xref: /netbsd-src/sys/dev/pci/if_vge.c (revision aa73cae19608873cc4d1f712c4a0f8f8435f1ffa)
1 /* $NetBSD: if_vge.c,v 1.2 2005/02/27 00:27:33 perry Exp $ */
2 
3 /*-
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.2 2005/02/27 00:27:33 perry Exp $");
39 
40 /*
41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42  *
43  * Written by Bill Paul <wpaul@windriver.com>
44  * Senior Networking Software Engineer
45  * Wind River Systems
46  */
47 
48 /*
49  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
50  * combines a tri-speed ethernet MAC and PHY, with the following
51  * features:
52  *
53  *	o Jumbo frame support up to 16K
54  *	o Transmit and receive flow control
55  *	o IPv4 checksum offload
56  *	o VLAN tag insertion and stripping
57  *	o TCP large send
58  *	o 64-bit multicast hash table filter
59  *	o 64 entry CAM filter
60  *	o 16K RX FIFO and 48K TX FIFO memory
61  *	o Interrupt moderation
62  *
63  * The VT6122 supports up to four transmit DMA queues. The descriptors
64  * in the transmit ring can address up to 7 data fragments; frames which
65  * span more than 7 data buffers must be coalesced, but in general the
66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67  * long. The receive descriptors address only a single buffer.
68  *
69  * There are two peculiar design issues with the VT6122. One is that
70  * receive data buffers must be aligned on a 32-bit boundary. This is
71  * not a problem where the VT6122 is used as a LOM device in x86-based
72  * systems, but on architectures that generate unaligned access traps, we
73  * have to do some copying.
74  *
75  * The other issue has to do with the way 64-bit addresses are handled.
76  * The DMA descriptors only allow you to specify 48 bits of addressing
77  * information. The remaining 16 bits are specified using one of the
78  * I/O registers. If you only have a 32-bit system, then this isn't
79  * an issue, but if you have a 64-bit system and more than 4GB of
80  * memory, you must have to make sure your network data buffers reside
81  * in the same 48-bit 'segment.'
82  *
83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
84  * and sample NICs for testing.
85  */
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 
104 #include <net/bpf.h>
105 
106 #include <machine/bus.h>
107 
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114 
115 #include <dev/pci/if_vgereg.h>
116 #include <dev/pci/if_vgevar.h>
117 
118 static int vge_probe	(struct device *, struct cfdata *, void *);
119 static void vge_attach	(struct device *, struct device *, void *);
120 
121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
122 
123 static int vge_dma_map_rx_desc	(struct vge_softc *, int);
124 static int vge_dma_map_tx_desc	(struct vge_softc *, struct mbuf *, int, int);
125 static int vge_allocmem		(struct vge_softc *);
126 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
127 static int vge_rx_list_init	(struct vge_softc *);
128 static int vge_tx_list_init	(struct vge_softc *);
129 #ifdef VGE_FIXUP_RX
130 static __inline void vge_fixup_rx
131 				(struct mbuf *);
132 #endif
133 static void vge_rxeof		(struct vge_softc *);
134 static void vge_txeof		(struct vge_softc *);
135 static int vge_intr		(void *);
136 static void vge_tick		(void *);
137 static void vge_start		(struct ifnet *);
138 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
139 static int vge_init		(struct ifnet *);
140 static void vge_stop		(struct vge_softc *);
141 static void vge_watchdog	(struct ifnet *);
142 #if VGE_POWER_MANAGEMENT
143 static int vge_suspend		(struct device *);
144 static int vge_resume		(struct device *);
145 #endif
146 static void vge_shutdown	(void *);
147 static int vge_ifmedia_upd	(struct ifnet *);
148 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 
150 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
151 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
152 
153 static void vge_miipoll_start	(struct vge_softc *);
154 static void vge_miipoll_stop	(struct vge_softc *);
155 static int vge_miibus_readreg	(struct device *, int, int);
156 static void vge_miibus_writereg	(struct device *, int, int, int);
157 static void vge_miibus_statchg	(struct device *);
158 
159 static void vge_cam_clear	(struct vge_softc *);
160 static int vge_cam_set		(struct vge_softc *, uint8_t *);
161 static void vge_setmulti	(struct vge_softc *);
162 static void vge_reset		(struct vge_softc *);
163 
164 #define VGE_PCI_LOIO             0x10
165 #define VGE_PCI_LOMEM            0x14
166 
167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
168     vge_probe, vge_attach, NULL, NULL);
169 
170 /*
171  * Defragment mbuf chain contents to be as linear as possible.
172  * Returns new mbuf chain on success, NULL on failure. Old mbuf
173  * chain is always freed.
174  * XXX temporary until there would be generic function doing this.
175  */
176 #define m_defrag	vge_m_defrag
177 struct mbuf * vge_m_defrag(struct mbuf *, int);
178 
179 struct mbuf *
180 vge_m_defrag(struct mbuf *m0, int flags)
181 {
182 	struct mbuf *m;
183 
184 #ifdef DIAGNOSTIC
185 	if ((m0->m_flags & M_PKTHDR) == 0)
186 		panic("m_defrag: not a mbuf chain header");
187 #endif
188 
189 	if (m0->m_pkthdr.len > MCLBYTES) {
190 		/* XXX TODO no defragmentation for JUMBO packets, yet */
191 		m = NULL;
192 		goto out;
193 	}
194 
195 	MGETHDR(m, flags, MT_DATA);
196 	if (m == NULL)
197 		goto out;
198 
199 	if (m0->m_pkthdr.len > MHLEN) {
200 		MCLGET(m, M_DONTWAIT);
201 		if ((m->m_flags & M_EXT) == 0) {
202 			m_freem(m);
203 			m = NULL;
204 			goto out;
205 		}
206 	}
207 
208 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
209 	m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
210 
211     out:
212 	m_freem(m0);
213 	return m;
214 }
215 
216 /*
217  * Read a word of data stored in the EEPROM at address 'addr.'
218  */
219 static void
220 vge_eeprom_getword(sc, addr, dest)
221 	struct vge_softc	*sc;
222 	int			addr;
223 	u_int16_t		*dest;
224 {
225 	register int		i;
226 	u_int16_t		word = 0;
227 
228 	/*
229 	 * Enter EEPROM embedded programming mode. In order to
230 	 * access the EEPROM at all, we first have to set the
231 	 * EELOAD bit in the CHIPCFG2 register.
232 	 */
233 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
234 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
235 
236 	/* Select the address of the word we want to read */
237 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
238 
239 	/* Issue read command */
240 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
241 
242 	/* Wait for the done bit to be set. */
243 	for (i = 0; i < VGE_TIMEOUT; i++) {
244 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
245 			break;
246 	}
247 
248 	if (i == VGE_TIMEOUT) {
249 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
250 		*dest = 0;
251 		return;
252 	}
253 
254 	/* Read the result */
255 	word = CSR_READ_2(sc, VGE_EERDDAT);
256 
257 	/* Turn off EEPROM access mode. */
258 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
259 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
260 
261 	*dest = word;
262 
263 	return;
264 }
265 
266 /*
267  * Read a sequence of words from the EEPROM.
