xref: /netbsd-src/sys/dev/pci/if_vge.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /* $NetBSD: if_vge.c,v 1.9 2006/03/08 23:46:27 lukem Exp $ */
2 
3 /*-
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.9 2006/03/08 23:46:27 lukem Exp $");
39 
40 /*
41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42  *
43  * Written by Bill Paul <wpaul@windriver.com>
44  * Senior Networking Software Engineer
45  * Wind River Systems
46  */
47 
48 /*
49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50  * combines a tri-speed ethernet MAC and PHY, with the following
51  * features:
52  *
53  *	o Jumbo frame support up to 16K
54  *	o Transmit and receive flow control
55  *	o IPv4 checksum offload
56  *	o VLAN tag insertion and stripping
57  *	o TCP large send
58  *	o 64-bit multicast hash table filter
59  *	o 64 entry CAM filter
60  *	o 16K RX FIFO and 48K TX FIFO memory
61  *	o Interrupt moderation
62  *
63  * The VT6122 supports up to four transmit DMA queues. The descriptors
64  * in the transmit ring can address up to 7 data fragments; frames which
65  * span more than 7 data buffers must be coalesced, but in general the
66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67  * long. The receive descriptors address only a single buffer.
68  *
69  * There are two peculiar design issues with the VT6122. One is that
70  * receive data buffers must be aligned on a 32-bit boundary. This is
71  * not a problem where the VT6122 is used as a LOM device in x86-based
72  * systems, but on architectures that generate unaligned access traps, we
73  * have to do some copying.
74  *
75  * The other issue has to do with the way 64-bit addresses are handled.
76  * The DMA descriptors only allow you to specify 48 bits of addressing
77  * information. The remaining 16 bits are specified using one of the
78  * I/O registers. If you only have a 32-bit system, then this isn't
79  * an issue, but if you have a 64-bit system and more than 4GB of
80  * memory, you must have to make sure your network data buffers reside
81  * in the same 48-bit 'segment.'
82  *
83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
84  * and sample NICs for testing.
85  */
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 
104 #include <net/bpf.h>
105 
106 #include <machine/bus.h>
107 
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114 
115 #include <dev/pci/if_vgereg.h>
116 #include <dev/pci/if_vgevar.h>
117 
118 static int vge_probe	(struct device *, struct cfdata *, void *);
119 static void vge_attach	(struct device *, struct device *, void *);
120 
121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
122 
123 static int vge_dma_map_rx_desc	(struct vge_softc *, int);
124 static void vge_dma_map_tx_desc	(struct vge_softc *, struct mbuf *, int, int);
125 static int vge_allocmem		(struct vge_softc *);
126 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
127 static int vge_rx_list_init	(struct vge_softc *);
128 static int vge_tx_list_init	(struct vge_softc *);
129 #ifdef VGE_FIXUP_RX
130 static inline void vge_fixup_rx
131 				(struct mbuf *);
132 #endif
133 static void vge_rxeof		(struct vge_softc *);
134 static void vge_txeof		(struct vge_softc *);
135 static int vge_intr		(void *);
136 static void vge_tick		(void *);
137 static void vge_start		(struct ifnet *);
138 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
139 static int vge_init		(struct ifnet *);
140 static void vge_stop		(struct vge_softc *);
141 static void vge_watchdog	(struct ifnet *);
142 #if VGE_POWER_MANAGEMENT
143 static int vge_suspend		(struct device *);
144 static int vge_resume		(struct device *);
145 #endif
146 static void vge_shutdown	(void *);
147 static int vge_ifmedia_upd	(struct ifnet *);
148 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 
150 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
151 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
152 
153 static void vge_miipoll_start	(struct vge_softc *);
154 static void vge_miipoll_stop	(struct vge_softc *);
155 static int vge_miibus_readreg	(struct device *, int, int);
156 static void vge_miibus_writereg	(struct device *, int, int, int);
157 static void vge_miibus_statchg	(struct device *);
158 
159 static void vge_cam_clear	(struct vge_softc *);
160 static int vge_cam_set		(struct vge_softc *, uint8_t *);
161 static void vge_setmulti	(struct vge_softc *);
162 static void vge_reset		(struct vge_softc *);
163 
164 #define VGE_PCI_LOIO             0x10
165 #define VGE_PCI_LOMEM            0x14
166 
167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
168     vge_probe, vge_attach, NULL, NULL);
169 
170 /*
171  * Defragment mbuf chain contents to be as linear as possible.
172  * Returns new mbuf chain on success, NULL on failure. Old mbuf
173  * chain is always freed.
174  * XXX temporary until there would be generic function doing this.
175  */
176 #define m_defrag	vge_m_defrag
177 struct mbuf * vge_m_defrag(struct mbuf *, int);
178 
179 struct mbuf *
180 vge_m_defrag(struct mbuf *mold, int flags)
181 {
182 	struct mbuf *m0, *mn, *n;
183 	size_t sz = mold->m_pkthdr.len;
184 
185 #ifdef DIAGNOSTIC
186 	if ((mold->m_flags & M_PKTHDR) == 0)
187 		panic("m_defrag: not a mbuf chain header");
188 #endif
189 
190 	MGETHDR(m0, flags, MT_DATA);
191 	if (m0 == NULL)
192 		return NULL;
193 	m0->m_pkthdr.len = mold->m_pkthdr.len;
194 	mn = m0;
195 
196 	do {
197 		if (sz > MHLEN) {
198 			MCLGET(mn, M_DONTWAIT);
199 			if ((mn->m_flags & M_EXT) == 0) {
200 				m_freem(m0);
201 				return NULL;
202 			}
203 		}
204 
205 		mn->m_len = MIN(sz, MCLBYTES);
206 
207 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
208 		     mtod(mn, caddr_t));
209 
210 		sz -= mn->m_len;
211 
212 		if (sz > 0) {
213 			/* need more mbufs */
214 			MGET(n, M_NOWAIT, MT_DATA);
215 			if (n == NULL) {
216 				m_freem(m0);
217 				return NULL;
218 			}
219 
220 			mn->m_next = n;
221 			mn = n;
222 		}
223 	} while (sz > 0);
224 
225 	return m0;
226 }
227 
228 /*
229  * Read a word of data stored in the EEPROM at address 'addr.'
230  */
231 static void
232 vge_eeprom_getword(sc, addr, dest)
233 	struct vge_softc	*sc;
234 	int			addr;
235 	u_int16_t		*dest;
236 {
237 	register int		i;
238 	u_int16_t		word = 0;
239 
240 	/*
241 	 * Enter EEPROM embedded programming mode. In order to
242 	 * access the EEPROM at all, we first have to set the
243 	 * EELOAD bit in the CHIPCFG2 register.
