xref: /netbsd-src/sys/dev/pci/if_vge.c (revision 20e85ad185ab16980f1219a557c42e057edb42ea)
1 /* $NetBSD: if_vge.c,v 1.4 2005/03/05 14:51:21 jdolecek Exp $ */
2 
3 /*-
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.4 2005/03/05 14:51:21 jdolecek Exp $");
39 
40 /*
41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42  *
43  * Written by Bill Paul <wpaul@windriver.com>
44  * Senior Networking Software Engineer
45  * Wind River Systems
46  */
47 
48 /*
49  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
50  * combines a tri-speed ethernet MAC and PHY, with the following
51  * features:
52  *
53  *	o Jumbo frame support up to 16K
54  *	o Transmit and receive flow control
55  *	o IPv4 checksum offload
56  *	o VLAN tag insertion and stripping
57  *	o TCP large send
58  *	o 64-bit multicast hash table filter
59  *	o 64 entry CAM filter
60  *	o 16K RX FIFO and 48K TX FIFO memory
61  *	o Interrupt moderation
62  *
63  * The VT6122 supports up to four transmit DMA queues. The descriptors
64  * in the transmit ring can address up to 7 data fragments; frames which
65  * span more than 7 data buffers must be coalesced, but in general the
66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67  * long. The receive descriptors address only a single buffer.
68  *
69  * There are two peculiar design issues with the VT6122. One is that
70  * receive data buffers must be aligned on a 32-bit boundary. This is
71  * not a problem where the VT6122 is used as a LOM device in x86-based
72  * systems, but on architectures that generate unaligned access traps, we
73  * have to do some copying.
74  *
75  * The other issue has to do with the way 64-bit addresses are handled.
76  * The DMA descriptors only allow you to specify 48 bits of addressing
77  * information. The remaining 16 bits are specified using one of the
78  * I/O registers. If you only have a 32-bit system, then this isn't
79  * an issue, but if you have a 64-bit system and more than 4GB of
80  * memory, you must have to make sure your network data buffers reside
81  * in the same 48-bit 'segment.'
82  *
83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
84  * and sample NICs for testing.
85  */
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 
104 #include <net/bpf.h>
105 
106 #include <machine/bus.h>
107 
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114 
115 #include <dev/pci/if_vgereg.h>
116 #include <dev/pci/if_vgevar.h>
117 
118 static int vge_probe	(struct device *, struct cfdata *, void *);
119 static void vge_attach	(struct device *, struct device *, void *);
120 
121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
122 
123 static int vge_dma_map_rx_desc	(struct vge_softc *, int);
124 static void vge_dma_map_tx_desc	(struct vge_softc *, struct mbuf *, int, int);
125 static int vge_allocmem		(struct vge_softc *);
126 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
127 static int vge_rx_list_init	(struct vge_softc *);
128 static int vge_tx_list_init	(struct vge_softc *);
129 #ifdef VGE_FIXUP_RX
130 static __inline void vge_fixup_rx
131 				(struct mbuf *);
132 #endif
133 static void vge_rxeof		(struct vge_softc *);
134 static void vge_txeof		(struct vge_softc *);
135 static int vge_intr		(void *);
136 static void vge_tick		(void *);
137 static void vge_start		(struct ifnet *);
138 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
139 static int vge_init		(struct ifnet *);
140 static void vge_stop		(struct vge_softc *);
141 static void vge_watchdog	(struct ifnet *);
142 #if VGE_POWER_MANAGEMENT
143 static int vge_suspend		(struct device *);
144 static int vge_resume		(struct device *);
145 #endif
146 static void vge_shutdown	(void *);
147 static int vge_ifmedia_upd	(struct ifnet *);
148 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 
150 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
151 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
152 
153 static void vge_miipoll_start	(struct vge_softc *);
154 static void vge_miipoll_stop	(struct vge_softc *);
155 static int vge_miibus_readreg	(struct device *, int, int);
156 static void vge_miibus_writereg	(struct device *, int, int, int);
157 static void vge_miibus_statchg	(struct device *);
158 
159 static void vge_cam_clear	(struct vge_softc *);
160 static int vge_cam_set		(struct vge_softc *, uint8_t *);
161 static void vge_setmulti	(struct vge_softc *);
162 static void vge_reset		(struct vge_softc *);
163 
164 #define VGE_PCI_LOIO             0x10
165 #define VGE_PCI_LOMEM            0x14
166 
167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
168     vge_probe, vge_attach, NULL, NULL);
169 
170 /*
171  * Defragment mbuf chain contents to be as linear as possible.
172  * Returns new mbuf chain on success, NULL on failure. Old mbuf
173  * chain is always freed.
174  * XXX temporary until there would be generic function doing this.
175  */
176 #define m_defrag	vge_m_defrag
177 struct mbuf * vge_m_defrag(struct mbuf *, int);
178 
179 struct mbuf *
180 vge_m_defrag(struct mbuf *mold, int flags)
181 {
182 	struct mbuf *m0, *mn, *n;
183 	size_t sz = mold->m_pkthdr.len;
184 
185 #ifdef DIAGNOSTIC
186 	if ((mold->m_flags & M_PKTHDR) == 0)
187 		panic("m_defrag: not a mbuf chain header");
188 #endif
189 
190 	MGETHDR(m0, flags, MT_DATA);
191 	if (m0 == NULL)
192 		return NULL;
193 	m0->m_pkthdr.len = mold->m_pkthdr.len;
194 	mn = m0;
195 
196 	do {
197 		if (sz > MHLEN) {
198 			MCLGET(mn, M_DONTWAIT);
199 			if ((mn->m_flags & M_EXT) == 0) {
200 				m_freem(m0);
201 				return NULL;
202 			}
203 		}
204 
205 		mn->m_len = MIN(sz, MCLBYTES);
206 
207 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
208 		     mtod(mn, caddr_t));
209 
210 		sz -= mn->m_len;
211 
212 		if (sz > 0) {
213 			/* need more mbufs */
214 			MGET(n, M_NOWAIT, MT_DATA);
215 			if (n == NULL) {
216 				m_freem(m0);
217 				return NULL;
218 			}
219 
220 			mn->m_next = n;
221 			mn = n;
222 		}
223 	} while (sz > 0);
224 
225 	return m0;
226 }
227 
228 /*
229  * Read a word of data stored in the EEPROM at address 'addr.'
230  */
231 static void
232 vge_eeprom_getword(sc, addr, dest)
233 	struct vge_softc	*sc;
234 	int			addr;
235 	u_int16_t		*dest;
236 {
237 	register int		i;
238 	u_int16_t		word = 0;
239 
240 	/*
241 	 * Enter EEPROM embedded programming mode. In order to
242 	 * access the EEPROM at all, we first have to set the
243 	 * EELOAD bit in the CHIPCFG2 register.
