1 /* $NetBSD: if_vge.c,v 1.38 2007/10/19 12:00:49 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2004 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.38 2007/10/19 12:00:49 ad Exp $"); 39 40 /* 41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. 42 * 43 * Written by Bill Paul <wpaul@windriver.com> 44 * Senior Networking Software Engineer 45 * Wind River Systems 46 */ 47 48 /* 49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that 50 * combines a tri-speed ethernet MAC and PHY, with the following 51 * features: 52 * 53 * o Jumbo frame support up to 16K 54 * o Transmit and receive flow control 55 * o IPv4 checksum offload 56 * o VLAN tag insertion and stripping 57 * o TCP large send 58 * o 64-bit multicast hash table filter 59 * o 64 entry CAM filter 60 * o 16K RX FIFO and 48K TX FIFO memory 61 * o Interrupt moderation 62 * 63 * The VT6122 supports up to four transmit DMA queues. The descriptors 64 * in the transmit ring can address up to 7 data fragments; frames which 65 * span more than 7 data buffers must be coalesced, but in general the 66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments 67 * long. The receive descriptors address only a single buffer. 68 * 69 * There are two peculiar design issues with the VT6122. One is that 70 * receive data buffers must be aligned on a 32-bit boundary. This is 71 * not a problem where the VT6122 is used as a LOM device in x86-based 72 * systems, but on architectures that generate unaligned access traps, we 73 * have to do some copying. 74 * 75 * The other issue has to do with the way 64-bit addresses are handled. 76 * The DMA descriptors only allow you to specify 48 bits of addressing 77 * information. The remaining 16 bits are specified using one of the 78 * I/O registers. If you only have a 32-bit system, then this isn't 79 * an issue, but if you have a 64-bit system and more than 4GB of 80 * memory, you must have to make sure your network data buffers reside 81 * in the same 48-bit 'segment.' 82 * 83 * Special thanks to Ryan Fu at VIA Networking for providing documentation 84 * and sample NICs for testing. 85 */ 86 87 #include "bpfilter.h" 88 89 #include <sys/param.h> 90 #include <sys/endian.h> 91 #include <sys/systm.h> 92 #include <sys/device.h> 93 #include <sys/sockio.h> 94 #include <sys/mbuf.h> 95 #include <sys/malloc.h> 96 #include <sys/kernel.h> 97 #include <sys/socket.h> 98 99 #include <net/if.h> 100 #include <net/if_arp.h> 101 #include <net/if_ether.h> 102 #include <net/if_dl.h> 103 #include <net/if_media.h> 104 105 #include <net/bpf.h> 106 107 #include <sys/bus.h> 108 109 #include <dev/mii/mii.h> 110 #include <dev/mii/miivar.h> 111 112 #include <dev/pci/pcireg.h> 113 #include <dev/pci/pcivar.h> 114 #include <dev/pci/pcidevs.h> 115 116 #include <dev/pci/if_vgereg.h> 117 118 #define VGE_JUMBO_MTU 9000 119 120 #define VGE_IFQ_MAXLEN 64 121 122 #define VGE_RING_ALIGN 256 123 124 #define VGE_NTXDESC 256 125 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1) 126 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK) 127 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK) 128 129 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */ 130 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1) 131 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK) 132 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK) 133 134 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF) 135 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32) 136 #define VGE_BUFLEN(y) ((y) & 0x7FFF) 137 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN) 138 139 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */ 140 141 /* 142 * Mbuf adjust factor to force 32-bit alignment of IP header. 143 * Drivers should pad ETHER_ALIGN bytes when setting up a 144 * RX mbuf so the upper layers get the IP header properly aligned 145 * past the 14-byte Ethernet header. 146 * 147 * See also comment in vge_encap(). 148 */ 149 #define ETHER_ALIGN 2 150 151 #ifdef __NO_STRICT_ALIGNMENT 152 #define VGE_RX_BUFSIZE MCLBYTES 153 #else 154 #define VGE_RX_PAD sizeof(uint32_t) 155 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD) 156 #endif 157 158 /* 159 * Control structures are DMA'd to the vge chip. We allocate them in 160 * a single clump that maps to a single DMA segment to make several things 161 * easier. 162 */ 163 struct vge_control_data { 164 /* TX descriptors */ 165 struct vge_txdesc vcd_txdescs[VGE_NTXDESC]; 166 /* RX descriptors */ 167 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC]; 168 /* dummy data for TX padding */ 169 uint8_t vcd_pad[ETHER_PAD_LEN]; 170 }; 171 172 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x) 173 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)]) 174 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)]) 175 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0]) 176 177 /* 178 * Software state for TX jobs. 179 */ 180 struct vge_txsoft { 181 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 182 bus_dmamap_t txs_dmamap; /* our DMA map */ 183 }; 184 185 /* 186 * Software state for RX jobs. 187 */ 188 struct vge_rxsoft { 189 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 190 bus_dmamap_t rxs_dmamap; /* our DMA map */ 191 }; 192 193 194 struct vge_softc { 195 struct device sc_dev; 196 197 bus_space_tag_t sc_bst; /* bus space tag */ 198 bus_space_handle_t sc_bsh; /* bus space handle */ 199 bus_dma_tag_t sc_dmat; 200 201 struct ethercom sc_ethercom; /* interface info */ 202 uint8_t sc_eaddr[ETHER_ADDR_LEN]; 203 204 void *sc_intrhand; 205 struct mii_data sc_mii; 206 uint8_t sc_type; 207 int sc_if_flags; 208 int sc_link; 209 int sc_camidx; 210 callout_t sc_timeout; 211 212 bus_dmamap_t sc_cddmamap; 213 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 214 215 struct vge_txsoft sc_txsoft[VGE_NTXDESC]; 216 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC]; 217 struct vge_control_data *sc_control_data; 218 #define sc_txdescs sc_control_data->vcd_txdescs 219 #define sc_rxdescs sc_control_data->vcd_rxdescs 220 221 int sc_tx_prodidx; 222 int sc_tx_considx; 223 int sc_tx_free; 224 225 struct mbuf *sc_rx_mhead; 226 struct mbuf *sc_rx_mtail; 227 int sc_rx_prodidx; 228 int sc_rx_consumed; 229 230 int sc_suspended; /* 0 = normal 1 = suspended */ 231 uint32_t sc_saved_maps[5]; /* pci data */ 232 uint32_t sc_saved_biosaddr; 233 uint8_t sc_saved_intline; 234 uint8_t sc_saved_cachelnsz; 235 uint8_t sc_saved_lattimer; 236 }; 237 238 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x)) 239 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x)) 240 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF()) 241 242 #define VGE_TXDESCSYNC(sc, idx, ops) \ 243 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \ 244 VGE_CDTXOFF(idx), \ 245 offsetof(struct vge_txdesc, td_frag[0]), \ 246 (ops)) 247 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \ 248 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 249 VGE_CDTXOFF(idx) + \ 250 offsetof(struct vge_txdesc, td_frag[0]), \ 251 sizeof(struct vge_txfrag) * (nsegs), \ 252 (ops)) 253 #define VGE_RXDESCSYNC(sc, idx, ops) \ 254 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 255 VGE_CDRXOFF(idx), \ 256 sizeof(struct vge_rxdesc), \ 257 (ops)) 258 259 /* 260 * register space access macros 261 */ 262 #define CSR_WRITE_4(sc, reg, val) \ 263 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 264 #define CSR_WRITE_2(sc, reg, val) \ 265 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 266 #define CSR_WRITE_1(sc, reg, val) \ 267 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 268 269 #define CSR_READ_4(sc, reg) \ 270 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) 271 #define CSR_READ_2(sc, reg) \ 272 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg)) 273 #define CSR_READ_1(sc, reg) \ 274 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg)) 275 276 #define CSR_SETBIT_1(sc, reg, x) \ 