
1187 	/* Enable interrupts. */
1188 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1189 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1190 
1191 	ifp->if_flags |= IFF_RUNNING;
1192 	ifp->if_flags &= ~IFF_OACTIVE;
1193 
1194 	/* Start one second timer. */
1195 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1196 
1197 	/* Attempt to start output on the interface. */
1198 	vr_start(ifp);
1199 
1200  out:
1201 	if (error)
1202 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1203 	return (error);
1204 }
1205 
1206 /*
1207  * Set media options.
1208  */
1209 static int
1210 vr_ifmedia_upd(struct ifnet *ifp)
1211 {
1212 	struct vr_softc *sc = ifp->if_softc;
1213 
1214 	if (ifp->if_flags & IFF_UP)
1215 		mii_mediachg(&sc->vr_mii);
1216 	return (0);
1217 }
1218 
1219 /*
1220  * Report current media status.
1221  */
1222 static void
1223 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1224 {
1225 	struct vr_softc *sc = ifp->if_softc;
1226 
1227 	mii_pollstat(&sc->vr_mii);
1228 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
1229 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
1230 }
1231 
1232 static int
1233 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1234 {
1235 	struct vr_softc *sc = ifp->if_softc;
1236 	struct ifreq *ifr = (struct ifreq *)data;
1237 	int s, error = 0;
1238 
1239 	s = splnet();
1240 
1241 	switch (command) {
1242 	case SIOCGIFMEDIA:
1243 	case SIOCSIFMEDIA:
1244 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1245 		break;
1246 
1247 	default:
1248 		error = ether_ioctl(ifp, command, data);
1249 		if (error == ENETRESET) {
1250 			/*
1251 			 * Multicast list has changed; set the hardware filter
1252 			 * accordingly.
1253 			 */
1254 			if (ifp->if_flags & IFF_RUNNING)
1255 				vr_setmulti(sc);
1256 			error = 0;
1257 		}
1258 		break;
1259 	}
1260 
1261 	splx(s);
1262 	return (error);
1263 }
1264 
1265 static void
1266 vr_watchdog(struct ifnet *ifp)
1267 {
1268 	struct vr_softc *sc = ifp->if_softc;
1269 
1270 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1271 	ifp->if_oerrors++;
1272 
1273 	(void) vr_init(ifp);
1274 }
1275 
1276 /*
1277  * One second timer, used to tick MII.
1278  */
1279 static void
1280 vr_tick(void *arg)
1281 {
1282 	struct vr_softc *sc = arg;
1283 	int s;
1284 
1285 	s = splnet();
1286 	mii_tick(&sc->vr_mii);
1287 	splx(s);
1288 
1289 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1290 }
1291 
1292 /*
1293  * Drain the receive queue.
1294  */
1295 static void
1296 vr_rxdrain(struct vr_softc *sc)
1297 {
1298 	struct vr_descsoft *ds;
1299 	int i;
1300 
1301 	for (i = 0; i < VR_NRXDESC; i++) {
1302 		ds = VR_DSRX(sc, i);
1303 		if (ds->ds_mbuf != NULL) {
1304 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1305 			m_freem(ds->ds_mbuf);
1306 			ds->ds_mbuf = NULL;
1307 		}
1308 	}
1309 }
1310 
1311 /*
1312  * Stop the adapter and free any mbufs allocated to the
1313  * transmit lists.
1314  */
1315 static void
1316 vr_stop(struct ifnet *ifp, int disable)
1317 {
1318 	struct vr_softc *sc = ifp->if_softc;
1319 	struct vr_descsoft *ds;
1320 	int i;
1321 
1322 	/* Cancel one second timer. */
1323 	callout_stop(&sc->vr_tick_ch);
1324 
1325 	/* Down the MII. */
1326 	mii_down(&sc->vr_mii);
1327 
1328 	ifp = &sc->vr_ec.ec_if;
1329 	ifp->if_timer = 0;
1330 
1331 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1332 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1333 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1334 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1335 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1336 
1337 	/*
1338 	 * Release any queued transmit buffers.
