xref: /netbsd-src/sys/dev/pci/if_vge.c (revision bf1e9b32e27832f0c493206710fb8b58a980838a)
1 /* $NetBSD: if_vge.c,v 1.5 2005/05/02 15:34:32 yamt Exp $ */
2 
3 /*-
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.5 2005/05/02 15:34:32 yamt Exp $");
39 
40 /*
41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42  *
43  * Written by Bill Paul <wpaul@windriver.com>
44  * Senior Networking Software Engineer
45  * Wind River Systems
46  */
47 
48 /*
49  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
50  * combines a tri-speed ethernet MAC and PHY, with the following
51  * features:
52  *
53  *	o Jumbo frame support up to 16K
54  *	o Transmit and receive flow control
55  *	o IPv4 checksum offload
56  *	o VLAN tag insertion and stripping
57  *	o TCP large send
58  *	o 64-bit multicast hash table filter
59  *	o 64 entry CAM filter
60  *	o 16K RX FIFO and 48K TX FIFO memory
61  *	o Interrupt moderation
62  *
63  * The VT6122 supports up to four transmit DMA queues. The descriptors
64  * in the transmit ring can address up to 7 data fragments; frames which
65  * span more than 7 data buffers must be coalesced, but in general the
66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67  * long. The receive descriptors address only a single buffer.
68  *
69  * There are two peculiar design issues with the VT6122. One is that
70  * receive data buffers must be aligned on a 32-bit boundary. This is
71  * not a problem where the VT6122 is used as a LOM device in x86-based
72  * systems, but on architectures that generate unaligned access traps, we
73  * have to do some copying.
74  *
75  * The other issue has to do with the way 64-bit addresses are handled.
76  * The DMA descriptors only allow you to specify 48 bits of addressing
77  * information. The remaining 16 bits are specified using one of the
78  * I/O registers. If you only have a 32-bit system, then this isn't
79  * an issue, but if you have a 64-bit system and more than 4GB of
80  * memory, you must have to make sure your network data buffers reside
81  * in the same 48-bit 'segment.'
82  *
83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
84  * and sample NICs for testing.
85  */
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 
104 #include <net/bpf.h>
105 
106 #include <machine/bus.h>
107 
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114 
115 #include <dev/pci/if_vgereg.h>
116 #include <dev/pci/if_vgevar.h>
117 
118 static int vge_probe	(struct device *, struct cfdata *, void *);
119 static void vge_attach	(struct device *, struct device *, void *);
120 
121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
122 
123 static int vge_dma_map_rx_desc	(struct vge_softc *, int);
124 static void vge_dma_map_tx_desc	(struct vge_softc *, struct mbuf *, int, int);
125 static int vge_allocmem		(struct vge_softc *);
126 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
127 static int vge_rx_list_init	(struct vge_softc *);
128 static int vge_tx_list_init	(struct vge_softc *);
129 #ifdef VGE_FIXUP_RX
130 static __inline void vge_fixup_rx
131 				(struct mbuf *);
132 #endif
133 static void vge_rxeof		(struct vge_softc *);
134 static void vge_txeof		(struct vge_softc *);
135 static int vge_intr		(void *);
136 static void vge_tick		(void *);
137 static void vge_start		(struct ifnet *);
138 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
139 static int vge_init		(struct ifnet *);
140 static void vge_stop		(struct vge_softc *);
141 static void vge_watchdog	(struct ifnet *);
142 #if VGE_POWER_MANAGEMENT
143 static int vge_suspend		(struct device *);
144 static int vge_resume		(struct device *);
145 #endif
146 static void vge_shutdown	(void *);
147 static int vge_ifmedia_upd	(struct ifnet *);
148 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 
150 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
151 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
152 
153 static void vge_miipoll_start	(struct vge_softc *);
154 static void vge_miipoll_stop	(struct vge_softc *);
155 static int vge_miibus_readreg	(struct device *, int, int);
156 static void vge_miibus_writereg	(struct device *, int, int, int);
157 static void vge_miibus_statchg	(struct device *);
158 
159 static void vge_cam_clear	(struct vge_softc *);
160 static int vge_cam_set		(struct vge_softc *, uint8_t *);
161 static void vge_setmulti	(struct vge_softc *);
162 static void vge_reset		(struct vge_softc *);
163 
164 #define VGE_PCI_LOIO             0x10
165 #define VGE_PCI_LOMEM            0x14
166 
167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
168     vge_probe, vge_attach, NULL, NULL);
169 
170 /*
171  * Defragment mbuf chain contents to be as linear as possible.
172  * Returns new mbuf chain on success, NULL on failure. Old mbuf
173  * chain is always freed.
174  * XXX temporary until there would be generic function doing this.
175  */
176 #define m_defrag	vge_m_defrag
177 struct mbuf * vge_m_defrag(struct mbuf *, int);
178 
179 struct mbuf *
180 vge_m_defrag(struct mbuf *mold, int flags)
181 {
182 	struct mbuf *m0, *mn, *n;
183 	size_t sz = mold->m_pkthdr.len;
184 
185 #ifdef DIAGNOSTIC
186 	if ((mold->m_flags & M_PKTHDR) == 0)
187 		panic("m_defrag: not a mbuf chain header");
188 #endif
189 
190 	MGETHDR(m0, flags, MT_DATA);
191 	if (m0 == NULL)
192 		return NULL;
193 	m0->m_pkthdr.len = mold->m_pkthdr.len;
194 	mn = m0;
195 
196 	do {
197 		if (sz > MHLEN) {
198 			MCLGET(mn, M_DONTWAIT);
199 			if ((mn->m_flags & M_EXT) == 0) {
200 				m_freem(m0);
201 				return NULL;
202 			}
203 		}
204 
205 		mn->m_len = MIN(sz, MCLBYTES);
206 
207 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
208 		     mtod(mn, caddr_t));
209 
210 		sz -= mn->m_len;
211 
212 		if (sz > 0) {
213 			/* need more mbufs */
214 			MGET(n, M_NOWAIT, MT_DATA);
215 			if (n == NULL) {
216 				m_freem(m0);
217 				return NULL;
218 			}
219 
220 			mn->m_next = n;
221 			mn = n;
222 		}
223 	} while (sz > 0);
224 
225 	return m0;
226 }
227 
228 /*
229  * Read a word of data stored in the EEPROM at address 'addr.'
230  */
231 static void
232 vge_eeprom_getword(sc, addr, dest)
233 	struct vge_softc	*sc;
234 	int			addr;
235 	u_int16_t		*dest;
236 {
237 	register int		i;
238 	u_int16_t		word = 0;
239 
240 	/*
241 	 * Enter EEPROM embedded programming mode. In order to
242 	 * access the EEPROM at all, we first have to set the
243 	 * EELOAD bit in the CHIPCFG2 register.
