xref: /netbsd-src/sys/dev/pci/if_vge.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /* $NetBSD: if_vge.c,v 1.81 2021/07/24 21:31:37 andvar Exp $ */
2 
3 /*-
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.81 2021/07/24 21:31:37 andvar Exp $");
39 
40 /*
41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42  *
43  * Written by Bill Paul <wpaul@windriver.com>
44  * Senior Networking Software Engineer
45  * Wind River Systems
46  */
47 
48 /*
49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50  * combines a tri-speed ethernet MAC and PHY, with the following
51  * features:
52  *
53  *	o Jumbo frame support up to 16K
54  *	o Transmit and receive flow control
55  *	o IPv4 checksum offload
56  *	o VLAN tag insertion and stripping
57  *	o TCP large send
58  *	o 64-bit multicast hash table filter
59  *	o 64 entry CAM filter
60  *	o 16K RX FIFO and 48K TX FIFO memory
61  *	o Interrupt moderation
62  *
63  * The VT6122 supports up to four transmit DMA queues. The descriptors
64  * in the transmit ring can address up to 7 data fragments; frames which
65  * span more than 7 data buffers must be coalesced, but in general the
66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67  * long. The receive descriptors address only a single buffer.
68  *
69  * There are two peculiar design issues with the VT6122. One is that
70  * receive data buffers must be aligned on a 32-bit boundary. This is
71  * not a problem where the VT6122 is used as a LOM device in x86-based
72  * systems, but on architectures that generate unaligned access traps, we
73  * have to do some copying.
74  *
75  * The other issue has to do with the way 64-bit addresses are handled.
76  * The DMA descriptors only allow you to specify 48 bits of addressing
77  * information. The remaining 16 bits are specified using one of the
78  * I/O registers (VGE_DATABUF_HIADDR). If you only have a 32-bit system,
79  * then this isn't an issue, but if you have a 64-bit system and more than
80  * 4GB of memory, you must have to make sure your network data buffers reside
81  * in the same 48-bit 'segment.'
82  *
83  * Furthermore, the descriptors must also all reside within the same 32-bit
84  * 'segment' (see VGE_TXDESC_HIADDR).
85  *
86  * Special thanks to Ryan Fu at VIA Networking for providing documentation
87  * and sample NICs for testing.
88  */
89 
90 
91 #include <sys/param.h>
92 #include <sys/endian.h>
93 #include <sys/systm.h>
94 #include <sys/device.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/if_ether.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #include <sys/bus.h>
110 
111 #include <dev/mii/mii.h>
112 #include <dev/mii/miivar.h>
113 
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117 
118 #include <dev/pci/if_vgereg.h>
119 
120 #define VGE_IFQ_MAXLEN		64
121 
122 #define VGE_RING_ALIGN		256
123 
124 #define VGE_NTXDESC		256
125 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
126 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
127 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
128 
129 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
130 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
131 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
132 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
133 
134 #define VGE_ADDR_LO(y)		BUS_ADDR_LO32(y)
135 #define VGE_ADDR_HI(y)		BUS_ADDR_HI32(y)
136 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
137 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
138 
139 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
140 
141 /*
142  * Mbuf adjust factor to force 32-bit alignment of IP header.
143  * Drivers should pad ETHER_ALIGN bytes when setting up a
144  * RX mbuf so the upper layers get the IP header properly aligned
145  * past the 14-byte Ethernet header.
146  *
147  * See also comment in vge_encap().
148  */
149 
150 #ifdef __NO_STRICT_ALIGNMENT
151 #define VGE_RX_BUFSIZE		MCLBYTES
152 #else
153 #define VGE_RX_PAD		sizeof(uint32_t)
154 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
155 #endif
156 
157 /*
158  * Control structures are DMA'd to the vge chip. We allocate them in
159  * a single clump that maps to a single DMA segment to make several things
160  * easier.
161  */
162 struct vge_control_data {
163 	/* TX descriptors */
164 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
165 	/* RX descriptors */
166 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
167 	/* dummy data for TX padding */
168 	uint8_t			vcd_pad[ETHER_PAD_LEN];
169 };
170 
171 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
172 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
173 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
174 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
175 
176 /*
177  * Software state for TX jobs.
178  */
179 struct vge_txsoft {
180 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
181 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
182 };
183 
184 /*
185  * Software state for RX jobs.
186  */
187 struct vge_rxsoft {
188 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
189 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
190 };
191 
192 
193 struct vge_softc {
194 	device_t		sc_dev;
195 
196 	bus_space_tag_t		sc_bst;		/* bus space tag */
197 	bus_space_handle_t	sc_bsh;		/* bus space handle */
198 	bus_dma_tag_t		sc_dmat;
199 
200 	struct ethercom		sc_ethercom;	/* interface info */
201 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
202 
203 	void			*sc_intrhand;
204 	struct mii_data		sc_mii;
205 	uint8_t			sc_type;
206 	u_short			sc_if_flags;
207 	int			sc_link;
208 	int			sc_camidx;
209 	callout_t		sc_timeout;
210 
211 	bus_dmamap_t		sc_cddmamap;
212 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
213 
214 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
215 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
216 	struct vge_control_data	*sc_control_data;
217 #define sc_txdescs		sc_control_data->vcd_txdescs
218 #define sc_rxdescs		sc_control_data->vcd_rxdescs
219 
220 	int			sc_tx_prodidx;
221 	int			sc_tx_considx;
222 	int			sc_tx_free;
223 
224 	struct mbuf		*sc_rx_mhead;
225 	struct mbuf		*sc_rx_mtail;
226 	int			sc_rx_prodidx;
227 	int			sc_rx_consumed;
228 
229 	int			sc_suspended;	/* 0 = normal  1 = suspended */
230 	uint32_t		sc_saved_maps[5];	/* pci data */
231 	uint32_t		sc_saved_biosaddr;
232 	uint8_t			sc_saved_intline;
233 	uint8_t			sc_saved_cachelnsz;
234 	uint8_t			sc_saved_lattimer;
235 };
236 
237 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
238 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
239 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
240 
241 #define VGE_TXDESCSYNC(sc, idx, ops)					\
242 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
243 	    VGE_CDTXOFF(idx),						\
244 	    offsetof(struct vge_txdesc, td_frag[0]),			\
245 	    (ops))
246 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
247 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
248 	    VGE_CDTXOFF(idx) +						\
249 	    offsetof(struct vge_txdesc, td_frag[0]),			\
250 	    sizeof(struct vge_txfrag) * (nsegs),			\
251 	    (ops))
252 #define VGE_RXDESCSYNC(sc, idx, ops)					\
253 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
254 	    VGE_CDRXOFF(idx),						\
255 	    sizeof(struct vge_rxdesc),					\
256 	    (ops))
257 
258 /*
259  * register space access macros
260  */
261 #define CSR_WRITE_4(sc, reg, val)	\
262 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
263 #define CSR_WRITE_2(sc, reg, val)	\
264 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
265 #define CSR_WRITE_1(sc, reg, val)	\
266 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
267 
268 #define CSR_READ_4(sc, reg)		\
269 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
270 #define CSR_READ_2(sc, reg)		\
271 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
272 #define CSR_READ_1(sc, reg)		\
273 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
274 
275 #define CSR_SETBIT_1(sc, reg, x)	\
276 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
277 #define CSR_SETBIT_2(sc, reg, x)	\
278 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
279 #define CSR_SETBIT_4(sc, reg, x)	\
280 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
281 
282 #define CSR_CLRBIT_1(sc, reg, x)	\
283 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
284 #define CSR_CLRBIT_2(sc, reg, x)	\
285 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
286 #define CSR_CLRBIT_4(sc, reg, x)	\
287 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
288 
289 #define VGE_TIMEOUT		10000
290 
291 #define VGE_PCI_LOIO		 0x10
292 #define VGE_PCI_LOMEM		 0x14
293 
294 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
295 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
296 
297 static int vge_ifflags_cb(struct ethercom *);
298 
299 static int vge_match(device_t, cfdata_t, void *);
300 static void vge_attach(device_t, device_t, void *);
301 
302 static int vge_encap(struct vge_softc *, struct mbuf *, int);
303 
304 static int vge_allocmem(struct vge_softc *);
305 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
306 #ifndef __NO_STRICT_ALIGNMENT
307 static inline void vge_fixup_rx(struct mbuf *);
308 #endif
309 static void vge_rxeof(struct vge_softc *);
310 static void vge_txeof(struct vge_softc *);
311 static int vge_intr(void *);
312 static void vge_tick(void *);
313 static void vge_start(struct ifnet *);
314 static int vge_ioctl(struct ifnet *, u_long, void *);
315 static int vge_init(struct ifnet *);
316 static void vge_stop(struct ifnet *, int);
317 static void vge_watchdog(struct ifnet *);
318 #if VGE_POWER_MANAGEMENT
319 static int vge_suspend(device_t);
320 static int vge_resume(device_t);
321 #endif
322 static bool vge_shutdown(device_t, int);
323 
324 static uint16_t vge_read_eeprom(struct vge_softc *, int);
325 
326 static void vge_miipoll_start(struct vge_softc *);
327 static void vge_miipoll_stop(struct vge_softc *);
328 static int vge_miibus_readreg(device_t, int, int, uint16_t *);
329 static int vge_miibus_writereg(device_t, int, int, uint16_t);
330 static void vge_miibus_statchg(struct ifnet *);
331 
332 static void vge_cam_clear(struct vge_softc *);
333 static int vge_cam_set(struct vge_softc *, uint8_t *);
334 static void	vge_clrwol(struct vge_softc *);
335 static void vge_setmulti(struct vge_softc *);
336 static void vge_reset(struct vge_softc *);
337 
338 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
339     vge_match, vge_attach, NULL, NULL);
340 
341 static inline void
342 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
343 {
344 
345 	f->tf_addrlo = htole32((uint32_t)daddr);
346 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
347 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
348 	else
349 		f->tf_addrhi = 0;
350 }
351 
352 static inline void
353 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
354 {
355 
356 	rxd->rd_addrlo = htole32((uint32_t)daddr);
357 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
358 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
359 	else
360 		rxd->rd_addrhi = 0;
361 }
362 
363 /*
364  * Read a word of data stored in the EEPROM at address 'addr.'