1339 	 */
1340 	for (i = 0; i < VR_NTXDESC; i++) {
1341 		ds = VR_DSTX(sc, i);
1342 		if (ds->ds_mbuf != NULL) {
1343 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1344 			m_freem(ds->ds_mbuf);
1345 			ds->ds_mbuf = NULL;
1346 		}
1347 	}
1348 
1349 	if (disable)
1350 		vr_rxdrain(sc);
1351 
1352 	/*
1353 	 * Mark the interface down and cancel the watchdog timer.
1354 	 */
1355 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1356 	ifp->if_timer = 0;
1357 }
1358 
1359 static int	vr_probe(struct device *, struct cfdata *, void *);
1360 static void	vr_attach(struct device *, struct device *, void *);
1361 static void	vr_shutdown(void *);
1362 
1363 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1364     vr_probe, vr_attach, NULL, NULL);
1365 
1366 static struct vr_type *
1367 vr_lookup(struct pci_attach_args *pa)
1368 {
1369 	struct vr_type *vrt;
1370 
1371 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1372 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1373 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1374 			return (vrt);
1375 	}
1376 	return (NULL);
1377 }
1378 
1379 static int
1380 vr_probe(struct device *parent, struct cfdata *match, void *aux)
1381 {
1382 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1383 
1384 	if (vr_lookup(pa) != NULL)
1385 		return (1);
1386 
1387 	return (0);
1388 }
1389 
1390 /*
1391  * Stop all chip I/O so that the kernel's probe routines don't
1392  * get confused by errant DMAs when rebooting.
1393  */
1394 static void
1395 vr_shutdown(void *arg)
1396 {
1397 	struct vr_softc *sc = (struct vr_softc *)arg;
1398 
1399 	vr_stop(&sc->vr_ec.ec_if, 1);
1400 }
1401 
1402 /*
1403  * Attach the interface. Allocate softc structures, do ifmedia
1404  * setup and ethernet/BPF attach.
1405  */
1406 static void
1407 vr_attach(struct device *parent, struct device *self, void *aux)
1408 {
1409 	struct vr_softc *sc = (struct vr_softc *) self;
1410 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1411 	bus_dma_segment_t seg;
1412 	struct vr_type *vrt;
1413 	u_int32_t pmreg, reg;
1414 	struct ifnet *ifp;
1415 	u_char eaddr[ETHER_ADDR_LEN];
1416 	int i, rseg, error;
1417 
1418 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1419 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1420 
1421 	callout_init(&sc->vr_tick_ch);
1422 
1423 	vrt = vr_lookup(pa);
1424 	if (vrt == NULL) {
1425 		printf("\n");
1426 		panic("vr_attach: impossible");
1427 	}
1428 
1429 	printf(": %s Ethernet\n", vrt->vr_name);
1430 
1431 	/*
1432 	 * Handle power management nonsense.
1433 	 */
1434 
1435 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1436 	    PCI_CAP_PWRMGMT, &pmreg, 0)) {
1437 		reg = PCI_CONF_READ(pmreg + PCI_PMCSR);
1438 		if ((reg & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_STATE_D0) {
1439 			u_int32_t iobase, membase, irq;
1440 
1441 			/* Save important PCI config data. */
1442 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
1443 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
1444 			irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1445 
1446 			/* Reset the power state. */
1447 			printf("%s: chip is in D%d power mode "
1448 			    "-- setting to D0\n",
1449 			    sc->vr_dev.dv_xname, reg & PCI_PMCSR_STATE_MASK);
1450 			reg = (reg & ~PCI_PMCSR_STATE_MASK) |
1451 			    PCI_PMCSR_STATE_D0;
1452 			PCI_CONF_WRITE(pmreg + PCI_PMCSR, reg);
1453 
1454 			/* Restore PCI config data. */
1455 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1456 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1457 			PCI_CONF_WRITE(PCI_INTERRUPT_REG, irq);
1458 		}
1459 	}
1460 
1461 	/* Make sure bus mastering is enabled. */
1462 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1463 	reg |= PCI_COMMAND_MASTER_ENABLE;
1464 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1465 
1466 	/* Get revision */
1467 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1468 
1469 	/*
1470 	 * Map control/status registers.