244 	 */
245 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247 
248 	/* Select the address of the word we want to read */
249 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250 
251 	/* Issue read command */
252 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253 
254 	/* Wait for the done bit to be set. */
255 	for (i = 0; i < VGE_TIMEOUT; i++) {
256 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257 			break;
258 	}
259 
260 	if (i == VGE_TIMEOUT) {
261 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
262 		*dest = 0;
263 		return;
264 	}
265 
266 	/* Read the result */
267 	word = CSR_READ_2(sc, VGE_EERDDAT);
268 
269 	/* Turn off EEPROM access mode. */
270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272 
273 	*dest = word;
274 
275 	return;
276 }
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(sc, dest, off, cnt, swap)
283 	struct vge_softc	*sc;
284 	caddr_t			dest;
285 	int			off;
286 	int			cnt;
287 	int			swap;
288 {
289 	int			i;
290 	u_int16_t		word = 0, *ptr;
291 
292 	for (i = 0; i < cnt; i++) {
293 		vge_eeprom_getword(sc, off + i, &word);
294 		ptr = (u_int16_t *)(dest + (i * 2));
295 		if (swap)
296 			*ptr = ntohs(word);
297 		else
298 			*ptr = word;
299 	}
300 }
301 
302 static void
303 vge_miipoll_stop(sc)
304 	struct vge_softc	*sc;
305 {
306 	int			i;
307 
308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
309 
310 	for (i = 0; i < VGE_TIMEOUT; i++) {
311 		DELAY(1);
312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313 			break;
314 	}
315 
316 	if (i == VGE_TIMEOUT) {
317 		printf("%s: failed to idle MII autopoll\n",
318 		    sc->sc_dev.dv_xname);
319 	}
320 
321 	return;
322 }
323 
324 static void
325 vge_miipoll_start(sc)
326 	struct vge_softc	*sc;
327 {
328 	int			i;
329 
330 	/* First, make sure we're idle. */
331 
332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334 
335 	for (i = 0; i < VGE_TIMEOUT; i++) {
336 		DELAY(1);
337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 			break;
339 	}
340 
341 	if (i == VGE_TIMEOUT) {
342 		printf("%s: failed to idle MII autopoll\n",
343 		    sc->sc_dev.dv_xname);
344 		return;
345 	}
346 
347 	/* Now enable auto poll mode. */
348 
349 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
350 
351 	/* And make sure it started. */
352 
353 	for (i = 0; i < VGE_TIMEOUT; i++) {
354 		DELAY(1);
355 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
356 			break;
357 	}
358 
359 	if (i == VGE_TIMEOUT) {
360 		printf("%s: failed to start MII autopoll\n",
361 		    sc->sc_dev.dv_xname);
362 	}
363 }
364 
365 static int
366 vge_miibus_readreg(dev, phy, reg)
367 	struct device *dev;
368 	int phy, reg;
369 {
370 	struct vge_softc	*sc = (struct vge_softc *)dev;
371 	int			i;
372 	u_int16_t		rval = 0;
373 
374 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
375 		return(0);
376 
377 	VGE_LOCK(sc);
378 	vge_miipoll_stop(sc);
379 
380 	/* Specify the register we want to read. */
381 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
382 
383 	/* Issue read command. */
384 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
385 
386 	/* Wait for the read command bit to self-clear. */
387 	for (i = 0; i < VGE_TIMEOUT; i++) {
388 		DELAY(1);
389 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
390 			break;
391 	}
392 
393 	if (i == VGE_TIMEOUT)
394 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
395 	else
396 		rval = CSR_READ_2(sc, VGE_MIIDATA);
397 
398 	vge_miipoll_start(sc);
399 	VGE_UNLOCK(sc);
400 
401 	return (rval);
402 }
403 
404 static void
405 vge_miibus_writereg(dev, phy, reg, data)
406 	struct device	*dev;
407 	int		phy, reg, data;
408 {
409 	struct vge_softc	*sc = (struct vge_softc *)dev;
410 	int			i;
411 
412 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
413 		return;
414 
415 	VGE_LOCK(sc);
416 	vge_miipoll_stop(sc);
417 
418 	/* Specify the register we want to write. */
419 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
420 
421 	/* Specify the data we want to write. */
422 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
423 
424 	/* Issue write command. */
425 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
426 
427 	/* Wait for the write command bit to self-clear. */
428 	for (i = 0; i < VGE_TIMEOUT; i++) {
429 		DELAY(1);
430 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
431 			break;
432 	}
433 
434 	if (i == VGE_TIMEOUT) {
435 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
436 	}
437 
438 	vge_miipoll_start(sc);
439 	VGE_UNLOCK(sc);
440 }
441 
442 static void
443 vge_cam_clear(sc)
444 	struct vge_softc	*sc;
445 {
446 	int			i;
447 
448 	/*
449 	 * Turn off all the mask bits. This tells the chip
450 	 * that none of the entries in the CAM filter are valid.
451 	 * desired entries will be enabled as we fill the filter in.
452 	 */
453 
454 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
455 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
456 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
457 	for (i = 0; i < 8; i++)
458 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
459 
460 	/* Clear the VLAN filter too. */
461 
462 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
463 	for (i = 0; i < 8; i++)
464 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
465 
466 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
469 
470 	sc->vge_camidx = 0;
471 
472 	return;
473 }
474 
475 static int
476 vge_cam_set(sc, addr)
477 	struct vge_softc	*sc;
478 	uint8_t			*addr;
479 {
480 	int			i, error = 0;
481 
482 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
483 		return(ENOSPC);
484 
485 	/* Select the CAM data page. */
486 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
487 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
488 
489 	/* Set the filter entry we want to update and enable writing. */
490 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
491 
492 	/* Write the address to the CAM registers */
493 	for (i = 0; i < ETHER_ADDR_LEN; i++)
494 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
495 
496 	/* Issue a write command. */
497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
498 
499 	/* Wake for it to clear. */
500 	for (i = 0; i < VGE_TIMEOUT; i++) {
501 		DELAY(1);
502 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
503 			break;
504 	}
505 
506 	if (i == VGE_TIMEOUT) {
507 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
508 		error = EIO;
509 		goto fail;
510 	}
511 
512 	/* Select the CAM mask page. */
513 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
514 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
515 
516 	/* Set the mask bit that enables this filter. */
517 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
518 	    1<<(sc->vge_camidx & 7));
519 
520 	sc->vge_camidx++;
521 
522 fail:
523 	/* Turn off access to CAM. */
524 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
525 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
526 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
527 
528 	return (error);
529 }
530 
531 /*
532  * Program the multicast filter. We use the 64-entry CAM filter
533  * for perfect filtering. If there's more than 64 multicast addresses,
534  * we use the hash filter insted.
535  */
536 static void
537 vge_setmulti(sc)
538 	struct vge_softc	*sc;
539 {
540 	struct ifnet		*ifp;
541 	int			error = 0;
542 	u_int32_t		h, hashes[2] = { 0, 0 };
543 	struct ether_multi *enm;
544 	struct ether_multistep step;
545 
546 	ifp = &sc->sc_ethercom.ec_if;
547 
548 	/* First, zot all the multicast entries. */
549 	vge_cam_clear(sc);
550 	CSR_WRITE_4(sc, VGE_MAR0, 0);
551 	CSR_WRITE_4(sc, VGE_MAR1, 0);
552 
553 	/*
554 	 * If the user wants allmulti or promisc mode, enable reception
555 	 * of all multicast frames.
556 	 */
557 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
558     allmulti:
559 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
560 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
561 		return;
562 	}
563 
564 	/* Now program new ones */
565 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
566 	while(enm != NULL) {
567 		/*
568 		 * If multicast range, fall back to ALLMULTI.
569 		 */
570 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
571 				ETHER_ADDR_LEN) != 0)
572 			goto allmulti;
573 
574 		error = vge_cam_set(sc,
575 		    LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
576 		if (error)
577 			break;
578 
579 		ETHER_NEXT_MULTI(step, enm);
580 	}
581 
582 	/* If there were too many addresses, use the hash filter. */
583 	if (error) {
584 		vge_cam_clear(sc);
585 
586 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
587 		while(enm != NULL) {
588 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
589 			    enm->enm_addrlo), ETHER_ADDR_LEN) >> 26;
590 			if (h < 32)
591 				hashes[0] |= (1 << h);
592 			else
593 				hashes[1] |= (1 << (h - 32));
594 		}
595 
596 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
597 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
598 	}
599 
600 	return;
601 }
602 
603 static void
604 vge_reset(sc)
605 	struct vge_softc		*sc;
606 {
607 	register int		i;
608 
609 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
610 
611 	for (i = 0; i < VGE_TIMEOUT; i++) {
612 		DELAY(5);
613 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
614 			break;
615 	}
616 
617 	if (i == VGE_TIMEOUT) {
618 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
619 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
620 		DELAY(2000);
621 	}
622 
623 	DELAY(5000);
624 
625 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
626 
627 	for (i = 0; i < VGE_TIMEOUT; i++) {
628 		DELAY(5);
629 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
630 			break;
631 	}
632 
633 	if (i == VGE_TIMEOUT) {
634 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
635 		return;
636 	}
637 
638 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
639 
640 	return;
641 }
642 
643 /*
644  * Probe for a VIA gigabit chip. Check the PCI vendor and device
645  * IDs against our list and return a device name if we find a match.