244 	 */
245 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247 
248 	/* Select the address of the word we want to read */
249 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250 
251 	/* Issue read command */
252 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253 
254 	/* Wait for the done bit to be set. */
255 	for (i = 0; i < VGE_TIMEOUT; i++) {
256 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257 			break;
258 	}
259 
260 	if (i == VGE_TIMEOUT) {
261 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
262 		*dest = 0;
263 		return;
264 	}
265 
266 	/* Read the result */
267 	word = CSR_READ_2(sc, VGE_EERDDAT);
268 
269 	/* Turn off EEPROM access mode. */
270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272 
273 	*dest = word;
274 
275 	return;
276 }
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(sc, dest, off, cnt, swap)
283 	struct vge_softc	*sc;
284 	caddr_t			dest;
285 	int			off;
286 	int			cnt;
287 	int			swap;
288 {
289 	int			i;
290 	u_int16_t		word = 0, *ptr;
291 
292 	for (i = 0; i < cnt; i++) {
293 		vge_eeprom_getword(sc, off + i, &word);
294 		ptr = (u_int16_t *)(dest + (i * 2));
295 		if (swap)
296 			*ptr = ntohs(word);
297 		else
298 			*ptr = word;
299 	}
300 }
301 
302 static void
303 vge_miipoll_stop(sc)
304 	struct vge_softc	*sc;
305 {
306 	int			i;
307 
308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
309 
310 	for (i = 0; i < VGE_TIMEOUT; i++) {
311 		DELAY(1);
312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313 			break;
314 	}
315 
316 	if (i == VGE_TIMEOUT) {
317 		printf("%s: failed to idle MII autopoll\n",
318 		    sc->sc_dev.dv_xname);
319 	}
320 
321 	return;
322 }
323 
324 static void
325 vge_miipoll_start(sc)
326 	struct vge_softc	*sc;
327 {
328 	int			i;
329 
330 	/* First, make sure we're idle. */
331 
332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334 
335 	for (i = 0; i < VGE_TIMEOUT; i++) {
336 		DELAY(1);
337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 			break;
339 	}
340 
341 	if (i == VGE_TIMEOUT) {
342 		printf("%s: failed to idle MII autopoll\n",
343 		    sc->sc_dev.dv_xname);
344 		return;
345 	}
346 
347 	/* Now enable auto poll mode. */
348 
349 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
350 
351 	/* And make sure it started. */
352 
353 	for (i = 0; i < VGE_TIMEOUT; i++) {
354 		DELAY(1);
355 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
356 			break;
357 	}
358 
359 	if (i == VGE_TIMEOUT) {
360 		printf("%s: failed to start MII autopoll\n",
361 		    sc->sc_dev.dv_xname);
362 	}
363 }
364 
365 static int
366 vge_miibus_readreg(dev, phy, reg)
367 	struct device *dev;
368 	int phy, reg;
369 {
370 	struct vge_softc	*sc = (struct vge_softc *)dev;
371 	int			i;
372 	u_int16_t		rval = 0;
373 
374 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
375 		return(0);
376 
377 	VGE_LOCK(sc);
378 	vge_miipoll_stop(sc);
379 
380 	/* Specify the register we want to read. */
381 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
382 
383 	/* Issue read command. */
384 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
385 
386 	/* Wait for the read command bit to self-clear. */
387 	for (i = 0; i < VGE_TIMEOUT; i++) {
388 		DELAY(1);
389 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
390 			break;
391 	}
392 
393 	if (i == VGE_TIMEOUT)
394 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
395 	else
396 		rval = CSR_READ_2(sc, VGE_MIIDATA);
397 
398 	vge_miipoll_start(sc);
399 	VGE_UNLOCK(sc);
400 
401 	return (rval);
402 }
403 
404 static void
405 vge_miibus_writereg(dev, phy, reg, data)
406 	struct device	*dev;
407 	int		phy, reg, data;
408 {
409 	struct vge_softc	*sc = (struct vge_softc *)dev;
410 	int			i;
411 
412 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
413 		return;
414 
415 	VGE_LOCK(sc);
416 	vge_miipoll_stop(sc);
417 
418 	/* Specify the register we want to write. */
419 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
420 
421 	/* Specify the data we want to write. */
422 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
423 
424 	/* Issue write command. */
425 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
426 
427 	/* Wait for the write command bit to self-clear. */
428 	for (i = 0; i < VGE_TIMEOUT; i++) {
429 		DELAY(1);
430 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
431 			break;
432 	}
433 
434 	if (i == VGE_TIMEOUT) {
435 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
436 	}
437 
438 	vge_miipoll_start(sc);
439 	VGE_UNLOCK(sc);
440 }
441 
442 static void
443 vge_cam_clear(sc)
444 	struct vge_softc	*sc;
445 {
446 	int			i;
447 
448 	/*
449 	 * Turn off all the mask bits. This tells the chip
450 	 * that none of the entries in the CAM filter are valid.
451 	 * desired entries will be enabled as we fill the filter in.
452 	 */
453 
454 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
455 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
456 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
457 	for (i = 0; i < 8; i++)
458 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
459 
460 	/* Clear the VLAN filter too. */
461 
462 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
463 	for (i = 0; i < 8; i++)
464 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
465 
466 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
469 
470 	sc->vge_camidx = 0;
471 
472 	return;
473 }
474 
475 static int
476 vge_cam_set(sc, addr)
477 	struct vge_softc	*sc;
478 	uint8_t			*addr;
479 {
480 	int			i, error = 0;
481 
482 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
483 		return(ENOSPC);
484 
485 	/* Select the CAM data page. */
486 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
487 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
488 
489 	/* Set the filter entry we want to update and enable writing. */
490 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
491 
492 	/* Write the address to the CAM registers */
493 	for (i = 0; i < ETHER_ADDR_LEN; i++)
494 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
495 
496 	/* Issue a write command. */
497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
498 
499 	/* Wake for it to clear. */
500 	for (i = 0; i < VGE_TIMEOUT; i++) {
501 		DELAY(1);
502 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
503 			break;
504 	}
505 
506 	if (i == VGE_TIMEOUT) {
507 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
508 		error = EIO;
509 		goto fail;
510 	}
511 
512 	/* Select the CAM mask page. */
513 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
514 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
515 
516 	/* Set the mask bit that enables this filter. */
517 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
518 	    1<<(sc->vge_camidx & 7));
519 
520 	sc->vge_camidx++;
521 
522 fail:
523 	/* Turn off access to CAM. */
524 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
525 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
526 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
527 
528 	return (error);
529 }
530 
531 /*
532  * Program the multicast filter. We use the 64-entry CAM filter
533  * for perfect filtering. If there's more than 64 multicast addresses,
534  * we use the hash filter insted.
535  */
536 static void
537 vge_setmulti(sc)
538 	struct vge_softc	*sc;
539 {
540 	struct ifnet		*ifp;
541 	int			error = 0;
542 	u_int32_t		h, hashes[2] = { 0, 0 };
543 	struct ether_multi *enm;
544 	struct ether_multistep step;
545 
546 	ifp = &sc->sc_ethercom.ec_if;
547 
548 	/* First, zot all the multicast entries. */
549 	vge_cam_clear(sc);
550 	CSR_WRITE_4(sc, VGE_MAR0, 0);
551 	CSR_WRITE_4(sc, VGE_MAR1, 0);
552 	ifp->if_flags &= ~IFF_ALLMULTI;
553 
554 	/*
555 	 * If the user wants allmulti or promisc mode, enable reception
556 	 * of all multicast frames.
557 	 */
558 	if (ifp->if_flags & IFF_PROMISC) {
559     allmulti:
560 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
561 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
562 		ifp->if_flags |= IFF_ALLMULTI;
563 		return;
564 	}
565 
566 	/* Now program new ones */
567 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
568 	while(enm != NULL) {
569 		/*
570 		 * If multicast range, fall back to ALLMULTI.
571 		 */
572 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
573 				ETHER_ADDR_LEN) != 0)
574 			goto allmulti;
575 
576 		error = vge_cam_set(sc, enm->enm_addrlo);
577 		if (error)
578 			break;
579 
580 		ETHER_NEXT_MULTI(step, enm);
581 	}
582 
583 	/* If there were too many addresses, use the hash filter. */
584 	if (error) {
585 		vge_cam_clear(sc);
586 
587 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
588 		while(enm != NULL) {
589 			/*
590 			 * If multicast range, fall back to ALLMULTI.
591 			 */
592 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
593 					ETHER_ADDR_LEN) != 0)
594 				goto allmulti;
595 
596 			h = ether_crc32_be(enm->enm_addrlo,
597 			    ETHER_ADDR_LEN) >> 26;
598 			hashes[h >> 5] |= 1 << (h & 0x1f);
599 
600 			ETHER_NEXT_MULTI(step, enm);
601 		}
602 
603 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
604 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
605 	}
606 
607 	return;
608 }
609 
610 static void
611 vge_reset(sc)
612 	struct vge_softc		*sc;
613 {
614 	register int		i;
615 
616 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
617 
618 	for (i = 0; i < VGE_TIMEOUT; i++) {
619 		DELAY(5);
620 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
621 			break;
622 	}
623 
624 	if (i == VGE_TIMEOUT) {
625 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
626 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
627 		DELAY(2000);
628 	}
629 
630 	DELAY(5000);
631 
632 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
633 
634 	for (i = 0; i < VGE_TIMEOUT; i++) {
635 		DELAY(5);
636 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
637 			break;
638 	}
639 
640 	if (i == VGE_TIMEOUT) {
641 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
642 		return;
643 	}
644 
645 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
646 
647 	return;
648 }
649 
650 /*
651  * Probe for a VIA gigabit chip. Check the PCI vendor and device
652  * IDs against our list and return a device name if we find a match.