365  */
366 static uint16_t
367 vge_read_eeprom(struct vge_softc *sc, int addr)
368 {
369 	int i;
370 	uint16_t word = 0;
371 
372 	/*
373 	 * Enter EEPROM embedded programming mode. In order to
374 	 * access the EEPROM at all, we first have to set the
375 	 * EELOAD bit in the CHIPCFG2 register.
376 	 */
377 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
378 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
379 
380 	/* Select the address of the word we want to read */
381 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
382 
383 	/* Issue read command */
384 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
385 
386 	/* Wait for the done bit to be set. */
387 	for (i = 0; i < VGE_TIMEOUT; i++) {
388 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
389 			break;
390 	}
391 
392 	if (i == VGE_TIMEOUT) {
393 		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
394 		return 0;
395 	}
396 
397 	/* Read the result */
398 	word = CSR_READ_2(sc, VGE_EERDDAT);
399 
400 	/* Turn off EEPROM access mode. */
401 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
402 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
403 
404 	return word;
405 }
406 
407 static void
408 vge_miipoll_stop(struct vge_softc *sc)
409 {
410 	int i;
411 
412 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
413 
414 	for (i = 0; i < VGE_TIMEOUT; i++) {
415 		DELAY(1);
416 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
417 			break;
418 	}
419 
420 	if (i == VGE_TIMEOUT) {
421 		printf("%s: failed to idle MII autopoll\n",
422 		    device_xname(sc->sc_dev));
423 	}
424 }
425 
426 static void
427 vge_miipoll_start(struct vge_softc *sc)
428 {
429 	int i;
430 
431 	/* First, make sure we're idle. */
432 
433 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
434 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
435 
436 	for (i = 0; i < VGE_TIMEOUT; i++) {
437 		DELAY(1);
438 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
439 			break;
440 	}
441 
442 	if (i == VGE_TIMEOUT) {
443 		printf("%s: failed to idle MII autopoll\n",
444 		    device_xname(sc->sc_dev));
445 		return;
446 	}
447 
448 	/* Now enable auto poll mode. */
449 
450 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
451 
452 	/* And make sure it started. */
453 
454 	for (i = 0; i < VGE_TIMEOUT; i++) {
455 		DELAY(1);
456 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
457 			break;
458 	}
459 
460 	if (i == VGE_TIMEOUT) {
461 		printf("%s: failed to start MII autopoll\n",
462 		    device_xname(sc->sc_dev));
463 	}
464 }
465 
466 static int
467 vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
468 {
469 	struct vge_softc *sc;
470 	int i, s;
471 	int rv = 0;
472 
473 	sc = device_private(dev);
474 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
475 		return -1;
476 
477 	s = splnet();
478 	vge_miipoll_stop(sc);
479 
480 	/* Specify the register we want to read. */
481 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
482 
483 	/* Issue read command. */
484 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
485 
486 	/* Wait for the read command bit to self-clear. */
487 	for (i = 0; i < VGE_TIMEOUT; i++) {
488 		DELAY(1);
489 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
490 			break;
491 	}
492 
493 	if (i == VGE_TIMEOUT) {
494 		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
495 		rv = ETIMEDOUT;
496 	} else
497 		*val = CSR_READ_2(sc, VGE_MIIDATA);
498 
499 	vge_miipoll_start(sc);
500 	splx(s);
501 
502 	return rv;
503 }
504 
505 static int
506 vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
507 {
508 	struct vge_softc *sc;
509 	int i, s, rv = 0;
510 
511 	sc = device_private(dev);
512 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
513 		return -1;
514 
515 	s = splnet();
516 	vge_miipoll_stop(sc);
517 
518 	/* Specify the register we want to write. */
519 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
520 
521 	/* Specify the data we want to write. */
522 	CSR_WRITE_2(sc, VGE_MIIDATA, val);
523 
524 	/* Issue write command. */
525 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
526 
527 	/* Wait for the write command bit to self-clear. */
528 	for (i = 0; i < VGE_TIMEOUT; i++) {
529 		DELAY(1);
530 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
531 			break;
532 	}
533 
534 	if (i == VGE_TIMEOUT) {
535 		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
536 		rv = ETIMEDOUT;
537 	}
538 
539 	vge_miipoll_start(sc);
540 	splx(s);
541 
542 	return rv;
543 }
544 
545 static void
546 vge_cam_clear(struct vge_softc *sc)
547 {
548 	int i;
549 
550 	/*
551 	 * Turn off all the mask bits. This tells the chip
552 	 * that none of the entries in the CAM filter are valid.
553 	 * desired entries will be enabled as we fill the filter in.
554 	 */
555 
556 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
557 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
558 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
559 	for (i = 0; i < 8; i++)
560 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
561 
562 	/* Clear the VLAN filter too. */
563 
564 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | VGE_CAMADDR_AVSEL);
565 	for (i = 0; i < 8; i++)
566 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
567 
568 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
569 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
570 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
571 
572 	sc->sc_camidx = 0;
573 }
574 
575 static int
576 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
577 {
578 	int i, error;
579 
580 	error = 0;
581 
582 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
583 		return ENOSPC;
584 
585 	/* Select the CAM data page. */
586 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
587 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
588 
589 	/* Set the filter entry we want to update and enable writing. */
590 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
591 
592 	/* Write the address to the CAM registers */
593 	for (i = 0; i < ETHER_ADDR_LEN; i++)
594 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
595 
596 	/* Issue a write command. */
597 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
598 
599 	/* Wake for it to clear. */
600 	for (i = 0; i < VGE_TIMEOUT; i++) {
601 		DELAY(1);
602 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
603 			break;
604 	}
605 
606 	if (i == VGE_TIMEOUT) {
607 		printf("%s: setting CAM filter failed\n",
608 		    device_xname(sc->sc_dev));
609 		error = EIO;
610 		goto fail;
611 	}
612 
613 	/* Select the CAM mask page. */
614 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
615 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
616 
617 	/* Set the mask bit that enables this filter. */
618 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
619 	    1 << (sc->sc_camidx & 7));
620 
621 	sc->sc_camidx++;
622 
623  fail:
624 	/* Turn off access to CAM. */
625 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
626 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
627 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
628 
629 	return error;
630 }
631 
632 /*
633  * Program the multicast filter. We use the 64-entry CAM filter
634  * for perfect filtering. If there's more than 64 multicast addresses,
635  * we use the hash filter instead.