277 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x)) 278 #define CSR_SETBIT_2(sc, reg, x) \ 279 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x)) 280 #define CSR_SETBIT_4(sc, reg, x) \ 281 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x)) 282 283 #define CSR_CLRBIT_1(sc, reg, x) \ 284 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x)) 285 #define CSR_CLRBIT_2(sc, reg, x) \ 286 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x)) 287 #define CSR_CLRBIT_4(sc, reg, x) \ 288 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x)) 289 290 #define VGE_TIMEOUT 10000 291 292 #define VGE_PCI_LOIO 0x10 293 #define VGE_PCI_LOMEM 0x14 294 295 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t); 296 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t); 297 298 static int vge_match(struct device *, struct cfdata *, void *); 299 static void vge_attach(struct device *, struct device *, void *); 300 301 static int vge_encap(struct vge_softc *, struct mbuf *, int); 302 303 static int vge_allocmem(struct vge_softc *); 304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *); 305 #ifndef __NO_STRICT_ALIGNMENT 306 static inline void vge_fixup_rx(struct mbuf *); 307 #endif 308 static void vge_rxeof(struct vge_softc *); 309 static void vge_txeof(struct vge_softc *); 310 static int vge_intr(void *); 311 static void vge_tick(void *); 312 static void vge_start(struct ifnet *); 313 static int vge_ioctl(struct ifnet *, u_long, void *); 314 static int vge_init(struct ifnet *); 315 static void vge_stop(struct vge_softc *); 316 static void vge_watchdog(struct ifnet *); 317 #if VGE_POWER_MANAGEMENT 318 static int vge_suspend(struct device *); 319 static int vge_resume(struct device *); 320 #endif 321 static void vge_shutdown(void *); 322 static int vge_ifmedia_upd(struct ifnet *); 323 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 324 325 static uint16_t vge_read_eeprom(struct vge_softc *, int); 326 327 static void vge_miipoll_start(struct vge_softc *); 328 static void vge_miipoll_stop(struct vge_softc *); 329 static int vge_miibus_readreg(struct device *, int, int); 330 static void vge_miibus_writereg(struct device *, int, int, int); 331 static void vge_miibus_statchg(struct device *); 332 333 static void vge_cam_clear(struct vge_softc *); 334 static int vge_cam_set(struct vge_softc *, uint8_t *); 335 static void vge_setmulti(struct vge_softc *); 336 static void vge_reset(struct vge_softc *); 337 338 CFATTACH_DECL(vge, sizeof(struct vge_softc), 339 vge_match, vge_attach, NULL, NULL); 340 341 static inline void 342 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr) 343 { 344 345 f->tf_addrlo = htole32((uint32_t)daddr); 346 if (sizeof(bus_addr_t) == sizeof(uint64_t)) 347 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF); 348 else 349 f->tf_addrhi = 0; 350 } 351 352 static inline void 353 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr) 354 { 355 356 rxd->rd_addrlo = htole32((uint32_t)daddr); 357 if (sizeof(bus_addr_t) == sizeof(uint64_t)) 358 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF); 359 else 360 rxd->rd_addrhi = 0; 361 } 362 363 /* 364 * Defragment mbuf chain contents to be as linear as possible. 365 * Returns new mbuf chain on success, NULL on failure. Old mbuf 366 * chain is always freed. 367 * XXX temporary until there would be generic function doing this. 368 */ 369 #define m_defrag vge_m_defrag 370 struct mbuf * vge_m_defrag(struct mbuf *, int); 371 372 struct mbuf * 373 vge_m_defrag(struct mbuf *mold, int flags) 374 { 375 struct mbuf *m0, *mn, *n; 376 size_t sz = mold->m_pkthdr.len; 377 378 #ifdef DIAGNOSTIC 379 if ((mold->m_flags & M_PKTHDR) == 0) 380 panic("m_defrag: not a mbuf chain header"); 381 #endif 382 383 MGETHDR(m0, flags, MT_DATA); 384 if (m0 == NULL) 385 return NULL; 386 m0->m_pkthdr.len = mold->m_pkthdr.len; 387 mn = m0; 388 389 do { 390 if (sz > MHLEN) { 391 MCLGET(mn, M_DONTWAIT); 392 if ((mn->m_flags & M_EXT) == 0) { 393 m_freem(m0); 394 return NULL; 395 } 396 } 397 398 mn->m_len = MIN(sz, MCLBYTES); 399 400 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len, 401 mtod(mn, void *)); 402 403 sz -= mn->m_len; 404 405 if (sz > 0) { 406 /* need more mbufs */ 407 MGET(n, M_NOWAIT, MT_DATA); 408 if (n == NULL) { 409 m_freem(m0); 410 return NULL; 411 } 412 413 mn->m_next = n; 414 mn = n; 415 } 416 } while (sz > 0); 417 418 return m0; 419 } 420 421 /* 422 * Read a word of data stored in the EEPROM at address 'addr.' 423 */ 424 static uint16_t 425 vge_read_eeprom(struct vge_softc *sc, int addr) 426 { 427 int i; 428 uint16_t word = 0; 429 430 /* 431 * Enter EEPROM embedded programming mode. In order to 432 * access the EEPROM at all, we first have to set the 433 * EELOAD bit in the CHIPCFG2 register. 434 */ 435 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 436 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 437 438 /* Select the address of the word we want to read */ 439 CSR_WRITE_1(sc, VGE_EEADDR, addr); 440 441 /* Issue read command */ 442 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); 443 444 /* Wait for the done bit to be set. */ 445 for (i = 0; i < VGE_TIMEOUT; i++) { 446 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) 447 break; 448 } 449 450 if (i == VGE_TIMEOUT) { 451 aprint_error("%s: EEPROM read timed out\n", 452 sc->sc_dev.dv_xname); 453 return 0; 454 } 455 456 /* Read the result */ 457 word = CSR_READ_2(sc, VGE_EERDDAT); 458 459 /* Turn off EEPROM access mode. */ 460 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 461 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 462 463 return word; 464 } 465 466 static void 467 vge_miipoll_stop(struct vge_softc *sc) 468 { 469 int i; 470 471 CSR_WRITE_1(sc, VGE_MIICMD, 0); 472 473 for (i = 0; i < VGE_TIMEOUT; i++) { 474 DELAY(1); 475 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 476 break; 477 } 478 479 if (i == VGE_TIMEOUT) { 480 aprint_error("%s: failed to idle MII autopoll\n", 481 sc->sc_dev.dv_xname); 482 } 483 } 484 485 static void 486 vge_miipoll_start(struct vge_softc *sc) 487 { 488 int i; 489 490 /* First, make sure we're idle. */ 491 492 CSR_WRITE_1(sc, VGE_MIICMD, 0); 493 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); 494 495 for (i = 0; i < VGE_TIMEOUT; i++) { 496 DELAY(1); 497 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 498 break; 499 } 500 501 if (i == VGE_TIMEOUT) { 502 aprint_error("%s: failed to idle MII autopoll\n", 503 sc->sc_dev.dv_xname); 504 return; 505 } 506 507 /* Now enable auto poll mode. */ 508 509 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); 510 511 /* And make sure it started. */ 512 513 for (i = 0; i < VGE_TIMEOUT; i++) { 514 DELAY(1); 515 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) 516 break; 517 } 518 519 if (i == VGE_TIMEOUT) { 520 aprint_error("%s: failed to start MII autopoll\n", 521 sc->sc_dev.dv_xname); 522 } 523 } 524 525 static int 526 vge_miibus_readreg(struct device *dev, int phy, int reg) 527 { 528 struct vge_softc *sc; 529 int i, s; 530 uint16_t rval; 531 532 sc = (void *)dev; 533 rval = 0; 534 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 535 return 0; 536 537 s = splnet(); 538 vge_miipoll_stop(sc); 539 540 /* Specify the register we want to read. */ 541 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 542 543 /* Issue read command. */ 544 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); 545 546 /* Wait for the read command bit to self-clear. */ 547 for (i = 0; i < VGE_TIMEOUT; i++) { 548 DELAY(1); 549 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) 550 break; 551 } 552 553 if (i == VGE_TIMEOUT) 554 aprint_error("%s: MII read timed out\n", sc->sc_dev.dv_xname); 555 else 556 rval = CSR_READ_2(sc, VGE_MIIDATA); 557 558 vge_miipoll_start(sc); 559 splx(s); 560 561 return rval; 562 } 563 564 static void 565 vge_miibus_writereg(struct device *dev, int phy, int reg, int data) 566 { 567 struct vge_softc *sc; 568 int i, s; 569 570 sc = (void *)dev; 571 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 572 return; 573 574 s = splnet(); 575 vge_miipoll_stop(sc); 576 577 /* Specify the register we want to write. */ 578 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 579 580 /* Specify the data we want to write. */ 581 CSR_WRITE_2(sc, VGE_MIIDATA, data); 582 583 /* Issue write command. */ 584 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); 585 586 /* Wait for the write command bit to self-clear. */ 587 for (i = 0; i < VGE_TIMEOUT; i++) { 588 DELAY(1); 589 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) 590 break; 591 } 592 593 if (i == VGE_TIMEOUT) { 594 aprint_error("%s: MII write timed out\n", sc->sc_dev.dv_xname); 595 } 596 597 vge_miipoll_start(sc); 598 splx(s); 599 } 600 601 static void 602 vge_cam_clear(struct vge_softc *sc) 603 { 604 int i; 605 606 /* 607 * Turn off all the mask bits. This tells the chip 608 * that none of the entries in the CAM filter are valid. 