646  */
647 static int
648 vge_probe(struct device *parent, struct cfdata *match, void *aux)
649 {
650 	struct pci_attach_args *pa = aux;
651 
652 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
653 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
654 		return 1;
655 
656 	return (0);
657 }
658 
659 static int
660 vge_dma_map_rx_desc(sc, idx)
661 	struct vge_softc	*sc;
662 	int			idx;
663 {
664 	struct vge_rx_desc	*d = NULL;
665 	bus_dma_segment_t	*segs;
666 
667 	/*
668 	 * Map the segment array into descriptors.
669 	 */
670 
671 	d = &sc->vge_ldata.vge_rx_list[idx];
672 
673 	/* If this descriptor is still owned by the chip, bail. */
674 
675 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
676 		printf("%s: tried to map busy descriptor\n",
677 		    sc->sc_dev.dv_xname);
678 		return (EBUSY);
679 	}
680 
681 	segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
682 
683 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
684 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
685 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
686 	d->vge_sts = 0;
687 	d->vge_ctl = 0;
688 
689 	return (0);
690 }
691 
692 static void
693 vge_dma_map_tx_desc(sc, m0, idx, flags)
694 	struct vge_softc	*sc;
695 	struct mbuf		*m0;
696 	int			idx, flags;
697 {
698 	struct vge_tx_desc	*d = &sc->vge_ldata.vge_tx_list[idx];
699 	struct vge_tx_frag	*f;
700 	int			i = 0;
701 	bus_dma_segment_t	*segs;
702 	size_t			sz;
703 	bus_dmamap_t		map = sc->vge_ldata.vge_tx_dmamap[idx];
704 
705 	/* Map the segment array into descriptors. */
706 
707 	segs = map->dm_segs;
708 	for (i = 0; i < map->dm_nsegs; i++) {
709 		f = &d->vge_frag[i];
710 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
711 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
712 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
713 	}
714 
715 	/* Argh. This chip does not autopad short frames */
716 
717 	sz = m0->m_pkthdr.len;
718 	if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
719 		f = &d->vge_frag[i];
720 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
721 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
722 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
723 		sz = VGE_MIN_FRAMELEN;
724 		i++;
725 	}
726 
727 	/*
728 	 * When telling the chip how many segments there are, we
729 	 * must use nsegs + 1 instead of just nsegs. Darned if I
730 	 * know why.
731 	 */
732 	i++;
733 
734 	d->vge_sts = sz << 16;
735 	d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
736 
737 	if (sz > ETHERMTU + ETHER_HDR_LEN)
738 		d->vge_ctl |= VGE_TDCTL_JUMBO;
739 }
740 
741 static int
742 vge_allocmem(sc)
743 	struct vge_softc *sc;
744 {
745 	int			error;
746 	int			nseg;
747 	int			i;
748 	bus_dma_segment_t	seg;
749 
750 	/*
751 	 * Allocate map for TX descriptor list.
752 	 */
753 	error = bus_dmamap_create(sc->vge_dmat,
754 	    round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
755 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
756 	    &sc->vge_ldata.vge_tx_list_map);
757 	if (error) {
758 		printf("%s: could not allocate TX dma list map\n",
759 		    sc->sc_dev.dv_xname);
760 		return (ENOMEM);
761 	}
762 
763 	/*
764 	 * Allocate memory for TX descriptor list.
765 	 */
766 
767 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
768 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
769 	if (error) {
770 		printf("%s: could not allocate TX ring dma memory\n",
771 		    sc->sc_dev.dv_xname);
772 		return (ENOMEM);
773 	}
774 
775 	/* Map the memory to kernel VA space */
776 
777 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
778 	     (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
779 	if (error) {
780 		printf("%s: could not map TX ring dma memory\n",
781 		    sc->sc_dev.dv_xname);
782 		return (ENOMEM);
783 	}
784 
785 	/* Load the map for the TX ring. */
786 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
787 	    sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
788 	if (error) {
789 		printf("%s: could not load TX ring dma memory\n",
790 		    sc->sc_dev.dv_xname);
791 		return (ENOMEM);
792 	}
793 
794 	sc->vge_ldata.vge_tx_list_addr =
795 		sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
796 
797 	/* Create DMA maps for TX buffers */
798 
799 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
800 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
801 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
802 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
803 		    &sc->vge_ldata.vge_tx_dmamap[i]);
804 		if (error) {
805 			printf("%s: can't create DMA map for TX\n",
806 			    sc->sc_dev.dv_xname);
807 			return (ENOMEM);
808 		}
809 	}
810 
811 	/*
812 	 * Allocate map for RX descriptor list.
813 	 */
814 	error = bus_dmamap_create(sc->vge_dmat,
815 	    round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
816 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
817 	    &sc->vge_ldata.vge_rx_list_map);
818 	if (error) {
819 		printf("%s: could not allocate RX dma list map\n",
820 		    sc->sc_dev.dv_xname);
821 		return (ENOMEM);
822 	}
823 
824 	/* Allocate DMA'able memory for the RX ring */
825 
826 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
827 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
828 	if (error)
829 		return (ENOMEM);
830 
831 	/* Map the memory to kernel VA space */
832 
833 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
834 	     (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
835 	if (error)
836 		return (ENOMEM);
837 
838 	/* Load the map for the RX ring. */
839 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
840 	    sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
841 	if (error) {
842 		printf("%s: could not load RX ring dma memory\n",
843 		    sc->sc_dev.dv_xname);
844 		return (ENOMEM);
845 	}
846 
847 	sc->vge_ldata.vge_rx_list_addr =
848 		sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
849 
850 	/* Create DMA maps for RX buffers */
851 
852 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
853 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
854 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
855 		    &sc->vge_ldata.vge_rx_dmamap[i]);
856 		if (error) {
857 			printf("%s: can't create DMA map for RX\n",
858 			     sc->sc_dev.dv_xname);
859 			return (ENOMEM);
860 		}
861 	}
862 
863 	return (0);
864 }
865 
866 /*
867  * Attach the interface. Allocate softc structures, do ifmedia
868  * setup and ethernet/BPF attach.
869  */
870 static void
871 vge_attach(struct device *parent, struct device *self, void *aux)
872 {
873 	u_char			eaddr[ETHER_ADDR_LEN];
874 	struct vge_softc	*sc = (struct vge_softc *)self;
875 	struct ifnet		*ifp;
876 	struct pci_attach_args *pa = aux;
877 	pci_chipset_tag_t pc = pa->pa_pc;
878 	const char *intrstr;
879 	pci_intr_handle_t ih;
880 
881 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
882 		PCI_REVISION(pa->pa_class));
883 
884 	/* Make sure bus-mastering is enabled */
885         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
886 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
887 		PCI_COMMAND_MASTER_ENABLE);
888 
889 	/*
890 	 * Map control/status registers.
891 	 */
892 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
893 	    PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
894 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
895 		aprint_error("%s: couldn't map memory\n",
896 			sc->sc_dev.dv_xname);
897 		return;
898 	}
899 
900         /*
901          * Map and establish our interrupt.
902          */
903 	if (pci_intr_map(pa, &ih)) {
904 		aprint_error("%s: unable to map interrupt\n",
905 		    sc->sc_dev.dv_xname);
906 		return;
907 	}
908 	intrstr = pci_intr_string(pc, ih);
909 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
910 	if (sc->vge_intrhand == NULL) {
911 		printf("%s: unable to establish interrupt",
912 		    sc->sc_dev.dv_xname);
913 		if (intrstr != NULL)
914 			printf(" at %s", intrstr);
915 		printf("\n");
916 		return;
917 	}
918 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
919 
920 	/* Reset the adapter. */
921 	vge_reset(sc);
922 
923 	/*
924 	 * Get station address from the EEPROM.