244 	 */
245 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247 
248 	/* Select the address of the word we want to read */
249 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250 
251 	/* Issue read command */
252 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253 
254 	/* Wait for the done bit to be set. */
255 	for (i = 0; i < VGE_TIMEOUT; i++) {
256 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257 			break;
258 	}
259 
260 	if (i == VGE_TIMEOUT) {
261 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
262 		*dest = 0;
263 		return;
264 	}
265 
266 	/* Read the result */
267 	word = CSR_READ_2(sc, VGE_EERDDAT);
268 
269 	/* Turn off EEPROM access mode. */
270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272 
273 	*dest = word;
274 
275 	return;
276 }
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(sc, dest, off, cnt, swap)
283 	struct vge_softc	*sc;
284 	caddr_t			dest;
285 	int			off;
286 	int			cnt;
287 	int			swap;
288 {
289 	int			i;
290 	u_int16_t		word = 0, *ptr;
291 
292 	for (i = 0; i < cnt; i++) {
293 		vge_eeprom_getword(sc, off + i, &word);
294 		ptr = (u_int16_t *)(dest + (i * 2));
295 		if (swap)
296 			*ptr = ntohs(word);
297 		else
298 			*ptr = word;
299 	}
300 }
301 
302 static void
303 vge_miipoll_stop(sc)
304 	struct vge_softc	*sc;
305 {
306 	int			i;
307 
308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
309 
310 	for (i = 0; i < VGE_TIMEOUT; i++) {
311 		DELAY(1);
312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313 			break;
314 	}
315 
316 	if (i == VGE_TIMEOUT) {
317 		printf("%s: failed to idle MII autopoll\n",
318 		    sc->sc_dev.dv_xname);
319 	}
320 
321 	return;
322 }
323 
324 static void
325 vge_miipoll_start(sc)
326 	struct vge_softc	*sc;
327 {
328 	int			i;
329 
330 	/* First, make sure we're idle. */
331 
332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334 
335 	for (i = 0; i < VGE_TIMEOUT; i++) {
336 		DELAY(1);
337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 			break;
339 	}
340 
341 	if (i == VGE_TIMEOUT) {
342 		printf("%s: failed to idle MII autopoll\n",
343 		    sc->sc_dev.dv_xname);
344 		return;
345 	}
346 
347 	/* Now enable auto poll mode. */
348 
349 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
350 
351 	/* And make sure it started. */
352 
353 	for (i = 0; i < VGE_TIMEOUT; i++) {
354 		DELAY(1);
355 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
356 			break;
357 	}
358 
359 	if (i == VGE_TIMEOUT) {
360 		printf("%s: failed to start MII autopoll\n",
361 		    sc->sc_dev.dv_xname);
362 	}
363 }
364 
365 static int
366 vge_miibus_readreg(dev, phy, reg)
367 	struct device *dev;
368 	int phy, reg;
369 {
370 	struct vge_softc	*sc = (struct vge_softc *)dev;
371 	int			i;
372 	u_int16_t		rval = 0;
373 
374 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
375 		return(0);
376 
377 	VGE_LOCK(sc);
378 	vge_miipoll_stop(sc);
379 
380 	/* Specify the register we want to read. */
381 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
382 
383 	/* Issue read command. */
384 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
385 
386 	/* Wait for the read command bit to self-clear. */
387 	for (i = 0; i < VGE_TIMEOUT; i++) {
388 		DELAY(1);
389 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
390 			break;
391 	}
392 
393 	if (i == VGE_TIMEOUT)
394 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
395 	else
396 		rval = CSR_READ_2(sc, VGE_MIIDATA);
397 
398 	vge_miipoll_start(sc);
399 	VGE_UNLOCK(sc);
400 
401 	return (rval);
402 }
403 
404 static void
405 vge_miibus_writereg(dev, phy, reg, data)
406 	struct device	*dev;
407 	int		phy, reg, data;
408 {
409 	struct vge_softc	*sc = (struct vge_softc *)dev;
410 	int			i;
411 
412 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
413 		return;
414 
415 	VGE_LOCK(sc);
416 	vge_miipoll_stop(sc);
417 
418 	/* Specify the register we want to write. */
419 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
420 
421 	/* Specify the data we want to write. */
422 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
423 
424 	/* Issue write command. */
425 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
426 
427 	/* Wait for the write command bit to self-clear. */
428 	for (i = 0; i < VGE_TIMEOUT; i++) {
429 		DELAY(1);
430 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
431 			break;
432 	}
433 
434 	if (i == VGE_TIMEOUT) {
435 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
436 	}
437 
438 	vge_miipoll_start(sc);
439 	VGE_UNLOCK(sc);
440 }
441 
442 static void
443 vge_cam_clear(sc)
444 	struct vge_softc	*sc;
445 {
446 	int			i;
447 
448 	/*
449 	 * Turn off all the mask bits. This tells the chip
450 	 * that none of the entries in the CAM filter are valid.
451 	 * desired entries will be enabled as we fill the filter in.
452 	 */
453 
454 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
455 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
456 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
457 	for (i = 0; i < 8; i++)
458 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
459 
460 	/* Clear the VLAN filter too. */
461 
462 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
463 	for (i = 0; i < 8; i++)
464 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
465 
466 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
469 
470 	sc->vge_camidx = 0;
471 
472 	return;
473 }
474 
475 static int
476 vge_cam_set(sc, addr)
477 	struct vge_softc	*sc;
478 	uint8_t			*addr;
479 {
480 	int			i, error = 0;
481 
482 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
483 		return(ENOSPC);
484 
485 	/* Select the CAM data page. */
486 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
487 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
488 
489 	/* Set the filter entry we want to update and enable writing. */
490 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
491 
492 	/* Write the address to the CAM registers */
493 	for (i = 0; i < ETHER_ADDR_LEN; i++)
494 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
495 
496 	/* Issue a write command. */
497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
498 
499 	/* Wake for it to clear. */
500 	for (i = 0; i < VGE_TIMEOUT; i++) {
501 		DELAY(1);
502 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
503 			break;
504 	}
505 
506 	if (i == VGE_TIMEOUT) {
507 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
508 		error = EIO;
509 		goto fail;
510 	}
511 
512 	/* Select the CAM mask page. */
513 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
514 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
515 
516 	/* Set the mask bit that enables this filter. */
517 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
518 	    1<<(sc->vge_camidx & 7));
519 
520 	sc->vge_camidx++;
521 
522 fail:
523 	/* Turn off access to CAM. */
524 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
525 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
526 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
527 
528 	return (error);
529 }
530 
531 /*
532  * Program the multicast filter. We use the 64-entry CAM filter
533  * for perfect filtering. If there's more than 64 multicast addresses,
534  * we use the hash filter insted.
535  */
536 static void
537 vge_setmulti(sc)
538 	struct vge_softc	*sc;
539 {
540 	struct ifnet		*ifp;
541 	int			error = 0;
542 	u_int32_t		h, hashes[2] = { 0, 0 };
543 	struct ether_multi *enm;
544 	struct ether_multistep step;
545 
546 	ifp = &sc->sc_ethercom.ec_if;
547 
548 	/* First, zot all the multicast entries. */
549 	vge_cam_clear(sc);
550 	CSR_WRITE_4(sc, VGE_MAR0, 0);
551 	CSR_WRITE_4(sc, VGE_MAR1, 0);
552 
553 	/*
554 	 * If the user wants allmulti or promisc mode, enable reception
555 	 * of all multicast frames.
556 	 */
557 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
558     allmulti:
559 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
560 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
561 		return;
562 	}
563 
564 	/* Now program new ones */
565 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
566 	while(enm != NULL) {
567 		/*
568 		 * If multicast range, fall back to ALLMULTI.
569 		 */
570 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
571 				ETHER_ADDR_LEN) != 0)
572 			goto allmulti;
573 
574 		error = vge_cam_set(sc,
575 		    LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
576 		if (error)
577 			break;
578 
579 		ETHER_NEXT_MULTI(step, enm);
580 	}
581 
582 	/* If there were too many addresses, use the hash filter. */
583 	if (error) {
584 		vge_cam_clear(sc);
585 
586 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
587 		while(enm != NULL) {
588 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
589 			    enm->enm_addrlo), ETHER_ADDR_LEN) >> 26;
590 			if (h < 32)
591 				hashes[0] |= (1 << h);
592 			else
593 				hashes[1] |= (1 << (h - 32));
594 		}
595 
596 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
597 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
598 	}
599 
600 	return;
601 }
602 
603 static void
604 vge_reset(sc)
605 	struct vge_softc		*sc;
606 {
607 	register int		i;
608 
609 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
610 
611 	for (i = 0; i < VGE_TIMEOUT; i++) {
612 		DELAY(5);
613 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
614 			break;
615 	}
616 
617 	if (i == VGE_TIMEOUT) {
618 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
619 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
620 		DELAY(2000);
621 	}
622 
623 	DELAY(5000);
624 
625 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
626 
627 	for (i = 0; i < VGE_TIMEOUT; i++) {
628 		DELAY(5);
629 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
630 			break;
631 	}
632 
633 	if (i == VGE_TIMEOUT) {
634 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
635 		return;
636 	}
637 
638 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
639 
640 	return;
641 }
642 
643 /*
644  * Probe for a VIA gigabit chip. Check the PCI vendor and device
645  * IDs against our list and return a device name if we find a match.