609 * desired entries will be enabled as we fill the filter in. 610 */ 611 612 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 613 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 614 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); 615 for (i = 0; i < 8; i++) 616 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 617 618 /* Clear the VLAN filter too. */ 619 620 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); 621 for (i = 0; i < 8; i++) 622 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 623 624 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 625 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 626 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 627 628 sc->sc_camidx = 0; 629 } 630 631 static int 632 vge_cam_set(struct vge_softc *sc, uint8_t *addr) 633 { 634 int i, error; 635 636 error = 0; 637 638 if (sc->sc_camidx == VGE_CAM_MAXADDRS) 639 return ENOSPC; 640 641 /* Select the CAM data page. */ 642 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 643 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); 644 645 /* Set the filter entry we want to update and enable writing. */ 646 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx); 647 648 /* Write the address to the CAM registers */ 649 for (i = 0; i < ETHER_ADDR_LEN; i++) 650 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); 651 652 /* Issue a write command. */ 653 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); 654 655 /* Wake for it to clear. */ 656 for (i = 0; i < VGE_TIMEOUT; i++) { 657 DELAY(1); 658 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) 659 break; 660 } 661 662 if (i == VGE_TIMEOUT) { 663 aprint_error("%s: setting CAM filter failed\n", 664 sc->sc_dev.dv_xname); 665 error = EIO; 666 goto fail; 667 } 668 669 /* Select the CAM mask page. */ 670 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 671 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 672 673 /* Set the mask bit that enables this filter. */ 674 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8), 675 1 << (sc->sc_camidx & 7)); 676 677 sc->sc_camidx++; 678 679 fail: 680 /* Turn off access to CAM. */ 681 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 682 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 683 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 684 685 return error; 686 } 687 688 /* 689 * Program the multicast filter. We use the 64-entry CAM filter 690 * for perfect filtering. If there's more than 64 multicast addresses, 691 * we use the hash filter instead. 692 */ 693 static void 694 vge_setmulti(struct vge_softc *sc) 695 { 696 struct ifnet *ifp; 697 int error; 698 uint32_t h, hashes[2] = { 0, 0 }; 699 struct ether_multi *enm; 700 struct ether_multistep step; 701 702 error = 0; 703 ifp = &sc->sc_ethercom.ec_if; 704 705 /* First, zot all the multicast entries. */ 706 vge_cam_clear(sc); 707 CSR_WRITE_4(sc, VGE_MAR0, 0); 708 CSR_WRITE_4(sc, VGE_MAR1, 0); 709 ifp->if_flags &= ~IFF_ALLMULTI; 710 711 /* 712 * If the user wants allmulti or promisc mode, enable reception 713 * of all multicast frames. 714 */ 715 if (ifp->if_flags & IFF_PROMISC) { 716 allmulti: 717 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); 718 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); 719 ifp->if_flags |= IFF_ALLMULTI; 720 return; 721 } 722 723 /* Now program new ones */ 724 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm); 725 while (enm != NULL) { 726 /* 727 * If multicast range, fall back to ALLMULTI. 728 */ 729 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 730 ETHER_ADDR_LEN) != 0) 731 goto allmulti; 732 733 error = vge_cam_set(sc, enm->enm_addrlo); 734 if (error) 735 break; 736 737 ETHER_NEXT_MULTI(step, enm); 738 } 739 740 /* If there were too many addresses, use the hash filter. */ 741 if (error) { 742 vge_cam_clear(sc); 743 744 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm); 745 while (enm != NULL) { 746 /* 747 * If multicast range, fall back to ALLMULTI. 748 */ 749 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 750 ETHER_ADDR_LEN) != 0) 751 goto allmulti; 752 753 h = ether_crc32_be(enm->enm_addrlo, 754 ETHER_ADDR_LEN) >> 26; 755 hashes[h >> 5] |= 1 << (h & 0x1f); 756 757 ETHER_NEXT_MULTI(step, enm); 758 } 759 760 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); 761 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); 762 } 763 } 764 765 static void 766 vge_reset(struct vge_softc *sc) 767 { 768 int i; 769 770 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); 771 772 for (i = 0; i < VGE_TIMEOUT; i++) { 773 DELAY(5); 774 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) 775 break; 776 } 777 778 if (i == VGE_TIMEOUT) { 779 aprint_error("%s: soft reset timed out", sc->sc_dev.dv_xname); 780 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); 781 DELAY(2000); 782 } 783 784 DELAY(5000); 785 786 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); 787 788 for (i = 0; i < VGE_TIMEOUT; i++) { 789 DELAY(5); 790 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) 791 break; 792 } 793 794 if (i == VGE_TIMEOUT) { 795 aprint_error("%s: EEPROM reload timed out\n", 796 sc->sc_dev.dv_xname); 797 return; 798 } 799 800 /* 801 * On some machine, the first read data from EEPROM could be 802 * messed up, so read one dummy data here to avoid the mess. 803 */ 804 (void)vge_read_eeprom(sc, 0); 805 806 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); 807 } 808 809 /* 810 * Probe for a VIA gigabit chip. Check the PCI vendor and device 811 * IDs against our list and return a device name if we find a match. 812 */ 813 static int 814 vge_match(struct device *parent, struct cfdata *match, void *aux) 815 { 816 struct pci_attach_args *pa = aux; 817 818 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH 819 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X) 820 return 1; 821 822 return 0; 823 } 824 825 static int 826 vge_allocmem(struct vge_softc *sc) 827 { 828 int error; 829 int nseg; 830 int i; 831 bus_dma_segment_t seg; 832 833 /* 834 * Allocate memory for control data. 835 */ 836 837 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data), 838 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT); 839 if (error) { 840 aprint_error("%s: could not allocate control data dma memory\n", 841 sc->sc_dev.dv_xname); 842 goto fail_1; 843 } 844 845 /* Map the memory to kernel VA space */ 846 847 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg, 848 sizeof(struct vge_control_data), (void **)&sc->sc_control_data, 849 BUS_DMA_NOWAIT); 850 if (error) { 851 aprint_error("%s: could not map control data dma memory\n", 852 sc->sc_dev.dv_xname); 853 goto fail_2; 854 } 855 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data)); 856 857 /* 858 * Create map for control data. 859 */ 860 error = bus_dmamap_create(sc->sc_dmat, 861 sizeof(struct vge_control_data), 1, 862 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT, 