xref: /netbsd-src/sys/dev/pci/if_vr.c (revision 08c81a9c2dc8c7300e893321eb65c0925d60871c)
1 /*	$NetBSD: if_vr.c,v 1.54 2002/07/28 15:41:00 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1997, 1998
42  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Bill Paul.
55  * 4. Neither the name of the author nor the names of any co-contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69  * THE POSSIBILITY OF SUCH DAMAGE.
70  *
71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72  */
73 
74 /*
75  * VIA Rhine fast ethernet PCI NIC driver
76  *
77  * Supports various network adapters based on the VIA Rhine
78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
79  * Datasheets are available at http://www.via.com.tw.
80  *
81  * Written by Bill Paul <wpaul@ctr.columbia.edu>
82  * Electrical Engineering Department
83  * Columbia University, New York City
84  */
85 
86 /*
87  * The VIA Rhine controllers are similar in some respects to the
88  * the DEC tulip chips, except less complicated. The controller
89  * uses an MII bus and an external physical layer interface. The
90  * receiver has a one entry perfect filter and a 64-bit hash table
91  * multicast filter. Transmit and receive descriptors are similar
92  * to the tulip.
93  *
94  * The Rhine has a serious flaw in its transmit DMA mechanism:
95  * transmit buffers must be longword aligned. Unfortunately,
96  * the kernel doesn't guarantee that mbufs will be filled in starting
97  * at longword boundaries, so we have to do a buffer copy before
98  * transmission.
99  *
100  * Apparently, the receive DMA mechanism also has the same flaw.  This
101  * means that on systems with struct alignment requirements, incoming
102  * frames must be copied to a new buffer which shifts the data forward
103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
104  */
105 
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.54 2002/07/28 15:41:00 christos Exp $");
108 
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/callout.h>
112 #include <sys/sockio.h>
113 #include <sys/mbuf.h>
114 #include <sys/malloc.h>
115 #include <sys/kernel.h>
116 #include <sys/socket.h>
117 #include <sys/device.h>
118 
119 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_ether.h>
126 
127 #include "bpfilter.h"
128 #if NBPFILTER > 0
129 #include <net/bpf.h>
130 #endif
131 
132 #include <machine/bus.h>
133 #include <machine/intr.h>
134 #include <machine/endian.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 #include <dev/mii/mii_bitbang.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 #include <dev/pci/pcidevs.h>
143 
144 #include <dev/pci/if_vrreg.h>
145 
146 #define	VR_USEIOSPACE
147 
148 /*
149  * Various supported device vendors/types and their names.
150  */
151 static struct vr_type {
152 	pci_vendor_id_t		vr_vid;
153 	pci_product_id_t	vr_did;
154 	const char		*vr_name;
155 } vr_devs[] = {
156 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
157 		"VIA VT3043 (Rhine) 10/100" },
158 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
159 		"VIA VT6102 (Rhine II) 10/100" },
160 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
161 		"VIA VT86C100A (Rhine-II) 10/100" },
162 	{ 0, 0, NULL }
163 };
164 
165 /*
166  * Transmit descriptor list size.
167  */
168 #define	VR_NTXDESC		64
169 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
170 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
171 
172 /*
173  * Receive descriptor list size.
174  */
175 #define	VR_NRXDESC		64
176 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
177 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
178 
179 /*
180  * Control data structres that are DMA'd to the Rhine chip.  We allocate
181  * them in a single clump that maps to a single DMA segment to make several
182  * things easier.
183  *
184  * Note that since we always copy outgoing packets to aligned transmit
185  * buffers, we can reduce the transmit descriptors to one per packet.
186  */
187 struct vr_control_data {
188 	struct vr_desc		vr_txdescs[VR_NTXDESC];
189 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
190 };
191 
192 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
193 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
194 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
195 
196 /*
197  * Software state of transmit and receive descriptors.
198  */
199 struct vr_descsoft {
200 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
201 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
202 };
203 
204 struct vr_softc {
205 	struct device		vr_dev;		/* generic device glue */
206 	void			*vr_ih;		/* interrupt cookie */
207 	void			*vr_ats;	/* shutdown hook */
208 	bus_space_tag_t		vr_bst;		/* bus space tag */
209 	bus_space_handle_t	vr_bsh;		/* bus space handle */
210 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
211 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
212 	struct ethercom		vr_ec;		/* Ethernet common info */
213 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
214 	struct mii_data		vr_mii;		/* MII/media info */
215 
216 	struct callout		vr_tick_ch;	/* tick callout */
217 
218 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
219 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
220 
221 	/*
222 	 * Software state for transmit and receive descriptors.
223 	 */
224 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
225 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
226 
227 	/*
228 	 * Control data structures.
229 	 */
230 	struct vr_control_data	*vr_control_data;
231 
232 	int	vr_txpending;		/* number of TX requests pending */
233 	int	vr_txdirty;		/* first dirty TX descriptor */
234 	int	vr_txlast;		/* last used TX descriptor */
235 
236 	int	vr_rxptr;		/* next ready RX descriptor */
237 };
238 
239 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
240 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
241 
242 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
243 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
244 
245 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
246 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
247 
248 #define	VR_CDTXSYNC(sc, x, ops)						\
249 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
250 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
251 
252 #define	VR_CDRXSYNC(sc, x, ops)						\
253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
254 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
255 
256 /*
257  * Note we rely on MCLBYTES being a power of two below.