653  */
654 static int
655 vge_probe(struct device *parent, struct cfdata *match, void *aux)
656 {
657 	struct pci_attach_args *pa = aux;
658 
659 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
660 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
661 		return 1;
662 
663 	return (0);
664 }
665 
666 static int
667 vge_dma_map_rx_desc(sc, idx)
668 	struct vge_softc	*sc;
669 	int			idx;
670 {
671 	struct vge_rx_desc	*d = NULL;
672 	bus_dma_segment_t	*segs;
673 
674 	/*
675 	 * Map the segment array into descriptors.
676 	 */
677 
678 	d = &sc->vge_ldata.vge_rx_list[idx];
679 
680 	/* If this descriptor is still owned by the chip, bail. */
681 
682 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
683 		printf("%s: tried to map busy descriptor\n",
684 		    sc->sc_dev.dv_xname);
685 		return (EBUSY);
686 	}
687 
688 	segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
689 
690 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
691 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
692 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
693 	d->vge_sts = 0;
694 	d->vge_ctl = 0;
695 
696 	return (0);
697 }
698 
699 static void
700 vge_dma_map_tx_desc(sc, m0, idx, flags)
701 	struct vge_softc	*sc;
702 	struct mbuf		*m0;
703 	int			idx, flags;
704 {
705 	struct vge_tx_desc	*d = &sc->vge_ldata.vge_tx_list[idx];
706 	struct vge_tx_frag	*f;
707 	int			i = 0;
708 	bus_dma_segment_t	*segs;
709 	size_t			sz;
710 	bus_dmamap_t		map = sc->vge_ldata.vge_tx_dmamap[idx];
711 
712 	/* Map the segment array into descriptors. */
713 
714 	segs = map->dm_segs;
715 	for (i = 0; i < map->dm_nsegs; i++) {
716 		f = &d->vge_frag[i];
717 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
718 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
719 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
720 	}
721 
722 	/* Argh. This chip does not autopad short frames */
723 
724 	sz = m0->m_pkthdr.len;
725 	if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
726 		f = &d->vge_frag[i];
727 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
728 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
729 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
730 		sz = VGE_MIN_FRAMELEN;
731 		i++;
732 	}
733 
734 	/*
735 	 * When telling the chip how many segments there are, we
736 	 * must use nsegs + 1 instead of just nsegs. Darned if I
737 	 * know why.
738 	 */
739 	i++;
740 
741 	d->vge_sts = sz << 16;
742 	d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
743 
744 	if (sz > ETHERMTU + ETHER_HDR_LEN)
745 		d->vge_ctl |= VGE_TDCTL_JUMBO;
746 }
747 
748 static int
749 vge_allocmem(sc)
750 	struct vge_softc *sc;
751 {
752 	int			error;
753 	int			nseg;
754 	int			i;
755 	bus_dma_segment_t	seg;
756 
757 	/*
758 	 * Allocate map for TX descriptor list.
759 	 */
760 	error = bus_dmamap_create(sc->vge_dmat,
761 	    round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
762 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
763 	    &sc->vge_ldata.vge_tx_list_map);
764 	if (error) {
765 		printf("%s: could not allocate TX dma list map\n",
766 		    sc->sc_dev.dv_xname);
767 		return (ENOMEM);
768 	}
769 
770 	/*
771 	 * Allocate memory for TX descriptor list.
772 	 */
773 
774 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
775 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
776 	if (error) {
777 		printf("%s: could not allocate TX ring dma memory\n",
778 		    sc->sc_dev.dv_xname);
779 		return (ENOMEM);
780 	}
781 
782 	/* Map the memory to kernel VA space */
783 
784 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
785 	     (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
786 	if (error) {
787 		printf("%s: could not map TX ring dma memory\n",
788 		    sc->sc_dev.dv_xname);
789 		return (ENOMEM);
790 	}
791 
792 	/* Load the map for the TX ring. */
793 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
794 	    sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
795 	if (error) {
796 		printf("%s: could not load TX ring dma memory\n",
797 		    sc->sc_dev.dv_xname);
798 		return (ENOMEM);
799 	}
800 
801 	sc->vge_ldata.vge_tx_list_addr =
802 		sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
803 
804 	/* Create DMA maps for TX buffers */
805 
806 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
807 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
808 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
809 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
810 		    &sc->vge_ldata.vge_tx_dmamap[i]);
811 		if (error) {
812 			printf("%s: can't create DMA map for TX\n",
813 			    sc->sc_dev.dv_xname);
814 			return (ENOMEM);
815 		}
816 	}
817 
818 	/*
819 	 * Allocate map for RX descriptor list.
820 	 */
821 	error = bus_dmamap_create(sc->vge_dmat,
822 	    round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
823 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
824 	    &sc->vge_ldata.vge_rx_list_map);
825 	if (error) {
826 		printf("%s: could not allocate RX dma list map\n",
827 		    sc->sc_dev.dv_xname);
828 		return (ENOMEM);
829 	}
830 
831 	/* Allocate DMA'able memory for the RX ring */
832 
833 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
834 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
835 	if (error)
836 		return (ENOMEM);
837 
838 	/* Map the memory to kernel VA space */
839 
840 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
841 	     (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
842 	if (error)
843 		return (ENOMEM);
844 
845 	/* Load the map for the RX ring. */
846 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
847 	    sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
848 	if (error) {
849 		printf("%s: could not load RX ring dma memory\n",
850 		    sc->sc_dev.dv_xname);
851 		return (ENOMEM);
852 	}
853 
854 	sc->vge_ldata.vge_rx_list_addr =
855 		sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
856 
857 	/* Create DMA maps for RX buffers */
858 
859 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
860 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
861 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
862 		    &sc->vge_ldata.vge_rx_dmamap[i]);
863 		if (error) {
864 			printf("%s: can't create DMA map for RX\n",
865 			     sc->sc_dev.dv_xname);
866 			return (ENOMEM);
867 		}
868 	}
869 
870 	return (0);
871 }
872 
873 /*
874  * Attach the interface. Allocate softc structures, do ifmedia
875  * setup and ethernet/BPF attach.
876  */
877 static void
878 vge_attach(struct device *parent, struct device *self, void *aux)
879 {
880 	u_char			eaddr[ETHER_ADDR_LEN];
881 	struct vge_softc	*sc = (struct vge_softc *)self;
882 	struct ifnet		*ifp;
883 	struct pci_attach_args *pa = aux;
884 	pci_chipset_tag_t pc = pa->pa_pc;
885 	const char *intrstr;
886 	pci_intr_handle_t ih;
887 
888 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
889 		PCI_REVISION(pa->pa_class));
890 
891 	/* Make sure bus-mastering is enabled */
892         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
893 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
894 		PCI_COMMAND_MASTER_ENABLE);
895 
896 	/*
897 	 * Map control/status registers.
898 	 */
899 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
900 	    PCI_MAPREG_TYPE_MEM, 0,
901 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
902 		aprint_error("%s: couldn't map memory\n",
903 			sc->sc_dev.dv_xname);
904 		return;
905 	}
906 
907         /*
908          * Map and establish our interrupt.
909          */
910 	if (pci_intr_map(pa, &ih)) {
911 		aprint_error("%s: unable to map interrupt\n",
912 		    sc->sc_dev.dv_xname);
913 		return;
914 	}
915 	intrstr = pci_intr_string(pc, ih);
916 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
917 	if (sc->vge_intrhand == NULL) {
918 		printf("%s: unable to establish interrupt",
919 		    sc->sc_dev.dv_xname);
920 		if (intrstr != NULL)
921 			printf(" at %s", intrstr);
922 		printf("\n");
923 		return;
924 	}
925 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
926 
927 	/* Reset the adapter. */
928 	vge_reset(sc);
929 
930 	/*
931 	 * Get station address from the EEPROM.