863 &sc->sc_cddmamap); 864 if (error) { 865 aprint_error("%s: could not create control data dmamap\n", 866 sc->sc_dev.dv_xname); 867 goto fail_3; 868 } 869 870 /* Load the map for the control data. */ 871 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 872 sc->sc_control_data, sizeof(struct vge_control_data), NULL, 873 BUS_DMA_NOWAIT); 874 if (error) { 875 aprint_error("%s: could not load control data dma memory\n", 876 sc->sc_dev.dv_xname); 877 goto fail_4; 878 } 879 880 /* Create DMA maps for TX buffers */ 881 882 for (i = 0; i < VGE_NTXDESC; i++) { 883 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN, 884 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT, 885 &sc->sc_txsoft[i].txs_dmamap); 886 if (error) { 887 aprint_error("%s: can't create DMA map for TX descs\n", 888 sc->sc_dev.dv_xname); 889 goto fail_5; 890 } 891 } 892 893 /* Create DMA maps for RX buffers */ 894 895 for (i = 0; i < VGE_NRXDESC; i++) { 896 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 897 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 898 &sc->sc_rxsoft[i].rxs_dmamap); 899 if (error) { 900 aprint_error("%s: can't create DMA map for RX descs\n", 901 sc->sc_dev.dv_xname); 902 goto fail_6; 903 } 904 sc->sc_rxsoft[i].rxs_mbuf = NULL; 905 } 906 907 return 0; 908 909 fail_6: 910 for (i = 0; i < VGE_NRXDESC; i++) { 911 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 912 bus_dmamap_destroy(sc->sc_dmat, 913 sc->sc_rxsoft[i].rxs_dmamap); 914 } 915 fail_5: 916 for (i = 0; i < VGE_NTXDESC; i++) { 917 if (sc->sc_txsoft[i].txs_dmamap != NULL) 918 bus_dmamap_destroy(sc->sc_dmat, 919 sc->sc_txsoft[i].txs_dmamap); 920 } 921 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 922 fail_4: 923 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 924 fail_3: 925 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 926 sizeof(struct vge_control_data)); 927 fail_2: 928 bus_dmamem_free(sc->sc_dmat, &seg, nseg); 929 fail_1: 930 return ENOMEM; 931 } 932 933 /* 934 * Attach the interface. Allocate softc structures, do ifmedia 935 * setup and ethernet/BPF attach. 936 */ 937 static void 938 vge_attach(struct device *parent, struct device *self, void *aux) 939 { 940 uint8_t *eaddr; 941 struct vge_softc *sc = (void *)self; 942 struct ifnet *ifp; 943 struct pci_attach_args *pa = aux; 944 pci_chipset_tag_t pc = pa->pa_pc; 945 const char *intrstr; 946 pci_intr_handle_t ih; 947 uint16_t val; 948 949 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n", 950 PCI_REVISION(pa->pa_class)); 951 952 /* Make sure bus-mastering is enabled */ 953 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 954 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 955 PCI_COMMAND_MASTER_ENABLE); 956 957 /* 958 * Map control/status registers. 959 */ 960 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, 961 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) { 962 aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname); 963 return; 964 } 965 966 /* 967 * Map and establish our interrupt. 968 */ 969 if (pci_intr_map(pa, &ih)) { 970 aprint_error("%s: unable to map interrupt\n", 971 sc->sc_dev.dv_xname); 972 return; 973 } 974 intrstr = pci_intr_string(pc, ih); 975 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc); 976 if (sc->sc_intrhand == NULL) { 977 aprint_error("%s: unable to establish interrupt", 978 sc->sc_dev.dv_xname); 979 if (intrstr != NULL) 980 aprint_error(" at %s", intrstr); 981 aprint_error("\n"); 982 return; 983 } 984 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 985 986 /* Reset the adapter. */ 987 vge_reset(sc); 988 989 /* 990 * Get station address from the EEPROM. 991 */ 992 eaddr = sc->sc_eaddr; 993 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0); 994 eaddr[0] = val & 0xff; 995 eaddr[1] = val >> 8; 996 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1); 997 eaddr[2] = val & 0xff; 998 eaddr[3] = val >> 8; 999 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2); 1000 eaddr[4] = val & 0xff; 1001 eaddr[5] = val >> 8; 1002 1003 aprint_normal("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname, 1004 ether_sprintf(eaddr)); 1005 1006 /* 1007 * Use the 32bit tag. Hardware supports 48bit physical addresses, 1008 * but we don't use that for now. 1009 */ 1010 sc->sc_dmat = pa->pa_dmat; 1011 1012 if (vge_allocmem(sc) != 0) 1013 return; 1014 1015 ifp = &sc->sc_ethercom.ec_if; 1016 ifp->if_softc = sc; 1017 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 1018 ifp->if_mtu = ETHERMTU; 1019 ifp->if_baudrate = IF_Gbps(1); 1020 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1021 ifp->if_ioctl = vge_ioctl; 1022 ifp->if_start = vge_start; 1023 1024 /* 1025 * We can support 802.1Q VLAN-sized frames and jumbo 1026 * Ethernet frames. 1027 */ 1028 sc->sc_ethercom.ec_capabilities |= 1029 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU | 1030 ETHERCAP_VLAN_HWTAGGING; 1031 1032 /* 1033 * We can do IPv4/TCPv4/UDPv4 checksums in hardware. 1034 */ 1035 ifp->if_capabilities |= 1036 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1037 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1038 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 1039 1040 #ifdef DEVICE_POLLING 1041 #ifdef IFCAP_POLLING 1042 ifp->if_capabilities |= IFCAP_POLLING; 1043 #endif 1044 #endif 1045 ifp->if_watchdog = vge_watchdog; 1046 ifp->if_init = vge_init; 1047 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN)); 1048 1049 /* 1050 * Initialize our media structures and probe the MII. 1051 */ 1052 sc->sc_mii.mii_ifp = ifp; 1053 sc->sc_mii.mii_readreg = vge_miibus_readreg; 1054 sc->sc_mii.mii_writereg = vge_miibus_writereg; 1055 sc->sc_mii.mii_statchg = vge_miibus_statchg; 1056 ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd, 1057 vge_ifmedia_sts); 1058 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1059 MII_OFFSET_ANY, MIIF_DOPAUSE); 1060 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 1061 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 1062 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 1063 } else 1064 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 1065 1066 /* 1067 * Attach the interface. 1068 */ 1069 if_attach(ifp); 1070 ether_ifattach(ifp, eaddr); 1071 1072 callout_init(&sc->sc_timeout, 0); 1073 callout_setfunc(&sc->sc_timeout, vge_tick, sc); 1074 1075 /* 1076 * Make sure the interface is shutdown during reboot. 1077 */ 1078 if (shutdownhook_establish(vge_shutdown, sc) == NULL) { 1079 aprint_error("%s: WARNING: unable to establish shutdown hook\n", 1080 sc->sc_dev.dv_xname); 1081 } 1082 } 1083 1084 static int 1085 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m) 1086 { 1087 struct mbuf *m_new; 1088 struct vge_rxdesc *rxd; 1089 struct vge_rxsoft *rxs; 1090 bus_dmamap_t map; 1091 int i; 1092 #ifdef DIAGNOSTIC 1093 uint32_t rd_sts; 1094 #endif 1095 1096 m_new = NULL; 1097 if (m == NULL) { 1098 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1099 if (m_new == NULL) 1100 return ENOBUFS; 1101 1102 MCLGET(m_new, M_DONTWAIT); 1103 if ((m_new->m_flags & M_EXT) == 0) { 1104 m_freem(m_new); 1105 return ENOBUFS; 1106 } 1107 1108 m = m_new; 1109 } else 1110 m->m_data = m->m_ext.ext_buf; 1111 1112 1113 /* 1114 * This is part of an evil trick to deal with non-x86 platforms. 1115 * The VIA chip requires RX buffers to be aligned on 32-bit 1116 * boundaries, but that will hose non-x86 machines. To get around 1117 * this, we leave some empty space at the start of each buffer 1118 * and for non-x86 hosts, we copy the buffer back two bytes 1119 * to achieve word alignment. This is slightly more efficient 1120 * than allocating a new buffer, copying the contents, and 1121 * discarding the old buffer. 