xref: /netbsd-src/sys/dev/pci/if_ti.c (revision fd5cb0acea84d278e04e640d37ca2398f894991f)
1 /* $NetBSD: if_ti.c,v 1.64 2005/02/04 02:10:45 perry Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.64 2005/02/04 02:10:45 perry Exp $");
85 
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119 
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124 
125 #include <machine/bus.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/pci/if_tireg.h>
132 
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static const struct ti_type ti_devs[] = {
141 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
142 		"Alteon AceNIC 1000BASE-SX Ethernet" },
143 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 		"Alteon AceNIC 1000BASE-T Ethernet" },
145 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 		"Netgear GA620 1000BASE-SX Ethernet" },
149 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 		"Netgear GA620 1000BASE-T Ethernet" },
151 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ 0, 0, NULL }
154 };
155 
156 static const struct ti_type *ti_type_match(struct pci_attach_args *);
157 static int ti_probe(struct device *, struct cfdata *, void *);
158 static void ti_attach(struct device *, struct device *, void *);
159 static void ti_shutdown(void *);
160 static void ti_txeof_tigon1(struct ti_softc *);
161 static void ti_txeof_tigon2(struct ti_softc *);
162 static void ti_rxeof(struct ti_softc *);
163 
164 static void ti_stats_update(struct ti_softc *);
165 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
166 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
167 
168 static int ti_intr(void *);
169 static void ti_start(struct ifnet *);
170 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
171 static void ti_init(void *);
172 static void ti_init2(struct ti_softc *);
173 static void ti_stop(struct ti_softc *);
174 static void ti_watchdog(struct ifnet *);
175 static int ti_ifmedia_upd(struct ifnet *);
176 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 
178 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
179 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
180 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
181 
182 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
183 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
184 static void ti_setmulti(struct ti_softc *);
185 
186 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
187 static void ti_loadfw(struct ti_softc *);
188 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
189 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
190 static void ti_handle_events(struct ti_softc *);
191 static int ti_alloc_jumbo_mem(struct ti_softc *);
192 static void *ti_jalloc(struct ti_softc *);
193 static void ti_jfree(struct mbuf *, caddr_t, size_t, void *);
194 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
195 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
196 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
197 static int ti_init_rx_ring_std(struct ti_softc *);
198 static void ti_free_rx_ring_std(struct ti_softc *);
199 static int ti_init_rx_ring_jumbo(struct ti_softc *);
200 static void ti_free_rx_ring_jumbo(struct ti_softc *);
201 static int ti_init_rx_ring_mini(struct ti_softc *);
202 static void ti_free_rx_ring_mini(struct ti_softc *);
203 static void ti_free_tx_ring(struct ti_softc *);
204 static int ti_init_tx_ring(struct ti_softc *);
205 
206 static int ti_64bitslot_war(struct ti_softc *);
207 static int ti_chipinit(struct ti_softc *);
208 static int ti_gibinit(struct ti_softc *);
209 
210 static int ti_ether_ioctl(struct ifnet *, u_long, caddr_t);
211 
212 CFATTACH_DECL(ti, sizeof(struct ti_softc),
213     ti_probe, ti_attach, NULL, NULL);
214 
215 /*
216  * Send an instruction or address to the EEPROM, check for ACK.
217  */
218 static u_int32_t ti_eeprom_putbyte(sc, byte)
219 	struct ti_softc	*sc;
220 	int byte;
221 {
222 	int i, ack = 0;
223 
224 	/*
225 	 * Make sure we're in TX mode.
226 	 */
227 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
228 
229 	/*
230 	 * Feed in each bit and stobe the clock.
231 	 */
232 	for (i = 0x80; i; i >>= 1) {
233 		if (byte & i) {
234 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
235 		} else {
236 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
237 		}
238 		DELAY(1);
239 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
240 		DELAY(1);
241 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
242 	}
243 
244 	/*
245 	 * Turn off TX mode.
246 	 */
247 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
248 
249 	/*
250 	 * Check for ack.
251 	 */
252 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
254 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255 
256 	return(ack);
257 }
258 
259 /*
260  * Read a byte of data stored in the EEPROM at address 'addr.'
261  * We have to send two address bytes since the EEPROM can hold
262  * more than 256 bytes of data.
263  */
264 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
265 	struct ti_softc		*sc;
266 	int			addr;
267 	u_int8_t		*dest;
268 {
269 	int		i;
270 	u_int8_t		byte = 0;
271 
272 	EEPROM_START;
273 
274 	/*
275 	 * Send write control code to EEPROM.
276 	 */
277 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
278 		printf("%s: failed to send write command, status: %x\n",
279 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
280 		return(1);
281 	}
282 
283 	/*
284 	 * Send first byte of address of byte we want to read.
285 	 */
286 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
287 		printf("%s: failed to send address, status: %x\n",
288 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 		return(1);
290 	}
291 	/*
292 	 * Send second byte address of byte we want to read.