932 	 */
933 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
934 	bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
935 
936 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
937 	    ether_sprintf(eaddr));
938 
939 	/*
940 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
941 	 * but we don't use that for now.
942 	 */
943 	sc->vge_dmat = pa->pa_dmat;
944 
945 	if (vge_allocmem(sc))
946 		return;
947 
948 	ifp = &sc->sc_ethercom.ec_if;
949 	ifp->if_softc = sc;
950 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
951 	ifp->if_mtu = ETHERMTU;
952 	ifp->if_baudrate = IF_Gbps(1);
953 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
954 	ifp->if_ioctl = vge_ioctl;
955 	ifp->if_start = vge_start;
956 
957 	/*
958 	 * We can support 802.1Q VLAN-sized frames and jumbo
959 	 * Ethernet frames.
960 	 */
961 	sc->sc_ethercom.ec_capabilities |=
962 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
963 	    ETHERCAP_VLAN_HWTAGGING;
964 
965 	/*
966 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
967 	 */
968 	ifp->if_capabilities |=
969 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
970 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
971 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
972 
973 #ifdef DEVICE_POLLING
974 #ifdef IFCAP_POLLING
975 	ifp->if_capabilities |= IFCAP_POLLING;
976 #endif
977 #endif
978 	ifp->if_watchdog = vge_watchdog;
979 	ifp->if_init = vge_init;
980 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
981 
982 	/*
983 	 * Initialize our media structures and probe the MII.
984 	 */
985 	sc->sc_mii.mii_ifp = ifp;
986 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
987 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
988 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
989 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
990 	    vge_ifmedia_sts);
991 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
992 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
993 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
994 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
995 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
996 	} else
997 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
998 
999 	/*
1000 	 * Attach the interface.
1001 	 */
1002 	if_attach(ifp);
1003 	ether_ifattach(ifp, eaddr);
1004 
1005 	callout_init(&sc->vge_timeout);
1006 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
1007 
1008 	/*
1009 	 * Make sure the interface is shutdown during reboot.
1010 	 */
1011 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1012 		printf("%s: WARNING: unable to establish shutdown hook\n",
1013 		    sc->sc_dev.dv_xname);
1014 	}
1015 }
1016 
1017 static int
1018 vge_newbuf(sc, idx, m)
1019 	struct vge_softc	*sc;
1020 	int			idx;
1021 	struct mbuf		*m;
1022 {
1023 	struct mbuf		*n = NULL;
1024 	int			i, error;
1025 
1026 	if (m == NULL) {
1027 		n = m_gethdr(M_DONTWAIT, MT_DATA);
1028 		if (n == NULL)
1029 			return (ENOBUFS);
1030 
1031 		m_clget(n, M_DONTWAIT);
1032 		if ((n->m_flags & M_EXT) == 0) {
1033 			m_freem(n);
1034 			return (ENOBUFS);
1035 		}
1036 
1037 		m = n;
1038 	} else
1039 		m->m_data = m->m_ext.ext_buf;
1040 
1041 
1042 #ifdef VGE_FIXUP_RX
1043 	/*
1044 	 * This is part of an evil trick to deal with non-x86 platforms.
1045 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1046 	 * boundaries, but that will hose non-x86 machines. To get around
1047 	 * this, we leave some empty space at the start of each buffer
1048 	 * and for non-x86 hosts, we copy the buffer back two bytes
1049 	 * to achieve word alignment. This is slightly more efficient
1050 	 * than allocating a new buffer, copying the contents, and
1051 	 * discarding the old buffer.
1052 	 */
1053 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1054 	m_adj(m, VGE_ETHER_ALIGN);
1055 #else
1056 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1057 #endif
1058 
1059 	error = bus_dmamap_load_mbuf(sc->vge_dmat,
1060 	    sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1061 	if (error || vge_dma_map_rx_desc(sc, idx)) {
1062 		if (n != NULL)
1063 			m_freem(n);
1064 		return (ENOMEM);
1065 	}
1066 
1067 	/*
1068 	 * Note: the manual fails to document the fact that for
1069 	 * proper opration, the driver needs to replentish the RX
1070 	 * DMA ring 4 descriptors at a time (rather than one at a
1071 	 * time, like most chips). We can allocate the new buffers
1072 	 * but we should not set the OWN bits until we're ready
1073 	 * to hand back 4 of them in one shot.
1074 	 */
1075 
1076 #define VGE_RXCHUNK 4
1077 	sc->vge_rx_consumed++;
1078 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1079 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1080 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1081 			    htole32(VGE_RDSTS_OWN);
1082 		sc->vge_rx_consumed = 0;
1083 	}
1084 
1085 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1086 
1087 	bus_dmamap_sync(sc->vge_dmat,
1088 	    sc->vge_ldata.vge_rx_dmamap[idx],
1089 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1090 	    BUS_DMASYNC_PREREAD);
1091 
1092 	return (0);
1093 }
1094 
1095 static int
1096 vge_tx_list_init(sc)
1097 	struct vge_softc		*sc;
1098 {
1099 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1100 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1101 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1102 
1103 	bus_dmamap_sync(sc->vge_dmat,
1104 	    sc->vge_ldata.vge_tx_list_map,
1105 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1106 	    BUS_DMASYNC_PREWRITE);
1107 
1108 	sc->vge_ldata.vge_tx_prodidx = 0;
1109 	sc->vge_ldata.vge_tx_considx = 0;
1110 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1111 
1112 	return (0);
1113 }
1114 
1115 static int
1116 vge_rx_list_init(sc)
1117 	struct vge_softc		*sc;
1118 {
1119 	int			i;
1120 
1121 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1122 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1123 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1124 
1125 	sc->vge_rx_consumed = 0;
1126 
1127 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1128 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1129 			return (ENOBUFS);
1130 	}
1131 
1132 	/* Flush the RX descriptors */
1133 
1134 	bus_dmamap_sync(sc->vge_dmat,
1135 	    sc->vge_ldata.vge_rx_list_map,
1136 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1137 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1138 
1139 	sc->vge_ldata.vge_rx_prodidx = 0;
1140 	sc->vge_rx_consumed = 0;
1141 	sc->vge_head = sc->vge_tail = NULL;
1142 
1143 	return (0);
1144 }
1145 
1146 #ifdef VGE_FIXUP_RX
1147 static inline void
1148 vge_fixup_rx(m)
1149 	struct mbuf		*m;
1150 {
1151 	int			i;
1152 	uint16_t		*src, *dst;
1153 
1154 	src = mtod(m, uint16_t *);
1155 	dst = src - 1;
1156 
1157 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1158 		*dst++ = *src++;
1159 
1160 	m->m_data -= ETHER_ALIGN;
1161 
1162 	return;
1163 }
1164 #endif
1165 
1166 /*
1167  * RX handler. We support the reception of jumbo frames that have
1168  * been fragmented across multiple 2K mbuf cluster buffers.