1122 */ 1123 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE; 1124 #ifndef __NO_STRICT_ALIGNMENT 1125 m->m_data += VGE_RX_PAD; 1126 #endif 1127 rxs = &sc->sc_rxsoft[idx]; 1128 map = rxs->rxs_dmamap; 1129 1130 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0) 1131 goto out; 1132 1133 rxd = &sc->sc_rxdescs[idx]; 1134 1135 #ifdef DIAGNOSTIC 1136 /* If this descriptor is still owned by the chip, bail. */ 1137 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1138 rd_sts = le32toh(rxd->rd_sts); 1139 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); 1140 if (rd_sts & VGE_RDSTS_OWN) { 1141 panic("%s: tried to map busy RX descriptor", 1142 sc->sc_dev.dv_xname); 1143 } 1144 #endif 1145 1146 rxs->rxs_mbuf = m; 1147 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1148 BUS_DMASYNC_PREREAD); 1149 1150 rxd->rd_buflen = 1151 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I); 1152 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr); 1153 rxd->rd_sts = 0; 1154 rxd->rd_ctl = 0; 1155 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1156 1157 /* 1158 * Note: the manual fails to document the fact that for 1159 * proper opration, the driver needs to replentish the RX 1160 * DMA ring 4 descriptors at a time (rather than one at a 1161 * time, like most chips). We can allocate the new buffers 1162 * but we should not set the OWN bits until we're ready 1163 * to hand back 4 of them in one shot. 1164 */ 1165 1166 #define VGE_RXCHUNK 4 1167 sc->sc_rx_consumed++; 1168 if (sc->sc_rx_consumed == VGE_RXCHUNK) { 1169 for (i = idx; i != idx - VGE_RXCHUNK; i--) { 1170 KASSERT(i >= 0); 1171 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN); 1172 VGE_RXDESCSYNC(sc, i, 1173 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1174 } 1175 sc->sc_rx_consumed = 0; 1176 } 1177 1178 return 0; 1179 out: 1180 if (m_new != NULL) 1181 m_freem(m_new); 1182 return ENOMEM; 1183 } 1184 1185 #ifndef __NO_STRICT_ALIGNMENT 1186 static inline void 1187 vge_fixup_rx(struct mbuf *m) 1188 { 1189 int i; 1190 uint16_t *src, *dst; 1191 1192 src = mtod(m, uint16_t *); 1193 dst = src - 1; 1194 1195 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1196 *dst++ = *src++; 1197 1198 m->m_data -= ETHER_ALIGN; 1199 } 1200 #endif 1201 1202 /* 1203 * RX handler. We support the reception of jumbo frames that have 1204 * been fragmented across multiple 2K mbuf cluster buffers. 1205 */ 1206 static void 1207 vge_rxeof(struct vge_softc *sc) 1208 { 1209 struct mbuf *m; 1210 struct ifnet *ifp; 1211 int idx, total_len, lim; 1212 struct vge_rxdesc *cur_rxd; 1213 struct vge_rxsoft *rxs; 1214 uint32_t rxstat, rxctl; 1215 1216 ifp = &sc->sc_ethercom.ec_if; 1217 lim = 0; 1218 1219 /* Invalidate the descriptor memory */ 1220 1221 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) { 1222 cur_rxd = &sc->sc_rxdescs[idx]; 1223 1224 VGE_RXDESCSYNC(sc, idx, 1225 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1226 rxstat = le32toh(cur_rxd->rd_sts); 1227 if ((rxstat & VGE_RDSTS_OWN) != 0) { 1228 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); 1229 break; 1230 } 1231 1232 rxctl = le32toh(cur_rxd->rd_ctl); 1233 rxs = &sc->sc_rxsoft[idx]; 1234 m = rxs->rxs_mbuf; 1235 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16; 1236 1237 /* Invalidate the RX mbuf and unload its map */ 1238 1239 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 1240 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1241 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1242 1243 /* 1244 * If the 'start of frame' bit is set, this indicates 1245 * either the first fragment in a multi-fragment receive, 1246 * or an intermediate fragment. Either way, we want to 1247 * accumulate the buffers. 1248 */ 1249 if (rxstat & VGE_RXPKT_SOF) { 1250 m->m_len = VGE_RX_BUFSIZE; 1251 if (sc->sc_rx_mhead == NULL) 1252 sc->sc_rx_mhead = sc->sc_rx_mtail = m; 1253 else { 1254 m->m_flags &= ~M_PKTHDR; 1255 sc->sc_rx_mtail->m_next = m; 1256 sc->sc_rx_mtail = m; 1257 } 1258 vge_newbuf(sc, idx, NULL); 1259 continue; 1260 } 1261 1262 /* 1263 * Bad/error frames will have the RXOK bit cleared. 1264 * However, there's one error case we want to allow: 1265 * if a VLAN tagged frame arrives and the chip can't 1266 * match it against the CAM filter, it considers this 1267 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. 1268 * We don't want to drop the frame though: our VLAN 1269 * filtering is done in software. 1270 */ 1271 if ((rxstat & VGE_RDSTS_RXOK) == 0 && 1272 (rxstat & VGE_RDSTS_VIDM) == 0 && 1273 (rxstat & VGE_RDSTS_CSUMERR) == 0) { 1274 ifp->if_ierrors++; 1275 /* 1276 * If this is part of a multi-fragment packet, 1277 * discard all the pieces. 1278 */ 1279 if (sc->sc_rx_mhead != NULL) { 1280 m_freem(sc->sc_rx_mhead); 1281 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; 1282 } 1283 vge_newbuf(sc, idx, m); 1284 continue; 1285 } 1286 1287 /* 1288 * If allocating a replacement mbuf fails, 1289 * reload the current one. 1290 */ 1291 1292 if (vge_newbuf(sc, idx, NULL)) { 1293 ifp->if_ierrors++; 1294 if (sc->sc_rx_mhead != NULL) { 1295 m_freem(sc->sc_rx_mhead); 1296 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; 1297 } 1298 vge_newbuf(sc, idx, m); 1299 continue; 1300 } 1301 1302 if (sc->sc_rx_mhead != NULL) { 1303 m->m_len = total_len % VGE_RX_BUFSIZE; 1304 /* 1305 * Special case: if there's 4 bytes or less 1306 * in this buffer, the mbuf can be discarded: 1307 * the last 4 bytes is the CRC, which we don't 1308 * care about anyway. 1309 */ 1310 if (m->m_len <= ETHER_CRC_LEN) { 1311 sc->sc_rx_mtail->m_len -= 1312 (ETHER_CRC_LEN - m->m_len); 1313 m_freem(m); 1314 } else { 1315 m->m_len -= ETHER_CRC_LEN; 1316 m->m_flags &= ~M_PKTHDR; 1317 sc->sc_rx_mtail->m_next = m; 1318 } 1319 m = sc->sc_rx_mhead; 1320 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; 1321 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1322 } else 1323 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN; 1324 1325 #ifndef __NO_STRICT_ALIGNMENT 1326 vge_fixup_rx(m); 1327 #endif 1328 ifp->if_ipackets++; 1329 m->m_pkthdr.rcvif = ifp; 1330 1331 /* Do RX checksumming if enabled */ 1332 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) { 1333 1334 /* Check IP header checksum */ 1335 if (rxctl & VGE_RDCTL_IPPKT) 1336 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1337 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0) 1338 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1339 } 1340 1341 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) { 1342 /* Check UDP checksum */ 1343 if (rxctl & VGE_RDCTL_TCPPKT) 1344 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1345 1346 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0) 1347 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; 1348 } 1349 1350 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) { 1351 /* Check UDP checksum */ 1352 if (rxctl & VGE_RDCTL_UDPPKT) 1353 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1354 1355 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0) 1356 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; 1357 } 1358 1359 if (rxstat & VGE_RDSTS_VTAG) { 1360 /* 1361 * We use bswap16() here because: 1362 * On LE machines, tag is stored in BE as stream data. 1363 * On BE machines, tag is stored in BE as stream data 1364 * but it was already swapped by le32toh() above. 1365 */ 1366 VLAN_INPUT_TAG(ifp, m, 1367 bswap16(rxctl & VGE_RDCTL_VLANID), continue); 1368 } 1369 1370 #if NBPFILTER > 0 1371 /* 1372 * Handle BPF listeners. 