258  */
259 #define	VR_INIT_RXDESC(sc, i)						\
260 do {									\
261 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
262 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
263 									\
264 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
265 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
266 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
267 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
268 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
269 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
270 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
271 } while (0)
272 
273 /*
274  * register space access macros
275  */
276 #define	CSR_WRITE_4(sc, reg, val)					\
277 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
278 #define	CSR_WRITE_2(sc, reg, val)					\
279 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
280 #define	CSR_WRITE_1(sc, reg, val)					\
281 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
282 
283 #define	CSR_READ_4(sc, reg)						\
284 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
285 #define	CSR_READ_2(sc, reg)						\
286 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
287 #define	CSR_READ_1(sc, reg)						\
288 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
289 
290 #define	VR_TIMEOUT		1000
291 
292 static int vr_add_rxbuf		__P((struct vr_softc *, int));
293 
294 static void vr_rxeof		__P((struct vr_softc *));
295 static void vr_rxeoc		__P((struct vr_softc *));
296 static void vr_txeof		__P((struct vr_softc *));
297 static int vr_intr		__P((void *));
298 static void vr_start		__P((struct ifnet *));
299 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
300 static int vr_init		__P((struct ifnet *));
301 static void vr_stop		__P((struct ifnet *, int));
302 static void vr_rxdrain		__P((struct vr_softc *));
303 static void vr_watchdog		__P((struct ifnet *));
304 static void vr_tick		__P((void *));
305 
306 static int vr_ifmedia_upd	__P((struct ifnet *));
307 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
308 
309 static int vr_mii_readreg	__P((struct device *, int, int));
310 static void vr_mii_writereg	__P((struct device *, int, int, int));
311 static void vr_mii_statchg	__P((struct device *));
312 
313 static void vr_setmulti		__P((struct vr_softc *));
314 static void vr_reset		__P((struct vr_softc *));
315 
316 int	vr_copy_small = 0;
317 
318 #define	VR_SETBIT(sc, reg, x)				\
319 	CSR_WRITE_1(sc, reg,				\
320 		CSR_READ_1(sc, reg) | x)
321 
322 #define	VR_CLRBIT(sc, reg, x)				\
323 	CSR_WRITE_1(sc, reg,				\
324 		CSR_READ_1(sc, reg) & ~x)
325 
326 #define	VR_SETBIT16(sc, reg, x)				\
327 	CSR_WRITE_2(sc, reg,				\
328 		CSR_READ_2(sc, reg) | x)
329 
330 #define	VR_CLRBIT16(sc, reg, x)				\
331 	CSR_WRITE_2(sc, reg,				\
332 		CSR_READ_2(sc, reg) & ~x)
333 
334 #define	VR_SETBIT32(sc, reg, x)				\
335 	CSR_WRITE_4(sc, reg,				\
336 		CSR_READ_4(sc, reg) | x)
337 
338 #define	VR_CLRBIT32(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg,				\
340 		CSR_READ_4(sc, reg) & ~x)
341 
342 /*
343  * MII bit-bang glue.
344  */
345 u_int32_t vr_mii_bitbang_read __P((struct device *));
346 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
347 
348 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
349 	vr_mii_bitbang_read,
350 	vr_mii_bitbang_write,
351 	{
352 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
353 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
354 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
355 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
356 		0,			/* MII_BIT_DIR_PHY_HOST */
357 	}
358 };
359 
360 u_int32_t
361 vr_mii_bitbang_read(self)
362 	struct device *self;
363 {
364 	struct vr_softc *sc = (void *) self;
365 
366 	return (CSR_READ_1(sc, VR_MIICMD));
367 }
368 
369 void
370 vr_mii_bitbang_write(self, val)
371 	struct device *self;
372 	u_int32_t val;
373 {
374 	struct vr_softc *sc = (void *) self;
375 
376 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
377 }
378 
379 /*
380  * Read an PHY register through the MII.
381  */
382 static int
383 vr_mii_readreg(self, phy, reg)
384 	struct device *self;
385 	int phy, reg;
386 {
387 	struct vr_softc *sc = (void *) self;
388 
389 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
390 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
391 }
392 
393 /*
394  * Write to a PHY register through the MII.
395  */
396 static void
397 vr_mii_writereg(self, phy, reg, val)
398 	struct device *self;
399 	int phy, reg, val;
400 {
401 	struct vr_softc *sc = (void *) self;
402 
403 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
404 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
405 }
406 
407 static void
408 vr_mii_statchg(self)
409 	struct device *self;
410 {
411 	struct vr_softc *sc = (struct vr_softc *)self;
412 
413 	/*
414 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
415 	 * register, we first have to put the transmit and/or receive logic
416 	 * in the idle state.
417 	 */
418 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
419 
420 	if (sc->vr_mii.mii_media_active & IFM_FDX)
421 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
422 	else
423 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424 
425 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
427 }
428 
429 #define	vr_calchash(addr) \
430 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
431 
432 /*
433  * Program the 64-bit multicast hash filter.
434  */
435 static void
436 vr_setmulti(sc)
437 	struct vr_softc *sc;
438 {
439 	struct ifnet *ifp;
440 	int h = 0;
441 	u_int32_t hashes[2] = { 0, 0 };
442 	struct ether_multistep step;
443 	struct ether_multi *enm;
444 	int mcnt = 0;
445 	u_int8_t rxfilt;
446 
447 	ifp = &sc->vr_ec.ec_if;
448 
449 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
450 
451 	if (ifp->if_flags & IFF_PROMISC) {
452 allmulti:
453 		ifp->if_flags |= IFF_ALLMULTI;
454 		rxfilt |= VR_RXCFG_RX_MULTI;
455 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
456 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
457 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
458 		return;
459 	}
460 
461 	/* first, zot all the existing hash bits */
462 	CSR_WRITE_4(sc, VR_MAR0, 0);
463 	CSR_WRITE_4(sc, VR_MAR1, 0);
464 
465 	/* now program new ones */
466 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
467 	while (enm != NULL) {
468 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
469 		    ETHER_ADDR_LEN) != 0)
470 			goto allmulti;
471 
472 		h = vr_calchash(enm->enm_addrlo);
473 
474 		if (h < 32)
475 			hashes[0] |= (1 << h);
476 		else
477 			hashes[1] |= (1 << (h - 32));
478 		ETHER_NEXT_MULTI(step, enm);
479 		mcnt++;
480 	}
481 
482 	ifp->if_flags &= ~IFF_ALLMULTI;
483 
484 	if (mcnt)
485 		rxfilt |= VR_RXCFG_RX_MULTI;
486 	else
487 		rxfilt &= ~VR_RXCFG_RX_MULTI;
488 
489 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
490 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
491 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
492 }
493 
494 static void
495 vr_reset(sc)
496 	struct vr_softc *sc;
497 {
498 	int i;
499 
500 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
501 
502 	for (i = 0; i < VR_TIMEOUT; i++) {
503 		DELAY(10);
504 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
505 			break;
506 	}
507 	if (i == VR_TIMEOUT)
508 		printf("%s: reset never completed!\n",
509 			sc->vr_dev.dv_xname);
510 
511 	/* Wait a little while for the chip to get its brains in order. */
512 	DELAY(1000);
513 }
514 
515 /*
516  * Initialize an RX descriptor and attach an MBUF cluster.