1169  */
1170 static void
1171 vge_rxeof(sc)
1172 	struct vge_softc	*sc;
1173 {
1174 	struct mbuf		*m;
1175 	struct ifnet		*ifp;
1176 	int			i, total_len;
1177 	int			lim = 0;
1178 	struct vge_rx_desc	*cur_rx;
1179 	u_int32_t		rxstat, rxctl;
1180 
1181 	VGE_LOCK_ASSERT(sc);
1182 	ifp = &sc->sc_ethercom.ec_if;
1183 	i = sc->vge_ldata.vge_rx_prodidx;
1184 
1185 	/* Invalidate the descriptor memory */
1186 
1187 	bus_dmamap_sync(sc->vge_dmat,
1188 	    sc->vge_ldata.vge_rx_list_map,
1189 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1190 	    BUS_DMASYNC_POSTREAD);
1191 
1192 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1193 
1194 #ifdef DEVICE_POLLING
1195 		if (ifp->if_flags & IFF_POLLING) {
1196 			if (sc->rxcycles <= 0)
1197 				break;
1198 			sc->rxcycles--;
1199 		}
1200 #endif /* DEVICE_POLLING */
1201 
1202 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1203 		m = sc->vge_ldata.vge_rx_mbuf[i];
1204 		total_len = VGE_RXBYTES(cur_rx);
1205 		rxstat = le32toh(cur_rx->vge_sts);
1206 		rxctl = le32toh(cur_rx->vge_ctl);
1207 
1208 		/* Invalidate the RX mbuf and unload its map */
1209 
1210 		bus_dmamap_sync(sc->vge_dmat,
1211 		    sc->vge_ldata.vge_rx_dmamap[i],
1212 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1213 		    BUS_DMASYNC_POSTWRITE);
1214 		bus_dmamap_unload(sc->vge_dmat,
1215 		    sc->vge_ldata.vge_rx_dmamap[i]);
1216 
1217 		/*
1218 		 * If the 'start of frame' bit is set, this indicates
1219 		 * either the first fragment in a multi-fragment receive,
1220 		 * or an intermediate fragment. Either way, we want to
1221 		 * accumulate the buffers.
1222 		 */
1223 		if (rxstat & VGE_RXPKT_SOF) {
1224 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1225 			if (sc->vge_head == NULL)
1226 				sc->vge_head = sc->vge_tail = m;
1227 			else {
1228 				m->m_flags &= ~M_PKTHDR;
1229 				sc->vge_tail->m_next = m;
1230 				sc->vge_tail = m;
1231 			}
1232 			vge_newbuf(sc, i, NULL);
1233 			VGE_RX_DESC_INC(i);
1234 			continue;
1235 		}
1236 
1237 		/*
1238 		 * Bad/error frames will have the RXOK bit cleared.
1239 		 * However, there's one error case we want to allow:
1240 		 * if a VLAN tagged frame arrives and the chip can't
1241 		 * match it against the CAM filter, it considers this
1242 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1243 		 * We don't want to drop the frame though: our VLAN
1244 		 * filtering is done in software.
1245 		 */
1246 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1247 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1248 			ifp->if_ierrors++;
1249 			/*
1250 			 * If this is part of a multi-fragment packet,
1251 			 * discard all the pieces.
1252 			 */
1253 			if (sc->vge_head != NULL) {
1254 				m_freem(sc->vge_head);
1255 				sc->vge_head = sc->vge_tail = NULL;
1256 			}
1257 			vge_newbuf(sc, i, m);
1258 			VGE_RX_DESC_INC(i);
1259 			continue;
1260 		}
1261 
1262 		/*
1263 		 * If allocating a replacement mbuf fails,
1264 		 * reload the current one.
1265 		 */
1266 
1267 		if (vge_newbuf(sc, i, NULL)) {
1268 			ifp->if_ierrors++;
1269 			if (sc->vge_head != NULL) {
1270 				m_freem(sc->vge_head);
1271 				sc->vge_head = sc->vge_tail = NULL;
1272 			}
1273 			vge_newbuf(sc, i, m);
1274 			VGE_RX_DESC_INC(i);
1275 			continue;
1276 		}
1277 
1278 		VGE_RX_DESC_INC(i);
1279 
1280 		if (sc->vge_head != NULL) {
1281 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1282 			/*
1283 			 * Special case: if there's 4 bytes or less
1284 			 * in this buffer, the mbuf can be discarded:
1285 			 * the last 4 bytes is the CRC, which we don't
1286 			 * care about anyway.
1287 			 */
1288 			if (m->m_len <= ETHER_CRC_LEN) {
1289 				sc->vge_tail->m_len -=
1290 				    (ETHER_CRC_LEN - m->m_len);
1291 				m_freem(m);
1292 			} else {
1293 				m->m_len -= ETHER_CRC_LEN;
1294 				m->m_flags &= ~M_PKTHDR;
1295 				sc->vge_tail->m_next = m;
1296 			}
1297 			m = sc->vge_head;
1298 			sc->vge_head = sc->vge_tail = NULL;
1299 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1300 		} else
1301 			m->m_pkthdr.len = m->m_len =
1302 			    (total_len - ETHER_CRC_LEN);
1303 
1304 #ifdef VGE_FIXUP_RX
1305 		vge_fixup_rx(m);
1306 #endif
1307 		ifp->if_ipackets++;
1308 		m->m_pkthdr.rcvif = ifp;
1309 
1310 		/* Do RX checksumming if enabled */
1311 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1312 
1313 			/* Check IP header checksum */
1314 			if (rxctl & VGE_RDCTL_IPPKT)
1315 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1316 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1317 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1318 		}
1319 
1320 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1321 			/* Check UDP checksum */
1322 			if (rxctl & VGE_RDCTL_TCPPKT)
1323 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1324 
1325 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1326 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1327 		}
1328 
1329 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1330 			/* Check UDP checksum */
1331 			if (rxctl & VGE_RDCTL_UDPPKT)
1332 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1333 
1334 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1335 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1336 		}
1337 
1338 		if (rxstat & VGE_RDSTS_VTAG)
1339 			VLAN_INPUT_TAG(ifp, m,
1340 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1341 
1342 #if NBPFILTER > 0
1343 		/*
1344 		 * Handle BPF listeners.
1345 		 */
1346 		if (ifp->if_bpf)
1347 			bpf_mtap(ifp->if_bpf, m);
1348 #endif
1349 
1350 		VGE_UNLOCK(sc);
1351 		(*ifp->if_input)(ifp, m);
1352 		VGE_LOCK(sc);
1353 
1354 		lim++;
1355 		if (lim == VGE_RX_DESC_CNT)
1356 			break;
1357 
1358 	}
1359 
1360 	/* Flush the RX DMA ring */
1361 
1362 	bus_dmamap_sync(sc->vge_dmat,
1363 	    sc->vge_ldata.vge_rx_list_map,
1364 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1365 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1366 
1367 	sc->vge_ldata.vge_rx_prodidx = i;
1368 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1369 
1370 
1371 	return;
1372 }
1373 
1374 static void
1375 vge_txeof(sc)
1376 	struct vge_softc		*sc;
1377 {
1378 	struct ifnet		*ifp;
1379 	u_int32_t		txstat;
1380 	int			idx;
1381 
1382 	ifp = &sc->sc_ethercom.ec_if;
1383 	idx = sc->vge_ldata.vge_tx_considx;
1384 
1385 	/* Invalidate the TX descriptor list */
1386 
1387 	bus_dmamap_sync(sc->vge_dmat,
1388 	    sc->vge_ldata.vge_tx_list_map,
1389 	    0,  sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1390 	    BUS_DMASYNC_POSTREAD);
1391 
1392 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1393 
1394 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1395 		if (txstat & VGE_TDSTS_OWN)
1396 			break;
1397 
1398 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1399 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1400 		bus_dmamap_unload(sc->vge_dmat,
1401 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1402 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1403 			ifp->if_collisions++;
1404 		if (txstat & VGE_TDSTS_TXERR)
1405 			ifp->if_oerrors++;
1406 		else
1407 			ifp->if_opackets++;
1408 
1409 		sc->vge_ldata.vge_tx_free++;
1410 		VGE_TX_DESC_INC(idx);
1411 	}
1412 
1413 	/* No changes made to the TX ring, so no flush needed */
1414 
1415 	if (idx != sc->vge_ldata.vge_tx_considx) {
1416 		sc->vge_ldata.vge_tx_considx = idx;
1417 		ifp->if_flags &= ~IFF_OACTIVE;
1418 		ifp->if_timer = 0;
1419 	}
1420 
1421 	/*
1422 	 * If not all descriptors have been released reaped yet,
1423 	 * reload the timer so that we will eventually get another
1424 	 * interrupt that will cause us to re-enter this routine.
1425 	 * This is done in case the transmitter has gone idle.