1373 */ 1374 if (ifp->if_bpf) 1375 bpf_mtap(ifp->if_bpf, m); 1376 #endif 1377 1378 (*ifp->if_input)(ifp, m); 1379 1380 lim++; 1381 if (lim == VGE_NRXDESC) 1382 break; 1383 } 1384 1385 sc->sc_rx_prodidx = idx; 1386 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); 1387 } 1388 1389 static void 1390 vge_txeof(struct vge_softc *sc) 1391 { 1392 struct ifnet *ifp; 1393 struct vge_txsoft *txs; 1394 uint32_t txstat; 1395 int idx; 1396 1397 ifp = &sc->sc_ethercom.ec_if; 1398 1399 for (idx = sc->sc_tx_considx; 1400 sc->sc_tx_free < VGE_NTXDESC; 1401 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) { 1402 VGE_TXDESCSYNC(sc, idx, 1403 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1404 txstat = le32toh(sc->sc_txdescs[idx].td_sts); 1405 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); 1406 if (txstat & VGE_TDSTS_OWN) { 1407 break; 1408 } 1409 1410 txs = &sc->sc_txsoft[idx]; 1411 m_freem(txs->txs_mbuf); 1412 txs->txs_mbuf = NULL; 1413 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, 1414 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1415 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1416 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) 1417 ifp->if_collisions++; 1418 if (txstat & VGE_TDSTS_TXERR) 1419 ifp->if_oerrors++; 1420 else 1421 ifp->if_opackets++; 1422 } 1423 1424 sc->sc_tx_considx = idx; 1425 1426 if (sc->sc_tx_free > 0) { 1427 ifp->if_flags &= ~IFF_OACTIVE; 1428 } 1429 1430 /* 1431 * If not all descriptors have been released reaped yet, 1432 * reload the timer so that we will eventually get another 1433 * interrupt that will cause us to re-enter this routine. 1434 * This is done in case the transmitter has gone idle. 1435 */ 1436 if (sc->sc_tx_free < VGE_NTXDESC) 1437 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1438 else 1439 ifp->if_timer = 0; 1440 } 1441 1442 static void 1443 vge_tick(void *xsc) 1444 { 1445 struct vge_softc *sc; 1446 struct ifnet *ifp; 1447 struct mii_data *mii; 1448 int s; 1449 1450 sc = xsc; 1451 ifp = &sc->sc_ethercom.ec_if; 1452 mii = &sc->sc_mii; 1453 1454 s = splnet(); 1455 1456 callout_schedule(&sc->sc_timeout, hz); 1457 1458 mii_tick(mii); 1459 if (sc->sc_link) { 1460 if ((mii->mii_media_status & IFM_ACTIVE) == 0) 1461 sc->sc_link = 0; 1462 } else { 1463 if (mii->mii_media_status & IFM_ACTIVE && 1464 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1465 sc->sc_link = 1; 1466 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 1467 vge_start(ifp); 1468 } 1469 } 1470 1471 splx(s); 1472 } 1473 1474 static int 1475 vge_intr(void *arg) 1476 { 1477 struct vge_softc *sc; 1478 struct ifnet *ifp; 1479 uint32_t status; 1480 int claim; 1481 1482 sc = arg; 1483 claim = 0; 1484 if (sc->sc_suspended) { 1485 return claim; 1486 } 1487 1488 ifp = &sc->sc_ethercom.ec_if; 1489 1490 if ((ifp->if_flags & IFF_UP) == 0) { 1491 return claim; 1492 } 1493 1494 /* Disable interrupts */ 1495 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 1496 1497 for (;;) { 1498 1499 status = CSR_READ_4(sc, VGE_ISR); 1500 /* If the card has gone away the read returns 0xffff. */ 1501 if (status == 0xFFFFFFFF) 1502 break; 1503 1504 if (status) { 1505 claim = 1; 1506 CSR_WRITE_4(sc, VGE_ISR, status); 1507 } 1508 1509 if ((status & VGE_INTRS) == 0) 1510 break; 1511 1512 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) 1513 vge_rxeof(sc); 1514 1515 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1516 vge_rxeof(sc); 1517 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1518 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1519 } 1520 1521 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) 1522 vge_txeof(sc); 1523 1524 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) 1525 vge_init(ifp); 1526 1527 if (status & VGE_ISR_LINKSTS) 1528 vge_tick(sc); 1529 } 1530 1531 /* Re-enable interrupts */ 1532 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 1533 1534 if (claim && !IFQ_IS_EMPTY(&ifp->if_snd)) 1535 vge_start(ifp); 1536 1537 return claim; 1538 } 1539 1540 static int 1541 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx) 1542 { 1543 struct vge_txsoft *txs; 1544 struct vge_txdesc *txd; 1545 struct vge_txfrag *f; 1546 struct mbuf *m_new; 1547 bus_dmamap_t map; 1548 int m_csumflags, seg, error, flags; 1549 struct m_tag *mtag; 1550 size_t sz; 1551 uint32_t td_sts, td_ctl; 1552 1553 KASSERT(sc->sc_tx_free > 0); 1554 1555 txd = &sc->sc_txdescs[idx]; 1556 1557 #ifdef DIAGNOSTIC 1558 /* If this descriptor is still owned by the chip, bail. */ 1559 VGE_TXDESCSYNC(sc, idx, 1560 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1561 td_sts = le32toh(txd->td_sts); 1562 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); 1563 if (td_sts & VGE_TDSTS_OWN) { 1564 return ENOBUFS; 1565 } 1566 #endif 1567 1568 /* 1569 * Preserve m_pkthdr.csum_flags here since m_head might be 1570 * updated by m_defrag() 1571 */ 1572 m_csumflags = m_head->m_pkthdr.csum_flags; 1573 1574 txs = &sc->sc_txsoft[idx]; 1575 map = txs->txs_dmamap; 1576 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT); 1577 1578 /* If too many segments to map, coalesce */ 1579 if (error == EFBIG || 1580 (m_head->m_pkthdr.len < ETHER_PAD_LEN && 1581 map->dm_nsegs == VGE_TX_FRAGS)) { 1582 m_new = m_defrag(m_head, M_DONTWAIT); 1583 if (m_new == NULL) 1584 return EFBIG; 1585 1586 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, 1587 m_new, BUS_DMA_NOWAIT); 1588 if (error) { 1589 m_freem(m_new); 1590 return error; 1591 } 1592 1593 m_head = m_new; 1594 } else if (error) 1595 return error; 1596 1597 txs->txs_mbuf = m_head; 1598 1599 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1600 BUS_DMASYNC_PREWRITE); 1601 1602 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) { 1603 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len)); 1604 vge_set_txaddr(f, map->dm_segs[seg].ds_addr); 1605 } 1606 1607 /* Argh. This chip does not autopad short frames */ 1608 sz = m_head->m_pkthdr.len; 1609 if (sz < ETHER_PAD_LEN) { 1610 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz)); 1611 vge_set_txaddr(f, VGE_CDPADADDR(sc)); 1612 sz = ETHER_PAD_LEN; 1613 seg++; 1614 } 1615 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE); 1616 1617 /* 1618 * When telling the chip how many segments there are, we 1619 * must use nsegs + 1 instead of just nsegs. Darned if I 1620 * know why. 1621 */ 1622 seg++; 1623 1624 flags = 0; 1625 if (m_csumflags & M_CSUM_IPv4) 1626 flags |= VGE_TDCTL_IPCSUM; 1627 if (m_csumflags & M_CSUM_TCPv4) 1628 flags |= VGE_TDCTL_TCPCSUM; 1629 if (m_csumflags & M_CSUM_UDPv4) 1630 flags |= VGE_TDCTL_UDPCSUM; 1631 td_sts = sz << 16; 1632 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM; 1633 1634 if (sz > ETHERMTU + ETHER_HDR_LEN) 1635 td_ctl |= VGE_TDCTL_JUMBO; 1636 1637 /* 1638 * Set up hardware VLAN tagging. 1639 */ 1640 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head); 1641 if (mtag != NULL) { 1642 /* 1643 * No need htons() here since vge(4) chip assumes 1644 * that tags are written in little endian and 1645 * we already use htole32() here. 1646 */ 1647 td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG; 1648 } 1649 txd->td_ctl = htole32(td_ctl); 1650 txd->td_sts = htole32(td_sts); 1651 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1652 1653 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts); 1654 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1655 1656 sc->sc_tx_free--; 1657 1658 return 0; 1659 } 1660 1661 /* 1662 * Main transmit routine. 1663 */ 1664 1665 static void 1666 vge_start(struct ifnet *ifp) 1667 { 1668 struct vge_softc *sc; 1669 struct vge_txsoft *txs; 1670 struct mbuf *m_head; 1671 int idx, pidx, ofree, error; 1672 1673 sc = ifp->if_softc; 1674 1675 if (!sc->sc_link || 1676 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) { 1677 return; 1678 } 1679 1680 m_head = NULL; 1681 idx = sc->sc_tx_prodidx; 1682 pidx = VGE_PREV_TXDESC(idx); 1683 ofree = sc->sc_tx_free; 1684 1685 /* 1686 * Loop through the send queue, setting up transmit descriptors 1687 * until we drain the queue, or use up all available transmit 1688 * descriptors. 1689 */ 1690 for (;;) { 1691 /* Grab a packet off the queue. */ 1692 IFQ_POLL(&ifp->if_snd, m_head); 1693 if (m_head == NULL) 1694 break; 1695 1696 if (sc->sc_tx_free == 0) { 1697 /* 1698 * All slots used, stop for now. 1699 */ 1700 ifp->if_flags |= IFF_OACTIVE; 1701 break; 1702 } 1703 1704 txs = &sc->sc_txsoft[idx]; 1705 KASSERT(txs->txs_mbuf == NULL); 1706 1707 if ((error = vge_encap(sc, m_head, idx))) { 1708 if (error == EFBIG) { 1709 aprint_error("%s: Tx packet consumes too many " 1710 "DMA segments, dropping...