925 	 */
926 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
927 	bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
928 
929 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
930 	    ether_sprintf(eaddr));
931 
932 	/*
933 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
934 	 * but we don't use that for now.
935 	 */
936 	sc->vge_dmat = pa->pa_dmat;
937 
938 	if (vge_allocmem(sc))
939 		return;
940 
941 	ifp = &sc->sc_ethercom.ec_if;
942 	ifp->if_softc = sc;
943 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
944 	ifp->if_mtu = ETHERMTU;
945 	ifp->if_baudrate = IF_Gbps(1);
946 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
947 	ifp->if_ioctl = vge_ioctl;
948 	ifp->if_start = vge_start;
949 
950 	/*
951 	 * We can support 802.1Q VLAN-sized frames and jumbo
952 	 * Ethernet frames.
953 	 */
954 	sc->sc_ethercom.ec_capabilities |=
955 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
956 	    ETHERCAP_VLAN_HWTAGGING;
957 
958 	/*
959 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
960 	 */
961 	ifp->if_capabilities |=
962 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
963 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
964 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
965 
966 #ifdef DEVICE_POLLING
967 #ifdef IFCAP_POLLING
968 	ifp->if_capabilities |= IFCAP_POLLING;
969 #endif
970 #endif
971 	ifp->if_watchdog = vge_watchdog;
972 	ifp->if_init = vge_init;
973 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
974 
975 	/*
976 	 * Initialize our media structures and probe the MII.
977 	 */
978 	sc->sc_mii.mii_ifp = ifp;
979 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
980 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
981 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
982 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
983 	    vge_ifmedia_sts);
984 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
985 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
986 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
987 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
988 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
989 	} else
990 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
991 
992 	/*
993 	 * Attach the interface.
994 	 */
995 	if_attach(ifp);
996 	ether_ifattach(ifp, eaddr);
997 
998 	callout_init(&sc->vge_timeout);
999 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
1000 
1001 	/*
1002 	 * Make sure the interface is shutdown during reboot.
1003 	 */
1004 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1005 		printf("%s: WARNING: unable to establish shutdown hook\n",
1006 		    sc->sc_dev.dv_xname);
1007 	}
1008 }
1009 
1010 static int
1011 vge_newbuf(sc, idx, m)
1012 	struct vge_softc	*sc;
1013 	int			idx;
1014 	struct mbuf		*m;
1015 {
1016 	struct mbuf		*n = NULL;
1017 	int			i, error;
1018 
1019 	if (m == NULL) {
1020 		n = m_gethdr(M_DONTWAIT, MT_DATA);
1021 		if (n == NULL)
1022 			return (ENOBUFS);
1023 
1024 		m_clget(n, M_DONTWAIT);
1025 		if ((n->m_flags & M_EXT) == 0) {
1026 			m_freem(n);
1027 			return (ENOBUFS);
1028 		}
1029 
1030 		m = n;
1031 	} else
1032 		m->m_data = m->m_ext.ext_buf;
1033 
1034 
1035 #ifdef VGE_FIXUP_RX
1036 	/*
1037 	 * This is part of an evil trick to deal with non-x86 platforms.
1038 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1039 	 * boundaries, but that will hose non-x86 machines. To get around
1040 	 * this, we leave some empty space at the start of each buffer
1041 	 * and for non-x86 hosts, we copy the buffer back two bytes
1042 	 * to achieve word alignment. This is slightly more efficient
1043 	 * than allocating a new buffer, copying the contents, and
1044 	 * discarding the old buffer.
1045 	 */
1046 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1047 	m_adj(m, VGE_ETHER_ALIGN);
1048 #else
1049 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1050 #endif
1051 
1052 	error = bus_dmamap_load_mbuf(sc->vge_dmat,
1053 	    sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1054 	if (error || vge_dma_map_rx_desc(sc, idx)) {
1055 		if (n != NULL)
1056 			m_freem(n);
1057 		return (ENOMEM);
1058 	}
1059 
1060 	/*
1061 	 * Note: the manual fails to document the fact that for
1062 	 * proper opration, the driver needs to replentish the RX
1063 	 * DMA ring 4 descriptors at a time (rather than one at a
1064 	 * time, like most chips). We can allocate the new buffers
1065 	 * but we should not set the OWN bits until we're ready
1066 	 * to hand back 4 of them in one shot.
1067 	 */
1068 
1069 #define VGE_RXCHUNK 4
1070 	sc->vge_rx_consumed++;
1071 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1072 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1073 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1074 			    htole32(VGE_RDSTS_OWN);
1075 		sc->vge_rx_consumed = 0;
1076 	}
1077 
1078 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1079 
1080 	bus_dmamap_sync(sc->vge_dmat,
1081 	    sc->vge_ldata.vge_rx_dmamap[idx],
1082 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1083 	    BUS_DMASYNC_PREREAD);
1084 
1085 	return (0);
1086 }
1087 
1088 static int
1089 vge_tx_list_init(sc)
1090 	struct vge_softc		*sc;
1091 {
1092 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1093 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1094 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1095 
1096 	bus_dmamap_sync(sc->vge_dmat,
1097 	    sc->vge_ldata.vge_tx_list_map,
1098 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1099 	    BUS_DMASYNC_PREWRITE);
1100 
1101 	sc->vge_ldata.vge_tx_prodidx = 0;
1102 	sc->vge_ldata.vge_tx_considx = 0;
1103 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1104 
1105 	return (0);
1106 }
1107 
1108 static int
1109 vge_rx_list_init(sc)
1110 	struct vge_softc		*sc;
1111 {
1112 	int			i;
1113 
1114 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1115 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1116 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1117 
1118 	sc->vge_rx_consumed = 0;
1119 
1120 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1121 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1122 			return (ENOBUFS);
1123 	}
1124 
1125 	/* Flush the RX descriptors */
1126 
1127 	bus_dmamap_sync(sc->vge_dmat,
1128 	    sc->vge_ldata.vge_rx_list_map,
1129 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1130 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1131 
1132 	sc->vge_ldata.vge_rx_prodidx = 0;
1133 	sc->vge_rx_consumed = 0;
1134 	sc->vge_head = sc->vge_tail = NULL;
1135 
1136 	return (0);
1137 }
1138 
1139 #ifdef VGE_FIXUP_RX
1140 static __inline void
1141 vge_fixup_rx(m)
1142 	struct mbuf		*m;
1143 {
1144 	int			i;
1145 	uint16_t		*src, *dst;
1146 
1147 	src = mtod(m, uint16_t *);
1148 	dst = src - 1;
1149 
1150 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1151 		*dst++ = *src++;
1152 
1153 	m->m_data -= ETHER_ALIGN;
1154 
1155 	return;
1156 }
1157 #endif
1158 
1159 /*
1160  * RX handler. We support the reception of jumbo frames that have
1161  * been fragmented across multiple 2K mbuf cluster buffers.