517  * Note: the length fields are only 11 bits wide, which means the
518  * largest size we can specify is 2047. This is important because
519  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
520  * overflow the field and make a mess.
521  */
522 static int
523 vr_add_rxbuf(sc, i)
524 	struct vr_softc *sc;
525 	int i;
526 {
527 	struct vr_descsoft *ds = VR_DSRX(sc, i);
528 	struct mbuf *m_new;
529 	int error;
530 
531 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
532 	if (m_new == NULL)
533 		return (ENOBUFS);
534 
535 	MCLGET(m_new, M_DONTWAIT);
536 	if ((m_new->m_flags & M_EXT) == 0) {
537 		m_freem(m_new);
538 		return (ENOBUFS);
539 	}
540 
541 	if (ds->ds_mbuf != NULL)
542 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
543 
544 	ds->ds_mbuf = m_new;
545 
546 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
547 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
548 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
549 	if (error) {
550 		printf("%s: unable to load rx DMA map %d, error = %d\n",
551 		    sc->vr_dev.dv_xname, i, error);
552 		panic("vr_add_rxbuf");		/* XXX */
553 	}
554 
555 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
556 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
557 
558 	VR_INIT_RXDESC(sc, i);
559 
560 	return (0);
561 }
562 
563 /*
564  * A frame has been uploaded: pass the resulting mbuf chain up to
565  * the higher level protocols.
566  */
567 static void
568 vr_rxeof(sc)
569 	struct vr_softc *sc;
570 {
571 	struct mbuf *m;
572 	struct ifnet *ifp;
573 	struct vr_desc *d;
574 	struct vr_descsoft *ds;
575 	int i, total_len;
576 	u_int32_t rxstat;
577 
578 	ifp = &sc->vr_ec.ec_if;
579 
580 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
581 		d = VR_CDRX(sc, i);
582 		ds = VR_DSRX(sc, i);
583 
584 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
585 
586 		rxstat = le32toh(d->vr_status);
587 
588 		if (rxstat & VR_RXSTAT_OWN) {
589 			/*
590 			 * We have processed all of the receive buffers.
591 			 */
592 			break;
593 		}
594 
595 		/*
596 		 * If an error occurs, update stats, clear the
597 		 * status word and leave the mbuf cluster in place:
598 		 * it should simply get re-used next time this descriptor
599 		 * comes up in the ring.
600 		 */
601 		if (rxstat & VR_RXSTAT_RXERR) {
602 			const char *errstr;
603 
604 			ifp->if_ierrors++;
605 			switch (rxstat & 0x000000FF) {
606 			case VR_RXSTAT_CRCERR:
607 				errstr = "crc error";
608 				break;
609 			case VR_RXSTAT_FRAMEALIGNERR:
610 				errstr = "frame alignment error";
611 				break;
612 			case VR_RXSTAT_FIFOOFLOW:
613 				errstr = "FIFO overflow";
614 				break;
615 			case VR_RXSTAT_GIANT:
616 				errstr = "received giant packet";
617 				break;
618 			case VR_RXSTAT_RUNT:
619 				errstr = "received runt packet";
620 				break;
621 			case VR_RXSTAT_BUSERR:
622 				errstr = "system bus error";
623 				break;
624 			case VR_RXSTAT_BUFFERR:
625 				errstr = "rx buffer error";
626 				break;
627 			default:
628 				errstr = "unknown rx error";
629 				break;
630 			}
631 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
632 			    errstr);
633 
634 			VR_INIT_RXDESC(sc, i);
635 
636 			continue;
637 		}
638 
639 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
640 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
641 
642 		/* No errors; receive the packet. */
643 		total_len = VR_RXBYTES(le32toh(d->vr_status));
644 
645 #ifdef __NO_STRICT_ALIGNMENT
646 		/*
647 		 * If the packet is small enough to fit in a
648 		 * single header mbuf, allocate one and copy
649 		 * the data into it.  This greatly reduces
650 		 * memory consumption when we receive lots
651 		 * of small packets.
652 		 *
653 		 * Otherwise, we add a new buffer to the receive
654 		 * chain.  If this fails, we drop the packet and
655 		 * recycle the old buffer.
656 		 */
657 		if (vr_copy_small != 0 && total_len <= MHLEN) {
658 			MGETHDR(m, M_DONTWAIT, MT_DATA);
659 			if (m == NULL)
660 				goto dropit;
661 			memcpy(mtod(m, caddr_t),
662 			    mtod(ds->ds_mbuf, caddr_t), total_len);
663 			VR_INIT_RXDESC(sc, i);
664 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
665 			    ds->ds_dmamap->dm_mapsize,
666 			    BUS_DMASYNC_PREREAD);
667 		} else {
668 			m = ds->ds_mbuf;
669 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
670  dropit:
671 				ifp->if_ierrors++;
672 				VR_INIT_RXDESC(sc, i);
673 				bus_dmamap_sync(sc->vr_dmat,
674 				    ds->ds_dmamap, 0,
675 				    ds->ds_dmamap->dm_mapsize,
676 				    BUS_DMASYNC_PREREAD);
677 				continue;
678 			}
679 		}
680 #else
681 		/*
682 		 * The Rhine's packet buffers must be 4-byte aligned.