268  */
269 static void
270 vge_read_eeprom(sc, dest, off, cnt, swap)
271 	struct vge_softc	*sc;
272 	caddr_t			dest;
273 	int			off;
274 	int			cnt;
275 	int			swap;
276 {
277 	int			i;
278 	u_int16_t		word = 0, *ptr;
279 
280 	for (i = 0; i < cnt; i++) {
281 		vge_eeprom_getword(sc, off + i, &word);
282 		ptr = (u_int16_t *)(dest + (i * 2));
283 		if (swap)
284 			*ptr = ntohs(word);
285 		else
286 			*ptr = word;
287 	}
288 }
289 
290 static void
291 vge_miipoll_stop(sc)
292 	struct vge_softc	*sc;
293 {
294 	int			i;
295 
296 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
297 
298 	for (i = 0; i < VGE_TIMEOUT; i++) {
299 		DELAY(1);
300 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
301 			break;
302 	}
303 
304 	if (i == VGE_TIMEOUT) {
305 		printf("%s: failed to idle MII autopoll\n",
306 		    sc->sc_dev.dv_xname);
307 	}
308 
309 	return;
310 }
311 
312 static void
313 vge_miipoll_start(sc)
314 	struct vge_softc	*sc;
315 {
316 	int			i;
317 
318 	/* First, make sure we're idle. */
319 
320 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
321 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
322 
323 	for (i = 0; i < VGE_TIMEOUT; i++) {
324 		DELAY(1);
325 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
326 			break;
327 	}
328 
329 	if (i == VGE_TIMEOUT) {
330 		printf("%s: failed to idle MII autopoll\n",
331 		    sc->sc_dev.dv_xname);
332 		return;
333 	}
334 
335 	/* Now enable auto poll mode. */
336 
337 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
338 
339 	/* And make sure it started. */
340 
341 	for (i = 0; i < VGE_TIMEOUT; i++) {
342 		DELAY(1);
343 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
344 			break;
345 	}
346 
347 	if (i == VGE_TIMEOUT) {
348 		printf("%s: failed to start MII autopoll\n",
349 		    sc->sc_dev.dv_xname);
350 	}
351 }
352 
353 static int
354 vge_miibus_readreg(dev, phy, reg)
355 	struct device *dev;
356 	int phy, reg;
357 {
358 	struct vge_softc	*sc = (struct vge_softc *)dev;
359 	int			i;
360 	u_int16_t		rval = 0;
361 
362 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
363 		return(0);
364 
365 	VGE_LOCK(sc);
366 	vge_miipoll_stop(sc);
367 
368 	/* Specify the register we want to read. */
369 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
370 
371 	/* Issue read command. */
372 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
373 
374 	/* Wait for the read command bit to self-clear. */
375 	for (i = 0; i < VGE_TIMEOUT; i++) {
376 		DELAY(1);
377 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
378 			break;
379 	}
380 
381 	if (i == VGE_TIMEOUT)
382 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
383 	else
384 		rval = CSR_READ_2(sc, VGE_MIIDATA);
385 
386 	vge_miipoll_start(sc);
387 	VGE_UNLOCK(sc);
388 
389 	return (rval);
390 }
391 
392 static void
393 vge_miibus_writereg(dev, phy, reg, data)
394 	struct device	*dev;
395 	int		phy, reg, data;
396 {
397 	struct vge_softc	*sc = (struct vge_softc *)dev;
398 	int			i;
399 
400 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
401 		return;
402 
403 	VGE_LOCK(sc);
404 	vge_miipoll_stop(sc);
405 
406 	/* Specify the register we want to write. */
407 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
408 
409 	/* Specify the data we want to write. */
410 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
411 
412 	/* Issue write command. */
413 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
414 
415 	/* Wait for the write command bit to self-clear. */
416 	for (i = 0; i < VGE_TIMEOUT; i++) {
417 		DELAY(1);
418 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
419 			break;
420 	}
421 
422 	if (i == VGE_TIMEOUT) {
423 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
424 	}
425 
426 	vge_miipoll_start(sc);
427 	VGE_UNLOCK(sc);
428 }
429 
430 static void
431 vge_cam_clear(sc)
432 	struct vge_softc	*sc;
433 {
434 	int			i;
435 
436 	/*
437 	 * Turn off all the mask bits. This tells the chip
438 	 * that none of the entries in the CAM filter are valid.
439 	 * desired entries will be enabled as we fill the filter in.
440 	 */
441 
442 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445 	for (i = 0; i < 8; i++)
446 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447 
448 	/* Clear the VLAN filter too. */
449 
450 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451 	for (i = 0; i < 8; i++)
452 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453 
454 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457 
458 	sc->vge_camidx = 0;
459 
460 	return;
461 }
462 
463 static int
464 vge_cam_set(sc, addr)
465 	struct vge_softc	*sc;
466 	uint8_t			*addr;
467 {
468 	int			i, error = 0;
469 
470 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
471 		return(ENOSPC);
472 
473 	/* Select the CAM data page. */
474 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
475 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
476 
477 	/* Set the filter entry we want to update and enable writing. */
478 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
479 
480 	/* Write the address to the CAM registers */
481 	for (i = 0; i < ETHER_ADDR_LEN; i++)
482 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
483 
484 	/* Issue a write command. */
485 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
486 
487 	/* Wake for it to clear. */
488 	for (i = 0; i < VGE_TIMEOUT; i++) {
489 		DELAY(1);
490 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
491 			break;
492 	}
493 
494 	if (i == VGE_TIMEOUT) {
495 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
496 		error = EIO;
497 		goto fail;
498 	}
499 
500 	/* Select the CAM mask page. */
501 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
502 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
503 
504 	/* Set the mask bit that enables this filter. */
505 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
506 	    1<<(sc->vge_camidx & 7));
507 
508 	sc->vge_camidx++;
509 
510 fail:
511 	/* Turn off access to CAM. */
512 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
513 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
514 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
515 
516 	return (error);
517 }
518 
519 /*
520  * Program the multicast filter. We use the 64-entry CAM filter
521  * for perfect filtering. If there's more than 64 multicast addresses,
522  * we use the hash filter insted.
523  */
524 static void
525 vge_setmulti(sc)
526 	struct vge_softc	*sc;
527 {
528 	struct ifnet		*ifp;
529 	int			error = 0;
530 	u_int32_t		h, hashes[2] = { 0, 0 };
531 	struct ether_multi *enm;
532 	struct ether_multistep step;
533 
534 	ifp = &sc->sc_ethercom.ec_if;
535 
536 	/* First, zot all the multicast entries. */
537 	vge_cam_clear(sc);
538 	CSR_WRITE_4(sc, VGE_MAR0, 0);
539 	CSR_WRITE_4(sc, VGE_MAR1, 0);
540 
541 	/*
542 	 * If the user wants allmulti or promisc mode, enable reception
543 	 * of all multicast frames.
544 	 */
545 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
546     allmulti:
547 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
548 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
549 		return;
550 	}
551 
552 	/* Now program new ones */
553 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
554 	while(enm != NULL) {
555 		/*
556 		 * If multicast range, fall back to ALLMULTI.
557 		 */
558 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
559 				ETHER_ADDR_LEN) != 0)
560 			goto allmulti;
561 
562 		error = vge_cam_set(sc,
563 		    LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
564 		if (error)
565 			break;
566 
567 		ETHER_NEXT_MULTI(step, enm);
568 	}
569 
570 	/* If there were too many addresses, use the hash filter. */
571 	if (error) {
572 		vge_cam_clear(sc);
573 
574 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
575 		while(enm != NULL) {
576 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
577 			    enm->enm_addrlo), ETHER_ADDR_LEN) >> 26;
578 			if (h < 32)
579 				hashes[0] |= (1 << h);
580 			else
581 				hashes[1] |= (1 << (h - 32));
582 		}
583 
584 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
585 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
586 	}
587 
588 	return;
589 }
590 
591 static void
592 vge_reset(sc)
593 	struct vge_softc		*sc;
594 {
595 	register int		i;
596 
597 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
598 
599 	for (i = 0; i < VGE_TIMEOUT; i++) {
600 		DELAY(5);
601 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
602 			break;
603 	}
604 
605 	if (i == VGE_TIMEOUT) {
606 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
607 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
608 		DELAY(2000);
609 	}
610 
611 	DELAY(5000);
612 
613 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
614 
615 	for (i = 0; i < VGE_TIMEOUT; i++) {
616 		DELAY(5);
617 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
618 			break;
619 	}
620 
621 	if (i == VGE_TIMEOUT) {
622 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
623 		return;
624 	}
625 
626 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
627 
628 	return;
629 }
630 
631 /*
632  * Probe for a VIA gigabit chip. Check the PCI vendor and device
633  * IDs against our list and return a device name if we find a match.