1426 	 */
1427 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1428 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1429 	}
1430 
1431 	return;
1432 }
1433 
1434 static void
1435 vge_tick(xsc)
1436 	void			*xsc;
1437 {
1438 	struct vge_softc	*sc = xsc;
1439 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1440 	struct mii_data		*mii = &sc->sc_mii;
1441 	int s;
1442 
1443 	s = splnet();
1444 
1445 	VGE_LOCK(sc);
1446 
1447 	callout_schedule(&sc->vge_timeout, hz);
1448 
1449 	mii_tick(mii);
1450 	if (sc->vge_link) {
1451 		if (!(mii->mii_media_status & IFM_ACTIVE))
1452 			sc->vge_link = 0;
1453 	} else {
1454 		if (mii->mii_media_status & IFM_ACTIVE &&
1455 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1456 			sc->vge_link = 1;
1457 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1458 				vge_start(ifp);
1459 		}
1460 	}
1461 
1462 	VGE_UNLOCK(sc);
1463 
1464 	splx(s);
1465 }
1466 
1467 #ifdef DEVICE_POLLING
1468 static void
1469 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1470 {
1471 	struct vge_softc *sc = ifp->if_softc;
1472 
1473 	VGE_LOCK(sc);
1474 #ifdef IFCAP_POLLING
1475 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1476 		ether_poll_deregister(ifp);
1477 		cmd = POLL_DEREGISTER;
1478 	}
1479 #endif
1480 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1481 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1482 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1483 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1484 		goto done;
1485 	}
1486 
1487 	sc->rxcycles = count;
1488 	vge_rxeof(sc);
1489 	vge_txeof(sc);
1490 
1491 #if __FreeBSD_version < 502114
1492 	if (ifp->if_snd.ifq_head != NULL)
1493 #else
1494 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1495 #endif
1496 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1497 
1498 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1499 		u_int32_t       status;
1500 		status = CSR_READ_4(sc, VGE_ISR);
1501 		if (status == 0xFFFFFFFF)
1502 			goto done;
1503 		if (status)
1504 			CSR_WRITE_4(sc, VGE_ISR, status);
1505 
1506 		/*
1507 		 * XXX check behaviour on receiver stalls.
1508 		 */
1509 
1510 		if (status & VGE_ISR_TXDMA_STALL ||
1511 		    status & VGE_ISR_RXDMA_STALL)
1512 			vge_init(sc);
1513 
1514 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1515 			vge_rxeof(sc);
1516 			ifp->if_ierrors++;
1517 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1518 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1519 		}
1520 	}
1521 done:
1522 	VGE_UNLOCK(sc);
1523 }
1524 #endif /* DEVICE_POLLING */
1525 
1526 static int
1527 vge_intr(arg)
1528 	void			*arg;
1529 {
1530 	struct vge_softc	*sc = arg;
1531 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1532 	u_int32_t		status;
1533 	int claim = 0;
1534 
1535 	if (sc->suspended) {
1536 		return claim;
1537 	}
1538 
1539 	VGE_LOCK(sc);
1540 
1541 	if (!(ifp->if_flags & IFF_UP)) {
1542 		VGE_UNLOCK(sc);
1543 		return claim;
1544 	}
1545 
1546 #ifdef DEVICE_POLLING
1547 	if  (ifp->if_flags & IFF_POLLING)
1548 		goto done;
1549 	if (
1550 #ifdef IFCAP_POLLING
1551 	    (ifp->if_capenable & IFCAP_POLLING) &&
1552 #endif
1553 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1554 		CSR_WRITE_4(sc, VGE_IMR, 0);
1555 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1556 		vge_poll(ifp, 0, 1);
1557 		goto done;
1558 	}
1559 
1560 #endif /* DEVICE_POLLING */
1561 
1562 	/* Disable interrupts */
1563 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1564 
1565 	for (;;) {
1566 
1567 		status = CSR_READ_4(sc, VGE_ISR);
1568 		/* If the card has gone away the read returns 0xffff. */
1569 		if (status == 0xFFFFFFFF)
1570 			break;
1571 
1572 		if (status) {
1573 			claim = 1;
1574 			CSR_WRITE_4(sc, VGE_ISR, status);
1575 		}
1576 
1577 		if ((status & VGE_INTRS) == 0)
1578 			break;
1579 
1580 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1581 			vge_rxeof(sc);
1582 
1583 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1584 			vge_rxeof(sc);
1585 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1586 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1587 		}
1588 
1589 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1590 			vge_txeof(sc);
1591 
1592 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1593 			vge_init(ifp);
1594 
1595 		if (status & VGE_ISR_LINKSTS)
1596 			vge_tick(sc);
1597 	}
1598 
1599 	/* Re-enable interrupts */
1600 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1601 
1602 #ifdef DEVICE_POLLING
1603 done:
1604 #endif
1605 	VGE_UNLOCK(sc);
1606 
1607 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1608 		vge_start(ifp);
1609 
1610 	return claim;
1611 }
1612 
1613 static int
1614 vge_encap(sc, m_head, idx)
1615 	struct vge_softc	*sc;
1616 	struct mbuf		*m_head;
1617 	int			idx;
1618 {
1619 	struct mbuf		*m_new = NULL;
1620 	bus_dmamap_t		map;
1621 	int			error, flags;
1622 	struct m_tag		*mtag;
1623 
1624 	/* If this descriptor is still owned by the chip, bail. */
1625 	if (sc->vge_ldata.vge_tx_free <= 2
1626 	    || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
1627 		return (ENOBUFS);
1628 
1629 	flags = 0;
1630 
1631 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1632 		flags |= VGE_TDCTL_IPCSUM;
1633 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1634 		flags |= VGE_TDCTL_TCPCSUM;
1635 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1636 		flags |= VGE_TDCTL_UDPCSUM;
1637 
1638 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1639 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1640 	    m_head, BUS_DMA_NOWAIT);
1641 
1642 	/* If too many segments to map, coalesce */
1643 	if (error == EFBIG) {
1644 		m_new = m_defrag(m_head, M_DONTWAIT);
1645 		if (m_new == NULL)
1646 			return (error);
1647 
1648 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1649 		    m_new, BUS_DMA_NOWAIT);
1650 		if (error) {
1651 			m_freem(m_new);
1652 			return (error);
1653 		}
1654 
1655 		m_head = m_new;
1656 	} else if (error)
1657 		return (error);
1658 
1659 	vge_dma_map_tx_desc(sc, m_head, idx, flags);
1660 
1661 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1662 	sc->vge_ldata.vge_tx_free--;
1663 
1664 	/*
1665 	 * Set up hardware VLAN tagging.
1666 	 */
1667 
1668 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1669 	if (mtag != NULL)
1670 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1671 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1672 
1673 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1674 
1675 	return (0);
1676 }
1677 
1678 /*
1679  * Main transmit routine.
1680  */
1681 
1682 static void
1683 vge_start(ifp)
1684 	struct ifnet		*ifp;
1685 {
1686 	struct vge_softc	*sc;
1687 	struct mbuf		*m_head = NULL;
1688 	int			idx, pidx = 0, error;
1689 
1690 	sc = ifp->if_softc;
1691 	VGE_LOCK(sc);
1692 
1693 	if (!sc->vge_link
1694 	    || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1695 		VGE_UNLOCK(sc);
1696 		return;
1697 	}
1698 
1699 	idx = sc->vge_ldata.vge_tx_prodidx;
1700 
1701 	pidx = idx - 1;
1702 	if (pidx < 0)
1703 		pidx = VGE_TX_DESC_CNT - 1;
1704 
1705 	/*
1706 	 * Loop through the send queue, setting up transmit descriptors
1707 	 * until we drain the queue, or use up all available transmit
1708 	 * descriptors.
1709 	 */
1710 	for(;;) {
1711 		/* Grab a packet off the queue. */
1712 		IFQ_POLL(&ifp->if_snd, m_head);
1713 		if (m_head == NULL)
1714 			break;
1715 
1716 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1717 			/*
1718 			 * Slot already used, stop for now.