683 		 * But this means that the data after the Ethernet header
684 		 * is misaligned.  We must allocate a new buffer and
685 		 * copy the data, shifted forward 2 bytes.
686 		 */
687 		MGETHDR(m, M_DONTWAIT, MT_DATA);
688 		if (m == NULL) {
689  dropit:
690 			ifp->if_ierrors++;
691 			VR_INIT_RXDESC(sc, i);
692 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
693 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
694 			continue;
695 		}
696 		if (total_len > (MHLEN - 2)) {
697 			MCLGET(m, M_DONTWAIT);
698 			if ((m->m_flags & M_EXT) == 0) {
699 				m_freem(m);
700 				goto dropit;
701 			}
702 		}
703 		m->m_data += 2;
704 
705 		/*
706 		 * Note that we use clusters for incoming frames, so the
707 		 * buffer is virtually contiguous.
708 		 */
709 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
710 		    total_len);
711 
712 		/* Allow the receive descriptor to continue using its mbuf. */
713 		VR_INIT_RXDESC(sc, i);
714 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
715 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
716 #endif /* __NO_STRICT_ALIGNMENT */
717 
718 		/*
719 		 * The Rhine chip includes the FCS with every
720 		 * received packet.
721 		 */
722 		m->m_flags |= M_HASFCS;
723 
724 		ifp->if_ipackets++;
725 		m->m_pkthdr.rcvif = ifp;
726 		m->m_pkthdr.len = m->m_len = total_len;
727 #if NBPFILTER > 0
728 		/*
729 		 * Handle BPF listeners. Let the BPF user see the packet, but
730 		 * don't pass it up to the ether_input() layer unless it's
731 		 * a broadcast packet, multicast packet, matches our ethernet
732 		 * address or the interface is in promiscuous mode.
733 		 */
734 		if (ifp->if_bpf)
735 			bpf_mtap(ifp->if_bpf, m);
736 #endif
737 		/* Pass it on. */
738 		(*ifp->if_input)(ifp, m);
739 	}
740 
741 	/* Update the receive pointer. */
742 	sc->vr_rxptr = i;
743 }
744 
745 void
746 vr_rxeoc(sc)
747 	struct vr_softc *sc;
748 {
749 
750 	vr_rxeof(sc);
751 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
752 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
753 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
754 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
755 }
756 
757 /*
758  * A frame was downloaded to the chip. It's safe for us to clean up
759  * the list buffers.
760  */
761 static void
762 vr_txeof(sc)
763 	struct vr_softc *sc;
764 {
765 	struct ifnet *ifp = &sc->vr_ec.ec_if;
766 	struct vr_desc *d;
767 	struct vr_descsoft *ds;
768 	u_int32_t txstat;
769 	int i;
770 
771 	ifp->if_flags &= ~IFF_OACTIVE;
772 
773 	/*
774 	 * Go through our tx list and free mbufs for those
775 	 * frames that have been transmitted.
776 	 */
777 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
778 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
779 		d = VR_CDTX(sc, i);
780 		ds = VR_DSTX(sc, i);
781 
782 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
783 
784 		txstat = le32toh(d->vr_status);
785 		if (txstat & VR_TXSTAT_OWN)
786 			break;
787 
788 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
789 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
790 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
791 		m_freem(ds->ds_mbuf);
792 		ds->ds_mbuf = NULL;
793 
794 		if (txstat & VR_TXSTAT_ERRSUM) {
795 			ifp->if_oerrors++;
796 			if (txstat & VR_TXSTAT_DEFER)
797 				ifp->if_collisions++;
798 			if (txstat & VR_TXSTAT_LATECOLL)
799 				ifp->if_collisions++;
800 		}
801 
802 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
803 		ifp->if_opackets++;
804 	}
805 
806 	/* Update the dirty transmit buffer pointer. */
807 	sc->vr_txdirty = i;
808 
809 	/*
810 	 * Cancel the watchdog timer if there are no pending
811 	 * transmissions.
812 	 */
813 	if (sc->vr_txpending == 0)
814 		ifp->if_timer = 0;
815 }
816 
817 static int
818 vr_intr(arg)
819 	void *arg;
820 {
821 	struct vr_softc *sc;
822 	struct ifnet *ifp;
823 	u_int16_t status;
824 	int handled = 0, dotx = 0;
825 
826 	sc = arg;
827 	ifp = &sc->vr_ec.ec_if;
828 
829 	/* Suppress unwanted interrupts. */
830 	if ((ifp->if_flags & IFF_UP) == 0) {
831 		vr_stop(ifp, 1);
832 		return (0);
833 	}
834 
835 	/* Disable interrupts. */
836 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
837 
838 	for (;;) {
839 		status = CSR_READ_2(sc, VR_ISR);
840 		if (status)
841 			CSR_WRITE_2(sc, VR_ISR, status);
842 
843 		if ((status & VR_INTRS) == 0)
844 			break;
845 
846 		handled = 1;
847 
848 		if (status & VR_ISR_RX_OK)
849 			vr_rxeof(sc);
850 
851 		if (status &
852 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
853 		     VR_ISR_RX_DROPPED))
854 			vr_rxeoc(sc);
855 
856 		if (status & VR_ISR_TX_OK) {
857 			dotx = 1;
858 			vr_txeof(sc);
859 		}
860 
861 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
862 			if (status & VR_ISR_TX_UNDERRUN)
863 				printf("%s: transmit underrun\n",
864 				    sc->vr_dev.dv_xname);
865 			if (status & VR_ISR_TX_ABRT)
866 				printf("%s: transmit aborted\n",
867 				    sc->vr_dev.dv_xname);
868 			ifp->if_oerrors++;
869 			dotx = 1;
870 			vr_txeof(sc);
871 			if (sc->vr_txpending) {
872 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
873 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
874 			}
875 			/*
876 			 * Unfortunately many cards get stuck after
877 			 * aborted transmits, so we reset them.