634  */
635 static int
636 vge_probe(struct device *parent, struct cfdata *match, void *aux)
637 {
638 	struct pci_attach_args *pa = aux;
639 
640 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
641 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
642 		return 1;
643 
644 	return (0);
645 }
646 
647 static int
648 vge_dma_map_rx_desc(sc, idx)
649 	struct vge_softc	*sc;
650 	int			idx;
651 {
652 	struct vge_rx_desc	*d = NULL;
653 	bus_dma_segment_t	*segs;
654 
655 	/*
656 	 * Map the segment array into descriptors.
657 	 */
658 
659 	d = &sc->vge_ldata.vge_rx_list[idx];
660 
661 	/* If this descriptor is still owned by the chip, bail. */
662 
663 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
664 		printf("%s: tried to map busy descriptor\n",
665 		    sc->sc_dev.dv_xname);
666 		return (EBUSY);
667 	}
668 
669 	segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
670 
671 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
672 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
673 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
674 	d->vge_sts = 0;
675 	d->vge_ctl = 0;
676 
677 	return (0);
678 }
679 
680 static int
681 vge_dma_map_tx_desc(sc, m0, idx, flags)
682 	struct vge_softc	*sc;
683 	struct mbuf		*m0;
684 	int			idx, flags;
685 {
686 	struct vge_tx_desc	*d = NULL;
687 	struct vge_tx_frag	*f;
688 	int			i = 0;
689 	bus_dma_segment_t	*segs;
690 	size_t			sz;
691 	bus_dmamap_t		map = sc->vge_ldata.vge_tx_dmamap[idx];
692 
693 	/* Map the segment array into descriptors. */
694 
695 	d = &sc->vge_ldata.vge_tx_list[idx];
696 
697 	/* If this descriptor is still owned by the chip, bail. */
698 
699 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN)
700 		return (EBUSY);
701 
702 	segs = map->dm_segs;
703 	for (i = 0; i < map->dm_nsegs; i++) {
704 		f = &d->vge_frag[i];
705 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
706 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
707 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
708 	}
709 
710 	/* Argh. This chip does not autopad short frames */
711 
712 	sz = m0->m_pkthdr.len;
713 	if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
714 		f = &d->vge_frag[i];
715 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
716 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
717 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
718 		sz = VGE_MIN_FRAMELEN;
719 		i++;
720 	}
721 
722 	/*
723 	 * When telling the chip how many segments there are, we
724 	 * must use nsegs + 1 instead of just nsegs. Darned if I
725 	 * know why.
726 	 */
727 	i++;
728 
729 	d->vge_sts = sz << 16;
730 	d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
731 
732 	if (sz > ETHERMTU + ETHER_HDR_LEN)
733 		d->vge_ctl |= VGE_TDCTL_JUMBO;
734 
735 	return (0);
736 }
737 
738 static int
739 vge_allocmem(sc)
740 	struct vge_softc *sc;
741 {
742 	int			error;
743 	int			nseg;
744 	int			i;
745 	bus_dma_segment_t	seg;
746 
747 	/*
748 	 * Allocate map for TX descriptor list.
749 	 */
750 	error = bus_dmamap_create(sc->vge_dmat,
751 	    round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
752 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
753 	    &sc->vge_ldata.vge_tx_list_map);
754 	if (error) {
755 		printf("%s: could not allocate TX dma list map\n",
756 		    sc->sc_dev.dv_xname);
757 		return (ENOMEM);
758 	}
759 
760 	/*
761 	 * Allocate memory for TX descriptor list.
762 	 */
763 
764 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
765 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
766 	if (error) {
767 		printf("%s: could not allocate TX ring dma memory\n",
768 		    sc->sc_dev.dv_xname);
769 		return (ENOMEM);
770 	}
771 
772 	/* Map the memory to kernel VA space */
773 
774 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
775 	     (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
776 	if (error) {
777 		printf("%s: could not map TX ring dma memory\n",
778 		    sc->sc_dev.dv_xname);
779 		return (ENOMEM);
780 	}
781 
782 	/* Load the map for the TX ring. */
783 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
784 	    sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
785 	if (error) {
786 		printf("%s: could not load TX ring dma memory\n",
787 		    sc->sc_dev.dv_xname);
788 		return (ENOMEM);
789 	}
790 
791 	sc->vge_ldata.vge_tx_list_addr =
792 		sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
793 
794 	/* Create DMA maps for TX buffers */
795 
796 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
797 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
798 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
799 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
800 		    &sc->vge_ldata.vge_tx_dmamap[i]);
801 		if (error) {
802 			printf("%s: can't create DMA map for TX\n",
803 			    sc->sc_dev.dv_xname);
804 			return (ENOMEM);
805 		}
806 	}
807 
808 	/*
809 	 * Allocate map for RX descriptor list.
810 	 */
811 	error = bus_dmamap_create(sc->vge_dmat,
812 	    round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
813 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
814 	    &sc->vge_ldata.vge_rx_list_map);
815 	if (error) {
816 		printf("%s: could not allocate RX dma list map\n",
817 		    sc->sc_dev.dv_xname);
818 		return (ENOMEM);
819 	}
820 
821 	/* Allocate DMA'able memory for the RX ring */
822 
823 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
824 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
825 	if (error)
826 		return (ENOMEM);
827 
828 	/* Map the memory to kernel VA space */
829 
830 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
831 	     (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
832 	if (error)
833 		return (ENOMEM);
834 
835 	/* Load the map for the RX ring. */
836 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
837 	    sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
838 	if (error) {
839 		printf("%s: could not load RX ring dma memory\n",
840 		    sc->sc_dev.dv_xname);
841 		return (ENOMEM);
842 	}
843 
844 	sc->vge_ldata.vge_rx_list_addr =
845 		sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
846 
847 	/* Create DMA maps for RX buffers */
848 
849 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
850 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
851 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
852 		    &sc->vge_ldata.vge_rx_dmamap[i]);
853 		if (error) {
854 			printf("%s: can't create DMA map for RX\n",
855 			     sc->sc_dev.dv_xname);
856 			return (ENOMEM);
857 		}
858 	}
859 
860 	return (0);
861 }
862 
863 /*
864  * Attach the interface. Allocate softc structures, do ifmedia
865  * setup and ethernet/BPF attach.
866  */
867 static void
868 vge_attach(struct device *parent, struct device *self, void *aux)
869 {
870 	u_char			eaddr[ETHER_ADDR_LEN];
871 	struct vge_softc	*sc = (struct vge_softc *)self;
872 	struct ifnet		*ifp;
873 	int			error = 0;
874 	struct pci_attach_args *pa = aux;
875 	pci_chipset_tag_t pc = pa->pa_pc;
876 	const char *intrstr;
877 	pci_intr_handle_t ih;
878 
879 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
880 		PCI_REVISION(pa->pa_class));
881 
882 	/* Make sure bus-mastering is enabled */
883         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
884 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
885 		PCI_COMMAND_MASTER_ENABLE);
886 
887 	/*
888 	 * Map control/status registers.
889 	 */
890 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
891 	    PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
892 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
893 		aprint_error("%s: couldn't map memory\n",
894 			sc->sc_dev.dv_xname);
895 		return;
896 	}
897 
898         /*
899          * Map and establish our interrupt.
900          */
901 	if (pci_intr_map(pa, &ih)) {
902 		aprint_error("%s: unable to map interrupt\n",
903 		    sc->sc_dev.dv_xname);
904 		return;
905 	}
906 	intrstr = pci_intr_string(pc, ih);
907 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
908 	if (sc->vge_intrhand == NULL) {
909 		printf("%s: unable to establish interrupt",
910 		    sc->sc_dev.dv_xname);
911 		if (intrstr != NULL)
912 			printf(" at %s", intrstr);
913 		printf("\n");
914 		return;
915 	}
916 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
917 
918 	/* Reset the adapter. */
919 	vge_reset(sc);
920 
921 	/*
922 	 * Get station address from the EEPROM.