636  */
637 static void
638 vge_setmulti(struct vge_softc *sc)
639 {
640 	struct ethercom *ec = &sc->sc_ethercom;
641 	struct ifnet *ifp = &ec->ec_if;
642 	int error;
643 	uint32_t h, hashes[2] = { 0, 0 };
644 	struct ether_multi *enm;
645 	struct ether_multistep step;
646 
647 	error = 0;
648 
649 	/* First, zot all the multicast entries. */
650 	vge_cam_clear(sc);
651 	CSR_WRITE_4(sc, VGE_MAR0, 0);
652 	CSR_WRITE_4(sc, VGE_MAR1, 0);
653 	ifp->if_flags &= ~IFF_ALLMULTI;
654 
655 	/*
656 	 * If the user wants allmulti or promisc mode, enable reception
657 	 * of all multicast frames.
658 	 */
659 	if (ifp->if_flags & IFF_PROMISC) {
660  allmulti:
661 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
662 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
663 		ifp->if_flags |= IFF_ALLMULTI;
664 		return;
665 	}
666 
667 	/* Now program new ones */
668 	ETHER_LOCK(ec);
669 	ETHER_FIRST_MULTI(step, ec, enm);
670 	while (enm != NULL) {
671 		/*
672 		 * If multicast range, fall back to ALLMULTI.
673 		 */
674 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
675 		    ETHER_ADDR_LEN) != 0) {
676 			ETHER_UNLOCK(ec);
677 			goto allmulti;
678 		}
679 
680 		error = vge_cam_set(sc, enm->enm_addrlo);
681 		if (error)
682 			break;
683 
684 		ETHER_NEXT_MULTI(step, enm);
685 	}
686 	ETHER_UNLOCK(ec);
687 
688 	/* If there were too many addresses, use the hash filter. */
689 	if (error) {
690 		vge_cam_clear(sc);
691 
692 		ETHER_LOCK(ec);
693 		ETHER_FIRST_MULTI(step, ec, enm);
694 		while (enm != NULL) {
695 			/*
696 			 * If multicast range, fall back to ALLMULTI.
697 			 */
698 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
699 			    ETHER_ADDR_LEN) != 0) {
700 				ETHER_UNLOCK(ec);
701 				goto allmulti;
702 			}
703 
704 			h = ether_crc32_be(enm->enm_addrlo,
705 			    ETHER_ADDR_LEN) >> 26;
706 			hashes[h >> 5] |= 1 << (h & 0x1f);
707 
708 			ETHER_NEXT_MULTI(step, enm);
709 		}
710 		ETHER_UNLOCK(ec);
711 
712 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
713 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
714 	}
715 }
716 
717 static void
718 vge_reset(struct vge_softc *sc)
719 {
720 	int i;
721 
722 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
723 
724 	for (i = 0; i < VGE_TIMEOUT; i++) {
725 		DELAY(5);
726 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
727 			break;
728 	}
729 
730 	if (i == VGE_TIMEOUT) {
731 		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
732 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
733 		DELAY(2000);
734 	}
735 
736 	DELAY(5000);
737 
738 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
739 
740 	for (i = 0; i < VGE_TIMEOUT; i++) {
741 		DELAY(5);
742 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
743 			break;
744 	}
745 
746 	if (i == VGE_TIMEOUT) {
747 		printf("%s: EEPROM reload timed out\n",
748 		    device_xname(sc->sc_dev));
749 		return;
750 	}
751 
752 	/*
753 	 * On some machine, the first read data from EEPROM could be
754 	 * messed up, so read one dummy data here to avoid the mess.
755 	 */
756 	(void)vge_read_eeprom(sc, 0);
757 
758 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
759 }
760 
761 /*
762  * Probe for a VIA gigabit chip. Check the PCI vendor and device
763  * IDs against our list and return a device name if we find a match.
764  */
765 static int
766 vge_match(device_t parent, cfdata_t match, void *aux)
767 {
768 	struct pci_attach_args *pa = aux;
769 
770 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
771 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
772 		return 1;
773 
774 	return 0;
775 }
776 
777 static int
778 vge_allocmem(struct vge_softc *sc)
779 {
780 	int error;
781 	int nseg;
782 	int i;
783 	bus_dma_segment_t seg;
784 
785 	/*
786 	 * Allocate memory for control data.
787 	 *
788 	 * NOTE: This must all fit within the same 4GB segment.  The
789 	 * "boundary" argument to bus_dmamem_alloc() will end up as
790 	 * 4GB on 64-bit platforms and 0 ("no boundary constraint") on
791 	 * 32-bit platformds.
792 	 */
793 
794 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
795 	     VGE_RING_ALIGN,
796 	     (bus_size_t)(1ULL << 32),
797 	     &seg, 1, &nseg, BUS_DMA_NOWAIT);
798 	if (error) {
799 		aprint_error_dev(sc->sc_dev,
800 		    "could not allocate control data dma memory\n");
801 		goto fail_1;
802 	}
803 
804 	/* Map the memory to kernel VA space */
805 
806 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
807 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
808 	    BUS_DMA_NOWAIT);
809 	if (error) {
810 		aprint_error_dev(sc->sc_dev,
811 		    "could not map control data dma memory\n");
812 		goto fail_2;
813 	}
814 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
815 
816 	/*
817 	 * Create map for control data.
818 	 */
819 	error = bus_dmamap_create(sc->sc_dmat,
820 	    sizeof(struct vge_control_data), 1,
821 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
822 	    &sc->sc_cddmamap);
823 	if (error) {
824 		aprint_error_dev(sc->sc_dev,
825 		    "could not create control data dmamap\n");
826 		goto fail_3;
827 	}
828 
829 	/* Load the map for the control data. */
830 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
831 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
832 	    BUS_DMA_NOWAIT);
833 	if (error) {
834 		aprint_error_dev(sc->sc_dev,
835 		    "could not load control data dma memory\n");
836 		goto fail_4;
837 	}
838 
839 	/* Create DMA maps for TX buffers */
840 
841 	for (i = 0; i < VGE_NTXDESC; i++) {
842 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
843 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
844 		    &sc->sc_txsoft[i].txs_dmamap);
845 		if (error) {
846 			aprint_error_dev(sc->sc_dev,
847 			    "can't create DMA map for TX descs\n");
848 			goto fail_5;
849 		}
850 	}
851 
852 	/* Create DMA maps for RX buffers */
853 
854 	for (i = 0; i < VGE_NRXDESC; i++) {
855 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
856 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
857 		    &sc->sc_rxsoft[i].rxs_dmamap);
858 		if (error) {
859 			aprint_error_dev(sc->sc_dev,
860 			    "can't create DMA map for RX descs\n");
861 			goto fail_6;
862 		}
863 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
864 	}
865 
866 	return 0;
867 
868  fail_6:
869 	for (i = 0; i < VGE_NRXDESC; i++) {
870 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
871 			bus_dmamap_destroy(sc->sc_dmat,
872 			    sc->sc_rxsoft[i].rxs_dmamap);
873 	}
874  fail_5:
875 	for (i = 0; i < VGE_NTXDESC; i++) {
876 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
877 			bus_dmamap_destroy(sc->sc_dmat,
878 			    sc->sc_txsoft[i].txs_dmamap);
879 	}
880 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
881  fail_4:
882 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
883  fail_3:
884 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
885 	    sizeof(struct vge_control_data));
886  fail_2:
887 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
888  fail_1:
889 	return ENOMEM;
890 }
891 
892 /*
893  * Attach the interface. Allocate softc structures, do ifmedia
894  * setup and ethernet/BPF attach.