1471 	 */
1472 	{
1473 		bus_space_tag_t iot, memt;
1474 		bus_space_handle_t ioh, memh;
1475 		int ioh_valid, memh_valid;
1476 		pci_intr_handle_t intrhandle;
1477 		const char *intrstr;
1478 
1479 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1480 			PCI_MAPREG_TYPE_IO, 0,
1481 			&iot, &ioh, NULL, NULL) == 0);
1482 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1483 			PCI_MAPREG_TYPE_MEM |
1484 			PCI_MAPREG_MEM_TYPE_32BIT,
1485 			0, &memt, &memh, NULL, NULL) == 0);
1486 #if defined(VR_USEIOSPACE)
1487 		if (ioh_valid) {
1488 			sc->vr_bst = iot;
1489 			sc->vr_bsh = ioh;
1490 		} else if (memh_valid) {
1491 			sc->vr_bst = memt;
1492 			sc->vr_bsh = memh;
1493 		}
1494 #else
1495 		if (memh_valid) {
1496 			sc->vr_bst = memt;
1497 			sc->vr_bsh = memh;
1498 		} else if (ioh_valid) {
1499 			sc->vr_bst = iot;
1500 			sc->vr_bsh = ioh;
1501 		}
1502 #endif
1503 		else {
1504 			printf(": unable to map device registers\n");
1505 			return;
1506 		}
1507 
1508 		/* Allocate interrupt */
1509 		if (pci_intr_map(pa, &intrhandle)) {
1510 			printf("%s: couldn't map interrupt\n",
1511 				sc->vr_dev.dv_xname);
1512 			return;
1513 		}
1514 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1515 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1516 						vr_intr, sc);
1517 		if (sc->vr_ih == NULL) {
1518 			printf("%s: couldn't establish interrupt",
1519 				sc->vr_dev.dv_xname);
1520 			if (intrstr != NULL)
1521 				printf(" at %s", intrstr);
1522 			printf("\n");
1523 		}
1524 		printf("%s: interrupting at %s\n",
1525 			sc->vr_dev.dv_xname, intrstr);
1526 	}
1527 
1528 	/*
1529 	 * Windows may put the chip in suspend mode when it
1530 	 * shuts down. Be sure to kick it in the head to wake it
1531 	 * up again.
1532 	 */
1533 	VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1534 
1535 	/* Reset the adapter. */
1536 	vr_reset(sc);
1537 
1538 	/*
1539 	 * Get station address. The way the Rhine chips work,
1540 	 * you're not allowed to directly access the EEPROM once
1541 	 * they've been programmed a special way. Consequently,
1542 	 * we need to read the node address from the PAR0 and PAR1
1543 	 * registers.
1544 	 *
1545 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1546 	 *         of the *whole* EEPROM, not just the MAC address. This is
1547 	 *         pretty pointless since the chip does this automatically
1548 	 *         at powerup/reset.
1549 	 *         I suspect the same thing applies to the other Rhine
1550 	 *         variants, but in the absence of a data sheet for those
1551 	 *         (and the lack of anyone else noticing the problems this
1552 	 *         causes) I'm going to retain the old behaviour for the
1553 	 *         other parts.
1554 	 */
1555 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1556 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102) {
1557 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1558 		DELAY(200);
1559 	}
1560 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1561 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1562 
1563 	/*
1564 	 * A Rhine chip was detected. Inform the world.
1565 	 */
1566 	printf("%s: Ethernet address: %s\n",
1567 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1568 
1569 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1570 
1571 	sc->vr_dmat = pa->pa_dmat;
1572 
1573 	/*
1574 	 * Allocate the control data structures, and create and load
1575 	 * the DMA map for it.