878 			 */
879 			if (status & VR_ISR_TX_ABRT) {
880 				printf("%s: restarting\n", sc->vr_dev.dv_xname);
881 				dotx = 0;
882 				(void) vr_init(ifp);
883 			}
884 		}
885 
886 		if (status & VR_ISR_BUSERR) {
887 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
888 			/* vr_init() calls vr_start() */
889 			dotx = 0;
890 			(void) vr_init(ifp);
891 		}
892 	}
893 
894 	/* Re-enable interrupts. */
895 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
896 
897 	if (dotx)
898 		vr_start(ifp);
899 
900 	return (handled);
901 }
902 
903 /*
904  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
905  * to the mbuf data regions directly in the transmit lists. We also save a
906  * copy of the pointers since the transmit list fragment pointers are
907  * physical addresses.
908  */
909 static void
910 vr_start(ifp)
911 	struct ifnet *ifp;
912 {
913 	struct vr_softc *sc = ifp->if_softc;
914 	struct mbuf *m0, *m;
915 	struct vr_desc *d;
916 	struct vr_descsoft *ds;
917 	int error, firsttx, nexttx, opending;
918 
919 	/*
920 	 * Remember the previous txpending and the first transmit
921 	 * descriptor we use.
922 	 */
923 	opending = sc->vr_txpending;
924 	firsttx = VR_NEXTTX(sc->vr_txlast);
925 
926 	/*
927 	 * Loop through the send queue, setting up transmit descriptors
928 	 * until we drain the queue, or use up all available transmit
929 	 * descriptors.
930 	 */
931 	while (sc->vr_txpending < VR_NTXDESC) {
932 		/*
933 		 * Grab a packet off the queue.
934 		 */
935 		IFQ_POLL(&ifp->if_snd, m0);
936 		if (m0 == NULL)
937 			break;
938 		m = NULL;
939 
940 		/*
941 		 * Get the next available transmit descriptor.
942 		 */
943 		nexttx = VR_NEXTTX(sc->vr_txlast);
944 		d = VR_CDTX(sc, nexttx);
945 		ds = VR_DSTX(sc, nexttx);
946 
947 		/*
948 		 * Load the DMA map.  If this fails, the packet didn't
949 		 * fit in one DMA segment, and we need to copy.  Note,
950 		 * the packet must also be aligned.
951 		 */
952 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
953 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
954 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
955 			MGETHDR(m, M_DONTWAIT, MT_DATA);
956 			if (m == NULL) {
957 				printf("%s: unable to allocate Tx mbuf\n",
958 				    sc->vr_dev.dv_xname);
959 				break;
960 			}
961 			if (m0->m_pkthdr.len > MHLEN) {
962 				MCLGET(m, M_DONTWAIT);
963 				if ((m->m_flags & M_EXT) == 0) {
964 					printf("%s: unable to allocate Tx "
965 					    "cluster\n", sc->vr_dev.dv_xname);
966 					m_freem(m);
967 					break;
968 				}
969 			}
970 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
971 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
972 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
973 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
974 			if (error) {
975 				printf("%s: unable to load Tx buffer, "
976 				    "error = %d\n", sc->vr_dev.dv_xname, error);
977 				break;
978 			}
979 		}
980 
981 		IFQ_DEQUEUE(&ifp->if_snd, m0);
982 		if (m != NULL) {
983 			m_freem(m0);
984 			m0 = m;
985 		}
986 
987 		/* Sync the DMA map. */
988 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
989 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
990 
991 		/*
992 		 * Store a pointer to the packet so we can free it later.
993 		 */
994 		ds->ds_mbuf = m0;
995 
996 #if NBPFILTER > 0
997 		/*
998 		 * If there's a BPF listener, bounce a copy of this frame
999 		 * to him.
1000 		 */
1001 		if (ifp->if_bpf)
1002 			bpf_mtap(ifp->if_bpf, m0);
1003 #endif
1004 
1005 		/*
1006 		 * Fill in the transmit descriptor.  The Rhine
1007 		 * doesn't auto-pad, so we have to do this ourselves.
1008 		 */
1009 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1010 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1011 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1012 		d->vr_ctl |=
1013 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1014 		    VR_TXCTL_LASTFRAG);
1015 
1016 		/*
1017 		 * If this is the first descriptor we're enqueuing,
1018 		 * don't give it to the Rhine yet.  That could cause
1019 		 * a race condition.  We'll do it below.
1020 		 */
1021 		if (nexttx == firsttx)
1022 			d->vr_status = 0;
1023 		else
1024 			d->vr_status = htole32(VR_TXSTAT_OWN);
1025 
1026 		VR_CDTXSYNC(sc, nexttx,
1027 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1028 
1029 		/* Advance the tx pointer. */
1030 		sc->vr_txpending++;
1031 		sc->vr_txlast = nexttx;
1032 	}
1033 
1034 	if (sc->vr_txpending == VR_NTXDESC) {
1035 		/* No more slots left; notify upper layer. */
1036 		ifp->if_flags |= IFF_OACTIVE;
1037 	}
1038 
1039 	if (sc->vr_txpending != opending) {
1040 		/*
1041 		 * We enqueued packets.  If the transmitter was idle,
1042 		 * reset the txdirty pointer.
1043 		 */
1044 		if (opending == 0)
1045 			sc->vr_txdirty = firsttx;
1046 
1047 		/*
1048 		 * Cause a transmit interrupt to happen on the
1049 		 * last packet we enqueued.
1050 		 */
1051 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1052 		VR_CDTXSYNC(sc, sc->vr_txlast,
1053 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054 
1055 		/*
1056 		 * The entire packet chain is set up.  Give the
1057 		 * first descriptor to the Rhine now.
1058 		 */
1059 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1060 		VR_CDTXSYNC(sc, firsttx,
1061 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1062 
1063 		/* Start the transmitter. */
1064 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1065 
1066 		/* Set the watchdog timer in case the chip flakes out. */
1067 		ifp->if_timer = 5;
1068 	}
1069 }
1070 
1071 /*
1072  * Initialize the interface.  Must be called at splnet.