293 	 */
294 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
295 		printf("%s: failed to send address, status: %x\n",
296 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 		return(1);
298 	}
299 
300 	EEPROM_STOP;
301 	EEPROM_START;
302 	/*
303 	 * Send read control code to EEPROM.
304 	 */
305 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
306 		printf("%s: failed to send read command, status: %x\n",
307 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
308 		return(1);
309 	}
310 
311 	/*
312 	 * Start reading bits from EEPROM.
313 	 */
314 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
315 	for (i = 0x80; i; i >>= 1) {
316 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
317 		DELAY(1);
318 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
319 			byte |= i;
320 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321 		DELAY(1);
322 	}
323 
324 	EEPROM_STOP;
325 
326 	/*
327 	 * No ACK generated for read, so just return byte.
328 	 */
329 
330 	*dest = byte;
331 
332 	return(0);
333 }
334 
335 /*
336  * Read a sequence of bytes from the EEPROM.
337  */
338 static int ti_read_eeprom(sc, dest, off, cnt)
339 	struct ti_softc		*sc;
340 	caddr_t			dest;
341 	int			off;
342 	int			cnt;
343 {
344 	int			err = 0, i;
345 	u_int8_t		byte = 0;
346 
347 	for (i = 0; i < cnt; i++) {
348 		err = ti_eeprom_getbyte(sc, off + i, &byte);
349 		if (err)
350 			break;
351 		*(dest + i) = byte;
352 	}
353 
354 	return(err ? 1 : 0);
355 }
356 
357 /*
358  * NIC memory access function. Can be used to either clear a section
359  * of NIC local memory or (if buf is non-NULL) copy data into it.
360  */
361 static void ti_mem(sc, addr, len, buf)
362 	struct ti_softc		*sc;
363 	u_int32_t		addr, len;
364 	caddr_t			buf;
365 {
366 	int			segptr, segsize, cnt;
367 	caddr_t			ptr;
368 
369 	segptr = addr;
370 	cnt = len;
371 	ptr = buf;
372 
373 	while(cnt) {
374 		if (cnt < TI_WINLEN)
375 			segsize = cnt;
376 		else
377 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
378 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
379 		if (buf == NULL) {
380 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
381 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
382 			    segsize / 4);
383 		} else {
384 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
385 			bus_space_write_region_stream_4(sc->ti_btag,
386 			    sc->ti_bhandle,
387 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
388 			    (u_int32_t *)ptr, segsize / 4);
389 #else
390 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
391 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
392 			    (u_int32_t *)ptr, segsize / 4);
393 #endif
394 			ptr += segsize;
395 		}
396 		segptr += segsize;
397 		cnt -= segsize;
398 	}
399 
400 	return;
401 }
402 
403 /*
404  * Load firmware image into the NIC. Check that the firmware revision
405  * is acceptable and see if we want the firmware for the Tigon 1 or
406  * Tigon 2.
407  */
408 static void ti_loadfw(sc)
409 	struct ti_softc		*sc;
410 {
411 	switch(sc->ti_hwrev) {
412 	case TI_HWREV_TIGON:
413 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416 			printf("%s: firmware revision mismatch; want "
417 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
418 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420 			    tigonFwReleaseMinor, tigonFwReleaseFix);
421 			return;
422 		}
423 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
424 		    (caddr_t)tigonFwText);
425 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
426 		    (caddr_t)tigonFwData);
427 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
428 		    (caddr_t)tigonFwRodata);
429 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
430 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
431 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
432 		break;
433 	case TI_HWREV_TIGON_II:
434 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
435 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
436 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
437 			printf("%s: firmware revision mismatch; want "
438 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
439 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
440 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
441 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
442 			return;
443 		}
444 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
445 		    (caddr_t)tigon2FwText);
446 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
447 		    (caddr_t)tigon2FwData);
448 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
449 		    (caddr_t)tigon2FwRodata);
450 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
451 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
452 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
453 		break;
454 	default:
455 		printf("%s: can't load firmware: unknown hardware rev\n",
456 		    sc->sc_dev.dv_xname);
457 		break;
458 	}
459 
460 	return;
461 }
462 
463 /*
464  * Send the NIC a command via the command ring.
465  */
466 static void ti_cmd(sc, cmd)
467 	struct ti_softc		*sc;
468 	struct ti_cmd_desc	*cmd;
469 {
470 	u_int32_t		index;
471 
472 	index = sc->ti_cmd_saved_prodidx;
473 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
474 	TI_INC(index, TI_CMD_RING_CNT);
475 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
476 	sc->ti_cmd_saved_prodidx = index;
477 
478 	return;
479 }
480 
481 /*
482  * Send the NIC an extended command. The 'len' parameter specifies the
483  * number of command slots to include after the initial command.