646  */
647 static int
648 vge_probe(struct device *parent, struct cfdata *match, void *aux)
649 {
650 	struct pci_attach_args *pa = aux;
651 
652 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
653 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
654 		return 1;
655 
656 	return (0);
657 }
658 
659 static int
660 vge_dma_map_rx_desc(sc, idx)
661 	struct vge_softc	*sc;
662 	int			idx;
663 {
664 	struct vge_rx_desc	*d = NULL;
665 	bus_dma_segment_t	*segs;
666 
667 	/*
668 	 * Map the segment array into descriptors.
669 	 */
670 
671 	d = &sc->vge_ldata.vge_rx_list[idx];
672 
673 	/* If this descriptor is still owned by the chip, bail. */
674 
675 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
676 		printf("%s: tried to map busy descriptor\n",
677 		    sc->sc_dev.dv_xname);
678 		return (EBUSY);
679 	}
680 
681 	segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
682 
683 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
684 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
685 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
686 	d->vge_sts = 0;
687 	d->vge_ctl = 0;
688 
689 	return (0);
690 }
691 
692 static void
693 vge_dma_map_tx_desc(sc, m0, idx, flags)
694 	struct vge_softc	*sc;
695 	struct mbuf		*m0;
696 	int			idx, flags;
697 {
698 	struct vge_tx_desc	*d = &sc->vge_ldata.vge_tx_list[idx];
699 	struct vge_tx_frag	*f;
700 	int			i = 0;
701 	bus_dma_segment_t	*segs;
702 	size_t			sz;
703 	bus_dmamap_t		map = sc->vge_ldata.vge_tx_dmamap[idx];
704 
705 	/* Map the segment array into descriptors. */
706 
707 	segs = map->dm_segs;
708 	for (i = 0; i < map->dm_nsegs; i++) {
709 		f = &d->vge_frag[i];
710 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
711 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
712 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
713 	}
714 
715 	/* Argh. This chip does not autopad short frames */
716 
717 	sz = m0->m_pkthdr.len;
718 	if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
719 		f = &d->vge_frag[i];
720 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
721 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
722 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
723 		sz = VGE_MIN_FRAMELEN;
724 		i++;
725 	}
726 
727 	/*
728 	 * When telling the chip how many segments there are, we
729 	 * must use nsegs + 1 instead of just nsegs. Darned if I
730 	 * know why.
731 	 */
732 	i++;
733 
734 	d->vge_sts = sz << 16;
735 	d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
736 
737 	if (sz > ETHERMTU + ETHER_HDR_LEN)
738 		d->vge_ctl |= VGE_TDCTL_JUMBO;
739 }
740 
741 static int
742 vge_allocmem(sc)
743 	struct vge_softc *sc;
744 {
745 	int			error;
746 	int			nseg;
747 	int			i;
748 	bus_dma_segment_t	seg;
749 
750 	/*
751 	 * Allocate map for TX descriptor list.
752 	 */
753 	error = bus_dmamap_create(sc->vge_dmat,
754 	    round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
755 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
756 	    &sc->vge_ldata.vge_tx_list_map);
757 	if (error) {
758 		printf("%s: could not allocate TX dma list map\n",
759 		    sc->sc_dev.dv_xname);
760 		return (ENOMEM);
761 	}
762 
763 	/*
764 	 * Allocate memory for TX descriptor list.
765 	 */
766 
767 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
768 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
769 	if (error) {
770 		printf("%s: could not allocate TX ring dma memory\n",
771 		    sc->sc_dev.dv_xname);
772 		return (ENOMEM);
773 	}
774 
775 	/* Map the memory to kernel VA space */
776 
777 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
778 	     (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
779 	if (error) {
780 		printf("%s: could not map TX ring dma memory\n",
781 		    sc->sc_dev.dv_xname);
782 		return (ENOMEM);
783 	}
784 
785 	/* Load the map for the TX ring. */
786 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
787 	    sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
788 	if (error) {
789 		printf("%s: could not load TX ring dma memory\n",
790 		    sc->sc_dev.dv_xname);
791 		return (ENOMEM);
792 	}
793 
794 	sc->vge_ldata.vge_tx_list_addr =
795 		sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
796 
797 	/* Create DMA maps for TX buffers */
798 
799 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
800 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
801 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
802 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
803 		    &sc->vge_ldata.vge_tx_dmamap[i]);
804 		if (error) {
805 			printf("%s: can't create DMA map for TX\n",
806 			    sc->sc_dev.dv_xname);
807 			return (ENOMEM);
808 		}
809 	}
810 
811 	/*
812 	 * Allocate map for RX descriptor list.
813 	 */
814 	error = bus_dmamap_create(sc->vge_dmat,
815 	    round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
816 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
817 	    &sc->vge_ldata.vge_rx_list_map);
818 	if (error) {
819 		printf("%s: could not allocate RX dma list map\n",
820 		    sc->sc_dev.dv_xname);
821 		return (ENOMEM);
822 	}
823 
824 	/* Allocate DMA'able memory for the RX ring */
825 
826 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
827 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
828 	if (error)
829 		return (ENOMEM);
830 
831 	/* Map the memory to kernel VA space */
832 
833 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
834 	     (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
835 	if (error)
836 		return (ENOMEM);
837 
838 	/* Load the map for the RX ring. */
839 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
840 	    sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
841 	if (error) {
842 		printf("%s: could not load RX ring dma memory\n",
843 		    sc->sc_dev.dv_xname);
844 		return (ENOMEM);
845 	}
846 
847 	sc->vge_ldata.vge_rx_list_addr =
848 		sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
849 
850 	/* Create DMA maps for RX buffers */
851 
852 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
853 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
854 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
855 		    &sc->vge_ldata.vge_rx_dmamap[i]);
856 		if (error) {
857 			printf("%s: can't create DMA map for RX\n",
858 			     sc->sc_dev.dv_xname);
859 			return (ENOMEM);
860 		}
861 	}
862 
863 	return (0);
864 }
865 
866 /*
867  * Attach the interface. Allocate softc structures, do ifmedia
868  * setup and ethernet/BPF attach.
869  */
870 static void
871 vge_attach(struct device *parent, struct device *self, void *aux)
872 {
873 	u_char			eaddr[ETHER_ADDR_LEN];
874 	struct vge_softc	*sc = (struct vge_softc *)self;
875 	struct ifnet		*ifp;
876 	struct pci_attach_args *pa = aux;
877 	pci_chipset_tag_t pc = pa->pa_pc;
878 	const char *intrstr;
879 	pci_intr_handle_t ih;
880 
881 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
882 		PCI_REVISION(pa->pa_class));
883 
884 	/* Make sure bus-mastering is enabled */
885         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
886 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
887 		PCI_COMMAND_MASTER_ENABLE);
888 
889 	/*
890 	 * Map control/status registers.
891 	 */
892 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
893 	    PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
894 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
895 		aprint_error("%s: couldn't map memory\n",
896 			sc->sc_dev.dv_xname);
897 		return;
898 	}
899 
900         /*
901          * Map and establish our interrupt.
902          */
903 	if (pci_intr_map(pa, &ih)) {
904 		aprint_error("%s: unable to map interrupt\n",
905 		    sc->sc_dev.dv_xname);
906 		return;
907 	}
908 	intrstr = pci_intr_string(pc, ih);
909 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
910 	if (sc->vge_intrhand == NULL) {
911 		printf("%s: unable to establish interrupt",
912 		    sc->sc_dev.dv_xname);
913 		if (intrstr != NULL)
914 			printf(" at %s", intrstr);
915 		printf("\n");
916 		return;
917 	}
918 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
919 
920 	/* Reset the adapter. */
921 	vge_reset(sc);
922 
923 	/*
924 	 * Get station address from the EEPROM.