923 	 */
924 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
925 	bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
926 
927 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
928 	    ether_sprintf(eaddr));
929 
930 	/*
931 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
932 	 * but we don't use that for now.
933 	 */
934 	sc->vge_dmat = pa->pa_dmat;
935 
936 	error = vge_allocmem(sc);
937 
938 	if (error) {
939 printf("allocmem err %d\n", error);
940 		return;
941 	}
942 
943 	ifp = &sc->sc_ethercom.ec_if;
944 	ifp->if_softc = sc;
945 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
946 	ifp->if_mtu = ETHERMTU;
947 	ifp->if_baudrate = IF_Gbps(1);
948 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
949 	ifp->if_ioctl = vge_ioctl;
950 	ifp->if_start = vge_start;
951 
952 	/*
953 	 * We can support 802.1Q VLAN-sized frames and jumbo
954 	 * Ethernet frames.
955 	 */
956 	sc->sc_ethercom.ec_capabilities |=
957 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
958 	    ETHERCAP_VLAN_HWTAGGING;
959 
960 	/*
961 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
962 	 */
963 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 |
964 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
965 
966 #ifdef DEVICE_POLLING
967 #ifdef IFCAP_POLLING
968 	ifp->if_capabilities |= IFCAP_POLLING;
969 #endif
970 #endif
971 	ifp->if_watchdog = vge_watchdog;
972 	ifp->if_init = vge_init;
973 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
974 
975 	/*
976 	 * Initialize our media structures and probe the MII.
977 	 */
978 	sc->sc_mii.mii_ifp = ifp;
979 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
980 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
981 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
982 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
983 	    vge_ifmedia_sts);
984 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
985 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
986 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
987 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
988 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
989 	} else
990 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
991 
992 	/*
993 	 * Attach the interface.
994 	 */
995 	if_attach(ifp);
996 	ether_ifattach(ifp, eaddr);
997 
998 	callout_init(&sc->vge_timeout);
999 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
1000 
1001 	/*
1002 	 * Make sure the interface is shutdown during reboot.
1003 	 */
1004 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1005 		printf("%s: WARNING: unable to establish shutdown hook\n",
1006 		    sc->sc_dev.dv_xname);
1007 	}
1008 }
1009 
1010 static int
1011 vge_newbuf(sc, idx, m)
1012 	struct vge_softc	*sc;
1013 	int			idx;
1014 	struct mbuf		*m;
1015 {
1016 	struct mbuf		*n = NULL;
1017 	int			i, error;
1018 
1019 	if (m == NULL) {
1020 		n = m_gethdr(M_DONTWAIT, MT_DATA);
1021 		if (n == NULL)
1022 			return (ENOBUFS);
1023 
1024 		m_clget(n, M_DONTWAIT);
1025 		if ((n->m_flags & M_EXT) == 0) {
1026 			m_freem(n);
1027 			return (ENOBUFS);
1028 		}
1029 
1030 		m = n;
1031 	} else
1032 		m->m_data = m->m_ext.ext_buf;
1033 
1034 
1035 #ifdef VGE_FIXUP_RX
1036 	/*
1037 	 * This is part of an evil trick to deal with non-x86 platforms.
1038 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1039 	 * boundaries, but that will hose non-x86 machines. To get around
1040 	 * this, we leave some empty space at the start of each buffer
1041 	 * and for non-x86 hosts, we copy the buffer back two bytes
1042 	 * to achieve word alignment. This is slightly more efficient
1043 	 * than allocating a new buffer, copying the contents, and
1044 	 * discarding the old buffer.
1045 	 */
1046 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1047 	m_adj(m, VGE_ETHER_ALIGN);
1048 #else
1049 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1050 #endif
1051 
1052 	error = bus_dmamap_load_mbuf(sc->vge_dmat,
1053 	    sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1054 	if (error || vge_dma_map_rx_desc(sc, idx)) {
1055 		if (n != NULL)
1056 			m_freem(n);
1057 		return (ENOMEM);
1058 	}
1059 
1060 	/*
1061 	 * Note: the manual fails to document the fact that for
1062 	 * proper opration, the driver needs to replentish the RX
1063 	 * DMA ring 4 descriptors at a time (rather than one at a
1064 	 * time, like most chips). We can allocate the new buffers
1065 	 * but we should not set the OWN bits until we're ready
1066 	 * to hand back 4 of them in one shot.
1067 	 */
1068 
1069 #define VGE_RXCHUNK 4
1070 	sc->vge_rx_consumed++;
1071 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1072 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1073 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1074 			    htole32(VGE_RDSTS_OWN);
1075 		sc->vge_rx_consumed = 0;
1076 	}
1077 
1078 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1079 
1080 	bus_dmamap_sync(sc->vge_dmat,
1081 	    sc->vge_ldata.vge_rx_dmamap[idx],
1082 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1083 	    BUS_DMASYNC_PREREAD);
1084 
1085 	return (0);
1086 }
1087 
1088 static int
1089 vge_tx_list_init(sc)
1090 	struct vge_softc		*sc;
1091 {
1092 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1093 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1094 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1095 
1096 	bus_dmamap_sync(sc->vge_dmat,
1097 	    sc->vge_ldata.vge_tx_list_map,
1098 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1099 	    BUS_DMASYNC_PREWRITE);
1100 
1101 	sc->vge_ldata.vge_tx_prodidx = 0;
1102 	sc->vge_ldata.vge_tx_considx = 0;
1103 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1104 
1105 	return (0);
1106 }
1107 
1108 static int
1109 vge_rx_list_init(sc)
1110 	struct vge_softc		*sc;
1111 {
1112 	int			i;
1113 
1114 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1115 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1116 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1117 
1118 	sc->vge_rx_consumed = 0;
1119 
1120 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1121 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1122 			return (ENOBUFS);
1123 	}
1124 
1125 	/* Flush the RX descriptors */
1126 
1127 	bus_dmamap_sync(sc->vge_dmat,
1128 	    sc->vge_ldata.vge_rx_list_map,
1129 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1130 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1131 
1132 	sc->vge_ldata.vge_rx_prodidx = 0;
1133 	sc->vge_rx_consumed = 0;
1134 	sc->vge_head = sc->vge_tail = NULL;
1135 
1136 	return (0);
1137 }
1138 
1139 #ifdef VGE_FIXUP_RX
1140 static __inline void
1141 vge_fixup_rx(m)
1142 	struct mbuf		*m;
1143 {
1144 	int			i;
1145 	uint16_t		*src, *dst;
1146 
1147 	src = mtod(m, uint16_t *);
1148 	dst = src - 1;
1149 
1150 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1151 		*dst++ = *src++;
1152 
1153 	m->m_data -= ETHER_ALIGN;
1154 
1155 	return;
1156 }
1157 #endif
1158 
1159 /*
1160  * RX handler. We support the reception of jumbo frames that have
1161  * been fragmented across multiple 2K mbuf cluster buffers.