895  */
896 static void
897 vge_attach(device_t parent, device_t self, void *aux)
898 {
899 	uint8_t	*eaddr;
900 	struct vge_softc *sc = device_private(self);
901 	struct ifnet *ifp;
902 	struct mii_data * const mii = &sc->sc_mii;
903 	struct pci_attach_args *pa = aux;
904 	pci_chipset_tag_t pc = pa->pa_pc;
905 	const char *intrstr;
906 	pci_intr_handle_t ih;
907 	uint16_t val;
908 	char intrbuf[PCI_INTRSTR_LEN];
909 
910 	sc->sc_dev = self;
911 
912 	pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
913 
914 	/* Make sure bus-mastering is enabled */
915 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
916 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
917 	    PCI_COMMAND_MASTER_ENABLE);
918 
919 	/*
920 	 * Map control/status registers.
921 	 */
922 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
923 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
924 		aprint_error_dev(self, "couldn't map memory\n");
925 		return;
926 	}
927 
928 	/*
929 	 * Map and establish our interrupt.
930 	 */
931 	if (pci_intr_map(pa, &ih)) {
932 		aprint_error_dev(self, "unable to map interrupt\n");
933 		return;
934 	}
935 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
936 	sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
937 	    sc, device_xname(self));
938 	if (sc->sc_intrhand == NULL) {
939 		aprint_error_dev(self, "unable to establish interrupt");
940 		if (intrstr != NULL)
941 			aprint_error(" at %s", intrstr);
942 		aprint_error("\n");
943 		return;
944 	}
945 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
946 
947 	/* Reset the adapter. */
948 	vge_reset(sc);
949 
950 	/*
951 	 * Get station address from the EEPROM.
952 	 */
953 	eaddr = sc->sc_eaddr;
954 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
955 	eaddr[0] = val & 0xff;
956 	eaddr[1] = val >> 8;
957 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
958 	eaddr[2] = val & 0xff;
959 	eaddr[3] = val >> 8;
960 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
961 	eaddr[4] = val & 0xff;
962 	eaddr[5] = val >> 8;
963 
964 	aprint_normal_dev(self, "Ethernet address %s\n",
965 	    ether_sprintf(eaddr));
966 
967 	/* Clear WOL and take hardware from powerdown. */
968 	vge_clrwol(sc);
969 
970 	/*
971 	 * The hardware supports 64-bit DMA addresses, but it's a little
972 	 * complicated (see large comment about the hardware near the top
973 	 * of the file).  TL;DR -- restrict ourselves to 48-bit.
974 	 */
975 	if (pci_dma64_available(pa)) {
976 		if (bus_dmatag_subregion(pa->pa_dmat64,
977 					 0,
978 					 (bus_addr_t)(1ULL << 48),
979 					 &sc->sc_dmat,
980 					 BUS_DMA_WAITOK) != 0) {
981 			aprint_error_dev(self,
982 			    "WARNING: failed to restrict dma range,"
983 			    " falling back to parent bus dma range\n");
984 			sc->sc_dmat = pa->pa_dmat64;
985 		}
986 	} else {
987 		sc->sc_dmat = pa->pa_dmat;
988 	}
989 
990 	if (vge_allocmem(sc) != 0)
991 		return;
992 
993 	ifp = &sc->sc_ethercom.ec_if;
994 	ifp->if_softc = sc;
995 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
996 	ifp->if_mtu = ETHERMTU;
997 	ifp->if_baudrate = IF_Gbps(1);
998 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
999 	ifp->if_ioctl = vge_ioctl;
1000 	ifp->if_start = vge_start;
1001 	ifp->if_init = vge_init;
1002 	ifp->if_stop = vge_stop;
1003 
1004 	/*
1005 	 * We can support 802.1Q VLAN-sized frames and jumbo
1006 	 * Ethernet frames.
1007 	 */
1008 	sc->sc_ethercom.ec_capabilities |=
1009 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
1010 	    ETHERCAP_VLAN_HWTAGGING;
1011 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1012 
1013 	/*
1014 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1015 	 */
1016 	ifp->if_capabilities |=
1017 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1018 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1019 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1020 
1021 #ifdef DEVICE_POLLING
1022 #ifdef IFCAP_POLLING
1023 	ifp->if_capabilities |= IFCAP_POLLING;
1024 #endif
1025 #endif
1026 	ifp->if_watchdog = vge_watchdog;
1027 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
1028 	IFQ_SET_READY(&ifp->if_snd);
1029 
1030 	/*
1031 	 * Initialize our media structures and probe the MII.
1032 	 */
1033 	mii->mii_ifp = ifp;
1034 	mii->mii_readreg = vge_miibus_readreg;
1035 	mii->mii_writereg = vge_miibus_writereg;
1036 	mii->mii_statchg = vge_miibus_statchg;
1037 
1038 	sc->sc_ethercom.ec_mii = mii;
1039 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1040 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1041 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1042 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1043 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1044 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1045 	} else
1046 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1047 
1048 	/*
1049 	 * Attach the interface.
1050 	 */
1051 	if_attach(ifp);
1052 	if_deferred_start_init(ifp, NULL);
1053 	ether_ifattach(ifp, eaddr);
1054 	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
1055 
1056 	callout_init(&sc->sc_timeout, 0);
1057 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1058 
1059 	/*
1060 	 * Make sure the interface is shutdown during reboot.
1061 	 */
1062 	if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
1063 		pmf_class_network_register(self, ifp);
1064 	else
1065 		aprint_error_dev(self, "couldn't establish power handler\n");
1066 }
1067 
1068 static int
1069 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1070 {
1071 	struct mbuf *m_new;
1072 	struct vge_rxdesc *rxd;
1073 	struct vge_rxsoft *rxs;
1074 	bus_dmamap_t map;
1075 	int i;
1076 #ifdef DIAGNOSTIC
1077 	uint32_t rd_sts;
1078 #endif
1079 
1080 	m_new = NULL;
1081 	if (m == NULL) {
1082 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1083 		if (m_new == NULL)
1084 			return ENOBUFS;
1085 
1086 		MCLGET(m_new, M_DONTWAIT);
1087 		if ((m_new->m_flags & M_EXT) == 0) {
1088 			m_freem(m_new);
1089 			return ENOBUFS;
1090 		}
1091 
1092 		m = m_new;
1093 	} else
1094 		m->m_data = m->m_ext.ext_buf;
1095 
1096 
1097 	/*
1098 	 * This is part of an evil trick to deal with non-x86 platforms.
1099 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1100 	 * boundaries, but that will hose non-x86 machines. To get around
1101 	 * this, we leave some empty space at the start of each buffer
1102 	 * and for non-x86 hosts, we copy the buffer back two bytes
1103 	 * to achieve word alignment. This is slightly more efficient
1104 	 * than allocating a new buffer, copying the contents, and
1105 	 * discarding the old buffer.
1106 	 */
1107 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1108 #ifndef __NO_STRICT_ALIGNMENT
1109 	m->m_data += VGE_RX_PAD;
1110 #endif
1111 	rxs = &sc->sc_rxsoft[idx];
1112 	map = rxs->rxs_dmamap;
1113 
1114 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1115 		goto out;
1116 
1117 	rxd = &sc->sc_rxdescs[idx];
1118 
1119 #ifdef DIAGNOSTIC
1120 	/* If this descriptor is still owned by the chip, bail. */
1121 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1122 	rd_sts = le32toh(rxd->rd_sts);
1123 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1124 	if (rd_sts & VGE_RDSTS_OWN) {
1125 		panic("%s: tried to map busy RX descriptor",
1126 		    device_xname(sc->sc_dev));
1127 	}
1128 #endif
1129 
1130 	rxs->rxs_mbuf = m;
1131 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1132 	    BUS_DMASYNC_PREREAD);
1133 
1134 	rxd->rd_buflen =
1135 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1136 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1137 	rxd->rd_sts = 0;
1138 	rxd->rd_ctl = 0;
1139 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1140 
1141 	/*
1142 	 * Note: the manual fails to document the fact that for
1143 	 * proper operation, the driver needs to replentish the RX
1144 	 * DMA ring 4 descriptors at a time (rather than one at a
1145 	 * time, like most chips). We can allocate the new buffers
1146 	 * but we should not set the OWN bits until we're ready
1147 	 * to hand back 4 of them in one shot.