925 	 */
926 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
927 	bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
928 
929 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
930 	    ether_sprintf(eaddr));
931 
932 	/*
933 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
934 	 * but we don't use that for now.
935 	 */
936 	sc->vge_dmat = pa->pa_dmat;
937 
938 	if (vge_allocmem(sc))
939 		return;
940 
941 	ifp = &sc->sc_ethercom.ec_if;
942 	ifp->if_softc = sc;
943 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
944 	ifp->if_mtu = ETHERMTU;
945 	ifp->if_baudrate = IF_Gbps(1);
946 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
947 	ifp->if_ioctl = vge_ioctl;
948 	ifp->if_start = vge_start;
949 
950 	/*
951 	 * We can support 802.1Q VLAN-sized frames and jumbo
952 	 * Ethernet frames.
953 	 */
954 	sc->sc_ethercom.ec_capabilities |=
955 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
956 	    ETHERCAP_VLAN_HWTAGGING;
957 
958 	/*
959 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
960 	 */
961 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 |
962 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
963 
964 #ifdef DEVICE_POLLING
965 #ifdef IFCAP_POLLING
966 	ifp->if_capabilities |= IFCAP_POLLING;
967 #endif
968 #endif
969 	ifp->if_watchdog = vge_watchdog;
970 	ifp->if_init = vge_init;
971 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
972 
973 	/*
974 	 * Initialize our media structures and probe the MII.
975 	 */
976 	sc->sc_mii.mii_ifp = ifp;
977 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
978 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
979 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
980 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
981 	    vge_ifmedia_sts);
982 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
983 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
984 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
985 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
986 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
987 	} else
988 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
989 
990 	/*
991 	 * Attach the interface.
992 	 */
993 	if_attach(ifp);
994 	ether_ifattach(ifp, eaddr);
995 
996 	callout_init(&sc->vge_timeout);
997 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
998 
999 	/*
1000 	 * Make sure the interface is shutdown during reboot.
1001 	 */
1002 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1003 		printf("%s: WARNING: unable to establish shutdown hook\n",
1004 		    sc->sc_dev.dv_xname);
1005 	}
1006 }
1007 
1008 static int
1009 vge_newbuf(sc, idx, m)
1010 	struct vge_softc	*sc;
1011 	int			idx;
1012 	struct mbuf		*m;
1013 {
1014 	struct mbuf		*n = NULL;
1015 	int			i, error;
1016 
1017 	if (m == NULL) {
1018 		n = m_gethdr(M_DONTWAIT, MT_DATA);
1019 		if (n == NULL)
1020 			return (ENOBUFS);
1021 
1022 		m_clget(n, M_DONTWAIT);
1023 		if ((n->m_flags & M_EXT) == 0) {
1024 			m_freem(n);
1025 			return (ENOBUFS);
1026 		}
1027 
1028 		m = n;
1029 	} else
1030 		m->m_data = m->m_ext.ext_buf;
1031 
1032 
1033 #ifdef VGE_FIXUP_RX
1034 	/*
1035 	 * This is part of an evil trick to deal with non-x86 platforms.
1036 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1037 	 * boundaries, but that will hose non-x86 machines. To get around
1038 	 * this, we leave some empty space at the start of each buffer
1039 	 * and for non-x86 hosts, we copy the buffer back two bytes
1040 	 * to achieve word alignment. This is slightly more efficient
1041 	 * than allocating a new buffer, copying the contents, and
1042 	 * discarding the old buffer.
1043 	 */
1044 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1045 	m_adj(m, VGE_ETHER_ALIGN);
1046 #else
1047 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1048 #endif
1049 
1050 	error = bus_dmamap_load_mbuf(sc->vge_dmat,
1051 	    sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1052 	if (error || vge_dma_map_rx_desc(sc, idx)) {
1053 		if (n != NULL)
1054 			m_freem(n);
1055 		return (ENOMEM);
1056 	}
1057 
1058 	/*
1059 	 * Note: the manual fails to document the fact that for
1060 	 * proper opration, the driver needs to replentish the RX
1061 	 * DMA ring 4 descriptors at a time (rather than one at a
1062 	 * time, like most chips). We can allocate the new buffers
1063 	 * but we should not set the OWN bits until we're ready
1064 	 * to hand back 4 of them in one shot.
1065 	 */
1066 
1067 #define VGE_RXCHUNK 4
1068 	sc->vge_rx_consumed++;
1069 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1070 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1071 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1072 			    htole32(VGE_RDSTS_OWN);
1073 		sc->vge_rx_consumed = 0;
1074 	}
1075 
1076 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1077 
1078 	bus_dmamap_sync(sc->vge_dmat,
1079 	    sc->vge_ldata.vge_rx_dmamap[idx],
1080 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1081 	    BUS_DMASYNC_PREREAD);
1082 
1083 	return (0);
1084 }
1085 
1086 static int
1087 vge_tx_list_init(sc)
1088 	struct vge_softc		*sc;
1089 {
1090 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1091 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1092 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1093 
1094 	bus_dmamap_sync(sc->vge_dmat,
1095 	    sc->vge_ldata.vge_tx_list_map,
1096 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1097 	    BUS_DMASYNC_PREWRITE);
1098 
1099 	sc->vge_ldata.vge_tx_prodidx = 0;
1100 	sc->vge_ldata.vge_tx_considx = 0;
1101 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1102 
1103 	return (0);
1104 }
1105 
1106 static int
1107 vge_rx_list_init(sc)
1108 	struct vge_softc		*sc;
1109 {
1110 	int			i;
1111 
1112 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1113 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1114 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1115 
1116 	sc->vge_rx_consumed = 0;
1117 
1118 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1119 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1120 			return (ENOBUFS);
1121 	}
1122 
1123 	/* Flush the RX descriptors */
1124 
1125 	bus_dmamap_sync(sc->vge_dmat,
1126 	    sc->vge_ldata.vge_rx_list_map,
1127 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1128 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1129 
1130 	sc->vge_ldata.vge_rx_prodidx = 0;
1131 	sc->vge_rx_consumed = 0;
1132 	sc->vge_head = sc->vge_tail = NULL;
1133 
1134 	return (0);
1135 }
1136 
1137 #ifdef VGE_FIXUP_RX
1138 static __inline void
1139 vge_fixup_rx(m)
1140 	struct mbuf		*m;
1141 {
1142 	int			i;
1143 	uint16_t		*src, *dst;
1144 
1145 	src = mtod(m, uint16_t *);
1146 	dst = src - 1;
1147 
1148 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1149 		*dst++ = *src++;
1150 
1151 	m->m_data -= ETHER_ALIGN;
1152 
1153 	return;
1154 }
1155 #endif
1156 
1157 /*
1158  * RX handler. We support the reception of jumbo frames that have
1159  * been fragmented across multiple 2K mbuf cluster buffers.