1073  */
1074 static int
1075 vr_init(ifp)
1076 	struct ifnet *ifp;
1077 {
1078 	struct vr_softc *sc = ifp->if_softc;
1079 	struct vr_desc *d;
1080 	struct vr_descsoft *ds;
1081 	int i, error = 0;
1082 
1083 	/* Cancel pending I/O. */
1084 	vr_stop(ifp, 0);
1085 
1086 	/* Reset the Rhine to a known state. */
1087 	vr_reset(sc);
1088 
1089 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1090 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1091 
1092 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1093 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1094 
1095 	/*
1096 	 * Initialize the transmit desciptor ring.  txlast is initialized
1097 	 * to the end of the list so that it will wrap around to the first
1098 	 * descriptor when the first packet is transmitted.
1099 	 */
1100 	for (i = 0; i < VR_NTXDESC; i++) {
1101 		d = VR_CDTX(sc, i);
1102 		memset(d, 0, sizeof(struct vr_desc));
1103 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1104 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105 	}
1106 	sc->vr_txpending = 0;
1107 	sc->vr_txdirty = 0;
1108 	sc->vr_txlast = VR_NTXDESC - 1;
1109 
1110 	/*
1111 	 * Initialize the receive descriptor ring.
1112 	 */
1113 	for (i = 0; i < VR_NRXDESC; i++) {
1114 		ds = VR_DSRX(sc, i);
1115 		if (ds->ds_mbuf == NULL) {
1116 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1117 				printf("%s: unable to allocate or map rx "
1118 				    "buffer %d, error = %d\n",
1119 				    sc->vr_dev.dv_xname, i, error);
1120 				/*
1121 				 * XXX Should attempt to run with fewer receive
1122 				 * XXX buffers instead of just failing.
1123 				 */
1124 				vr_rxdrain(sc);
1125 				goto out;
1126 			}
1127 		} else
1128 			VR_INIT_RXDESC(sc, i);
1129 	}
1130 	sc->vr_rxptr = 0;
1131 
1132 	/* If we want promiscuous mode, set the allframes bit. */
1133 	if (ifp->if_flags & IFF_PROMISC)
1134 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1135 	else
1136 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1137 
1138 	/* Set capture broadcast bit to capture broadcast frames. */
1139 	if (ifp->if_flags & IFF_BROADCAST)
1140 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1141 	else
1142 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1143 
1144 	/* Program the multicast filter, if necessary. */
1145 	vr_setmulti(sc);
1146 
1147 	/* Give the transmit and receive rings to the Rhine. */
1148 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1149 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1150 
1151 	/* Set current media. */
1152 	mii_mediachg(&sc->vr_mii);
1153 
1154 	/* Enable receiver and transmitter. */
1155 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1156 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1157 				    VR_CMD_RX_GO);
1158 
1159 	/* Enable interrupts. */
1160 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1161 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1162 
1163 	ifp->if_flags |= IFF_RUNNING;
1164 	ifp->if_flags &= ~IFF_OACTIVE;
1165 
1166 	/* Start one second timer. */
1167 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1168 
1169 	/* Attempt to start output on the interface. */
1170 	vr_start(ifp);
1171 
1172  out:
1173 	if (error)
1174 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1175 	return (error);
1176 }
1177 
1178 /*
1179  * Set media options.
1180  */
1181 static int
1182 vr_ifmedia_upd(ifp)
1183 	struct ifnet *ifp;
1184 {
1185 	struct vr_softc *sc = ifp->if_softc;
1186 
1187 	if (ifp->if_flags & IFF_UP)
1188 		mii_mediachg(&sc->vr_mii);
1189 	return (0);
1190 }
1191 
1192 /*
1193  * Report current media status.
1194  */
1195 static void
1196 vr_ifmedia_sts(ifp, ifmr)
1197 	struct ifnet *ifp;
1198 	struct ifmediareq *ifmr;
1199 {
1200 	struct vr_softc *sc = ifp->if_softc;
1201 
1202 	mii_pollstat(&sc->vr_mii);
1203 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
1204 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
1205 }
1206 
1207 static int
1208 vr_ioctl(ifp, command, data)
1209 	struct ifnet *ifp;
1210 	u_long command;
1211 	caddr_t data;
1212 {
1213 	struct vr_softc *sc = ifp->if_softc;
1214 	struct ifreq *ifr = (struct ifreq *)data;
1215 	int s, error = 0;
1216 
1217 	s = splnet();
1218 
1219 	switch (command) {
1220 	case SIOCGIFMEDIA:
1221 	case SIOCSIFMEDIA:
1222 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1223 		break;
1224 
1225 	default:
1226 		error = ether_ioctl(ifp, command, data);
1227 		if (error == ENETRESET) {
1228 			/*
1229 			 * Multicast list has changed; set the hardware filter
1230 			 * accordingly.
1231 			 */
1232 			vr_setmulti(sc);
1233 			error = 0;
1234 		}
1235 		break;
1236 	}
1237 
1238 	splx(s);
1239 	return (error);
1240 }
1241 
1242 static void
1243 vr_watchdog(ifp)
1244 	struct ifnet *ifp;
1245 {
1246 	struct vr_softc *sc = ifp->if_softc;
1247 
1248 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1249 	ifp->if_oerrors++;
1250 
1251 	(void) vr_init(ifp);
1252 }
1253 
1254 /*
1255  * One second timer, used to tick MII.
1256  */
1257 static void
1258 vr_tick(arg)
1259 	void *arg;
1260 {
1261 	struct vr_softc *sc = arg;
1262 	int s;
1263 
1264 	s = splnet();
1265 	mii_tick(&sc->vr_mii);
1266 	splx(s);
1267 
1268 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1269 }
1270 
1271 /*
1272  * Drain the receive queue.