1148 	 */
1149 
1150 #define VGE_RXCHUNK 4
1151 	sc->sc_rx_consumed++;
1152 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1153 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1154 			KASSERT(i >= 0);
1155 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1156 			VGE_RXDESCSYNC(sc, i,
1157 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1158 		}
1159 		sc->sc_rx_consumed = 0;
1160 	}
1161 
1162 	return 0;
1163  out:
1164 	if (m_new != NULL)
1165 		m_freem(m_new);
1166 	return ENOMEM;
1167 }
1168 
1169 #ifndef __NO_STRICT_ALIGNMENT
1170 static inline void
1171 vge_fixup_rx(struct mbuf *m)
1172 {
1173 	int i;
1174 	uint16_t *src, *dst;
1175 
1176 	src = mtod(m, uint16_t *);
1177 	dst = src - 1;
1178 
1179 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1180 		*dst++ = *src++;
1181 
1182 	m->m_data -= ETHER_ALIGN;
1183 }
1184 #endif
1185 
1186 /*
1187  * RX handler. We support the reception of jumbo frames that have
1188  * been fragmented across multiple 2K mbuf cluster buffers.
1189  */
1190 static void
1191 vge_rxeof(struct vge_softc *sc)
1192 {
1193 	struct mbuf *m;
1194 	struct ifnet *ifp;
1195 	int idx, total_len, lim;
1196 	struct vge_rxdesc *cur_rxd;
1197 	struct vge_rxsoft *rxs;
1198 	uint32_t rxstat, rxctl;
1199 
1200 	ifp = &sc->sc_ethercom.ec_if;
1201 	lim = 0;
1202 
1203 	/* Invalidate the descriptor memory */
1204 
1205 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1206 		cur_rxd = &sc->sc_rxdescs[idx];
1207 
1208 		VGE_RXDESCSYNC(sc, idx,
1209 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1210 		rxstat = le32toh(cur_rxd->rd_sts);
1211 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
1212 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1213 			break;
1214 		}
1215 
1216 		rxctl = le32toh(cur_rxd->rd_ctl);
1217 		rxs = &sc->sc_rxsoft[idx];
1218 		m = rxs->rxs_mbuf;
1219 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1220 
1221 		/* Invalidate the RX mbuf and unload its map */
1222 
1223 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1224 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1225 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1226 
1227 		/*
1228 		 * If the 'start of frame' bit is set, this indicates
1229 		 * either the first fragment in a multi-fragment receive,
1230 		 * or an intermediate fragment. Either way, we want to
1231 		 * accumulate the buffers.
1232 		 */
1233 		if (rxstat & VGE_RXPKT_SOF) {
1234 			m->m_len = VGE_RX_BUFSIZE;
1235 			if (sc->sc_rx_mhead == NULL)
1236 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1237 			else {
1238 				m->m_flags &= ~M_PKTHDR;
1239 				sc->sc_rx_mtail->m_next = m;
1240 				sc->sc_rx_mtail = m;
1241 			}
1242 			vge_newbuf(sc, idx, NULL);
1243 			continue;
1244 		}
1245 
1246 		/*
1247 		 * Bad/error frames will have the RXOK bit cleared.
1248 		 * However, there's one error case we want to allow:
1249 		 * if a VLAN tagged frame arrives and the chip can't
1250 		 * match it against the CAM filter, it considers this
1251 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1252 		 * We don't want to drop the frame though: our VLAN
1253 		 * filtering is done in software.
1254 		 */
1255 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1256 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
1257 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1258 			if_statinc(ifp, if_ierrors);
1259 			/*
1260 			 * If this is part of a multi-fragment packet,
1261 			 * discard all the pieces.
1262 			 */
1263 			if (sc->sc_rx_mhead != NULL) {
1264 				m_freem(sc->sc_rx_mhead);
1265 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1266 			}
1267 			vge_newbuf(sc, idx, m);
1268 			continue;
1269 		}
1270 
1271 		/*
1272 		 * If allocating a replacement mbuf fails,
1273 		 * reload the current one.
1274 		 */
1275 
1276 		if (vge_newbuf(sc, idx, NULL)) {
1277 			if_statinc(ifp, if_ierrors);
1278 			if (sc->sc_rx_mhead != NULL) {
1279 				m_freem(sc->sc_rx_mhead);
1280 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1281 			}
1282 			vge_newbuf(sc, idx, m);
1283 			continue;
1284 		}
1285 
1286 		if (sc->sc_rx_mhead != NULL) {
1287 			m->m_len = total_len % VGE_RX_BUFSIZE;
1288 			/*
1289 			 * Special case: if there's 4 bytes or less
1290 			 * in this buffer, the mbuf can be discarded:
1291 			 * the last 4 bytes is the CRC, which we don't
1292 			 * care about anyway.
1293 			 */
1294 			if (m->m_len <= ETHER_CRC_LEN) {
1295 				sc->sc_rx_mtail->m_len -=
1296 				    (ETHER_CRC_LEN - m->m_len);
1297 				m_freem(m);
1298 			} else {
1299 				m->m_len -= ETHER_CRC_LEN;
1300 				m->m_flags &= ~M_PKTHDR;
1301 				sc->sc_rx_mtail->m_next = m;
1302 			}
1303 			m = sc->sc_rx_mhead;
1304 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1305 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1306 		} else
1307 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1308 
1309 #ifndef __NO_STRICT_ALIGNMENT
1310 		vge_fixup_rx(m);
1311 #endif
1312 		m_set_rcvif(m, ifp);
1313 
1314 		/* Do RX checksumming if enabled */
1315 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1316 
1317 			/* Check IP header checksum */
1318 			if (rxctl & VGE_RDCTL_IPPKT)
1319 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1320 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1321 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1322 		}
1323 
1324 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1325 			/* Check UDP checksum */
1326 			if (rxctl & VGE_RDCTL_TCPPKT)
1327 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1328 
1329 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1330 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1331 		}
1332 
1333 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1334 			/* Check UDP checksum */
1335 			if (rxctl & VGE_RDCTL_UDPPKT)
1336 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1337 
1338 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1339 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1340 		}
1341 
1342 		if (rxstat & VGE_RDSTS_VTAG) {
1343 			/*
1344 			 * We use bswap16() here because:
1345 			 * On LE machines, tag is stored in BE as stream data.
1346 			 * On BE machines, tag is stored in BE as stream data
1347 			 *  but it was already swapped by le32toh() above.
1348 			 */
1349 			vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
1350 		}
1351 
1352 		if_percpuq_enqueue(ifp->if_percpuq, m);
1353 
1354 		lim++;
1355 		if (lim == VGE_NRXDESC)
1356 			break;
1357 	}
1358 
1359 	sc->sc_rx_prodidx = idx;
1360 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1361 }
1362 
1363 static void
1364 vge_txeof(struct vge_softc *sc)
1365 {
1366 	struct ifnet *ifp;
1367 	struct vge_txsoft *txs;
1368 	uint32_t txstat;
1369 	int idx;
1370 
1371 	ifp = &sc->sc_ethercom.ec_if;
1372 
1373 	for (idx = sc->sc_tx_considx;
1374 	    sc->sc_tx_free < VGE_NTXDESC;
1375 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1376 		VGE_TXDESCSYNC(sc, idx,
1377 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1378 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1379 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1380 		if (txstat & VGE_TDSTS_OWN) {
1381 			break;
1382 		}
1383 
1384 		txs = &sc->sc_txsoft[idx];
1385 		m_freem(txs->txs_mbuf);
1386 		txs->txs_mbuf = NULL;
1387 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1388 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1389 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1390 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1391 		if (txstat & (VGE_TDSTS_EXCESSCOLL | VGE_TDSTS_COLL))
1392 			if_statinc_ref(nsr, if_collisions);
1393 		if (txstat & VGE_TDSTS_TXERR)
1394 			if_statinc_ref(nsr, if_oerrors);
1395 		else
1396 			if_statinc_ref(nsr, if_opackets);
1397 		IF_STAT_PUTREF(ifp);
1398 	}
1399 
1400 	sc->sc_tx_considx = idx;
1401 
1402 	if (sc->sc_tx_free > 0) {
1403 		ifp->if_flags &= ~IFF_OACTIVE;
1404 	}
1405 
1406 	/*
1407 	 * If not all descriptors have been released reaped yet,
1408 	 * reload the timer so that we will eventually get another
1409 	 * interrupt that will cause us to re-enter this routine.
1410 	 * This is done in case the transmitter has gone idle.