1160  */
1161 static void
1162 vge_rxeof(sc)
1163 	struct vge_softc	*sc;
1164 {
1165 	struct mbuf		*m;
1166 	struct ifnet		*ifp;
1167 	int			i, total_len;
1168 	int			lim = 0;
1169 	struct vge_rx_desc	*cur_rx;
1170 	u_int32_t		rxstat, rxctl;
1171 
1172 	VGE_LOCK_ASSERT(sc);
1173 	ifp = &sc->sc_ethercom.ec_if;
1174 	i = sc->vge_ldata.vge_rx_prodidx;
1175 
1176 	/* Invalidate the descriptor memory */
1177 
1178 	bus_dmamap_sync(sc->vge_dmat,
1179 	    sc->vge_ldata.vge_rx_list_map,
1180 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1181 	    BUS_DMASYNC_POSTREAD);
1182 
1183 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1184 
1185 #ifdef DEVICE_POLLING
1186 		if (ifp->if_flags & IFF_POLLING) {
1187 			if (sc->rxcycles <= 0)
1188 				break;
1189 			sc->rxcycles--;
1190 		}
1191 #endif /* DEVICE_POLLING */
1192 
1193 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1194 		m = sc->vge_ldata.vge_rx_mbuf[i];
1195 		total_len = VGE_RXBYTES(cur_rx);
1196 		rxstat = le32toh(cur_rx->vge_sts);
1197 		rxctl = le32toh(cur_rx->vge_ctl);
1198 
1199 		/* Invalidate the RX mbuf and unload its map */
1200 
1201 		bus_dmamap_sync(sc->vge_dmat,
1202 		    sc->vge_ldata.vge_rx_dmamap[i],
1203 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1204 		    BUS_DMASYNC_POSTWRITE);
1205 		bus_dmamap_unload(sc->vge_dmat,
1206 		    sc->vge_ldata.vge_rx_dmamap[i]);
1207 
1208 		/*
1209 		 * If the 'start of frame' bit is set, this indicates
1210 		 * either the first fragment in a multi-fragment receive,
1211 		 * or an intermediate fragment. Either way, we want to
1212 		 * accumulate the buffers.
1213 		 */
1214 		if (rxstat & VGE_RXPKT_SOF) {
1215 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1216 			if (sc->vge_head == NULL)
1217 				sc->vge_head = sc->vge_tail = m;
1218 			else {
1219 				m->m_flags &= ~M_PKTHDR;
1220 				sc->vge_tail->m_next = m;
1221 				sc->vge_tail = m;
1222 			}
1223 			vge_newbuf(sc, i, NULL);
1224 			VGE_RX_DESC_INC(i);
1225 			continue;
1226 		}
1227 
1228 		/*
1229 		 * Bad/error frames will have the RXOK bit cleared.
1230 		 * However, there's one error case we want to allow:
1231 		 * if a VLAN tagged frame arrives and the chip can't
1232 		 * match it against the CAM filter, it considers this
1233 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1234 		 * We don't want to drop the frame though: our VLAN
1235 		 * filtering is done in software.
1236 		 */
1237 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1238 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1239 			ifp->if_ierrors++;
1240 			/*
1241 			 * If this is part of a multi-fragment packet,
1242 			 * discard all the pieces.
1243 			 */
1244 			if (sc->vge_head != NULL) {
1245 				m_freem(sc->vge_head);
1246 				sc->vge_head = sc->vge_tail = NULL;
1247 			}
1248 			vge_newbuf(sc, i, m);
1249 			VGE_RX_DESC_INC(i);
1250 			continue;
1251 		}
1252 
1253 		/*
1254 		 * If allocating a replacement mbuf fails,
1255 		 * reload the current one.
1256 		 */
1257 
1258 		if (vge_newbuf(sc, i, NULL)) {
1259 			ifp->if_ierrors++;
1260 			if (sc->vge_head != NULL) {
1261 				m_freem(sc->vge_head);
1262 				sc->vge_head = sc->vge_tail = NULL;
1263 			}
1264 			vge_newbuf(sc, i, m);
1265 			VGE_RX_DESC_INC(i);
1266 			continue;
1267 		}
1268 
1269 		VGE_RX_DESC_INC(i);
1270 
1271 		if (sc->vge_head != NULL) {
1272 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1273 			/*
1274 			 * Special case: if there's 4 bytes or less
1275 			 * in this buffer, the mbuf can be discarded:
1276 			 * the last 4 bytes is the CRC, which we don't
1277 			 * care about anyway.
1278 			 */
1279 			if (m->m_len <= ETHER_CRC_LEN) {
1280 				sc->vge_tail->m_len -=
1281 				    (ETHER_CRC_LEN - m->m_len);
1282 				m_freem(m);
1283 			} else {
1284 				m->m_len -= ETHER_CRC_LEN;
1285 				m->m_flags &= ~M_PKTHDR;
1286 				sc->vge_tail->m_next = m;
1287 			}
1288 			m = sc->vge_head;
1289 			sc->vge_head = sc->vge_tail = NULL;
1290 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1291 		} else
1292 			m->m_pkthdr.len = m->m_len =
1293 			    (total_len - ETHER_CRC_LEN);
1294 
1295 #ifdef VGE_FIXUP_RX
1296 		vge_fixup_rx(m);
1297 #endif
1298 		ifp->if_ipackets++;
1299 		m->m_pkthdr.rcvif = ifp;
1300 
1301 		/* Do RX checksumming if enabled */
1302 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1303 
1304 			/* Check IP header checksum */
1305 			if (rxctl & VGE_RDCTL_IPPKT)
1306 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1307 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1308 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1309 		}
1310 
1311 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1312 			/* Check UDP checksum */
1313 			if (rxctl & VGE_RDCTL_TCPPKT)
1314 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1315 
1316 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1317 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1318 		}
1319 
1320 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1321 			/* Check UDP checksum */
1322 			if (rxctl & VGE_RDCTL_UDPPKT)
1323 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1324 
1325 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1326 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1327 		}
1328 
1329 		if (rxstat & VGE_RDSTS_VTAG)
1330 			VLAN_INPUT_TAG(ifp, m,
1331 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1332 
1333 #if NBPFILTER > 0
1334 		/*
1335 		 * Handle BPF listeners.
1336 		 */
1337 		if (ifp->if_bpf)
1338 			bpf_mtap(ifp->if_bpf, m);
1339 #endif
1340 
1341 		VGE_UNLOCK(sc);
1342 		(*ifp->if_input)(ifp, m);
1343 		VGE_LOCK(sc);
1344 
1345 		lim++;
1346 		if (lim == VGE_RX_DESC_CNT)
1347 			break;
1348 
1349 	}
1350 
1351 	/* Flush the RX DMA ring */
1352 
1353 	bus_dmamap_sync(sc->vge_dmat,
1354 	    sc->vge_ldata.vge_rx_list_map,
1355 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1356 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1357 
1358 	sc->vge_ldata.vge_rx_prodidx = i;
1359 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1360 
1361 
1362 	return;
1363 }
1364 
1365 static void
1366 vge_txeof(sc)
1367 	struct vge_softc		*sc;
1368 {
1369 	struct ifnet		*ifp;
1370 	u_int32_t		txstat;
1371 	int			idx;
1372 
1373 	ifp = &sc->sc_ethercom.ec_if;
1374 	idx = sc->vge_ldata.vge_tx_considx;
1375 
1376 	/* Invalidate the TX descriptor list */
1377 
1378 	bus_dmamap_sync(sc->vge_dmat,
1379 	    sc->vge_ldata.vge_tx_list_map,
1380 	    0,  sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1381 	    BUS_DMASYNC_POSTREAD);
1382 
1383 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1384 
1385 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1386 		if (txstat & VGE_TDSTS_OWN)
1387 			break;
1388 
1389 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1390 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1391 		bus_dmamap_unload(sc->vge_dmat,
1392 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1393 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1394 			ifp->if_collisions++;
1395 		if (txstat & VGE_TDSTS_TXERR)
1396 			ifp->if_oerrors++;
1397 		else
1398 			ifp->if_opackets++;
1399 
1400 		sc->vge_ldata.vge_tx_free++;
1401 		VGE_TX_DESC_INC(idx);
1402 	}
1403 
1404 	/* No changes made to the TX ring, so no flush needed */
1405 
1406 	if (idx != sc->vge_ldata.vge_tx_considx) {
1407 		sc->vge_ldata.vge_tx_considx = idx;
1408 		ifp->if_flags &= ~IFF_OACTIVE;
1409 		ifp->if_timer = 0;
1410 	}
1411 
1412 	/*
1413 	 * If not all descriptors have been released reaped yet,
1414 	 * reload the timer so that we will eventually get another
1415 	 * interrupt that will cause us to re-enter this routine.