1162  */
1163 static void
1164 vge_rxeof(sc)
1165 	struct vge_softc	*sc;
1166 {
1167 	struct mbuf		*m;
1168 	struct ifnet		*ifp;
1169 	int			i, total_len;
1170 	int			lim = 0;
1171 	struct vge_rx_desc	*cur_rx;
1172 	u_int32_t		rxstat, rxctl;
1173 
1174 	VGE_LOCK_ASSERT(sc);
1175 	ifp = &sc->sc_ethercom.ec_if;
1176 	i = sc->vge_ldata.vge_rx_prodidx;
1177 
1178 	/* Invalidate the descriptor memory */
1179 
1180 	bus_dmamap_sync(sc->vge_dmat,
1181 	    sc->vge_ldata.vge_rx_list_map,
1182 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1183 	    BUS_DMASYNC_POSTREAD);
1184 
1185 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1186 
1187 #ifdef DEVICE_POLLING
1188 		if (ifp->if_flags & IFF_POLLING) {
1189 			if (sc->rxcycles <= 0)
1190 				break;
1191 			sc->rxcycles--;
1192 		}
1193 #endif /* DEVICE_POLLING */
1194 
1195 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1196 		m = sc->vge_ldata.vge_rx_mbuf[i];
1197 		total_len = VGE_RXBYTES(cur_rx);
1198 		rxstat = le32toh(cur_rx->vge_sts);
1199 		rxctl = le32toh(cur_rx->vge_ctl);
1200 
1201 		/* Invalidate the RX mbuf and unload its map */
1202 
1203 		bus_dmamap_sync(sc->vge_dmat,
1204 		    sc->vge_ldata.vge_rx_dmamap[i],
1205 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1206 		    BUS_DMASYNC_POSTWRITE);
1207 		bus_dmamap_unload(sc->vge_dmat,
1208 		    sc->vge_ldata.vge_rx_dmamap[i]);
1209 
1210 		/*
1211 		 * If the 'start of frame' bit is set, this indicates
1212 		 * either the first fragment in a multi-fragment receive,
1213 		 * or an intermediate fragment. Either way, we want to
1214 		 * accumulate the buffers.
1215 		 */
1216 		if (rxstat & VGE_RXPKT_SOF) {
1217 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1218 			if (sc->vge_head == NULL)
1219 				sc->vge_head = sc->vge_tail = m;
1220 			else {
1221 				m->m_flags &= ~M_PKTHDR;
1222 				sc->vge_tail->m_next = m;
1223 				sc->vge_tail = m;
1224 			}
1225 			vge_newbuf(sc, i, NULL);
1226 			VGE_RX_DESC_INC(i);
1227 			continue;
1228 		}
1229 
1230 		/*
1231 		 * Bad/error frames will have the RXOK bit cleared.
1232 		 * However, there's one error case we want to allow:
1233 		 * if a VLAN tagged frame arrives and the chip can't
1234 		 * match it against the CAM filter, it considers this
1235 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1236 		 * We don't want to drop the frame though: our VLAN
1237 		 * filtering is done in software.
1238 		 */
1239 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1240 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1241 			ifp->if_ierrors++;
1242 			/*
1243 			 * If this is part of a multi-fragment packet,
1244 			 * discard all the pieces.
1245 			 */
1246 			if (sc->vge_head != NULL) {
1247 				m_freem(sc->vge_head);
1248 				sc->vge_head = sc->vge_tail = NULL;
1249 			}
1250 			vge_newbuf(sc, i, m);
1251 			VGE_RX_DESC_INC(i);
1252 			continue;
1253 		}
1254 
1255 		/*
1256 		 * If allocating a replacement mbuf fails,
1257 		 * reload the current one.
1258 		 */
1259 
1260 		if (vge_newbuf(sc, i, NULL)) {
1261 			ifp->if_ierrors++;
1262 			if (sc->vge_head != NULL) {
1263 				m_freem(sc->vge_head);
1264 				sc->vge_head = sc->vge_tail = NULL;
1265 			}
1266 			vge_newbuf(sc, i, m);
1267 			VGE_RX_DESC_INC(i);
1268 			continue;
1269 		}
1270 
1271 		VGE_RX_DESC_INC(i);
1272 
1273 		if (sc->vge_head != NULL) {
1274 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1275 			/*
1276 			 * Special case: if there's 4 bytes or less
1277 			 * in this buffer, the mbuf can be discarded:
1278 			 * the last 4 bytes is the CRC, which we don't
1279 			 * care about anyway.
1280 			 */
1281 			if (m->m_len <= ETHER_CRC_LEN) {
1282 				sc->vge_tail->m_len -=
1283 				    (ETHER_CRC_LEN - m->m_len);
1284 				m_freem(m);
1285 			} else {
1286 				m->m_len -= ETHER_CRC_LEN;
1287 				m->m_flags &= ~M_PKTHDR;
1288 				sc->vge_tail->m_next = m;
1289 			}
1290 			m = sc->vge_head;
1291 			sc->vge_head = sc->vge_tail = NULL;
1292 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1293 		} else
1294 			m->m_pkthdr.len = m->m_len =
1295 			    (total_len - ETHER_CRC_LEN);
1296 
1297 #ifdef VGE_FIXUP_RX
1298 		vge_fixup_rx(m);
1299 #endif
1300 		ifp->if_ipackets++;
1301 		m->m_pkthdr.rcvif = ifp;
1302 
1303 		/* Do RX checksumming if enabled */
1304 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1305 
1306 			/* Check IP header checksum */
1307 			if (rxctl & VGE_RDCTL_IPPKT)
1308 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1309 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1310 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1311 		}
1312 
1313 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1314 			/* Check UDP checksum */
1315 			if (rxctl & VGE_RDCTL_TCPPKT)
1316 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1317 
1318 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1319 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1320 		}
1321 
1322 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1323 			/* Check UDP checksum */
1324 			if (rxctl & VGE_RDCTL_UDPPKT)
1325 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1326 
1327 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1328 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1329 		}
1330 
1331 		if (rxstat & VGE_RDSTS_VTAG)
1332 			VLAN_INPUT_TAG(ifp, m,
1333 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1334 
1335 #if NBPFILTER > 0
1336 		/*
1337 		 * Handle BPF listeners.
1338 		 */
1339 		if (ifp->if_bpf)
1340 			bpf_mtap(ifp->if_bpf, m);
1341 #endif
1342 
1343 		VGE_UNLOCK(sc);
1344 		(*ifp->if_input)(ifp, m);
1345 		VGE_LOCK(sc);
1346 
1347 		lim++;
1348 		if (lim == VGE_RX_DESC_CNT)
1349 			break;
1350 
1351 	}
1352 
1353 	/* Flush the RX DMA ring */
1354 
1355 	bus_dmamap_sync(sc->vge_dmat,
1356 	    sc->vge_ldata.vge_rx_list_map,
1357 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1358 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1359 
1360 	sc->vge_ldata.vge_rx_prodidx = i;
1361 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1362 
1363 
1364 	return;
1365 }
1366 
1367 static void
1368 vge_txeof(sc)
1369 	struct vge_softc		*sc;
1370 {
1371 	struct ifnet		*ifp;
1372 	u_int32_t		txstat;
1373 	int			idx;
1374 
1375 	ifp = &sc->sc_ethercom.ec_if;
1376 	idx = sc->vge_ldata.vge_tx_considx;
1377 
1378 	/* Invalidate the TX descriptor list */
1379 
1380 	bus_dmamap_sync(sc->vge_dmat,
1381 	    sc->vge_ldata.vge_tx_list_map,
1382 	    0,  sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1383 	    BUS_DMASYNC_POSTREAD);
1384 
1385 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1386 
1387 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1388 		if (txstat & VGE_TDSTS_OWN)
1389 			break;
1390 
1391 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1392 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1393 		bus_dmamap_unload(sc->vge_dmat,
1394 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1395 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1396 			ifp->if_collisions++;
1397 		if (txstat & VGE_TDSTS_TXERR)
1398 			ifp->if_oerrors++;
1399 		else
1400 			ifp->if_opackets++;
1401 
1402 		sc->vge_ldata.vge_tx_free++;
1403 		VGE_TX_DESC_INC(idx);
1404 	}
1405 
1406 	/* No changes made to the TX ring, so no flush needed */
1407 
1408 	if (idx != sc->vge_ldata.vge_tx_considx) {
1409 		sc->vge_ldata.vge_tx_considx = idx;
1410 		ifp->if_flags &= ~IFF_OACTIVE;
1411 		ifp->if_timer = 0;
1412 	}
1413 
1414 	/*
1415 	 * If not all descriptors have been released reaped yet,
1416 	 * reload the timer so that we will eventually get another
1417 	 * interrupt that will cause us to re-enter this routine.