1411 	 */
1412 	if (sc->sc_tx_free < VGE_NTXDESC)
1413 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1414 	else
1415 		ifp->if_timer = 0;
1416 }
1417 
1418 static void
1419 vge_tick(void *arg)
1420 {
1421 	struct vge_softc *sc;
1422 	struct ifnet *ifp;
1423 	struct mii_data *mii;
1424 	int s;
1425 
1426 	sc = arg;
1427 	ifp = &sc->sc_ethercom.ec_if;
1428 	mii = &sc->sc_mii;
1429 
1430 	s = splnet();
1431 
1432 	callout_schedule(&sc->sc_timeout, hz);
1433 
1434 	mii_tick(mii);
1435 	if (sc->sc_link) {
1436 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1437 			sc->sc_link = 0;
1438 	} else {
1439 		if (mii->mii_media_status & IFM_ACTIVE &&
1440 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1441 			sc->sc_link = 1;
1442 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1443 				vge_start(ifp);
1444 		}
1445 	}
1446 
1447 	splx(s);
1448 }
1449 
1450 static int
1451 vge_intr(void *arg)
1452 {
1453 	struct vge_softc *sc;
1454 	struct ifnet *ifp;
1455 	uint32_t status;
1456 	int claim;
1457 
1458 	sc = arg;
1459 	claim = 0;
1460 	if (sc->sc_suspended) {
1461 		return claim;
1462 	}
1463 
1464 	ifp = &sc->sc_ethercom.ec_if;
1465 
1466 	if ((ifp->if_flags & IFF_UP) == 0) {
1467 		return claim;
1468 	}
1469 
1470 	/* Disable interrupts */
1471 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1472 
1473 	for (;;) {
1474 
1475 		status = CSR_READ_4(sc, VGE_ISR);
1476 		/* If the card has gone away the read returns 0xffffffff. */
1477 		if (status == 0xFFFFFFFF)
1478 			break;
1479 
1480 		if (status) {
1481 			claim = 1;
1482 			CSR_WRITE_4(sc, VGE_ISR, status);
1483 		}
1484 
1485 		if ((status & VGE_INTRS) == 0)
1486 			break;
1487 
1488 		if (status & (VGE_ISR_RXOK | VGE_ISR_RXOK_HIPRIO))
1489 			vge_rxeof(sc);
1490 
1491 		if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1492 			vge_rxeof(sc);
1493 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1494 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1495 		}
1496 
1497 		if (status & (VGE_ISR_TXOK0 | VGE_ISR_TIMER0))
1498 			vge_txeof(sc);
1499 
1500 		if (status & (VGE_ISR_TXDMA_STALL | VGE_ISR_RXDMA_STALL))
1501 			vge_init(ifp);
1502 
1503 		if (status & VGE_ISR_LINKSTS)
1504 			vge_tick(sc);
1505 	}
1506 
1507 	/* Re-enable interrupts */
1508 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1509 
1510 	if (claim)
1511 		if_schedule_deferred_start(ifp);
1512 
1513 	return claim;
1514 }
1515 
1516 static int
1517 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1518 {
1519 	struct vge_txsoft *txs;
1520 	struct vge_txdesc *txd;
1521 	struct vge_txfrag *f;
1522 	struct mbuf *m_new;
1523 	bus_dmamap_t map;
1524 	int m_csumflags, seg, error, flags;
1525 	size_t sz;
1526 	uint32_t td_sts, td_ctl;
1527 
1528 	KASSERT(sc->sc_tx_free > 0);
1529 
1530 	txd = &sc->sc_txdescs[idx];
1531 
1532 #ifdef DIAGNOSTIC
1533 	/* If this descriptor is still owned by the chip, bail. */
1534 	VGE_TXDESCSYNC(sc, idx,
1535 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1536 	td_sts = le32toh(txd->td_sts);
1537 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1538 	if (td_sts & VGE_TDSTS_OWN) {
1539 		return ENOBUFS;
1540 	}
1541 #endif
1542 
1543 	/*
1544 	 * Preserve m_pkthdr.csum_flags here since m_head might be
1545 	 * updated by m_defrag()
1546 	 */
1547 	m_csumflags = m_head->m_pkthdr.csum_flags;
1548 
1549 	txs = &sc->sc_txsoft[idx];
1550 	map = txs->txs_dmamap;
1551 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1552 
1553 	/* If too many segments to map, coalesce */
1554 	if (error == EFBIG ||
1555 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1556 	     map->dm_nsegs == VGE_TX_FRAGS)) {
1557 		m_new = m_defrag(m_head, M_DONTWAIT);
1558 		if (m_new == NULL)
1559 			return EFBIG;
1560 
1561 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1562 		    m_new, BUS_DMA_NOWAIT);
1563 		if (error) {
1564 			m_freem(m_new);
1565 			return error;
1566 		}
1567 
1568 		m_head = m_new;
1569 	} else if (error)
1570 		return error;
1571 
1572 	txs->txs_mbuf = m_head;
1573 
1574 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1575 	    BUS_DMASYNC_PREWRITE);
1576 
1577 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1578 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1579 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1580 	}
1581 
1582 	/* Argh. This chip does not autopad short frames */
1583 	sz = m_head->m_pkthdr.len;
1584 	if (sz < ETHER_PAD_LEN) {
1585 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1586 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
1587 		sz = ETHER_PAD_LEN;
1588 		seg++;
1589 	}
1590 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1591 
1592 	/*
1593 	 * When telling the chip how many segments there are, we
1594 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1595 	 * know why.
1596 	 */
1597 	seg++;
1598 
1599 	flags = 0;
1600 	if (m_csumflags & M_CSUM_IPv4)
1601 		flags |= VGE_TDCTL_IPCSUM;
1602 	if (m_csumflags & M_CSUM_TCPv4)
1603 		flags |= VGE_TDCTL_TCPCSUM;
1604 	if (m_csumflags & M_CSUM_UDPv4)
1605 		flags |= VGE_TDCTL_UDPCSUM;
1606 	td_sts = sz << 16;
1607 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1608 
1609 	if (sz > ETHERMTU + ETHER_HDR_LEN)
1610 		td_ctl |= VGE_TDCTL_JUMBO;
1611 
1612 	/*
1613 	 * Set up hardware VLAN tagging.
1614 	 */
1615 	if (vlan_has_tag(m_head)) {
1616 		/*
1617 		 * No need htons() here since vge(4) chip assumes
1618 		 * that tags are written in little endian and
1619 		 * we already use htole32() here.
1620 		 */
1621 		td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
1622 	}
1623 	txd->td_ctl = htole32(td_ctl);
1624 	txd->td_sts = htole32(td_sts);
1625 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1626 
1627 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1628 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1629 
1630 	sc->sc_tx_free--;
1631 
1632 	return 0;
1633 }
1634 
1635 /*
1636  * Main transmit routine.
1637  */
1638 
1639 static void
1640 vge_start(struct ifnet *ifp)
1641 {
1642 	struct vge_softc *sc;
1643 	struct vge_txsoft *txs;
1644 	struct mbuf *m_head;
1645 	int idx, pidx, ofree, error;
1646 
1647 	sc = ifp->if_softc;
1648 
1649 	if (!sc->sc_link ||
1650 	    (ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1651 		return;
1652 	}
1653 
1654 	m_head = NULL;
1655 	idx = sc->sc_tx_prodidx;
1656 	pidx = VGE_PREV_TXDESC(idx);
1657 	ofree = sc->sc_tx_free;
1658 
1659 	/*
1660 	 * Loop through the send queue, setting up transmit descriptors
1661 	 * until we drain the queue, or use up all available transmit
1662 	 * descriptors.
1663 	 */
1664 	for (;;) {
1665 		/* Grab a packet off the queue. */
1666 		IFQ_POLL(&ifp->if_snd, m_head);
1667 		if (m_head == NULL)
1668 			break;
1669 
1670 		if (sc->sc_tx_free == 0) {
1671 			/*
1672 			 * All slots used, stop for now.