1162  */
1163 static void
1164 vge_rxeof(sc)
1165 	struct vge_softc	*sc;
1166 {
1167 	struct mbuf		*m;
1168 	struct ifnet		*ifp;
1169 	int			i, total_len;
1170 	int			lim = 0;
1171 	struct vge_rx_desc	*cur_rx;
1172 	u_int32_t		rxstat, rxctl;
1173 
1174 	VGE_LOCK_ASSERT(sc);
1175 	ifp = &sc->sc_ethercom.ec_if;
1176 	i = sc->vge_ldata.vge_rx_prodidx;
1177 
1178 	/* Invalidate the descriptor memory */
1179 
1180 	bus_dmamap_sync(sc->vge_dmat,
1181 	    sc->vge_ldata.vge_rx_list_map,
1182 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1183 	    BUS_DMASYNC_POSTREAD);
1184 
1185 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1186 
1187 #ifdef DEVICE_POLLING
1188 		if (ifp->if_flags & IFF_POLLING) {
1189 			if (sc->rxcycles <= 0)
1190 				break;
1191 			sc->rxcycles--;
1192 		}
1193 #endif /* DEVICE_POLLING */
1194 
1195 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1196 		m = sc->vge_ldata.vge_rx_mbuf[i];
1197 		total_len = VGE_RXBYTES(cur_rx);
1198 		rxstat = le32toh(cur_rx->vge_sts);
1199 		rxctl = le32toh(cur_rx->vge_ctl);
1200 
1201 		/* Invalidate the RX mbuf and unload its map */
1202 
1203 		bus_dmamap_sync(sc->vge_dmat,
1204 		    sc->vge_ldata.vge_rx_dmamap[i],
1205 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1206 		    BUS_DMASYNC_POSTWRITE);
1207 		bus_dmamap_unload(sc->vge_dmat,
1208 		    sc->vge_ldata.vge_rx_dmamap[i]);
1209 
1210 		/*
1211 		 * If the 'start of frame' bit is set, this indicates
1212 		 * either the first fragment in a multi-fragment receive,
1213 		 * or an intermediate fragment. Either way, we want to
1214 		 * accumulate the buffers.
1215 		 */
1216 		if (rxstat & VGE_RXPKT_SOF) {
1217 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1218 			if (sc->vge_head == NULL)
1219 				sc->vge_head = sc->vge_tail = m;
1220 			else {
1221 				m->m_flags &= ~M_PKTHDR;
1222 				sc->vge_tail->m_next = m;
1223 				sc->vge_tail = m;
1224 			}
1225 			vge_newbuf(sc, i, NULL);
1226 			VGE_RX_DESC_INC(i);
1227 			continue;
1228 		}
1229 
1230 		/*
1231 		 * Bad/error frames will have the RXOK bit cleared.
1232 		 * However, there's one error case we want to allow:
1233 		 * if a VLAN tagged frame arrives and the chip can't
1234 		 * match it against the CAM filter, it considers this
1235 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1236 		 * We don't want to drop the frame though: our VLAN
1237 		 * filtering is done in software.
1238 		 */
1239 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1240 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1241 			ifp->if_ierrors++;
1242 			/*
1243 			 * If this is part of a multi-fragment packet,
1244 			 * discard all the pieces.
1245 			 */
1246 			if (sc->vge_head != NULL) {
1247 				m_freem(sc->vge_head);
1248 				sc->vge_head = sc->vge_tail = NULL;
1249 			}
1250 			vge_newbuf(sc, i, m);
1251 			VGE_RX_DESC_INC(i);
1252 			continue;
1253 		}
1254 
1255 		/*
1256 		 * If allocating a replacement mbuf fails,
1257 		 * reload the current one.
1258 		 */
1259 
1260 		if (vge_newbuf(sc, i, NULL)) {
1261 			ifp->if_ierrors++;
1262 			if (sc->vge_head != NULL) {
1263 				m_freem(sc->vge_head);
1264 				sc->vge_head = sc->vge_tail = NULL;
1265 			}
1266 			vge_newbuf(sc, i, m);
1267 			VGE_RX_DESC_INC(i);
1268 			continue;
1269 		}
1270 
1271 		VGE_RX_DESC_INC(i);
1272 
1273 		if (sc->vge_head != NULL) {
1274 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1275 			/*
1276 			 * Special case: if there's 4 bytes or less
1277 			 * in this buffer, the mbuf can be discarded:
1278 			 * the last 4 bytes is the CRC, which we don't
1279 			 * care about anyway.
1280 			 */
1281 			if (m->m_len <= ETHER_CRC_LEN) {
1282 				sc->vge_tail->m_len -=
1283 				    (ETHER_CRC_LEN - m->m_len);
1284 				m_freem(m);
1285 			} else {
1286 				m->m_len -= ETHER_CRC_LEN;
1287 				m->m_flags &= ~M_PKTHDR;
1288 				sc->vge_tail->m_next = m;
1289 			}
1290 			m = sc->vge_head;
1291 			sc->vge_head = sc->vge_tail = NULL;
1292 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1293 		} else
1294 			m->m_pkthdr.len = m->m_len =
1295 			    (total_len - ETHER_CRC_LEN);
1296 
1297 #ifdef VGE_FIXUP_RX
1298 		vge_fixup_rx(m);
1299 #endif
1300 		ifp->if_ipackets++;
1301 		m->m_pkthdr.rcvif = ifp;
1302 
1303 		/* Do RX checksumming if enabled */
1304 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1305 
1306 			/* Check IP header checksum */
1307 			if (rxctl & VGE_RDCTL_IPPKT)
1308 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1309 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1310 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1311 		}
1312 
1313 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1314 			/* Check UDP checksum */
1315 			if (rxctl & VGE_RDCTL_TCPPKT)
1316 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1317 
1318 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1319 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1320 		}
1321 
1322 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1323 			/* Check UDP checksum */
1324 			if (rxctl & VGE_RDCTL_UDPPKT)
1325 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1326 
1327 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1328 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1329 		}
1330 
1331 		if (rxstat & VGE_RDSTS_VTAG)
1332 			VLAN_INPUT_TAG(ifp, m,
1333 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1334 
1335 #if NBPFILTER > 0
1336 		/*
1337 		 * Handle BPF listeners.
1338 		 */
1339 		if (ifp->if_bpf)
1340 			bpf_mtap(ifp->if_bpf, m);
1341 #endif
1342 
1343 		VGE_UNLOCK(sc);
1344 		(*ifp->if_input)(ifp, m);
1345 		VGE_LOCK(sc);
1346 
1347 		lim++;
1348 		if (lim == VGE_RX_DESC_CNT)
1349 			break;
1350 
1351 	}
1352 
1353 	/* Flush the RX DMA ring */
1354 
1355 	bus_dmamap_sync(sc->vge_dmat,
1356 	    sc->vge_ldata.vge_rx_list_map,
1357 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1358 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1359 
1360 	sc->vge_ldata.vge_rx_prodidx = i;
1361 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1362 
1363 
1364 	return;
1365 }
1366 
1367 static void
1368 vge_txeof(sc)
1369 	struct vge_softc		*sc;
1370 {
1371 	struct ifnet		*ifp;
1372 	u_int32_t		txstat;
1373 	int			idx;
1374 
1375 	ifp = &sc->sc_ethercom.ec_if;
1376 	idx = sc->vge_ldata.vge_tx_considx;
1377 
1378 	/* Invalidate the TX descriptor list */
1379 
1380 	bus_dmamap_sync(sc->vge_dmat,
1381 	    sc->vge_ldata.vge_tx_list_map,
1382 	    0,  sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1383 	    BUS_DMASYNC_POSTREAD);
1384 
1385 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1386 
1387 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1388 		if (txstat & VGE_TDSTS_OWN)
1389 			break;
1390 
1391 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1392 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1393 		bus_dmamap_unload(sc->vge_dmat,
1394 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1395 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1396 			ifp->if_collisions++;
1397 		if (txstat & VGE_TDSTS_TXERR)
1398 			ifp->if_oerrors++;
1399 		else
1400 			ifp->if_opackets++;
1401 
1402 		sc->vge_ldata.vge_tx_free++;
1403 		VGE_TX_DESC_INC(idx);
1404 	}
1405 
1406 	/* No changes made to the TX ring, so no flush needed */
1407 
1408 	if (idx != sc->vge_ldata.vge_tx_considx) {
1409 		sc->vge_ldata.vge_tx_considx = idx;
1410 		ifp->if_flags &= ~IFF_OACTIVE;
1411 		ifp->if_timer = 0;
1412 	}
1413 
1414 	/*
1415 	 * If not all descriptors have been released reaped yet,
1416 	 * reload the timer so that we will eventually get another
1417 	 * interrupt that will cause us to re-enter this routine.