\n", 1711 sc->sc_dev.dv_xname); 1712 IFQ_DEQUEUE(&ifp->if_snd, m_head); 1713 m_freem(m_head); 1714 continue; 1715 } 1716 1717 /* 1718 * Short on resources, just stop for now. 1719 */ 1720 if (error == ENOBUFS) 1721 ifp->if_flags |= IFF_OACTIVE; 1722 break; 1723 } 1724 1725 IFQ_DEQUEUE(&ifp->if_snd, m_head); 1726 1727 /* 1728 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1729 */ 1730 1731 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |= 1732 htole16(VGE_TXDESC_Q); 1733 VGE_TXFRAGSYNC(sc, pidx, 1, 1734 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1735 1736 if (txs->txs_mbuf != m_head) { 1737 m_freem(m_head); 1738 m_head = txs->txs_mbuf; 1739 } 1740 1741 pidx = idx; 1742 idx = VGE_NEXT_TXDESC(idx); 1743 1744 /* 1745 * If there's a BPF listener, bounce a copy of this frame 1746 * to him. 1747 */ 1748 #if NBPFILTER > 0 1749 if (ifp->if_bpf) 1750 bpf_mtap(ifp->if_bpf, m_head); 1751 #endif 1752 } 1753 1754 if (sc->sc_tx_free < ofree) { 1755 /* TX packet queued */ 1756 1757 sc->sc_tx_prodidx = idx; 1758 1759 /* Issue a transmit command. */ 1760 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); 1761 1762 /* 1763 * Use the countdown timer for interrupt moderation. 1764 * 'TX done' interrupts are disabled. Instead, we reset the 1765 * countdown timer, which will begin counting until it hits 1766 * the value in the SSTIMER register, and then trigger an 1767 * interrupt. Each time we set the TIMER0_ENABLE bit, the 1768 * the timer count is reloaded. Only when the transmitter 1769 * is idle will the timer hit 0 and an interrupt fire. 1770 */ 1771 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1772 1773 /* 1774 * Set a timeout in case the chip goes out to lunch. 1775 */ 1776 ifp->if_timer = 5; 1777 } 1778 } 1779 1780 static int 1781 vge_init(struct ifnet *ifp) 1782 { 1783 struct vge_softc *sc; 1784 int i; 1785 1786 sc = ifp->if_softc; 1787 1788 /* 1789 * Cancel pending I/O and free all RX/TX buffers. 1790 */ 1791 vge_stop(sc); 1792 vge_reset(sc); 1793 1794 /* Initialize the RX descriptors and mbufs. */ 1795 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs)); 1796 sc->sc_rx_consumed = 0; 1797 for (i = 0; i < VGE_NRXDESC; i++) { 1798 if (vge_newbuf(sc, i, NULL) == ENOBUFS) { 1799 aprint_error("%s: unable to allocate or map " 1800 "rx buffer\n", sc->sc_dev.dv_xname); 1801 return 1; /* XXX */ 1802 } 1803 } 1804 sc->sc_rx_prodidx = 0; 1805 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; 1806 1807 /* Initialize the TX descriptors and mbufs. */ 1808 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1809 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 1810 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs), 1811 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1812 for (i = 0; i < VGE_NTXDESC; i++) 1813 sc->sc_txsoft[i].txs_mbuf = NULL; 1814 1815 sc->sc_tx_prodidx = 0; 1816 sc->sc_tx_considx = 0; 1817 sc->sc_tx_free = VGE_NTXDESC; 1818 1819 /* Set our station address */ 1820 for (i = 0; i < ETHER_ADDR_LEN; i++) 1821 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]); 1822 1823 /* 1824 * Set receive FIFO threshold. Also allow transmission and 1825 * reception of VLAN tagged frames. 1826 */ 1827 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); 1828 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2); 1829 1830 /* Set DMA burst length */ 1831 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); 1832 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); 1833 1834 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); 1835 1836 /* Set collision backoff algorithm */ 1837 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| 1838 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); 1839 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); 1840 1841 /* Disable LPSEL field in priority resolution */ 1842 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); 1843 1844 /* 1845 * Load the addresses of the DMA queues into the chip. 1846 * Note that we only use one transmit queue. 1847 */ 1848 1849 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0))); 1850 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1); 1851 1852 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0))); 1853 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1); 1854 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC); 1855 1856 /* Enable and wake up the RX descriptor queue */ 1857 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1858 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1859 1860 /* Enable the TX descriptor queue */ 1861 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); 1862 1863 /* Set up the receive filter -- allow large frames for VLANs. */ 1864 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); 1865 1866 /* If we want promiscuous mode, set the allframes bit. */ 1867 if (ifp->if_flags & IFF_PROMISC) { 1868 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); 1869 } 1870 1871 /* Set capture broadcast bit to capture broadcast frames. */ 1872 if (ifp->if_flags & IFF_BROADCAST) { 1873 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); 1874 } 1875 1876 /* Set multicast bit to capture multicast frames. */ 1877 if (ifp->if_flags & IFF_MULTICAST) { 1878 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); 1879 } 1880 1881 /* Init the cam filter. */ 1882 vge_cam_clear(sc); 1883 1884 /* Init the multicast filter. */ 1885 vge_setmulti(sc); 1886 1887 /* Enable flow control */ 1888 1889 CSR_WRITE_1(sc, VGE_CRS2, 0x8B); 1890 1891 /* Enable jumbo frame reception (if desired) */ 1892 1893 /* Start the MAC. */ 1894 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); 1895 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); 1896 CSR_WRITE_1(sc, VGE_CRS0, 1897 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); 1898 1899 /* 1900 * Configure one-shot timer for microsecond 1901 * resulution and load it for 500 usecs. 1902 */ 1903 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); 1904 CSR_WRITE_2(sc, VGE_SSTIMER, 400); 1905 1906 /* 1907 * Configure interrupt moderation for receive. Enable 1908 * the holdoff counter and load it, and set the RX 1909 * suppression count to the number of descriptors we 1910 * want to allow before triggering an interrupt. 1911 * The holdoff timer is in units of 20 usecs. 1912 */ 1913 1914 #ifdef notyet 1915 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); 1916 /* Select the interrupt holdoff timer page. */ 1917 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 1918 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); 1919 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ 1920 1921 /* Enable use of the holdoff timer. */ 1922 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); 1923 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); 1924 1925 /* Select the RX suppression threshold page. */ 1926 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 1927 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); 1928 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ 1929 1930 /* Restore the page select bits. */ 1931 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 1932 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 1933 #endif 1934 1935 #ifdef DEVICE_POLLING 1936 /* 1937 * Disable interrupts if we are polling. 1938 */ 1939 if (ifp->if_flags & IFF_POLLING) { 1940 CSR_WRITE_4(sc, VGE_IMR, 0); 1941 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 1942 } else /* otherwise ... */ 1943 #endif /* DEVICE_POLLING */ 1944 { 1945 /* 1946 * Enable interrupts. 1947 */ 1948 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 1949 CSR_WRITE_4(sc, VGE_ISR, 0); 1950 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 1951 } 1952 1953 mii_mediachg(&sc->sc_mii); 1954 1955 ifp->if_flags |= IFF_RUNNING; 1956 ifp->if_flags &= ~IFF_OACTIVE; 1957 1958 sc->sc_if_flags = 0; 1959 sc->sc_link = 0; 1960 1961 callout_schedule(&sc->sc_timeout, hz); 1962 1963 return 0; 1964 } 1965 1966 /* 1967 * Set media options. 