1673 			 */
1674 			ifp->if_flags |= IFF_OACTIVE;
1675 			break;
1676 		}
1677 
1678 		txs = &sc->sc_txsoft[idx];
1679 		KASSERT(txs->txs_mbuf == NULL);
1680 
1681 		if ((error = vge_encap(sc, m_head, idx))) {
1682 			if (error == EFBIG) {
1683 				printf("%s: Tx packet consumes too many "
1684 				    "DMA segments, dropping...\n",
1685 				    device_xname(sc->sc_dev));
1686 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
1687 				m_freem(m_head);
1688 				continue;
1689 			}
1690 
1691 			/*
1692 			 * Short on resources, just stop for now.
1693 			 */
1694 			if (error == ENOBUFS)
1695 				ifp->if_flags |= IFF_OACTIVE;
1696 			break;
1697 		}
1698 
1699 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1700 
1701 		/*
1702 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1703 		 */
1704 
1705 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1706 		    htole16(VGE_TXDESC_Q);
1707 		VGE_TXFRAGSYNC(sc, pidx, 1,
1708 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1709 
1710 		if (txs->txs_mbuf != m_head) {
1711 			m_freem(m_head);
1712 			m_head = txs->txs_mbuf;
1713 		}
1714 
1715 		pidx = idx;
1716 		idx = VGE_NEXT_TXDESC(idx);
1717 
1718 		/*
1719 		 * If there's a BPF listener, bounce a copy of this frame
1720 		 * to him.
1721 		 */
1722 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1723 	}
1724 
1725 	if (sc->sc_tx_free < ofree) {
1726 		/* TX packet queued */
1727 
1728 		sc->sc_tx_prodidx = idx;
1729 
1730 		/* Issue a transmit command. */
1731 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1732 
1733 		/*
1734 		 * Use the countdown timer for interrupt moderation.
1735 		 * 'TX done' interrupts are disabled. Instead, we reset the
1736 		 * countdown timer, which will begin counting until it hits
1737 		 * the value in the SSTIMER register, and then trigger an
1738 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1739 		 * the timer count is reloaded. Only when the transmitter
1740 		 * is idle will the timer hit 0 and an interrupt fire.
1741 		 */
1742 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1743 
1744 		/*
1745 		 * Set a timeout in case the chip goes out to lunch.
1746 		 */
1747 		ifp->if_timer = 5;
1748 	}
1749 }
1750 
1751 static int
1752 vge_init(struct ifnet *ifp)
1753 {
1754 	struct vge_softc *sc;
1755 	int i, rc = 0;
1756 
1757 	sc = ifp->if_softc;
1758 
1759 	/*
1760 	 * Cancel pending I/O and free all RX/TX buffers.
1761 	 */
1762 	vge_stop(ifp, 0);
1763 	vge_reset(sc);
1764 
1765 	/* Initialize the RX descriptors and mbufs. */
1766 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1767 	sc->sc_rx_consumed = 0;
1768 	for (i = 0; i < VGE_NRXDESC; i++) {
1769 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1770 			printf("%s: unable to allocate or map rx buffer\n",
1771 			    device_xname(sc->sc_dev));
1772 			return 1; /* XXX */
1773 		}
1774 	}
1775 	sc->sc_rx_prodidx = 0;
1776 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1777 
1778 	/* Initialize the  TX descriptors and mbufs. */
1779 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1780 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1781 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1782 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1783 	for (i = 0; i < VGE_NTXDESC; i++)
1784 		sc->sc_txsoft[i].txs_mbuf = NULL;
1785 
1786 	sc->sc_tx_prodidx = 0;
1787 	sc->sc_tx_considx = 0;
1788 	sc->sc_tx_free = VGE_NTXDESC;
1789 
1790 	/* Set our station address */
1791 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1792 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1793 
1794 	/*
1795 	 * Set receive FIFO threshold. Also allow transmission and
1796 	 * reception of VLAN tagged frames.
1797 	 */
1798 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR | VGE_RXCFG_VTAGOPT);
1799 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES | VGE_VTAG_OPT2);
1800 
1801 	/* Set DMA burst length */
1802 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1803 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1804 
1805 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO | VGE_TXCFG_NONBLK);
1806 
1807 	/* Set collision backoff algorithm */
1808 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM |
1809 	    VGE_CHIPCFG1_CAP | VGE_CHIPCFG1_MBA | VGE_CHIPCFG1_BAKOPT);
1810 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFFSET);
1811 
1812 	/* Disable LPSEL field in priority resolution */
1813 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1814 
1815 	/*
1816 	 * Load the addresses of the DMA queues into the chip.
1817 	 * Note that we only use one transmit queue.
1818 	 */
1819 
1820 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, VGE_ADDR_HI(VGE_CDTXADDR(sc, 0)));
1821 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1822 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1823 
1824 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1825 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1826 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1827 
1828 	/* Enable and wake up the RX descriptor queue */
1829 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1830 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1831 
1832 	/* Enable the TX descriptor queue */
1833 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1834 
1835 	/* Set up the receive filter -- allow large frames for VLANs. */
1836 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST | VGE_RXCTL_RX_GIANT);
1837 
1838 	/* If we want promiscuous mode, set the allframes bit. */
1839 	if (ifp->if_flags & IFF_PROMISC) {
1840 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1841 	}
1842 
1843 	/* Set capture broadcast bit to capture broadcast frames. */
1844 	if (ifp->if_flags & IFF_BROADCAST) {
1845 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1846 	}
1847 
1848 	/* Set multicast bit to capture multicast frames. */
1849 	if (ifp->if_flags & IFF_MULTICAST) {
1850 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1851 	}
1852 
1853 	/* Init the cam filter. */
1854 	vge_cam_clear(sc);
1855 
1856 	/* Init the multicast filter. */
1857 	vge_setmulti(sc);
1858 
1859 	/* Enable flow control */
1860 
1861 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1862 
1863 	/* Enable jumbo frame reception (if desired) */
1864 
1865 	/* Start the MAC. */
1866 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1867 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1868 	CSR_WRITE_1(sc, VGE_CRS0,
1869 	    VGE_CR0_TX_ENABLE | VGE_CR0_RX_ENABLE | VGE_CR0_START);
1870 
1871 	/*
1872 	 * Configure one-shot timer for microsecond
1873 	 * resulution and load it for 500 usecs.
1874 	 */
1875 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1876 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1877 
1878 	/*
1879 	 * Configure interrupt moderation for receive. Enable
1880 	 * the holdoff counter and load it, and set the RX
1881 	 * suppression count to the number of descriptors we
1882 	 * want to allow before triggering an interrupt.
1883 	 * The holdoff timer is in units of 20 usecs.
1884 	 */
1885 
1886 #ifdef notyet
1887 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1888 	/* Select the interrupt holdoff timer page. */
1889 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1890 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1891 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1892 
1893 	/* Enable use of the holdoff timer. */
1894 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1895 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1896 
1897 	/* Select the RX suppression threshold page. */
1898 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1899 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1900 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1901 
1902 	/* Restore the page select bits. */
1903 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1904 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1905 #endif
1906 
1907 #ifdef DEVICE_POLLING
1908 	/*
1909 	 * Disable interrupts if we are polling.
1910 	 */
1911 	if (ifp->if_flags & IFF_POLLING) {
1912 		CSR_WRITE_4(sc, VGE_IMR, 0);
1913 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1914 	} else	/* otherwise ... */
1915 #endif /* DEVICE_POLLING */
1916 	{
1917 	/*
1918 	 * Enable interrupts.
1919 	 */
1920 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1921 		CSR_WRITE_4(sc, VGE_ISR, 0);
1922 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1923 	}
1924 
1925 	if ((rc = ether_mediachange(ifp)) != 0)
1926 		goto out;
1927 
1928 	ifp->if_flags |= IFF_RUNNING;
1929 	ifp->if_flags &= ~IFF_OACTIVE;
1930 
1931 	sc->sc_if_flags = 0;
1932 	sc->sc_link = 0;
1933 
1934 	callout_schedule(&sc->sc_timeout, hz);
1935 
1936 out:
1937 	return rc;
1938 }
1939 
1940 static void
1941 vge_miibus_statchg(struct ifnet *ifp)
1942 {
1943 	struct vge_softc *sc = ifp->if_softc;
1944 	struct mii_data *mii = &sc->sc_mii;
1945 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
1946 	uint8_t dctl;
1947 
1948 	/*
1949 	 * If the user manually selects a media mode, we need to turn
1950 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1951 	 * user happens to choose a full duplex mode, we also need to
1952 	 * set the 'force full duplex' bit. This applies only to
1953 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1954 	 * mode is disabled, and in 1000baseT mode, full duplex is
1955 	 * always implied, so we turn on the forced mode bit but leave
1956 	 * the FDX bit cleared.