1418 	 * This is done in case the transmitter has gone idle.
1419 	 */
1420 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1421 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1422 	}
1423 
1424 	return;
1425 }
1426 
1427 static void
1428 vge_tick(xsc)
1429 	void			*xsc;
1430 {
1431 	struct vge_softc	*sc = xsc;
1432 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1433 	struct mii_data		*mii = &sc->sc_mii;
1434 	int s;
1435 
1436 	s = splnet();
1437 
1438 	VGE_LOCK(sc);
1439 
1440 	callout_schedule(&sc->vge_timeout, hz);
1441 
1442 	mii_tick(mii);
1443 	if (sc->vge_link) {
1444 		if (!(mii->mii_media_status & IFM_ACTIVE))
1445 			sc->vge_link = 0;
1446 	} else {
1447 		if (mii->mii_media_status & IFM_ACTIVE &&
1448 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1449 			sc->vge_link = 1;
1450 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1451 				vge_start(ifp);
1452 		}
1453 	}
1454 
1455 	VGE_UNLOCK(sc);
1456 
1457 	splx(s);
1458 }
1459 
1460 #ifdef DEVICE_POLLING
1461 static void
1462 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1463 {
1464 	struct vge_softc *sc = ifp->if_softc;
1465 
1466 	VGE_LOCK(sc);
1467 #ifdef IFCAP_POLLING
1468 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1469 		ether_poll_deregister(ifp);
1470 		cmd = POLL_DEREGISTER;
1471 	}
1472 #endif
1473 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1474 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1475 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1476 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1477 		goto done;
1478 	}
1479 
1480 	sc->rxcycles = count;
1481 	vge_rxeof(sc);
1482 	vge_txeof(sc);
1483 
1484 #if __FreeBSD_version < 502114
1485 	if (ifp->if_snd.ifq_head != NULL)
1486 #else
1487 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1488 #endif
1489 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1490 
1491 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1492 		u_int32_t       status;
1493 		status = CSR_READ_4(sc, VGE_ISR);
1494 		if (status == 0xFFFFFFFF)
1495 			goto done;
1496 		if (status)
1497 			CSR_WRITE_4(sc, VGE_ISR, status);
1498 
1499 		/*
1500 		 * XXX check behaviour on receiver stalls.
1501 		 */
1502 
1503 		if (status & VGE_ISR_TXDMA_STALL ||
1504 		    status & VGE_ISR_RXDMA_STALL)
1505 			vge_init(sc);
1506 
1507 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1508 			vge_rxeof(sc);
1509 			ifp->if_ierrors++;
1510 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1511 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1512 		}
1513 	}
1514 done:
1515 	VGE_UNLOCK(sc);
1516 }
1517 #endif /* DEVICE_POLLING */
1518 
1519 static int
1520 vge_intr(arg)
1521 	void			*arg;
1522 {
1523 	struct vge_softc	*sc = arg;
1524 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1525 	u_int32_t		status;
1526 	int claim = 0;
1527 
1528 	if (sc->suspended) {
1529 		return claim;
1530 	}
1531 
1532 	VGE_LOCK(sc);
1533 
1534 	if (!(ifp->if_flags & IFF_UP)) {
1535 		VGE_UNLOCK(sc);
1536 		return claim;
1537 	}
1538 
1539 #ifdef DEVICE_POLLING
1540 	if  (ifp->if_flags & IFF_POLLING)
1541 		goto done;
1542 	if (
1543 #ifdef IFCAP_POLLING
1544 	    (ifp->if_capenable & IFCAP_POLLING) &&
1545 #endif
1546 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1547 		CSR_WRITE_4(sc, VGE_IMR, 0);
1548 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1549 		vge_poll(ifp, 0, 1);
1550 		goto done;
1551 	}
1552 
1553 #endif /* DEVICE_POLLING */
1554 
1555 	/* Disable interrupts */
1556 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1557 
1558 	for (;;) {
1559 
1560 		status = CSR_READ_4(sc, VGE_ISR);
1561 		/* If the card has gone away the read returns 0xffff. */
1562 		if (status == 0xFFFFFFFF)
1563 			break;
1564 
1565 		if (status) {
1566 			claim = 1;
1567 			CSR_WRITE_4(sc, VGE_ISR, status);
1568 		}
1569 
1570 		if ((status & VGE_INTRS) == 0)
1571 			break;
1572 
1573 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1574 			vge_rxeof(sc);
1575 
1576 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1577 			vge_rxeof(sc);
1578 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1579 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1580 		}
1581 
1582 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1583 			vge_txeof(sc);
1584 
1585 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1586 			vge_init(ifp);
1587 
1588 		if (status & VGE_ISR_LINKSTS)
1589 			vge_tick(sc);
1590 	}
1591 
1592 	/* Re-enable interrupts */
1593 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1594 
1595 #ifdef DEVICE_POLLING
1596 done:
1597 #endif
1598 	VGE_UNLOCK(sc);
1599 
1600 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1601 		vge_start(ifp);
1602 
1603 	return claim;
1604 }
1605 
1606 static int
1607 vge_encap(sc, m_head, idx)
1608 	struct vge_softc	*sc;
1609 	struct mbuf		*m_head;
1610 	int			idx;
1611 {
1612 	struct mbuf		*m_new = NULL;
1613 	bus_dmamap_t		map;
1614 	int			error, flags;
1615 	struct m_tag		*mtag;
1616 
1617 	/* If this descriptor is still owned by the chip, bail. */
1618 	if (sc->vge_ldata.vge_tx_free <= 2
1619 	    || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
1620 		return (ENOBUFS);
1621 
1622 	flags = 0;
1623 
1624 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1625 		flags |= VGE_TDCTL_IPCSUM;
1626 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1627 		flags |= VGE_TDCTL_TCPCSUM;
1628 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1629 		flags |= VGE_TDCTL_UDPCSUM;
1630 
1631 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1632 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1633 	    m_head, BUS_DMA_NOWAIT);
1634 
1635 	/* If too many segments to map, coalesce */
1636 	if (error == EFBIG) {
1637 		m_new = m_defrag(m_head, M_DONTWAIT);
1638 		if (m_new == NULL)
1639 			return (error);
1640 
1641 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1642 		    m_new, BUS_DMA_NOWAIT);
1643 		if (error) {
1644 			m_freem(m_new);
1645 			return (error);
1646 		}
1647 
1648 		m_head = m_new;
1649 	} else if (error)
1650 		return (error);
1651 
1652 	vge_dma_map_tx_desc(sc, m_head, idx, flags);
1653 
1654 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1655 	sc->vge_ldata.vge_tx_free--;
1656 
1657 	/*
1658 	 * Set up hardware VLAN tagging.
1659 	 */
1660 
1661 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1662 	if (mtag != NULL)
1663 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1664 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1665 
1666 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1667 
1668 	return (0);
1669 }
1670 
1671 /*
1672  * Main transmit routine.
1673  */
1674 
1675 static void
1676 vge_start(ifp)
1677 	struct ifnet		*ifp;
1678 {
1679 	struct vge_softc	*sc;
1680 	struct mbuf		*m_head = NULL;
1681 	int			idx, pidx = 0, error;
1682 
1683 	sc = ifp->if_softc;
1684 	VGE_LOCK(sc);
1685 
1686 	if (!sc->vge_link
1687 	    || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1688 		VGE_UNLOCK(sc);
1689 		return;
1690 	}
1691 
1692 	idx = sc->vge_ldata.vge_tx_prodidx;
1693 
1694 	pidx = idx - 1;
1695 	if (pidx < 0)
1696 		pidx = VGE_TX_DESC_CNT - 1;
1697 
1698 	/*
1699 	 * Loop through the send queue, setting up transmit descriptors
1700 	 * until we drain the queue, or use up all available transmit
1701 	 * descriptors.