1416 	 * This is done in case the transmitter has gone idle.
1417 	 */
1418 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1419 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1420 	}
1421 
1422 	return;
1423 }
1424 
1425 static void
1426 vge_tick(xsc)
1427 	void			*xsc;
1428 {
1429 	struct vge_softc	*sc = xsc;
1430 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1431 	struct mii_data		*mii = &sc->sc_mii;
1432 	int s;
1433 
1434 	s = splnet();
1435 
1436 	VGE_LOCK(sc);
1437 
1438 	callout_schedule(&sc->vge_timeout, hz);
1439 
1440 	mii_tick(mii);
1441 	if (sc->vge_link) {
1442 		if (!(mii->mii_media_status & IFM_ACTIVE))
1443 			sc->vge_link = 0;
1444 	} else {
1445 		if (mii->mii_media_status & IFM_ACTIVE &&
1446 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1447 			sc->vge_link = 1;
1448 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1449 				vge_start(ifp);
1450 		}
1451 	}
1452 
1453 	VGE_UNLOCK(sc);
1454 
1455 	splx(s);
1456 }
1457 
1458 #ifdef DEVICE_POLLING
1459 static void
1460 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1461 {
1462 	struct vge_softc *sc = ifp->if_softc;
1463 
1464 	VGE_LOCK(sc);
1465 #ifdef IFCAP_POLLING
1466 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1467 		ether_poll_deregister(ifp);
1468 		cmd = POLL_DEREGISTER;
1469 	}
1470 #endif
1471 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1472 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1473 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1474 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1475 		goto done;
1476 	}
1477 
1478 	sc->rxcycles = count;
1479 	vge_rxeof(sc);
1480 	vge_txeof(sc);
1481 
1482 #if __FreeBSD_version < 502114
1483 	if (ifp->if_snd.ifq_head != NULL)
1484 #else
1485 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1486 #endif
1487 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1488 
1489 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1490 		u_int32_t       status;
1491 		status = CSR_READ_4(sc, VGE_ISR);
1492 		if (status == 0xFFFFFFFF)
1493 			goto done;
1494 		if (status)
1495 			CSR_WRITE_4(sc, VGE_ISR, status);
1496 
1497 		/*
1498 		 * XXX check behaviour on receiver stalls.
1499 		 */
1500 
1501 		if (status & VGE_ISR_TXDMA_STALL ||
1502 		    status & VGE_ISR_RXDMA_STALL)
1503 			vge_init(sc);
1504 
1505 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1506 			vge_rxeof(sc);
1507 			ifp->if_ierrors++;
1508 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1509 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1510 		}
1511 	}
1512 done:
1513 	VGE_UNLOCK(sc);
1514 }
1515 #endif /* DEVICE_POLLING */
1516 
1517 static int
1518 vge_intr(arg)
1519 	void			*arg;
1520 {
1521 	struct vge_softc	*sc = arg;
1522 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
1523 	u_int32_t		status;
1524 	int claim = 0;
1525 
1526 	if (sc->suspended) {
1527 		return claim;
1528 	}
1529 
1530 	VGE_LOCK(sc);
1531 
1532 	if (!(ifp->if_flags & IFF_UP)) {
1533 		VGE_UNLOCK(sc);
1534 		return claim;
1535 	}
1536 
1537 #ifdef DEVICE_POLLING
1538 	if  (ifp->if_flags & IFF_POLLING)
1539 		goto done;
1540 	if (
1541 #ifdef IFCAP_POLLING
1542 	    (ifp->if_capenable & IFCAP_POLLING) &&
1543 #endif
1544 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1545 		CSR_WRITE_4(sc, VGE_IMR, 0);
1546 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1547 		vge_poll(ifp, 0, 1);
1548 		goto done;
1549 	}
1550 
1551 #endif /* DEVICE_POLLING */
1552 
1553 	/* Disable interrupts */
1554 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1555 
1556 	for (;;) {
1557 
1558 		status = CSR_READ_4(sc, VGE_ISR);
1559 		/* If the card has gone away the read returns 0xffff. */
1560 		if (status == 0xFFFFFFFF)
1561 			break;
1562 
1563 		if (status) {
1564 			claim = 1;
1565 			CSR_WRITE_4(sc, VGE_ISR, status);
1566 		}
1567 
1568 		if ((status & VGE_INTRS) == 0)
1569 			break;
1570 
1571 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1572 			vge_rxeof(sc);
1573 
1574 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1575 			vge_rxeof(sc);
1576 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1577 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1578 		}
1579 
1580 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1581 			vge_txeof(sc);
1582 
1583 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1584 			vge_init(ifp);
1585 
1586 		if (status & VGE_ISR_LINKSTS)
1587 			vge_tick(sc);
1588 	}
1589 
1590 	/* Re-enable interrupts */
1591 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1592 
1593 #ifdef DEVICE_POLLING
1594 done:
1595 #endif
1596 	VGE_UNLOCK(sc);
1597 
1598 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1599 		vge_start(ifp);
1600 
1601 	return claim;
1602 }
1603 
1604 static int
1605 vge_encap(sc, m_head, idx)
1606 	struct vge_softc	*sc;
1607 	struct mbuf		*m_head;
1608 	int			idx;
1609 {
1610 	struct mbuf		*m_new = NULL;
1611 	bus_dmamap_t		map;
1612 	int			error, flags;
1613 	struct m_tag		*mtag;
1614 
1615 	/* If this descriptor is still owned by the chip, bail. */
1616 	if (sc->vge_ldata.vge_tx_free <= 2
1617 	    || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
1618 		return (ENOBUFS);
1619 
1620 	flags = 0;
1621 
1622 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1623 		flags |= VGE_TDCTL_IPCSUM;
1624 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1625 		flags |= VGE_TDCTL_TCPCSUM;
1626 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1627 		flags |= VGE_TDCTL_UDPCSUM;
1628 
1629 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1630 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1631 	    m_head, BUS_DMA_NOWAIT);
1632 
1633 	/* If too many segments to map, coalesce */
1634 	if (error == EFBIG) {
1635 		m_new = m_defrag(m_head, M_DONTWAIT);
1636 		if (m_new == NULL)
1637 			return (error);
1638 
1639 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1640 		    m_new, BUS_DMA_NOWAIT);
1641 		if (error) {
1642 			m_freem(m_new);
1643 			return (error);
1644 		}
1645 
1646 		m_head = m_new;
1647 	} else if (error)
1648 		return (error);
1649 
1650 	vge_dma_map_tx_desc(sc, m_head, idx, flags);
1651 
1652 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1653 	sc->vge_ldata.vge_tx_free--;
1654 
1655 	/*
1656 	 * Set up hardware VLAN tagging.
1657 	 */
1658 
1659 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1660 	if (mtag != NULL)
1661 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1662 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1663 
1664 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1665 
1666 	return (0);
1667 }
1668 
1669 /*
1670  * Main transmit routine.
1671  */
1672 
1673 static void
1674 vge_start(ifp)
1675 	struct ifnet		*ifp;
1676 {
1677 	struct vge_softc	*sc;
1678 	struct mbuf		*m_head = NULL;
1679 	int			idx, pidx = 0, error;
1680 
1681 	sc = ifp->if_softc;
1682 	VGE_LOCK(sc);
1683 
1684 	if (!sc->vge_link
1685 	    || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1686 		VGE_UNLOCK(sc);
1687 		return;
1688 	}
1689 
1690 	idx = sc->vge_ldata.vge_tx_prodidx;
1691 
1692 	pidx = idx - 1;
1693 	if (pidx < 0)
1694 		pidx = VGE_TX_DESC_CNT - 1;
1695 
1696 	/*
1697 	 * Loop through the send queue, setting up transmit descriptors
1698 	 * until we drain the queue, or use up all available transmit
1699 	 * descriptors.