1957 	 */
1958 	dctl = CSR_READ_1(sc, VGE_DIAGCTL);
1959 
1960 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
1961 		dctl &= ~VGE_DIAGCTL_MACFORCE;
1962 		dctl &= ~VGE_DIAGCTL_FDXFORCE;
1963 	} else {
1964 		u_int ifmword;
1965 
1966 		/* If the link is up, use the current active media. */
1967 		if ((mii->mii_media_status & IFM_ACTIVE) != 0)
1968 			ifmword = mii->mii_media_active;
1969 		else
1970 			ifmword = ife->ifm_media;
1971 
1972 		dctl |= VGE_DIAGCTL_MACFORCE;
1973 		if ((ifmword & IFM_FDX) != 0)
1974 			dctl |= VGE_DIAGCTL_FDXFORCE;
1975 		else
1976 			dctl &= ~VGE_DIAGCTL_FDXFORCE;
1977 
1978 		if (IFM_SUBTYPE(ifmword) == IFM_1000_T) {
1979 			/*
1980 			 * It means the user setting is not auto but it's
1981 			 * 1000baseT-FDX or 1000baseT.
1982 			 */
1983 			dctl |= VGE_DIAGCTL_GMII;
1984 		} else
1985 			dctl &= ~VGE_DIAGCTL_GMII;
1986 	}
1987 
1988 	CSR_WRITE_1(sc, VGE_DIAGCTL, dctl);
1989 }
1990 
1991 static int
1992 vge_ifflags_cb(struct ethercom *ec)
1993 {
1994 	struct ifnet *ifp = &ec->ec_if;
1995 	struct vge_softc *sc = ifp->if_softc;
1996 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
1997 
1998 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1999 		return ENETRESET;
2000 	else if ((change & IFF_PROMISC) == 0)
2001 		return 0;
2002 
2003 	if ((ifp->if_flags & IFF_PROMISC) == 0)
2004 		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2005 	else
2006 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2007 	vge_setmulti(sc);
2008 	return 0;
2009 }
2010 
2011 static int
2012 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
2013 {
2014 	struct vge_softc *sc;
2015 	int s, error;
2016 
2017 	sc = ifp->if_softc;
2018 	error = 0;
2019 
2020 	s = splnet();
2021 
2022 	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
2023 		error = 0;
2024 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2025 			;
2026 		else if (ifp->if_flags & IFF_RUNNING) {
2027 			/*
2028 			 * Multicast list has changed; set the hardware filter
2029 			 * accordingly.
2030 			 */
2031 			vge_setmulti(sc);
2032 		}
2033 	}
2034 	sc->sc_if_flags = ifp->if_flags;
2035 
2036 	splx(s);
2037 	return error;
2038 }
2039 
2040 static void
2041 vge_watchdog(struct ifnet *ifp)
2042 {
2043 	struct vge_softc *sc;
2044 	int s;
2045 
2046 	sc = ifp->if_softc;
2047 	s = splnet();
2048 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2049 	if_statinc(ifp, if_oerrors);
2050 
2051 	vge_txeof(sc);
2052 	vge_rxeof(sc);
2053 
2054 	vge_init(ifp);
2055 
2056 	splx(s);
2057 }
2058 
2059 /*
2060  * Stop the adapter and free any mbufs allocated to the
2061  * RX and TX lists.
2062  */
2063 static void
2064 vge_stop(struct ifnet *ifp, int disable)
2065 {
2066 	struct vge_softc *sc = ifp->if_softc;
2067 	struct vge_txsoft *txs;
2068 	struct vge_rxsoft *rxs;
2069 	int i, s;
2070 
2071 	s = splnet();
2072 	ifp->if_timer = 0;
2073 
2074 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2075 #ifdef DEVICE_POLLING
2076 	ether_poll_deregister(ifp);
2077 #endif /* DEVICE_POLLING */
2078 
2079 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2080 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2081 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2082 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2083 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2084 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2085 
2086 	if (sc->sc_rx_mhead != NULL) {
2087 		m_freem(sc->sc_rx_mhead);
2088 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2089 	}
2090 
2091 	/* Free the TX list buffers. */
2092 
2093 	for (i = 0; i < VGE_NTXDESC; i++) {
2094 		txs = &sc->sc_txsoft[i];
2095 		if (txs->txs_mbuf != NULL) {
2096 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2097 			m_freem(txs->txs_mbuf);
2098 			txs->txs_mbuf = NULL;
2099 		}
2100 	}
2101 
2102 	/* Free the RX list buffers. */
2103 
2104 	for (i = 0; i < VGE_NRXDESC; i++) {
2105 		rxs = &sc->sc_rxsoft[i];
2106 		if (rxs->rxs_mbuf != NULL) {
2107 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2108 			m_freem(rxs->rxs_mbuf);
2109 			rxs->rxs_mbuf = NULL;
2110 		}
2111 	}
2112 
2113 	splx(s);
2114 }
2115 
2116 #if VGE_POWER_MANAGEMENT
2117 /*
2118  * Device suspend routine.  Stop the interface and save some PCI
2119  * settings in case the BIOS doesn't restore them properly on
2120  * resume.
2121  */
2122 static int
2123 vge_suspend(device_t dev)
2124 {
2125 	struct vge_softc *sc;
2126 	int i;
2127 
2128 	sc = device_get_softc(dev);
2129 
2130 	vge_stop(sc);
2131 
2132 	for (i = 0; i < 5; i++)
2133 		sc->sc_saved_maps[i] =
2134 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2135 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2136 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2137 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2138 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2139 
2140 	sc->suspended = 1;
2141 
2142 	return 0;
2143 }
2144 
2145 /*
2146  * Device resume routine.  Restore some PCI settings in case the BIOS
2147  * doesn't, re-enable busmastering, and restart the interface if
2148  * appropriate.
2149  */
2150 static int
2151 vge_resume(device_t dev)
2152 {
2153 	struct vge_softc *sc;
2154 	struct ifnet *ifp;
2155 	int i;
2156 
2157 	sc = device_private(dev);
2158 	ifp = &sc->sc_ethercom.ec_if;
2159 
2160 	/* better way to do this? */
2161 	for (i = 0; i < 5; i++)
2162 		pci_write_config(dev, PCIR_MAPS + i * 4,
2163 		    sc->sc_saved_maps[i], 4);
2164 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2165 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2166 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2167 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2168 
2169 	/* reenable busmastering */
2170 	pci_enable_busmaster(dev);
2171 	pci_enable_io(dev, SYS_RES_MEMORY);
2172 
2173 	/* reinitialize interface if necessary */
2174 	if (ifp->if_flags & IFF_UP)
2175 		vge_init(sc);
2176 
2177 	sc->suspended = 0;
2178 
2179 	return 0;
2180 }
2181 #endif
2182 
2183 /*
2184  * Stop all chip I/O so that the kernel's probe routines don't
2185  * get confused by errant DMAs when rebooting.
2186  */
2187 static bool
2188 vge_shutdown(device_t self, int howto)
2189 {
2190 	struct vge_softc *sc;
2191 
2192 	sc = device_private(self);
2193 	vge_stop(&sc->sc_ethercom.ec_if, 1);
2194 
2195 	return true;
2196 }
2197 
2198 static void
2199 vge_clrwol(struct vge_softc *sc)
2200 {
2201 	uint8_t val;
2202 
2203 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2204 	val &= ~VGE_STICKHW_SWPTAG;
2205 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2206 	/* Disable WOL and clear power state indicator. */
2207 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2208 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2209 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2210 
2211 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2212 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2213 
2214 	/* Clear WOL on pattern match. */
2215 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2216 	/* Disable WOL on magic/unicast packet. */
2217 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2218 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2219 	    VGE_WOLCFG_PMEOVR);
2220 	/* Clear WOL status on pattern match. */
2221 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2222 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2223 }
2224