1418 	 * This is done in case the transmitter has gone idle.
1419 	 */
1420 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1421 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1422 	}
1423 
1424 	return;
1425 }
1426 
1427 static void
1428 vge_tick(xsc)
1429 	void			*xsc;
1430 {
1431 	struct vge_softc	*sc = xsc;
1432 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1433 	struct mii_data		*mii = &sc->sc_mii;
1434 	int s;
1435 
1436 	s = splnet();
1437 
1438 	VGE_LOCK(sc);
1439 
1440 	callout_schedule(&sc->vge_timeout, hz);
1441 
1442 	mii_tick(mii);
1443 	if (sc->vge_link) {
1444 		if (!(mii->mii_media_status & IFM_ACTIVE))
1445 			sc->vge_link = 0;
1446 	} else {
1447 		if (mii->mii_media_status & IFM_ACTIVE &&
1448 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1449 			sc->vge_link = 1;
1450 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1451 				vge_start(ifp);
1452 		}
1453 	}
1454 
1455 	VGE_UNLOCK(sc);
1456 
1457 	splx(s);
1458 }
1459 
1460 #ifdef DEVICE_POLLING
1461 static void
1462 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1463 {
1464 	struct vge_softc *sc = ifp->if_softc;
1465 
1466 	VGE_LOCK(sc);
1467 #ifdef IFCAP_POLLING
1468 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1469 		ether_poll_deregister(ifp);
1470 		cmd = POLL_DEREGISTER;
1471 	}
1472 #endif
1473 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1474 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1475 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1476 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1477 		goto done;
1478 	}
1479 
1480 	sc->rxcycles = count;
1481 	vge_rxeof(sc);
1482 	vge_txeof(sc);
1483 
1484 #if __FreeBSD_version < 502114
1485 	if (ifp->if_snd.ifq_head != NULL)
1486 #else
1487 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1488 #endif
1489 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1490 
1491 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1492 		u_int32_t       status;
1493 		status = CSR_READ_4(sc, VGE_ISR);
1494 		if (status == 0xFFFFFFFF)
1495 			goto done;
1496 		if (status)
1497 			CSR_WRITE_4(sc, VGE_ISR, status);
1498 
1499 		/*
1500 		 * XXX check behaviour on receiver stalls.
1501 		 */
1502 
1503 		if (status & VGE_ISR_TXDMA_STALL ||
1504 		    status & VGE_ISR_RXDMA_STALL)
1505 			vge_init(sc);
1506 
1507 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1508 			vge_rxeof(sc);
1509 			ifp->if_ierrors++;
1510 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1511 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1512 		}
1513 	}
1514 done:
1515 	VGE_UNLOCK(sc);
1516 }
1517 #endif /* DEVICE_POLLING */
1518 
1519 static int
1520 vge_intr(arg)
1521 	void			*arg;
1522 {
1523 	struct vge_softc	*sc = arg;
1524 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1525 	u_int32_t		status;
1526 	int claim = 0;
1527 
1528 	if (sc->suspended) {
1529 		return claim;
1530 	}
1531 
1532 	VGE_LOCK(sc);
1533 
1534 	if (!(ifp->if_flags & IFF_UP)) {
1535 		VGE_UNLOCK(sc);
1536 		return claim;
1537 	}
1538 
1539 #ifdef DEVICE_POLLING
1540 	if  (ifp->if_flags & IFF_POLLING)
1541 		goto done;
1542 	if (
1543 #ifdef IFCAP_POLLING
1544 	    (ifp->if_capenable & IFCAP_POLLING) &&
1545 #endif
1546 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1547 		CSR_WRITE_4(sc, VGE_IMR, 0);
1548 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1549 		vge_poll(ifp, 0, 1);
1550 		goto done;
1551 	}
1552 
1553 #endif /* DEVICE_POLLING */
1554 
1555 	/* Disable interrupts */
1556 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1557 
1558 	for (;;) {
1559 
1560 		status = CSR_READ_4(sc, VGE_ISR);
1561 		/* If the card has gone away the read returns 0xffff. */
1562 		if (status == 0xFFFFFFFF)
1563 			break;
1564 
1565 		if (status) {
1566 			claim = 1;
1567 			CSR_WRITE_4(sc, VGE_ISR, status);
1568 		}
1569 
1570 		if ((status & VGE_INTRS) == 0)
1571 			break;
1572 
1573 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1574 			vge_rxeof(sc);
1575 
1576 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1577 			vge_rxeof(sc);
1578 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1579 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1580 		}
1581 
1582 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1583 			vge_txeof(sc);
1584 
1585 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1586 			vge_init(ifp);
1587 
1588 		if (status & VGE_ISR_LINKSTS)
1589 			vge_tick(sc);
1590 	}
1591 
1592 	/* Re-enable interrupts */
1593 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1594 
1595 #ifdef DEVICE_POLLING
1596 done:
1597 #endif
1598 	VGE_UNLOCK(sc);
1599 
1600 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1601 		vge_start(ifp);
1602 
1603 	return claim;
1604 }
1605 
1606 static int
1607 vge_encap(sc, m_head, idx)
1608 	struct vge_softc	*sc;
1609 	struct mbuf		*m_head;
1610 	int			idx;
1611 {
1612 	struct mbuf		*m_new = NULL;
1613 	bus_dmamap_t		map;
1614 	int			error, flags;
1615 	struct m_tag		*mtag;
1616 
1617 	if (sc->vge_ldata.vge_tx_free <= 2)
1618 		return (EFBIG);
1619 
1620 	flags = 0;
1621 
1622 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1623 		flags |= VGE_TDCTL_IPCSUM;
1624 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1625 		flags |= VGE_TDCTL_TCPCSUM;
1626 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1627 		flags |= VGE_TDCTL_UDPCSUM;
1628 
1629 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1630 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1631 	    m_head, BUS_DMA_NOWAIT);
1632 
1633 	if ((error && error != EFBIG)
1634 	    || vge_dma_map_tx_desc(sc, m_head, idx, flags)) {
1635 		if (error) {
1636 			printf("%s: can't map mbuf (error %d)\n",
1637 			    sc->sc_dev.dv_xname, error);
1638 		}
1639 		return (ENOBUFS);
1640 	}
1641 
1642 	/* Too many segments to map, coalesce into a single mbuf */
1643 
1644 	if (error) {
1645 		m_new = m_defrag(m_head, M_DONTWAIT);
1646 		if (m_new == NULL)
1647 			return (1);
1648 		else
1649 			m_head = m_new;
1650 
1651 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1652 		    m_head, BUS_DMA_NOWAIT);
1653 		if (error || vge_dma_map_tx_desc(sc, m_head, idx, flags)) {
1654 			if (error) {
1655 				printf("%s: can't map defrag mbuf (error %d)\n",
1656 				    sc->sc_dev.dv_xname, error);
1657 			}
1658 			m_freem(m_head);
1659 			return (EFBIG);
1660 		}
1661 	}
1662 
1663 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1664 	sc->vge_ldata.vge_tx_free--;
1665 
1666 	/*
1667 	 * Set up hardware VLAN tagging.
1668 	 */
1669 
1670 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1671 	if (mtag != NULL)
1672 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1673 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1674 
1675 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1676 
1677 	return (0);
1678 }
1679 
1680 /*
1681  * Main transmit routine.