1273  */
1274 static void
1275 vr_rxdrain(sc)
1276 	struct vr_softc *sc;
1277 {
1278 	struct vr_descsoft *ds;
1279 	int i;
1280 
1281 	for (i = 0; i < VR_NRXDESC; i++) {
1282 		ds = VR_DSRX(sc, i);
1283 		if (ds->ds_mbuf != NULL) {
1284 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1285 			m_freem(ds->ds_mbuf);
1286 			ds->ds_mbuf = NULL;
1287 		}
1288 	}
1289 }
1290 
1291 /*
1292  * Stop the adapter and free any mbufs allocated to the
1293  * transmit lists.
1294  */
1295 static void
1296 vr_stop(ifp, disable)
1297 	struct ifnet *ifp;
1298 	int disable;
1299 {
1300 	struct vr_softc *sc = ifp->if_softc;
1301 	struct vr_descsoft *ds;
1302 	int i;
1303 
1304 	/* Cancel one second timer. */
1305 	callout_stop(&sc->vr_tick_ch);
1306 
1307 	/* Down the MII. */
1308 	mii_down(&sc->vr_mii);
1309 
1310 	ifp = &sc->vr_ec.ec_if;
1311 	ifp->if_timer = 0;
1312 
1313 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1314 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1315 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1316 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1317 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1318 
1319 	/*
1320 	 * Release any queued transmit buffers.
1321 	 */
1322 	for (i = 0; i < VR_NTXDESC; i++) {
1323 		ds = VR_DSTX(sc, i);
1324 		if (ds->ds_mbuf != NULL) {
1325 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1326 			m_freem(ds->ds_mbuf);
1327 			ds->ds_mbuf = NULL;
1328 		}
1329 	}
1330 
1331 	if (disable)
1332 		vr_rxdrain(sc);
1333 
1334 	/*
1335 	 * Mark the interface down and cancel the watchdog timer.
1336 	 */
1337 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1338 	ifp->if_timer = 0;
1339 }
1340 
1341 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1342 static int vr_probe __P((struct device *, struct cfdata *, void *));
1343 static void vr_attach __P((struct device *, struct device *, void *));
1344 static void vr_shutdown __P((void *));
1345 
1346 struct cfattach vr_ca = {
1347 	sizeof (struct vr_softc), vr_probe, vr_attach
1348 };
1349 
1350 static struct vr_type *
1351 vr_lookup(pa)
1352 	struct pci_attach_args *pa;
1353 {
1354 	struct vr_type *vrt;
1355 
1356 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1357 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1358 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1359 			return (vrt);
1360 	}
1361 	return (NULL);
1362 }
1363 
1364 static int
1365 vr_probe(parent, match, aux)
1366 	struct device *parent;
1367 	struct cfdata *match;
1368 	void *aux;
1369 {
1370 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1371 
1372 	if (vr_lookup(pa) != NULL)
1373 		return (1);
1374 
1375 	return (0);
1376 }
1377 
1378 /*
1379  * Stop all chip I/O so that the kernel's probe routines don't
1380  * get confused by errant DMAs when rebooting.
1381  */
1382 static void
1383 vr_shutdown(arg)
1384 	void *arg;
1385 {
1386 	struct vr_softc *sc = (struct vr_softc *)arg;
1387 
1388 	vr_stop(&sc->vr_ec.ec_if, 1);
1389 }
1390 
1391 /*
1392  * Attach the interface. Allocate softc structures, do ifmedia
1393  * setup and ethernet/BPF attach.
1394  */
1395 static void
1396 vr_attach(parent, self, aux)
1397 	struct device *parent;
1398 	struct device *self;
1399 	void *aux;
1400 {
1401 	struct vr_softc *sc = (struct vr_softc *) self;
1402 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1403 	bus_dma_segment_t seg;
1404 	struct vr_type *vrt;
1405 	u_int32_t command;
1406 	struct ifnet *ifp;
1407 	u_char eaddr[ETHER_ADDR_LEN];
1408 	int i, rseg, error;
1409 
1410 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1411 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1412 
1413 	callout_init(&sc->vr_tick_ch);
1414 
1415 	vrt = vr_lookup(pa);
1416 	if (vrt == NULL) {
1417 		printf("\n");
1418 		panic("vr_attach: impossible");
1419 	}
1420 
1421 	printf(": %s Ethernet\n", vrt->vr_name);
1422 
1423 	/*
1424 	 * Handle power management nonsense.
1425 	 */
1426 
1427 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1428 	if (command == 0x01) {
1429 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1430 		if (command & VR_PSTATE_MASK) {
1431 			u_int32_t iobase, membase, irq;
1432 
1433 			/* Save important PCI config data. */
1434 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
1435 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
1436 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
1437 
1438 			/* Reset the power state. */
1439 			printf("%s: chip is in D%d power mode "
1440 				"-- setting to D0\n",
1441 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1442 			command &= 0xFFFFFFFC;
1443 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1444 
1445 			/* Restore PCI config data. */
1446 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1447 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1448 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1449 		}
1450 	}
1451 
1452 	/* Make sure bus mastering is enabled. */
1453 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1454 	command |= PCI_COMMAND_MASTER_ENABLE;
1455 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1456 
1457 	/*
1458 	 * Map control/status registers.