1719 			 */
1720 			ifp->if_flags |= IFF_OACTIVE;
1721 			break;
1722 		}
1723 
1724 		if ((error = vge_encap(sc, m_head, idx))) {
1725 			if (error == EFBIG) {
1726 				printf("%s: Tx packet consumes too many "
1727 				    "DMA segments, dropping...\n",
1728 				    sc->sc_dev.dv_xname);
1729 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
1730 				m_freem(m_head);
1731 				continue;
1732 			}
1733 
1734 			/*
1735 			 * Short on resources, just stop for now.
1736 			 */
1737 			if (error == ENOBUFS)
1738 				ifp->if_flags |= IFF_OACTIVE;
1739 			break;
1740 		}
1741 
1742 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1743 
1744 		/*
1745 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1746 		 */
1747 
1748 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1749 		    htole16(VGE_TXDESC_Q);
1750 
1751 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
1752 			m_freem(m_head);
1753 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
1754 		}
1755 
1756 		pidx = idx;
1757 		VGE_TX_DESC_INC(idx);
1758 
1759 		/*
1760 		 * If there's a BPF listener, bounce a copy of this frame
1761 		 * to him.
1762 		 */
1763 #if NBPFILTER > 0
1764 		if (ifp->if_bpf)
1765 			bpf_mtap(ifp->if_bpf, m_head);
1766 #endif
1767 	}
1768 
1769 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1770 		VGE_UNLOCK(sc);
1771 		return;
1772 	}
1773 
1774 	/* Flush the TX descriptors */
1775 
1776 	bus_dmamap_sync(sc->vge_dmat,
1777 	    sc->vge_ldata.vge_tx_list_map,
1778 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1779 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1780 
1781 	/* Issue a transmit command. */
1782 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1783 
1784 	sc->vge_ldata.vge_tx_prodidx = idx;
1785 
1786 	/*
1787 	 * Use the countdown timer for interrupt moderation.
1788 	 * 'TX done' interrupts are disabled. Instead, we reset the
1789 	 * countdown timer, which will begin counting until it hits
1790 	 * the value in the SSTIMER register, and then trigger an
1791 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1792 	 * the timer count is reloaded. Only when the transmitter
1793 	 * is idle will the timer hit 0 and an interrupt fire.
1794 	 */
1795 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1796 
1797 	VGE_UNLOCK(sc);
1798 
1799 	/*
1800 	 * Set a timeout in case the chip goes out to lunch.
1801 	 */
1802 	ifp->if_timer = 5;
1803 
1804 	return;
1805 }
1806 
1807 static int
1808 vge_init(ifp)
1809 	struct ifnet *ifp;
1810 {
1811 	struct vge_softc	*sc = ifp->if_softc;
1812 	struct mii_data		*mii = &sc->sc_mii;
1813 	int			i;
1814 
1815 	VGE_LOCK(sc);
1816 
1817 	/*
1818 	 * Cancel pending I/O and free all RX/TX buffers.
1819 	 */
1820 	vge_stop(sc);
1821 	vge_reset(sc);
1822 
1823 	/*
1824 	 * Initialize the RX and TX descriptors and mbufs.
1825 	 */
1826 
1827 	vge_rx_list_init(sc);
1828 	vge_tx_list_init(sc);
1829 
1830 	/* Set our station address */
1831 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1832 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1833 
1834 	/*
1835 	 * Set receive FIFO threshold. Also allow transmission and
1836 	 * reception of VLAN tagged frames.
1837 	 */
1838 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1839 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1840 
1841 	/* Set DMA burst length */
1842 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1843 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1844 
1845 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1846 
1847 	/* Set collision backoff algorithm */
1848 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1849 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1850 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1851 
1852 	/* Disable LPSEL field in priority resolution */
1853 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1854 
1855 	/*
1856 	 * Load the addresses of the DMA queues into the chip.
1857 	 * Note that we only use one transmit queue.
1858 	 */
1859 
1860 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1861 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1862 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1863 
1864 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1865 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1866 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1867 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1868 
1869 	/* Enable and wake up the RX descriptor queue */
1870 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1871 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1872 
1873 	/* Enable the TX descriptor queue */
1874 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1875 
1876 	/* Set up the receive filter -- allow large frames for VLANs. */
1877 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1878 
1879 	/* If we want promiscuous mode, set the allframes bit. */
1880 	if (ifp->if_flags & IFF_PROMISC) {
1881 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1882 	}
1883 
1884 	/* Set capture broadcast bit to capture broadcast frames. */
1885 	if (ifp->if_flags & IFF_BROADCAST) {
1886 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1887 	}
1888 
1889 	/* Set multicast bit to capture multicast frames. */
1890 	if (ifp->if_flags & IFF_MULTICAST) {
1891 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1892 	}
1893 
1894 	/* Init the cam filter. */
1895 	vge_cam_clear(sc);
1896 
1897 	/* Init the multicast filter. */
1898 	vge_setmulti(sc);
1899 
1900 	/* Enable flow control */
1901 
1902 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1903 
1904 	/* Enable jumbo frame reception (if desired) */
1905 
1906 	/* Start the MAC. */
1907 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1908 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1909 	CSR_WRITE_1(sc, VGE_CRS0,
1910 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1911 
1912 	/*
1913 	 * Configure one-shot timer for microsecond
1914 	 * resulution and load it for 500 usecs.
1915 	 */
1916 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1917 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1918 
1919 	/*
1920 	 * Configure interrupt moderation for receive. Enable
1921 	 * the holdoff counter and load it, and set the RX
1922 	 * suppression count to the number of descriptors we
1923 	 * want to allow before triggering an interrupt.
1924 	 * The holdoff timer is in units of 20 usecs.
1925 	 */
1926 
1927 #ifdef notyet
1928 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1929 	/* Select the interrupt holdoff timer page. */
1930 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1931 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1932 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1933 
1934 	/* Enable use of the holdoff timer. */
1935 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1936 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1937 
1938 	/* Select the RX suppression threshold page. */
1939 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1940 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1941 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1942 
1943 	/* Restore the page select bits. */
1944 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1945 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1946 #endif
1947 
1948 #ifdef DEVICE_POLLING
1949 	/*
1950 	 * Disable interrupts if we are polling.
1951 	 */
1952 	if (ifp->if_flags & IFF_POLLING) {
1953 		CSR_WRITE_4(sc, VGE_IMR, 0);
1954 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1955 	} else	/* otherwise ... */
1956 #endif /* DEVICE_POLLING */
1957 	{
1958 	/*
1959 	 * Enable interrupts.
1960 	 */
1961 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1962 		CSR_WRITE_4(sc, VGE_ISR, 0);
1963 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1964 	}
1965 
1966 	mii_mediachg(mii);
1967 
1968 	ifp->if_flags |= IFF_RUNNING;
1969 	ifp->if_flags &= ~IFF_OACTIVE;
1970 
1971 	sc->vge_if_flags = 0;
1972 	sc->vge_link = 0;
1973 
1974 	VGE_UNLOCK(sc);
1975 
1976 	callout_schedule(&sc->vge_timeout, hz);
1977 
1978 	return (0);
1979 }
1980 
1981 /*
1982  * Set media options.
1983  */
1984 static int
1985 vge_ifmedia_upd(ifp)
1986 	struct ifnet		*ifp;
1987 {
1988 	struct vge_softc	*sc = ifp->if_softc;
1989 	struct mii_data		*mii = &sc->sc_mii;
1990 
1991 	mii_mediachg(mii);
1992 
1993 	return (0);
1994 }
1995 
1996 /*
1997  * Report current media status.