1702 	 */
1703 	for(;;) {
1704 		/* Grab a packet off the queue. */
1705 		IFQ_POLL(&ifp->if_snd, m_head);
1706 		if (m_head == NULL)
1707 			break;
1708 
1709 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1710 			/*
1711 			 * Slot already used, stop for now.
1712 			 */
1713 			ifp->if_flags |= IFF_OACTIVE;
1714 			break;
1715 		}
1716 
1717 		if ((error = vge_encap(sc, m_head, idx))) {
1718 			if (error == EFBIG) {
1719 				printf("%s: Tx packet consumes too many "
1720 				    "DMA segments, dropping...\n",
1721 				    sc->sc_dev.dv_xname);
1722 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
1723 				m_freem(m_head);
1724 				continue;
1725 			}
1726 
1727 			/*
1728 			 * Short on resources, just stop for now.
1729 			 */
1730 			if (error == ENOBUFS)
1731 				ifp->if_flags |= IFF_OACTIVE;
1732 			break;
1733 		}
1734 
1735 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1736 
1737 		/*
1738 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1739 		 */
1740 
1741 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1742 		    htole16(VGE_TXDESC_Q);
1743 
1744 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
1745 			m_freem(m_head);
1746 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
1747 		}
1748 
1749 		pidx = idx;
1750 		VGE_TX_DESC_INC(idx);
1751 
1752 		/*
1753 		 * If there's a BPF listener, bounce a copy of this frame
1754 		 * to him.
1755 		 */
1756 #if NBPFILTER > 0
1757 		if (ifp->if_bpf)
1758 			bpf_mtap(ifp->if_bpf, m_head);
1759 #endif
1760 	}
1761 
1762 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1763 		VGE_UNLOCK(sc);
1764 		return;
1765 	}
1766 
1767 	/* Flush the TX descriptors */
1768 
1769 	bus_dmamap_sync(sc->vge_dmat,
1770 	    sc->vge_ldata.vge_tx_list_map,
1771 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1772 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1773 
1774 	/* Issue a transmit command. */
1775 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1776 
1777 	sc->vge_ldata.vge_tx_prodidx = idx;
1778 
1779 	/*
1780 	 * Use the countdown timer for interrupt moderation.
1781 	 * 'TX done' interrupts are disabled. Instead, we reset the
1782 	 * countdown timer, which will begin counting until it hits
1783 	 * the value in the SSTIMER register, and then trigger an
1784 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1785 	 * the timer count is reloaded. Only when the transmitter
1786 	 * is idle will the timer hit 0 and an interrupt fire.
1787 	 */
1788 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1789 
1790 	VGE_UNLOCK(sc);
1791 
1792 	/*
1793 	 * Set a timeout in case the chip goes out to lunch.
1794 	 */
1795 	ifp->if_timer = 5;
1796 
1797 	return;
1798 }
1799 
1800 static int
1801 vge_init(ifp)
1802 	struct ifnet *ifp;
1803 {
1804 	struct vge_softc	*sc = ifp->if_softc;
1805 	struct mii_data		*mii = &sc->sc_mii;
1806 	int			i;
1807 
1808 	VGE_LOCK(sc);
1809 
1810 	/*
1811 	 * Cancel pending I/O and free all RX/TX buffers.
1812 	 */
1813 	vge_stop(sc);
1814 	vge_reset(sc);
1815 
1816 	/*
1817 	 * Initialize the RX and TX descriptors and mbufs.
1818 	 */
1819 
1820 	vge_rx_list_init(sc);
1821 	vge_tx_list_init(sc);
1822 
1823 	/* Set our station address */
1824 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1825 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1826 
1827 	/*
1828 	 * Set receive FIFO threshold. Also allow transmission and
1829 	 * reception of VLAN tagged frames.
1830 	 */
1831 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1832 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1833 
1834 	/* Set DMA burst length */
1835 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1836 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1837 
1838 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1839 
1840 	/* Set collision backoff algorithm */
1841 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1842 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1843 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1844 
1845 	/* Disable LPSEL field in priority resolution */
1846 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1847 
1848 	/*
1849 	 * Load the addresses of the DMA queues into the chip.
1850 	 * Note that we only use one transmit queue.
1851 	 */
1852 
1853 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1854 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1855 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1856 
1857 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1858 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1859 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1860 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1861 
1862 	/* Enable and wake up the RX descriptor queue */
1863 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1864 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1865 
1866 	/* Enable the TX descriptor queue */
1867 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1868 
1869 	/* Set up the receive filter -- allow large frames for VLANs. */
1870 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1871 
1872 	/* If we want promiscuous mode, set the allframes bit. */
1873 	if (ifp->if_flags & IFF_PROMISC) {
1874 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1875 	}
1876 
1877 	/* Set capture broadcast bit to capture broadcast frames. */
1878 	if (ifp->if_flags & IFF_BROADCAST) {
1879 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1880 	}
1881 
1882 	/* Set multicast bit to capture multicast frames. */
1883 	if (ifp->if_flags & IFF_MULTICAST) {
1884 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1885 	}
1886 
1887 	/* Init the cam filter. */
1888 	vge_cam_clear(sc);
1889 
1890 	/* Init the multicast filter. */
1891 	vge_setmulti(sc);
1892 
1893 	/* Enable flow control */
1894 
1895 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1896 
1897 	/* Enable jumbo frame reception (if desired) */
1898 
1899 	/* Start the MAC. */
1900 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1901 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1902 	CSR_WRITE_1(sc, VGE_CRS0,
1903 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1904 
1905 	/*
1906 	 * Configure one-shot timer for microsecond
1907 	 * resulution and load it for 500 usecs.
1908 	 */
1909 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1910 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1911 
1912 	/*
1913 	 * Configure interrupt moderation for receive. Enable
1914 	 * the holdoff counter and load it, and set the RX
1915 	 * suppression count to the number of descriptors we
1916 	 * want to allow before triggering an interrupt.
1917 	 * The holdoff timer is in units of 20 usecs.
1918 	 */
1919 
1920 #ifdef notyet
1921 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1922 	/* Select the interrupt holdoff timer page. */
1923 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1924 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1925 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1926 
1927 	/* Enable use of the holdoff timer. */
1928 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1929 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1930 
1931 	/* Select the RX suppression threshold page. */
1932 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1933 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1934 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1935 
1936 	/* Restore the page select bits. */
1937 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1938 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1939 #endif
1940 
1941 #ifdef DEVICE_POLLING
1942 	/*
1943 	 * Disable interrupts if we are polling.
1944 	 */
1945 	if (ifp->if_flags & IFF_POLLING) {
1946 		CSR_WRITE_4(sc, VGE_IMR, 0);
1947 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1948 	} else	/* otherwise ... */
1949 #endif /* DEVICE_POLLING */
1950 	{
1951 	/*
1952 	 * Enable interrupts.
1953 	 */
1954 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1955 		CSR_WRITE_4(sc, VGE_ISR, 0);
1956 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1957 	}
1958 
1959 	mii_mediachg(mii);
1960 
1961 	ifp->if_flags |= IFF_RUNNING;
1962 	ifp->if_flags &= ~IFF_OACTIVE;
1963 
1964 	sc->vge_if_flags = 0;
1965 	sc->vge_link = 0;
1966 
1967 	VGE_UNLOCK(sc);
1968 
1969 	callout_schedule(&sc->vge_timeout, hz);
1970 
1971 	return (0);
1972 }
1973 
1974 /*
1975  * Set media options.
1976  */
1977 static int
1978 vge_ifmedia_upd(ifp)
1979 	struct ifnet		*ifp;
1980 {
1981 	struct vge_softc	*sc = ifp->if_softc;
1982 	struct mii_data		*mii = &sc->sc_mii;
1983 
1984 	mii_mediachg(mii);
1985 
1986 	return (0);
1987 }
1988 
1989 /*
1990  * Report current media status.