1459 	 */
1460 	{
1461 		bus_space_tag_t iot, memt;
1462 		bus_space_handle_t ioh, memh;
1463 		int ioh_valid, memh_valid;
1464 		pci_intr_handle_t intrhandle;
1465 		const char *intrstr;
1466 
1467 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1468 			PCI_MAPREG_TYPE_IO, 0,
1469 			&iot, &ioh, NULL, NULL) == 0);
1470 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1471 			PCI_MAPREG_TYPE_MEM |
1472 			PCI_MAPREG_MEM_TYPE_32BIT,
1473 			0, &memt, &memh, NULL, NULL) == 0);
1474 #if defined(VR_USEIOSPACE)
1475 		if (ioh_valid) {
1476 			sc->vr_bst = iot;
1477 			sc->vr_bsh = ioh;
1478 		} else if (memh_valid) {
1479 			sc->vr_bst = memt;
1480 			sc->vr_bsh = memh;
1481 		}
1482 #else
1483 		if (memh_valid) {
1484 			sc->vr_bst = memt;
1485 			sc->vr_bsh = memh;
1486 		} else if (ioh_valid) {
1487 			sc->vr_bst = iot;
1488 			sc->vr_bsh = ioh;
1489 		}
1490 #endif
1491 		else {
1492 			printf(": unable to map device registers\n");
1493 			return;
1494 		}
1495 
1496 		/* Allocate interrupt */
1497 		if (pci_intr_map(pa, &intrhandle)) {
1498 			printf("%s: couldn't map interrupt\n",
1499 				sc->vr_dev.dv_xname);
1500 			return;
1501 		}
1502 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1503 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1504 						vr_intr, sc);
1505 		if (sc->vr_ih == NULL) {
1506 			printf("%s: couldn't establish interrupt",
1507 				sc->vr_dev.dv_xname);
1508 			if (intrstr != NULL)
1509 				printf(" at %s", intrstr);
1510 			printf("\n");
1511 		}
1512 		printf("%s: interrupting at %s\n",
1513 			sc->vr_dev.dv_xname, intrstr);
1514 	}
1515 
1516 	/* Reset the adapter. */
1517 	vr_reset(sc);
1518 
1519 	/*
1520 	 * Get station address. The way the Rhine chips work,
1521 	 * you're not allowed to directly access the EEPROM once
1522 	 * they've been programmed a special way. Consequently,
1523 	 * we need to read the node address from the PAR0 and PAR1
1524 	 * registers.
1525 	 */
1526 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1527 	DELAY(200);
1528 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1529 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1530 
1531 	/*
1532 	 * A Rhine chip was detected. Inform the world.
1533 	 */
1534 	printf("%s: Ethernet address: %s\n",
1535 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1536 
1537 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1538 
1539 	sc->vr_dmat = pa->pa_dmat;
1540 
1541 	/*
1542 	 * Allocate the control data structures, and create and load
1543 	 * the DMA map for it.
1544 	 */
1545 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1546 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1547 	    0)) != 0) {
1548 		printf("%s: unable to allocate control data, error = %d\n",
1549 		    sc->vr_dev.dv_xname, error);
1550 		goto fail_0;
1551 	}
1552 
1553 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1554 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1555 	    BUS_DMA_COHERENT)) != 0) {
1556 		printf("%s: unable to map control data, error = %d\n",
1557 		    sc->vr_dev.dv_xname, error);
1558 		goto fail_1;
1559 	}
1560 
1561 	if ((error = bus_dmamap_create(sc->vr_dmat,
1562 	    sizeof(struct vr_control_data), 1,
1563 	    sizeof(struct vr_control_data), 0, 0,
1564 	    &sc->vr_cddmamap)) != 0) {
1565 		printf("%s: unable to create control data DMA map, "
1566 		    "error = %d\n", sc->vr_dev.dv_xname, error);
1567 		goto fail_2;
1568 	}
1569 
1570 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1571 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1572 	    0)) != 0) {
1573 		printf("%s: unable to load control data DMA map, error = %d\n",
1574 		    sc->vr_dev.dv_xname, error);
1575 		goto fail_3;
1576 	}
1577 
1578 	/*
1579 	 * Create the transmit buffer DMA maps.
1580 	 */
1581 	for (i = 0; i < VR_NTXDESC; i++) {
1582 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1583 		    1, MCLBYTES, 0, 0,
1584 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1585 			printf("%s: unable to create tx DMA map %d, "
1586 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1587 			goto fail_4;
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * Create the receive buffer DMA maps.
1593 	 */
1594 	for (i = 0; i < VR_NRXDESC; i++) {
1595 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1596 		    MCLBYTES, 0, 0,
1597 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1598 			printf("%s: unable to create rx DMA map %d, "
1599 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1600 			goto fail_5;
1601 		}
1602 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1603 	}
1604 
1605 	ifp = &sc->vr_ec.ec_if;
1606 	ifp->if_softc = sc;
1607 	ifp->if_mtu = ETHERMTU;
1608 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1609 	ifp->if_ioctl = vr_ioctl;
1610 	ifp->if_start = vr_start;
1611 	ifp->if_watchdog = vr_watchdog;
1612 	ifp->if_init = vr_init;
1613 	ifp->if_stop = vr_stop;
1614 	IFQ_SET_READY(&ifp->if_snd);
1615 
1616 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1617 
1618 	/*
1619 	 * Initialize MII/media info.
1620 	 */
1621 	sc->vr_mii.mii_ifp = ifp;
1622 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1623 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1624 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1625 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1626 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1627 	    MII_OFFSET_ANY, 0);
1628 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1629 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1630 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1631 	} else
1632 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1633 
1634 	/*
1635 	 * Call MI attach routines.
1636 	 */
1637 	if_attach(ifp);
1638 	ether_ifattach(ifp, sc->vr_enaddr);
1639 
1640 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1641 	if (sc->vr_ats == NULL)
1642 		printf("%s: warning: couldn't establish shutdown hook\n",
1643 			sc->vr_dev.dv_xname);
1644 	return;
1645 
1646  fail_5:
1647 	for (i = 0; i < VR_NRXDESC; i++) {
1648 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1649 			bus_dmamap_destroy(sc->vr_dmat,
1650 			    sc->vr_rxsoft[i].ds_dmamap);
1651 	}
1652  fail_4:
1653 	for (i = 0; i < VR_NTXDESC; i++) {
1654 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1655 			bus_dmamap_destroy(sc->vr_dmat,
1656 			    sc->vr_txsoft[i].ds_dmamap);
1657 	}
1658 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1659  fail_3:
1660 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1661  fail_2:
1662 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1663 	    sizeof(struct vr_control_data));
1664  fail_1:
1665 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1666  fail_0:
1667 	return;
1668 }
1669