1998  */
1999 static void
2000 vge_ifmedia_sts(ifp, ifmr)
2001 	struct ifnet		*ifp;
2002 	struct ifmediareq	*ifmr;
2003 {
2004 	struct vge_softc	*sc = ifp->if_softc;
2005 	struct mii_data		*mii = &sc->sc_mii;
2006 
2007 	mii_pollstat(mii);
2008 	ifmr->ifm_active = mii->mii_media_active;
2009 	ifmr->ifm_status = mii->mii_media_status;
2010 
2011 	return;
2012 }
2013 
2014 static void
2015 vge_miibus_statchg(self)
2016 	struct device	*self;
2017 {
2018 	struct vge_softc	*sc = (struct vge_softc *) self;
2019 	struct mii_data		*mii = &sc->sc_mii;
2020 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
2021 
2022 	/*
2023 	 * If the user manually selects a media mode, we need to turn
2024 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2025 	 * user happens to choose a full duplex mode, we also need to
2026 	 * set the 'force full duplex' bit. This applies only to
2027 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2028 	 * mode is disabled, and in 1000baseT mode, full duplex is
2029 	 * always implied, so we turn on the forced mode bit but leave
2030 	 * the FDX bit cleared.
2031 	 */
2032 
2033 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2034 	case IFM_AUTO:
2035 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2036 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2037 		break;
2038 	case IFM_1000_T:
2039 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2040 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2041 		break;
2042 	case IFM_100_TX:
2043 	case IFM_10_T:
2044 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2045 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2046 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2047 		} else {
2048 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2049 		}
2050 		break;
2051 	default:
2052 		printf("%s: unknown media type: %x\n",
2053 		    sc->sc_dev.dv_xname,
2054 		    IFM_SUBTYPE(ife->ifm_media));
2055 		break;
2056 	}
2057 
2058 	return;
2059 }
2060 
2061 static int
2062 vge_ioctl(ifp, command, data)
2063 	struct ifnet		*ifp;
2064 	u_long			command;
2065 	caddr_t			data;
2066 {
2067 	struct vge_softc	*sc = ifp->if_softc;
2068 	struct ifreq		*ifr = (struct ifreq *) data;
2069 	struct mii_data		*mii;
2070 	int			s, error = 0;
2071 
2072 	s = splnet();
2073 
2074 	switch (command) {
2075 	case SIOCSIFMTU:
2076 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2077 			error = EINVAL;
2078 		ifp->if_mtu = ifr->ifr_mtu;
2079 		break;
2080 	case SIOCSIFFLAGS:
2081 		if (ifp->if_flags & IFF_UP) {
2082 			if (ifp->if_flags & IFF_RUNNING &&
2083 			    ifp->if_flags & IFF_PROMISC &&
2084 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2085 				CSR_SETBIT_1(sc, VGE_RXCTL,
2086 				    VGE_RXCTL_RX_PROMISC);
2087 				vge_setmulti(sc);
2088 			} else if (ifp->if_flags & IFF_RUNNING &&
2089 			    !(ifp->if_flags & IFF_PROMISC) &&
2090 			    sc->vge_if_flags & IFF_PROMISC) {
2091 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2092 				    VGE_RXCTL_RX_PROMISC);
2093 				vge_setmulti(sc);
2094                         } else
2095 				vge_init(ifp);
2096 		} else {
2097 			if (ifp->if_flags & IFF_RUNNING)
2098 				vge_stop(sc);
2099 		}
2100 		sc->vge_if_flags = ifp->if_flags;
2101 		break;
2102 	case SIOCADDMULTI:
2103 	case SIOCDELMULTI:
2104 		error = (command == SIOCADDMULTI) ?
2105 		    ether_addmulti(ifr, &sc->sc_ethercom) :
2106 		    ether_delmulti(ifr, &sc->sc_ethercom);
2107 
2108 		if (error == ENETRESET) {
2109 			/*
2110 			 * Multicast list has changed; set the hardware filter
2111 			 * accordingly.
2112 			 */
2113 			if (ifp->if_flags & IFF_RUNNING)
2114 				vge_setmulti(sc);
2115 			error = 0;
2116 		}
2117 		break;
2118 	case SIOCGIFMEDIA:
2119 	case SIOCSIFMEDIA:
2120 		mii = &sc->sc_mii;
2121 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2122 		break;
2123 	default:
2124 		error = ether_ioctl(ifp, command, data);
2125 		break;
2126 	}
2127 
2128 	splx(s);
2129 	return (error);
2130 }
2131 
2132 static void
2133 vge_watchdog(ifp)
2134 	struct ifnet		*ifp;
2135 {
2136 	struct vge_softc		*sc;
2137 
2138 	sc = ifp->if_softc;
2139 	VGE_LOCK(sc);
2140 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2141 	ifp->if_oerrors++;
2142 
2143 	vge_txeof(sc);
2144 	vge_rxeof(sc);
2145 
2146 	vge_init(ifp);
2147 
2148 	VGE_UNLOCK(sc);
2149 
2150 	return;
2151 }
2152 
2153 /*
2154  * Stop the adapter and free any mbufs allocated to the
2155  * RX and TX lists.
2156  */
2157 static void
2158 vge_stop(sc)
2159 	struct vge_softc		*sc;
2160 {
2161 	register int		i;
2162 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2163 
2164 	VGE_LOCK(sc);
2165 	ifp->if_timer = 0;
2166 
2167 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2168 #ifdef DEVICE_POLLING
2169 	ether_poll_deregister(ifp);
2170 #endif /* DEVICE_POLLING */
2171 
2172 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2173 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2174 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2175 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2176 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2177 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2178 
2179 	if (sc->vge_head != NULL) {
2180 		m_freem(sc->vge_head);
2181 		sc->vge_head = sc->vge_tail = NULL;
2182 	}
2183 
2184 	/* Free the TX list buffers. */
2185 
2186 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2187 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2188 			bus_dmamap_unload(sc->vge_dmat,
2189 			    sc->vge_ldata.vge_tx_dmamap[i]);
2190 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2191 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2192 		}
2193 	}
2194 
2195 	/* Free the RX list buffers. */
2196 
2197 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2198 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2199 			bus_dmamap_unload(sc->vge_dmat,
2200 			    sc->vge_ldata.vge_rx_dmamap[i]);
2201 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2202 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2203 		}
2204 	}
2205 
2206 	VGE_UNLOCK(sc);
2207 
2208 	return;
2209 }
2210 
2211 #if VGE_POWER_MANAGEMENT
2212 /*
2213  * Device suspend routine.  Stop the interface and save some PCI
2214  * settings in case the BIOS doesn't restore them properly on
2215  * resume.
2216  */
2217 static int
2218 vge_suspend(dev)
2219 	struct device *		dev;
2220 {
2221 	struct vge_softc	*sc;
2222 	int			i;
2223 
2224 	sc = device_get_softc(dev);
2225 
2226 	vge_stop(sc);
2227 
2228         for (i = 0; i < 5; i++)
2229 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2230 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2231 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2232 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2233 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2234 
2235 	sc->suspended = 1;
2236 
2237 	return (0);
2238 }
2239 
2240 /*
2241  * Device resume routine.  Restore some PCI settings in case the BIOS
2242  * doesn't, re-enable busmastering, and restart the interface if
2243  * appropriate.
2244  */
2245 static int
2246 vge_resume(dev)
2247 	struct device *		dev;
2248 {
2249 	struct vge_softc	*sc = (struct vge_softc *)dev;
2250 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2251 	int			i;
2252 
2253         /* better way to do this? */
2254 	for (i = 0; i < 5; i++)
2255 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2256 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2257 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2258 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2259 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2260 
2261 	/* reenable busmastering */
2262 	pci_enable_busmaster(dev);
2263 	pci_enable_io(dev, SYS_RES_MEMORY);
2264 
2265 	/* reinitialize interface if necessary */
2266 	if (ifp->if_flags & IFF_UP)
2267 		vge_init(sc);
2268 
2269 	sc->suspended = 0;
2270 
2271 	return (0);
2272 }
2273 #endif
2274 
2275 /*
2276  * Stop all chip I/O so that the kernel's probe routines don't
2277  * get confused by errant DMAs when rebooting.
2278  */
2279 static void
2280 vge_shutdown(arg)
2281 	void *arg;
2282 {
2283 	struct vge_softc *sc = (struct vge_softc *)arg;
2284 
2285 	vge_stop(sc);
2286 }
2287