1991  */
1992 static void
1993 vge_ifmedia_sts(ifp, ifmr)
1994 	struct ifnet		*ifp;
1995 	struct ifmediareq	*ifmr;
1996 {
1997 	struct vge_softc	*sc = ifp->if_softc;
1998 	struct mii_data		*mii = &sc->sc_mii;
1999 
2000 	mii_pollstat(mii);
2001 	ifmr->ifm_active = mii->mii_media_active;
2002 	ifmr->ifm_status = mii->mii_media_status;
2003 
2004 	return;
2005 }
2006 
2007 static void
2008 vge_miibus_statchg(self)
2009 	struct device	*self;
2010 {
2011 	struct vge_softc	*sc = (struct vge_softc *) self;
2012 	struct mii_data		*mii = &sc->sc_mii;
2013 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
2014 
2015 	/*
2016 	 * If the user manually selects a media mode, we need to turn
2017 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2018 	 * user happens to choose a full duplex mode, we also need to
2019 	 * set the 'force full duplex' bit. This applies only to
2020 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2021 	 * mode is disabled, and in 1000baseT mode, full duplex is
2022 	 * always implied, so we turn on the forced mode bit but leave
2023 	 * the FDX bit cleared.
2024 	 */
2025 
2026 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2027 	case IFM_AUTO:
2028 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2029 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2030 		break;
2031 	case IFM_1000_T:
2032 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2033 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2034 		break;
2035 	case IFM_100_TX:
2036 	case IFM_10_T:
2037 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2038 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2039 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2040 		} else {
2041 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2042 		}
2043 		break;
2044 	default:
2045 		printf("%s: unknown media type: %x\n",
2046 		    sc->sc_dev.dv_xname,
2047 		    IFM_SUBTYPE(ife->ifm_media));
2048 		break;
2049 	}
2050 
2051 	return;
2052 }
2053 
2054 static int
2055 vge_ioctl(ifp, command, data)
2056 	struct ifnet		*ifp;
2057 	u_long			command;
2058 	caddr_t			data;
2059 {
2060 	struct vge_softc	*sc = ifp->if_softc;
2061 	struct ifreq		*ifr = (struct ifreq *) data;
2062 	struct mii_data		*mii;
2063 	int			error = 0;
2064 
2065 	switch (command) {
2066 	case SIOCSIFMTU:
2067 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2068 			error = EINVAL;
2069 		ifp->if_mtu = ifr->ifr_mtu;
2070 		break;
2071 	case SIOCSIFFLAGS:
2072 		if (ifp->if_flags & IFF_UP) {
2073 			if (ifp->if_flags & IFF_RUNNING &&
2074 			    ifp->if_flags & IFF_PROMISC &&
2075 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2076 				CSR_SETBIT_1(sc, VGE_RXCTL,
2077 				    VGE_RXCTL_RX_PROMISC);
2078 				vge_setmulti(sc);
2079 			} else if (ifp->if_flags & IFF_RUNNING &&
2080 			    !(ifp->if_flags & IFF_PROMISC) &&
2081 			    sc->vge_if_flags & IFF_PROMISC) {
2082 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2083 				    VGE_RXCTL_RX_PROMISC);
2084 				vge_setmulti(sc);
2085                         } else
2086 				vge_init(ifp);
2087 		} else {
2088 			if (ifp->if_flags & IFF_RUNNING)
2089 				vge_stop(sc);
2090 		}
2091 		sc->vge_if_flags = ifp->if_flags;
2092 		break;
2093 	case SIOCADDMULTI:
2094 	case SIOCDELMULTI:
2095 		vge_setmulti(sc);
2096 		break;
2097 	case SIOCGIFMEDIA:
2098 	case SIOCSIFMEDIA:
2099 		mii = &sc->sc_mii;
2100 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2101 		break;
2102 	default:
2103 		error = ether_ioctl(ifp, command, data);
2104 		break;
2105 	}
2106 
2107 	return (error);
2108 }
2109 
2110 static void
2111 vge_watchdog(ifp)
2112 	struct ifnet		*ifp;
2113 {
2114 	struct vge_softc		*sc;
2115 
2116 	sc = ifp->if_softc;
2117 	VGE_LOCK(sc);
2118 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2119 	ifp->if_oerrors++;
2120 
2121 	vge_txeof(sc);
2122 	vge_rxeof(sc);
2123 
2124 	vge_init(ifp);
2125 
2126 	VGE_UNLOCK(sc);
2127 
2128 	return;
2129 }
2130 
2131 /*
2132  * Stop the adapter and free any mbufs allocated to the
2133  * RX and TX lists.
2134  */
2135 static void
2136 vge_stop(sc)
2137 	struct vge_softc		*sc;
2138 {
2139 	register int		i;
2140 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2141 
2142 	VGE_LOCK(sc);
2143 	ifp->if_timer = 0;
2144 
2145 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2146 #ifdef DEVICE_POLLING
2147 	ether_poll_deregister(ifp);
2148 #endif /* DEVICE_POLLING */
2149 
2150 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2151 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2152 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2153 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2154 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2155 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2156 
2157 	if (sc->vge_head != NULL) {
2158 		m_freem(sc->vge_head);
2159 		sc->vge_head = sc->vge_tail = NULL;
2160 	}
2161 
2162 	/* Free the TX list buffers. */
2163 
2164 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2165 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2166 			bus_dmamap_unload(sc->vge_dmat,
2167 			    sc->vge_ldata.vge_tx_dmamap[i]);
2168 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2169 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2170 		}
2171 	}
2172 
2173 	/* Free the RX list buffers. */
2174 
2175 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2176 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2177 			bus_dmamap_unload(sc->vge_dmat,
2178 			    sc->vge_ldata.vge_rx_dmamap[i]);
2179 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2180 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2181 		}
2182 	}
2183 
2184 	VGE_UNLOCK(sc);
2185 
2186 	return;
2187 }
2188 
2189 #if VGE_POWER_MANAGEMENT
2190 /*
2191  * Device suspend routine.  Stop the interface and save some PCI
2192  * settings in case the BIOS doesn't restore them properly on
2193  * resume.
2194  */
2195 static int
2196 vge_suspend(dev)
2197 	struct device *		dev;
2198 {
2199 	struct vge_softc	*sc;
2200 	int			i;
2201 
2202 	sc = device_get_softc(dev);
2203 
2204 	vge_stop(sc);
2205 
2206         for (i = 0; i < 5; i++)
2207 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2208 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2209 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2210 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2211 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2212 
2213 	sc->suspended = 1;
2214 
2215 	return (0);
2216 }
2217 
2218 /*
2219  * Device resume routine.  Restore some PCI settings in case the BIOS
2220  * doesn't, re-enable busmastering, and restart the interface if
2221  * appropriate.
2222  */
2223 static int
2224 vge_resume(dev)
2225 	struct device *		dev;
2226 {
2227 	struct vge_softc	*sc = (struct vge_softc *)dev;
2228 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2229 	int			i;
2230 
2231         /* better way to do this? */
2232 	for (i = 0; i < 5; i++)
2233 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2234 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2235 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2236 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2237 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2238 
2239 	/* reenable busmastering */
2240 	pci_enable_busmaster(dev);
2241 	pci_enable_io(dev, SYS_RES_MEMORY);
2242 
2243 	/* reinitialize interface if necessary */
2244 	if (ifp->if_flags & IFF_UP)
2245 		vge_init(sc);
2246 
2247 	sc->suspended = 0;
2248 
2249 	return (0);
2250 }
2251 #endif
2252 
2253 /*
2254  * Stop all chip I/O so that the kernel's probe routines don't
2255  * get confused by errant DMAs when rebooting.
2256  */
2257 static void
2258 vge_shutdown(arg)
2259 	void *arg;
2260 {
2261 	struct vge_softc *sc = (struct vge_softc *)arg;
2262 
2263 	vge_stop(sc);
2264 }
2265