1700 	 */
1701 	for(;;) {
1702 		/* Grab a packet off the queue. */
1703 		IFQ_POLL(&ifp->if_snd, m_head);
1704 		if (m_head == NULL)
1705 			break;
1706 
1707 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1708 			/*
1709 			 * Slot already used, stop for now.
1710 			 */
1711 			ifp->if_flags |= IFF_OACTIVE;
1712 			break;
1713 		}
1714 
1715 		if ((error = vge_encap(sc, m_head, idx))) {
1716 			if (error == EFBIG) {
1717 				printf("%s: Tx packet consumes too many "
1718 				    "DMA segments, dropping...\n",
1719 				    sc->sc_dev.dv_xname);
1720 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
1721 				m_freem(m_head);
1722 				continue;
1723 			}
1724 
1725 			/*
1726 			 * Short on resources, just stop for now.
1727 			 */
1728 			if (error == ENOBUFS)
1729 				ifp->if_flags |= IFF_OACTIVE;
1730 			break;
1731 		}
1732 
1733 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1734 
1735 		/*
1736 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1737 		 */
1738 
1739 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1740 		    htole16(VGE_TXDESC_Q);
1741 
1742 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
1743 			m_freem(m_head);
1744 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
1745 		}
1746 
1747 		pidx = idx;
1748 		VGE_TX_DESC_INC(idx);
1749 
1750 		/*
1751 		 * If there's a BPF listener, bounce a copy of this frame
1752 		 * to him.
1753 		 */
1754 #if NBPFILTER > 0
1755 		if (ifp->if_bpf)
1756 			bpf_mtap(ifp->if_bpf, m_head);
1757 #endif
1758 	}
1759 
1760 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1761 		VGE_UNLOCK(sc);
1762 		return;
1763 	}
1764 
1765 	/* Flush the TX descriptors */
1766 
1767 	bus_dmamap_sync(sc->vge_dmat,
1768 	    sc->vge_ldata.vge_tx_list_map,
1769 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1770 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1771 
1772 	/* Issue a transmit command. */
1773 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1774 
1775 	sc->vge_ldata.vge_tx_prodidx = idx;
1776 
1777 	/*
1778 	 * Use the countdown timer for interrupt moderation.
1779 	 * 'TX done' interrupts are disabled. Instead, we reset the
1780 	 * countdown timer, which will begin counting until it hits
1781 	 * the value in the SSTIMER register, and then trigger an
1782 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1783 	 * the timer count is reloaded. Only when the transmitter
1784 	 * is idle will the timer hit 0 and an interrupt fire.
1785 	 */
1786 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1787 
1788 	VGE_UNLOCK(sc);
1789 
1790 	/*
1791 	 * Set a timeout in case the chip goes out to lunch.
1792 	 */
1793 	ifp->if_timer = 5;
1794 
1795 	return;
1796 }
1797 
1798 static int
1799 vge_init(ifp)
1800 	struct ifnet *ifp;
1801 {
1802 	struct vge_softc	*sc = ifp->if_softc;
1803 	struct mii_data		*mii = &sc->sc_mii;
1804 	int			i;
1805 
1806 	VGE_LOCK(sc);
1807 
1808 	/*
1809 	 * Cancel pending I/O and free all RX/TX buffers.
1810 	 */
1811 	vge_stop(sc);
1812 	vge_reset(sc);
1813 
1814 	/*
1815 	 * Initialize the RX and TX descriptors and mbufs.
1816 	 */
1817 
1818 	vge_rx_list_init(sc);
1819 	vge_tx_list_init(sc);
1820 
1821 	/* Set our station address */
1822 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1823 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1824 
1825 	/*
1826 	 * Set receive FIFO threshold. Also allow transmission and
1827 	 * reception of VLAN tagged frames.
1828 	 */
1829 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1830 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1831 
1832 	/* Set DMA burst length */
1833 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1834 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1835 
1836 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1837 
1838 	/* Set collision backoff algorithm */
1839 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1840 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1841 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1842 
1843 	/* Disable LPSEL field in priority resolution */
1844 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1845 
1846 	/*
1847 	 * Load the addresses of the DMA queues into the chip.
1848 	 * Note that we only use one transmit queue.
1849 	 */
1850 
1851 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1852 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1853 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1854 
1855 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1856 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1857 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1858 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1859 
1860 	/* Enable and wake up the RX descriptor queue */
1861 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1862 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1863 
1864 	/* Enable the TX descriptor queue */
1865 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1866 
1867 	/* Set up the receive filter -- allow large frames for VLANs. */
1868 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1869 
1870 	/* If we want promiscuous mode, set the allframes bit. */
1871 	if (ifp->if_flags & IFF_PROMISC) {
1872 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1873 	}
1874 
1875 	/* Set capture broadcast bit to capture broadcast frames. */
1876 	if (ifp->if_flags & IFF_BROADCAST) {
1877 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1878 	}
1879 
1880 	/* Set multicast bit to capture multicast frames. */
1881 	if (ifp->if_flags & IFF_MULTICAST) {
1882 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1883 	}
1884 
1885 	/* Init the cam filter. */
1886 	vge_cam_clear(sc);
1887 
1888 	/* Init the multicast filter. */
1889 	vge_setmulti(sc);
1890 
1891 	/* Enable flow control */
1892 
1893 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1894 
1895 	/* Enable jumbo frame reception (if desired) */
1896 
1897 	/* Start the MAC. */
1898 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1899 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1900 	CSR_WRITE_1(sc, VGE_CRS0,
1901 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1902 
1903 	/*
1904 	 * Configure one-shot timer for microsecond
1905 	 * resulution and load it for 500 usecs.
1906 	 */
1907 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1908 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1909 
1910 	/*
1911 	 * Configure interrupt moderation for receive. Enable
1912 	 * the holdoff counter and load it, and set the RX
1913 	 * suppression count to the number of descriptors we
1914 	 * want to allow before triggering an interrupt.
1915 	 * The holdoff timer is in units of 20 usecs.
1916 	 */
1917 
1918 #ifdef notyet
1919 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1920 	/* Select the interrupt holdoff timer page. */
1921 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1922 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1923 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1924 
1925 	/* Enable use of the holdoff timer. */
1926 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1927 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1928 
1929 	/* Select the RX suppression threshold page. */
1930 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1931 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1932 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1933 
1934 	/* Restore the page select bits. */
1935 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1936 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1937 #endif
1938 
1939 #ifdef DEVICE_POLLING
1940 	/*
1941 	 * Disable interrupts if we are polling.
1942 	 */
1943 	if (ifp->if_flags & IFF_POLLING) {
1944 		CSR_WRITE_4(sc, VGE_IMR, 0);
1945 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1946 	} else	/* otherwise ... */
1947 #endif /* DEVICE_POLLING */
1948 	{
1949 	/*
1950 	 * Enable interrupts.
1951 	 */
1952 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1953 		CSR_WRITE_4(sc, VGE_ISR, 0);
1954 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1955 	}
1956 
1957 	mii_mediachg(mii);
1958 
1959 	ifp->if_flags |= IFF_RUNNING;
1960 	ifp->if_flags &= ~IFF_OACTIVE;
1961 
1962 	sc->vge_if_flags = 0;
1963 	sc->vge_link = 0;
1964 
1965 	VGE_UNLOCK(sc);
1966 
1967 	callout_schedule(&sc->vge_timeout, hz);
1968 
1969 	return (0);
1970 }
1971 
1972 /*
1973  * Set media options.
1974  */
1975 static int
1976 vge_ifmedia_upd(ifp)
1977 	struct ifnet		*ifp;
1978 {
1979 	struct vge_softc	*sc = ifp->if_softc;
1980 	struct mii_data		*mii = &sc->sc_mii;
1981 
1982 	mii_mediachg(mii);
1983 
1984 	return (0);
1985 }
1986 
1987 /*
1988  * Report current media status.