1682  */
1683 
1684 static void
1685 vge_start(ifp)
1686 	struct ifnet		*ifp;
1687 {
1688 	struct vge_softc	*sc;
1689 	struct mbuf		*m_head = NULL;
1690 	int			idx, pidx = 0;
1691 
1692 	sc = ifp->if_softc;
1693 	VGE_LOCK(sc);
1694 
1695 	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1696 		VGE_UNLOCK(sc);
1697 		return;
1698 	}
1699 
1700 #if __FreeBSD_version < 502114
1701 	if (ifp->if_snd.ifq_head == NULL) {
1702 #else
1703 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1704 #endif
1705 		VGE_UNLOCK(sc);
1706 		return;
1707 	}
1708 
1709 	idx = sc->vge_ldata.vge_tx_prodidx;
1710 
1711 	pidx = idx - 1;
1712 	if (pidx < 0)
1713 		pidx = VGE_TX_DESC_CNT - 1;
1714 
1715 
1716 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1717 #if __FreeBSD_version < 502114
1718 		IF_DEQUEUE(&ifp->if_snd, m_head);
1719 #else
1720 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1721 #endif
1722 		if (m_head == NULL)
1723 			break;
1724 
1725 		if (vge_encap(sc, m_head, idx)) {
1726 #if __FreeBSD_version >= 502114
1727 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1728 #else
1729 			IF_PREPEND(&ifp->if_snd, m_head);
1730 #endif
1731 			ifp->if_flags |= IFF_OACTIVE;
1732 			break;
1733 		}
1734 
1735 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1736 		    htole16(VGE_TXDESC_Q);
1737 
1738 		pidx = idx;
1739 		VGE_TX_DESC_INC(idx);
1740 
1741 		/*
1742 		 * If there's a BPF listener, bounce a copy of this frame
1743 		 * to him.
1744 		 */
1745 #if NBPFILTER > 0
1746 		if (ifp->if_bpf)
1747 			bpf_mtap(ifp->if_bpf, m_head);
1748 #endif
1749 	}
1750 
1751 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1752 		VGE_UNLOCK(sc);
1753 		return;
1754 	}
1755 
1756 	/* Flush the TX descriptors */
1757 
1758 	bus_dmamap_sync(sc->vge_dmat,
1759 	    sc->vge_ldata.vge_tx_list_map,
1760 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1761 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1762 
1763 	/* Issue a transmit command. */
1764 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1765 
1766 	sc->vge_ldata.vge_tx_prodidx = idx;
1767 
1768 	/*
1769 	 * Use the countdown timer for interrupt moderation.
1770 	 * 'TX done' interrupts are disabled. Instead, we reset the
1771 	 * countdown timer, which will begin counting until it hits
1772 	 * the value in the SSTIMER register, and then trigger an
1773 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1774 	 * the timer count is reloaded. Only when the transmitter
1775 	 * is idle will the timer hit 0 and an interrupt fire.
1776 	 */
1777 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1778 
1779 	VGE_UNLOCK(sc);
1780 
1781 	/*
1782 	 * Set a timeout in case the chip goes out to lunch.
1783 	 */
1784 	ifp->if_timer = 5;
1785 
1786 	return;
1787 }
1788 
1789 static int
1790 vge_init(ifp)
1791 	struct ifnet *ifp;
1792 {
1793 	struct vge_softc	*sc = ifp->if_softc;
1794 	struct mii_data		*mii = &sc->sc_mii;
1795 	int			i;
1796 
1797 	VGE_LOCK(sc);
1798 
1799 	/*
1800 	 * Cancel pending I/O and free all RX/TX buffers.
1801 	 */
1802 	vge_stop(sc);
1803 	vge_reset(sc);
1804 
1805 	/*
1806 	 * Initialize the RX and TX descriptors and mbufs.
1807 	 */
1808 
1809 	vge_rx_list_init(sc);
1810 	vge_tx_list_init(sc);
1811 
1812 	/* Set our station address */
1813 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1814 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1815 
1816 	/*
1817 	 * Set receive FIFO threshold. Also allow transmission and
1818 	 * reception of VLAN tagged frames.
1819 	 */
1820 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1821 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1822 
1823 	/* Set DMA burst length */
1824 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1825 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1826 
1827 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1828 
1829 	/* Set collision backoff algorithm */
1830 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1831 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1832 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1833 
1834 	/* Disable LPSEL field in priority resolution */
1835 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1836 
1837 	/*
1838 	 * Load the addresses of the DMA queues into the chip.
1839 	 * Note that we only use one transmit queue.
1840 	 */
1841 
1842 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1843 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1844 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1845 
1846 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1847 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1848 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1849 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1850 
1851 	/* Enable and wake up the RX descriptor queue */
1852 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1853 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1854 
1855 	/* Enable the TX descriptor queue */
1856 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1857 
1858 	/* Set up the receive filter -- allow large frames for VLANs. */
1859 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1860 
1861 	/* If we want promiscuous mode, set the allframes bit. */
1862 	if (ifp->if_flags & IFF_PROMISC) {
1863 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1864 	}
1865 
1866 	/* Set capture broadcast bit to capture broadcast frames. */
1867 	if (ifp->if_flags & IFF_BROADCAST) {
1868 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1869 	}
1870 
1871 	/* Set multicast bit to capture multicast frames. */
1872 	if (ifp->if_flags & IFF_MULTICAST) {
1873 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1874 	}
1875 
1876 	/* Init the cam filter. */
1877 	vge_cam_clear(sc);
1878 
1879 	/* Init the multicast filter. */
1880 	vge_setmulti(sc);
1881 
1882 	/* Enable flow control */
1883 
1884 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1885 
1886 	/* Enable jumbo frame reception (if desired) */
1887 
1888 	/* Start the MAC. */
1889 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1890 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1891 	CSR_WRITE_1(sc, VGE_CRS0,
1892 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1893 
1894 	/*
1895 	 * Configure one-shot timer for microsecond
1896 	 * resulution and load it for 500 usecs.
1897 	 */
1898 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1899 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1900 
1901 	/*
1902 	 * Configure interrupt moderation for receive. Enable
1903 	 * the holdoff counter and load it, and set the RX
1904 	 * suppression count to the number of descriptors we
1905 	 * want to allow before triggering an interrupt.
1906 	 * The holdoff timer is in units of 20 usecs.
1907 	 */
1908 
1909 #ifdef notyet
1910 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1911 	/* Select the interrupt holdoff timer page. */
1912 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1913 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1914 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1915 
1916 	/* Enable use of the holdoff timer. */
1917 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1918 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1919 
1920 	/* Select the RX suppression threshold page. */
1921 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1922 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1923 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1924 
1925 	/* Restore the page select bits. */
1926 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1927 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1928 #endif
1929 
1930 #ifdef DEVICE_POLLING
1931 	/*
1932 	 * Disable interrupts if we are polling.
1933 	 */
1934 	if (ifp->if_flags & IFF_POLLING) {
1935 		CSR_WRITE_4(sc, VGE_IMR, 0);
1936 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1937 	} else	/* otherwise ... */
1938 #endif /* DEVICE_POLLING */
1939 	{
1940 	/*
1941 	 * Enable interrupts.
1942 	 */
1943 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1944 		CSR_WRITE_4(sc, VGE_ISR, 0);
1945 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1946 	}
1947 
1948 	mii_mediachg(mii);
1949 
1950 	ifp->if_flags |= IFF_RUNNING;
1951 	ifp->if_flags &= ~IFF_OACTIVE;
1952 
1953 	sc->vge_if_flags = 0;
1954 	sc->vge_link = 0;
1955 
1956 	VGE_UNLOCK(sc);
1957 
1958 	callout_schedule(&sc->vge_timeout, hz);
1959 
1960 	return (0);
1961 }
1962 
1963 /*
1964  * Set media options.
1965  */
1966 static int
1967 vge_ifmedia_upd(ifp)
1968 	struct ifnet		*ifp;
1969 {
1970 	struct vge_softc	*sc = ifp->if_softc;
1971 	struct mii_data		*mii = &sc->sc_mii;
1972 
1973 	mii_mediachg(mii);
1974 
1975 	return (0);
1976 }
1977 
1978 /*
1979  * Report current media status.