1576 	 */
1577 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1578 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1579 	    0)) != 0) {
1580 		printf("%s: unable to allocate control data, error = %d\n",
1581 		    sc->vr_dev.dv_xname, error);
1582 		goto fail_0;
1583 	}
1584 
1585 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1586 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1587 	    BUS_DMA_COHERENT)) != 0) {
1588 		printf("%s: unable to map control data, error = %d\n",
1589 		    sc->vr_dev.dv_xname, error);
1590 		goto fail_1;
1591 	}
1592 
1593 	if ((error = bus_dmamap_create(sc->vr_dmat,
1594 	    sizeof(struct vr_control_data), 1,
1595 	    sizeof(struct vr_control_data), 0, 0,
1596 	    &sc->vr_cddmamap)) != 0) {
1597 		printf("%s: unable to create control data DMA map, "
1598 		    "error = %d\n", sc->vr_dev.dv_xname, error);
1599 		goto fail_2;
1600 	}
1601 
1602 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1603 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1604 	    0)) != 0) {
1605 		printf("%s: unable to load control data DMA map, error = %d\n",
1606 		    sc->vr_dev.dv_xname, error);
1607 		goto fail_3;
1608 	}
1609 
1610 	/*
1611 	 * Create the transmit buffer DMA maps.
1612 	 */
1613 	for (i = 0; i < VR_NTXDESC; i++) {
1614 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1615 		    1, MCLBYTES, 0, 0,
1616 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1617 			printf("%s: unable to create tx DMA map %d, "
1618 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1619 			goto fail_4;
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * Create the receive buffer DMA maps.
1625 	 */
1626 	for (i = 0; i < VR_NRXDESC; i++) {
1627 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1628 		    MCLBYTES, 0, 0,
1629 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1630 			printf("%s: unable to create rx DMA map %d, "
1631 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1632 			goto fail_5;
1633 		}
1634 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1635 	}
1636 
1637 	ifp = &sc->vr_ec.ec_if;
1638 	ifp->if_softc = sc;
1639 	ifp->if_mtu = ETHERMTU;
1640 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641 	ifp->if_ioctl = vr_ioctl;
1642 	ifp->if_start = vr_start;
1643 	ifp->if_watchdog = vr_watchdog;
1644 	ifp->if_init = vr_init;
1645 	ifp->if_stop = vr_stop;
1646 	IFQ_SET_READY(&ifp->if_snd);
1647 
1648 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1649 
1650 	/*
1651 	 * Initialize MII/media info.
1652 	 */
1653 	sc->vr_mii.mii_ifp = ifp;
1654 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1655 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1656 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1657 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1658 		vr_ifmedia_sts);
1659 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1660 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1661 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1662 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1663 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1664 	} else
1665 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1666 
1667 	/*
1668 	 * Call MI attach routines.
1669 	 */
1670 	if_attach(ifp);
1671 	ether_ifattach(ifp, sc->vr_enaddr);
1672 #if NRND > 0
1673 	rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
1674 	    RND_TYPE_NET, 0);
1675 #endif
1676 
1677 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1678 	if (sc->vr_ats == NULL)
1679 		printf("%s: warning: couldn't establish shutdown hook\n",
1680 			sc->vr_dev.dv_xname);
1681 	return;
1682 
1683  fail_5:
1684 	for (i = 0; i < VR_NRXDESC; i++) {
1685 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1686 			bus_dmamap_destroy(sc->vr_dmat,
1687 			    sc->vr_rxsoft[i].ds_dmamap);
1688 	}
1689  fail_4:
1690 	for (i = 0; i < VR_NTXDESC; i++) {
1691 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1692 			bus_dmamap_destroy(sc->vr_dmat,
1693 			    sc->vr_txsoft[i].ds_dmamap);
1694 	}
1695 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1696  fail_3:
1697 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1698  fail_2:
1699 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1700 	    sizeof(struct vr_control_data));
1701  fail_1:
1702 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1703  fail_0:
1704 	return;
1705 }
1706