1989  */
1990 static void
1991 vge_ifmedia_sts(ifp, ifmr)
1992 	struct ifnet		*ifp;
1993 	struct ifmediareq	*ifmr;
1994 {
1995 	struct vge_softc	*sc = ifp->if_softc;
1996 	struct mii_data		*mii = &sc->sc_mii;
1997 
1998 	mii_pollstat(mii);
1999 	ifmr->ifm_active = mii->mii_media_active;
2000 	ifmr->ifm_status = mii->mii_media_status;
2001 
2002 	return;
2003 }
2004 
2005 static void
2006 vge_miibus_statchg(self)
2007 	struct device	*self;
2008 {
2009 	struct vge_softc	*sc = (struct vge_softc *) self;
2010 	struct mii_data		*mii = &sc->sc_mii;
2011 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
2012 
2013 	/*
2014 	 * If the user manually selects a media mode, we need to turn
2015 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2016 	 * user happens to choose a full duplex mode, we also need to
2017 	 * set the 'force full duplex' bit. This applies only to
2018 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2019 	 * mode is disabled, and in 1000baseT mode, full duplex is
2020 	 * always implied, so we turn on the forced mode bit but leave
2021 	 * the FDX bit cleared.
2022 	 */
2023 
2024 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2025 	case IFM_AUTO:
2026 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2027 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2028 		break;
2029 	case IFM_1000_T:
2030 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2031 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2032 		break;
2033 	case IFM_100_TX:
2034 	case IFM_10_T:
2035 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2036 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2037 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2038 		} else {
2039 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2040 		}
2041 		break;
2042 	default:
2043 		printf("%s: unknown media type: %x\n",
2044 		    sc->sc_dev.dv_xname,
2045 		    IFM_SUBTYPE(ife->ifm_media));
2046 		break;
2047 	}
2048 
2049 	return;
2050 }
2051 
2052 static int
2053 vge_ioctl(ifp, command, data)
2054 	struct ifnet		*ifp;
2055 	u_long			command;
2056 	caddr_t			data;
2057 {
2058 	struct vge_softc	*sc = ifp->if_softc;
2059 	struct ifreq		*ifr = (struct ifreq *) data;
2060 	struct mii_data		*mii;
2061 	int			error = 0;
2062 
2063 	switch (command) {
2064 	case SIOCSIFMTU:
2065 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2066 			error = EINVAL;
2067 		ifp->if_mtu = ifr->ifr_mtu;
2068 		break;
2069 	case SIOCSIFFLAGS:
2070 		if (ifp->if_flags & IFF_UP) {
2071 			if (ifp->if_flags & IFF_RUNNING &&
2072 			    ifp->if_flags & IFF_PROMISC &&
2073 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2074 				CSR_SETBIT_1(sc, VGE_RXCTL,
2075 				    VGE_RXCTL_RX_PROMISC);
2076 				vge_setmulti(sc);
2077 			} else if (ifp->if_flags & IFF_RUNNING &&
2078 			    !(ifp->if_flags & IFF_PROMISC) &&
2079 			    sc->vge_if_flags & IFF_PROMISC) {
2080 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2081 				    VGE_RXCTL_RX_PROMISC);
2082 				vge_setmulti(sc);
2083                         } else
2084 				vge_init(ifp);
2085 		} else {
2086 			if (ifp->if_flags & IFF_RUNNING)
2087 				vge_stop(sc);
2088 		}
2089 		sc->vge_if_flags = ifp->if_flags;
2090 		break;
2091 	case SIOCADDMULTI:
2092 	case SIOCDELMULTI:
2093 		vge_setmulti(sc);
2094 		break;
2095 	case SIOCGIFMEDIA:
2096 	case SIOCSIFMEDIA:
2097 		mii = &sc->sc_mii;
2098 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2099 		break;
2100 	default:
2101 		error = ether_ioctl(ifp, command, data);
2102 		break;
2103 	}
2104 
2105 	return (error);
2106 }
2107 
2108 static void
2109 vge_watchdog(ifp)
2110 	struct ifnet		*ifp;
2111 {
2112 	struct vge_softc		*sc;
2113 
2114 	sc = ifp->if_softc;
2115 	VGE_LOCK(sc);
2116 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2117 	ifp->if_oerrors++;
2118 
2119 	vge_txeof(sc);
2120 	vge_rxeof(sc);
2121 
2122 	vge_init(ifp);
2123 
2124 	VGE_UNLOCK(sc);
2125 
2126 	return;
2127 }
2128 
2129 /*
2130  * Stop the adapter and free any mbufs allocated to the
2131  * RX and TX lists.
2132  */
2133 static void
2134 vge_stop(sc)
2135 	struct vge_softc		*sc;
2136 {
2137 	register int		i;
2138 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2139 
2140 	VGE_LOCK(sc);
2141 	ifp->if_timer = 0;
2142 
2143 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2144 #ifdef DEVICE_POLLING
2145 	ether_poll_deregister(ifp);
2146 #endif /* DEVICE_POLLING */
2147 
2148 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2149 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2150 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2151 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2152 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2153 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2154 
2155 	if (sc->vge_head != NULL) {
2156 		m_freem(sc->vge_head);
2157 		sc->vge_head = sc->vge_tail = NULL;
2158 	}
2159 
2160 	/* Free the TX list buffers. */
2161 
2162 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2163 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2164 			bus_dmamap_unload(sc->vge_dmat,
2165 			    sc->vge_ldata.vge_tx_dmamap[i]);
2166 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2167 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2168 		}
2169 	}
2170 
2171 	/* Free the RX list buffers. */
2172 
2173 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2174 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2175 			bus_dmamap_unload(sc->vge_dmat,
2176 			    sc->vge_ldata.vge_rx_dmamap[i]);
2177 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2178 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2179 		}
2180 	}
2181 
2182 	VGE_UNLOCK(sc);
2183 
2184 	return;
2185 }
2186 
2187 #if VGE_POWER_MANAGEMENT
2188 /*
2189  * Device suspend routine.  Stop the interface and save some PCI
2190  * settings in case the BIOS doesn't restore them properly on
2191  * resume.
2192  */
2193 static int
2194 vge_suspend(dev)
2195 	struct device *		dev;
2196 {
2197 	struct vge_softc	*sc;
2198 	int			i;
2199 
2200 	sc = device_get_softc(dev);
2201 
2202 	vge_stop(sc);
2203 
2204         for (i = 0; i < 5; i++)
2205 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2206 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2207 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2208 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2209 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2210 
2211 	sc->suspended = 1;
2212 
2213 	return (0);
2214 }
2215 
2216 /*
2217  * Device resume routine.  Restore some PCI settings in case the BIOS
2218  * doesn't, re-enable busmastering, and restart the interface if
2219  * appropriate.
2220  */
2221 static int
2222 vge_resume(dev)
2223 	struct device *		dev;
2224 {
2225 	struct vge_softc	*sc = (struct vge_softc *)dev;
2226 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
2227 	int			i;
2228 
2229         /* better way to do this? */
2230 	for (i = 0; i < 5; i++)
2231 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2232 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2233 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2234 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2235 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2236 
2237 	/* reenable busmastering */
2238 	pci_enable_busmaster(dev);
2239 	pci_enable_io(dev, SYS_RES_MEMORY);
2240 
2241 	/* reinitialize interface if necessary */
2242 	if (ifp->if_flags & IFF_UP)
2243 		vge_init(sc);
2244 
2245 	sc->suspended = 0;
2246 
2247 	return (0);
2248 }
2249 #endif
2250 
2251 /*
2252  * Stop all chip I/O so that the kernel's probe routines don't
2253  * get confused by errant DMAs when rebooting.
2254  */
2255 static void
2256 vge_shutdown(arg)
2257 	void *arg;
2258 {
2259 	struct vge_softc *sc = (struct vge_softc *)arg;
2260 
2261 	vge_stop(sc);
2262 }
2263