1980  */
1981 static void
1982 vge_ifmedia_sts(ifp, ifmr)
1983 	struct ifnet		*ifp;
1984 	struct ifmediareq	*ifmr;
1985 {
1986 	struct vge_softc	*sc = ifp->if_softc;
1987 	struct mii_data		*mii = &sc->sc_mii;
1988 
1989 	mii_pollstat(mii);
1990 	ifmr->ifm_active = mii->mii_media_active;
1991 	ifmr->ifm_status = mii->mii_media_status;
1992 
1993 	return;
1994 }
1995 
1996 static void
1997 vge_miibus_statchg(self)
1998 	struct device	*self;
1999 {
2000 	struct vge_softc	*sc = (struct vge_softc *) self;
2001 	struct mii_data		*mii = &sc->sc_mii;
2002 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
2003 
2004 	/*
2005 	 * If the user manually selects a media mode, we need to turn
2006 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2007 	 * user happens to choose a full duplex mode, we also need to
2008 	 * set the 'force full duplex' bit. This applies only to
2009 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2010 	 * mode is disabled, and in 1000baseT mode, full duplex is
2011 	 * always implied, so we turn on the forced mode bit but leave
2012 	 * the FDX bit cleared.
2013 	 */
2014 
2015 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2016 	case IFM_AUTO:
2017 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2018 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2019 		break;
2020 	case IFM_1000_T:
2021 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2022 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2023 		break;
2024 	case IFM_100_TX:
2025 	case IFM_10_T:
2026 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2027 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2028 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2029 		} else {
2030 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2031 		}
2032 		break;
2033 	default:
2034 		printf("%s: unknown media type: %x\n",
2035 		    sc->sc_dev.dv_xname,
2036 		    IFM_SUBTYPE(ife->ifm_media));
2037 		break;
2038 	}
2039 
2040 	return;
2041 }
2042 
2043 static int
2044 vge_ioctl(ifp, command, data)
2045 	struct ifnet		*ifp;
2046 	u_long			command;
2047 	caddr_t			data;
2048 {
2049 	struct vge_softc	*sc = ifp->if_softc;
2050 	struct ifreq		*ifr = (struct ifreq *) data;
2051 	struct mii_data		*mii;
2052 	int			error = 0;
2053 
2054 	switch (command) {
2055 	case SIOCSIFMTU:
2056 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2057 			error = EINVAL;
2058 		ifp->if_mtu = ifr->ifr_mtu;
2059 		break;
2060 	case SIOCSIFFLAGS:
2061 		if (ifp->if_flags & IFF_UP) {
2062 			if (ifp->if_flags & IFF_RUNNING &&
2063 			    ifp->if_flags & IFF_PROMISC &&
2064 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2065 				CSR_SETBIT_1(sc, VGE_RXCTL,
2066 				    VGE_RXCTL_RX_PROMISC);
2067 				vge_setmulti(sc);
2068 			} else if (ifp->if_flags & IFF_RUNNING &&
2069 			    !(ifp->if_flags & IFF_PROMISC) &&
2070 			    sc->vge_if_flags & IFF_PROMISC) {
2071 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2072 				    VGE_RXCTL_RX_PROMISC);
2073 				vge_setmulti(sc);
2074                         } else
2075 				vge_init(ifp);
2076 		} else {
2077 			if (ifp->if_flags & IFF_RUNNING)
2078 				vge_stop(sc);
2079 		}
2080 		sc->vge_if_flags = ifp->if_flags;
2081 		break;
2082 	case SIOCADDMULTI:
2083 	case SIOCDELMULTI:
2084 		vge_setmulti(sc);
2085 		break;
2086 	case SIOCGIFMEDIA:
2087 	case SIOCSIFMEDIA:
2088 		mii = &sc->sc_mii;
2089 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2090 		break;
2091 	default:
2092 		error = ether_ioctl(ifp, command, data);
2093 		break;
2094 	}
2095 
2096 	return (error);
2097 }
2098 
2099 static void
2100 vge_watchdog(ifp)
2101 	struct ifnet		*ifp;
2102 {
2103 	struct vge_softc		*sc;
2104 
2105 	sc = ifp->if_softc;
2106 	VGE_LOCK(sc);
2107 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2108 	ifp->if_oerrors++;
2109 
2110 	vge_txeof(sc);
2111 	vge_rxeof(sc);
2112 
2113 	vge_init(ifp);
2114 
2115 	VGE_UNLOCK(sc);
2116 
2117 	return;
2118 }
2119 
2120 /*
2121  * Stop the adapter and free any mbufs allocated to the
2122  * RX and TX lists.
2123  */
2124 static void
2125 vge_stop(sc)
2126 	struct vge_softc		*sc;
2127 {
2128 	register int		i;
2129 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2130 
2131 	VGE_LOCK(sc);
2132 	ifp->if_timer = 0;
2133 
2134 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2135 #ifdef DEVICE_POLLING
2136 	ether_poll_deregister(ifp);
2137 #endif /* DEVICE_POLLING */
2138 
2139 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2140 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2141 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2142 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2143 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2144 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2145 
2146 	if (sc->vge_head != NULL) {
2147 		m_freem(sc->vge_head);
2148 		sc->vge_head = sc->vge_tail = NULL;
2149 	}
2150 
2151 	/* Free the TX list buffers. */
2152 
2153 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2154 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2155 			bus_dmamap_unload(sc->vge_dmat,
2156 			    sc->vge_ldata.vge_tx_dmamap[i]);
2157 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2158 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2159 		}
2160 	}
2161 
2162 	/* Free the RX list buffers. */
2163 
2164 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2165 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2166 			bus_dmamap_unload(sc->vge_dmat,
2167 			    sc->vge_ldata.vge_rx_dmamap[i]);
2168 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2169 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2170 		}
2171 	}
2172 
2173 	VGE_UNLOCK(sc);
2174 
2175 	return;
2176 }
2177 
2178 #if VGE_POWER_MANAGEMENT
2179 /*
2180  * Device suspend routine.  Stop the interface and save some PCI
2181  * settings in case the BIOS doesn't restore them properly on
2182  * resume.
2183  */
2184 static int
2185 vge_suspend(dev)
2186 	struct device *		dev;
2187 {
2188 	struct vge_softc	*sc;
2189 	int			i;
2190 
2191 	sc = device_get_softc(dev);
2192 
2193 	vge_stop(sc);
2194 
2195         for (i = 0; i < 5; i++)
2196 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2197 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2198 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2199 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2200 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2201 
2202 	sc->suspended = 1;
2203 
2204 	return (0);
2205 }
2206 
2207 /*
2208  * Device resume routine.  Restore some PCI settings in case the BIOS
2209  * doesn't, re-enable busmastering, and restart the interface if
2210  * appropriate.
2211  */
2212 static int
2213 vge_resume(dev)
2214 	struct device *		dev;
2215 {
2216 	struct vge_softc	*sc = (struct vge_softc *)dev;
2217 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2218 	int			i;
2219 
2220         /* better way to do this? */
2221 	for (i = 0; i < 5; i++)
2222 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2223 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2224 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2225 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2226 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2227 
2228 	/* reenable busmastering */
2229 	pci_enable_busmaster(dev);
2230 	pci_enable_io(dev, SYS_RES_MEMORY);
2231 
2232 	/* reinitialize interface if necessary */
2233 	if (ifp->if_flags & IFF_UP)
2234 		vge_init(sc);
2235 
2236 	sc->suspended = 0;
2237 
2238 	return (0);
2239 }
2240 #endif
2241 
2242 /*
2243  * Stop all chip I/O so that the kernel's probe routines don't
2244  * get confused by errant DMAs when rebooting.
2245  */
2246 static void
2247 vge_shutdown(arg)
2248 	void *arg;
2249 {
2250 	struct vge_softc *sc = (struct vge_softc *)arg;
2251 
2252 	vge_stop(sc);
2253 }
2254