1968 */ 1969 static int 1970 vge_ifmedia_upd(struct ifnet *ifp) 1971 { 1972 struct vge_softc *sc; 1973 1974 sc = ifp->if_softc; 1975 mii_mediachg(&sc->sc_mii); 1976 1977 return 0; 1978 } 1979 1980 /* 1981 * Report current media status. 1982 */ 1983 static void 1984 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1985 { 1986 struct vge_softc *sc; 1987 struct mii_data *mii; 1988 1989 sc = ifp->if_softc; 1990 mii = &sc->sc_mii; 1991 1992 mii_pollstat(mii); 1993 ifmr->ifm_active = mii->mii_media_active; 1994 ifmr->ifm_status = mii->mii_media_status; 1995 } 1996 1997 static void 1998 vge_miibus_statchg(struct device *self) 1999 { 2000 struct vge_softc *sc; 2001 struct mii_data *mii; 2002 struct ifmedia_entry *ife; 2003 2004 sc = (void *)self; 2005 mii = &sc->sc_mii; 2006 ife = mii->mii_media.ifm_cur; 2007 /* 2008 * If the user manually selects a media mode, we need to turn 2009 * on the forced MAC mode bit in the DIAGCTL register. If the 2010 * user happens to choose a full duplex mode, we also need to 2011 * set the 'force full duplex' bit. This applies only to 2012 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC 2013 * mode is disabled, and in 1000baseT mode, full duplex is 2014 * always implied, so we turn on the forced mode bit but leave 2015 * the FDX bit cleared. 2016 */ 2017 2018 switch (IFM_SUBTYPE(ife->ifm_media)) { 2019 case IFM_AUTO: 2020 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2021 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2022 break; 2023 case IFM_1000_T: 2024 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2025 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2026 break; 2027 case IFM_100_TX: 2028 case IFM_10_T: 2029 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 2030 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { 2031 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2032 } else { 2033 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 2034 } 2035 break; 2036 default: 2037 aprint_error("%s: unknown media type: %x\n", 2038 sc->sc_dev.dv_xname, 2039 IFM_SUBTYPE(ife->ifm_media)); 2040 break; 2041 } 2042 } 2043 2044 static int 2045 vge_ioctl(struct ifnet *ifp, u_long command, void *data) 2046 { 2047 struct vge_softc *sc; 2048 struct ifreq *ifr; 2049 struct mii_data *mii; 2050 int s, error; 2051 2052 sc = ifp->if_softc; 2053 ifr = (struct ifreq *)data; 2054 error = 0; 2055 2056 s = splnet(); 2057 2058 switch (command) { 2059 case SIOCSIFMTU: 2060 if (ifr->ifr_mtu > VGE_JUMBO_MTU) 2061 error = EINVAL; 2062 ifp->if_mtu = ifr->ifr_mtu; 2063 break; 2064 case SIOCSIFFLAGS: 2065 if (ifp->if_flags & IFF_UP) { 2066 if (ifp->if_flags & IFF_RUNNING && 2067 ifp->if_flags & IFF_PROMISC && 2068 (sc->sc_if_flags & IFF_PROMISC) == 0) { 2069 CSR_SETBIT_1(sc, VGE_RXCTL, 2070 VGE_RXCTL_RX_PROMISC); 2071 vge_setmulti(sc); 2072 } else if (ifp->if_flags & IFF_RUNNING && 2073 (ifp->if_flags & IFF_PROMISC) == 0 && 2074 sc->sc_if_flags & IFF_PROMISC) { 2075 CSR_CLRBIT_1(sc, VGE_RXCTL, 2076 VGE_RXCTL_RX_PROMISC); 2077 vge_setmulti(sc); 2078 } else 2079 vge_init(ifp); 2080 } else { 2081 if (ifp->if_flags & IFF_RUNNING) 2082 vge_stop(sc); 2083 } 2084 sc->sc_if_flags = ifp->if_flags; 2085 break; 2086 case SIOCADDMULTI: 2087 case SIOCDELMULTI: 2088 if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) { 2089 /* 2090 * Multicast list has changed; set the hardware filter 2091 * accordingly. 2092 */ 2093 if (ifp->if_flags & IFF_RUNNING) 2094 vge_setmulti(sc); 2095 error = 0; 2096 } 2097 break; 2098 case SIOCGIFMEDIA: 2099 case SIOCSIFMEDIA: 2100 mii = &sc->sc_mii; 2101 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2102 break; 2103 default: 2104 error = ether_ioctl(ifp, command, data); 2105 break; 2106 } 2107 2108 splx(s); 2109 return error; 2110 } 2111 2112 static void 2113 vge_watchdog(struct ifnet *ifp) 2114 { 2115 struct vge_softc *sc; 2116 int s; 2117 2118 sc = ifp->if_softc; 2119 s = splnet(); 2120 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname); 2121 ifp->if_oerrors++; 2122 2123 vge_txeof(sc); 2124 vge_rxeof(sc); 2125 2126 vge_init(ifp); 2127 2128 splx(s); 2129 } 2130 2131 /* 2132 * Stop the adapter and free any mbufs allocated to the 2133 * RX and TX lists. 2134 */ 2135 static void 2136 vge_stop(struct vge_softc *sc) 2137 { 2138 struct ifnet *ifp; 2139 struct vge_txsoft *txs; 2140 struct vge_rxsoft *rxs; 2141 int i, s; 2142 2143 ifp = &sc->sc_ethercom.ec_if; 2144 2145 s = splnet(); 2146 ifp->if_timer = 0; 2147 2148 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2149 #ifdef DEVICE_POLLING 2150 ether_poll_deregister(ifp); 2151 #endif /* DEVICE_POLLING */ 2152 2153 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2154 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); 2155 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2156 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); 2157 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); 2158 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); 2159 2160 if (sc->sc_rx_mhead != NULL) { 2161 m_freem(sc->sc_rx_mhead); 2162 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; 2163 } 2164 2165 /* Free the TX list buffers. */ 2166 2167 for (i = 0; i < VGE_NTXDESC; i++) { 2168 txs = &sc->sc_txsoft[i]; 2169 if (txs->txs_mbuf != NULL) { 2170 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2171 m_freem(txs->txs_mbuf); 2172 txs->txs_mbuf = NULL; 2173 } 2174 } 2175 2176 /* Free the RX list buffers. */ 2177 2178 for (i = 0; i < VGE_NRXDESC; i++) { 2179 rxs = &sc->sc_rxsoft[i]; 2180 if (rxs->rxs_mbuf != NULL) { 2181 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2182 m_freem(rxs->rxs_mbuf); 2183 rxs->rxs_mbuf = NULL; 2184 } 2185 } 2186 2187 splx(s); 2188 } 2189 2190 #if VGE_POWER_MANAGEMENT 2191 /* 2192 * Device suspend routine. Stop the interface and save some PCI 2193 * settings in case the BIOS doesn't restore them properly on 2194 * resume. 2195 */ 2196 static int 2197 vge_suspend(struct device *dev) 2198 { 2199 struct vge_softc *sc; 2200 int i; 2201 2202 sc = device_get_softc(dev); 2203 2204 vge_stop(sc); 2205 2206 for (i = 0; i < 5; i++) 2207 sc->sc_saved_maps[i] = 2208 pci_read_config(dev, PCIR_MAPS + i * 4, 4); 2209 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 2210 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 2211 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 2212 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 2213 2214 sc->suspended = 1; 2215 2216 return 0; 2217 } 2218 2219 /* 2220 * Device resume routine. Restore some PCI settings in case the BIOS 2221 * doesn't, re-enable busmastering, and restart the interface if 2222 * appropriate. 2223 */ 2224 static int 2225 vge_resume(struct device *dev) 2226 { 2227 struct vge_softc *sc; 2228 struct ifnet *ifp; 2229 int i; 2230 2231 sc = (void *)dev; 2232 ifp = &sc->sc_ethercom.ec_if; 2233 2234 /* better way to do this? */ 2235 for (i = 0; i < 5; i++) 2236 pci_write_config(dev, PCIR_MAPS + i * 4, 2237 sc->sc_saved_maps[i], 4); 2238 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4); 2239 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1); 2240 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1); 2241 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1); 2242 2243 /* reenable busmastering */ 2244 pci_enable_busmaster(dev); 2245 pci_enable_io(dev, SYS_RES_MEMORY); 2246 2247 /* reinitialize interface if necessary */ 2248 if (ifp->if_flags & IFF_UP) 2249 vge_init(sc); 2250 2251 sc->suspended = 0; 2252 2253 return 0; 2254 } 2255 #endif 2256 2257 /* 2258 * Stop all chip I/O so that the kernel's probe routines don't 2259 * get confused by errant DMAs when rebooting. 2260 */ 2261 static void 2262 vge_shutdown(void *arg) 2263 { 2264 struct vge_softc *sc; 2265 2266 sc = arg; 2267 vge_stop(sc); 2268 } 2269