484  */
485 static void ti_cmd_ext(sc, cmd, arg, len)
486 	struct ti_softc		*sc;
487 	struct ti_cmd_desc	*cmd;
488 	caddr_t			arg;
489 	int			len;
490 {
491 	u_int32_t		index;
492 	int		i;
493 
494 	index = sc->ti_cmd_saved_prodidx;
495 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
496 	TI_INC(index, TI_CMD_RING_CNT);
497 	for (i = 0; i < len; i++) {
498 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
499 		    *(u_int32_t *)(&arg[i * 4]));
500 		TI_INC(index, TI_CMD_RING_CNT);
501 	}
502 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
503 	sc->ti_cmd_saved_prodidx = index;
504 
505 	return;
506 }
507 
508 /*
509  * Handle events that have triggered interrupts.
510  */
511 static void ti_handle_events(sc)
512 	struct ti_softc		*sc;
513 {
514 	struct ti_event_desc	*e;
515 
516 	if (sc->ti_rdata->ti_event_ring == NULL)
517 		return;
518 
519 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
520 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
521 		switch(e->ti_event) {
522 		case TI_EV_LINKSTAT_CHANGED:
523 			sc->ti_linkstat = e->ti_code;
524 			if (e->ti_code == TI_EV_CODE_LINK_UP)
525 				printf("%s: 10/100 link up\n",
526 				       sc->sc_dev.dv_xname);
527 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
528 				printf("%s: gigabit link up\n",
529 				       sc->sc_dev.dv_xname);
530 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
531 				printf("%s: link down\n",
532 				       sc->sc_dev.dv_xname);
533 			break;
534 		case TI_EV_ERROR:
535 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
536 				printf("%s: invalid command\n",
537 				       sc->sc_dev.dv_xname);
538 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
539 				printf("%s: unknown command\n",
540 				       sc->sc_dev.dv_xname);
541 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
542 				printf("%s: bad config data\n",
543 				       sc->sc_dev.dv_xname);
544 			break;
545 		case TI_EV_FIRMWARE_UP:
546 			ti_init2(sc);
547 			break;
548 		case TI_EV_STATS_UPDATED:
549 			ti_stats_update(sc);
550 			break;
551 		case TI_EV_RESET_JUMBO_RING:
552 		case TI_EV_MCAST_UPDATED:
553 			/* Who cares. */
554 			break;
555 		default:
556 			printf("%s: unknown event: %d\n",
557 			    sc->sc_dev.dv_xname, e->ti_event);
558 			break;
559 		}
560 		/* Advance the consumer index. */
561 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
562 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
563 	}
564 
565 	return;
566 }
567 
568 /*
569  * Memory management for the jumbo receive ring is a pain in the
570  * butt. We need to allocate at least 9018 bytes of space per frame,
571  * _and_ it has to be contiguous (unless you use the extended
572  * jumbo descriptor format). Using malloc() all the time won't
573  * work: malloc() allocates memory in powers of two, which means we
574  * would end up wasting a considerable amount of space by allocating
575  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
576  * to do our own memory management.
577  *
578  * The driver needs to allocate a contiguous chunk of memory at boot
579  * time. We then chop this up ourselves into 9K pieces and use them
580  * as external mbuf storage.
581  *
582  * One issue here is how much memory to allocate. The jumbo ring has
583  * 256 slots in it, but at 9K per slot than can consume over 2MB of
584  * RAM. This is a bit much, especially considering we also need
585  * RAM for the standard ring and mini ring (on the Tigon 2). To
586  * save space, we only actually allocate enough memory for 64 slots
587  * by default, which works out to between 500 and 600K. This can
588  * be tuned by changing a #define in if_tireg.h.
589  */
590 
591 static int ti_alloc_jumbo_mem(sc)
592 	struct ti_softc		*sc;
593 {
594 	caddr_t			ptr;
595 	int		i;
596 	struct ti_jpool_entry   *entry;
597 	bus_dma_segment_t dmaseg;
598 	int error, dmanseg;
599 
600 	/* Grab a big chunk o' storage. */
601 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
602 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
603 	    BUS_DMA_NOWAIT)) != 0) {
604 		printf("%s: can't allocate jumbo buffer, error = %d\n",
605 		       sc->sc_dev.dv_xname, error);
606 		return (error);
607 	}
608 
609 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
610 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
611 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
612 		printf("%s: can't map jumbo buffer, error = %d\n",
613 		       sc->sc_dev.dv_xname, error);
614 		return (error);
615 	}
616 
617 	if ((error = bus_dmamap_create(sc->sc_dmat,
618 	    TI_JMEM, 1,
619 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
620 	    &sc->jumbo_dmamap)) != 0) {
621 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
622 		       sc->sc_dev.dv_xname, error);
623 		return (error);
624 	}
625 
626 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
627 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
628 	    BUS_DMA_NOWAIT)) != 0) {
629 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
630 		       sc->sc_dev.dv_xname, error);
631 		return (error);
632 	}
633 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
634 
635 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
636 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
637 
638 	/*
639 	 * Now divide it up into 9K pieces and save the addresses
640 	 * in an array.
641 	 */
642 	ptr = sc->ti_cdata.ti_jumbo_buf;
643 	for (i = 0; i < TI_JSLOTS; i++) {
644 		sc->ti_cdata.ti_jslots[i] = ptr;
645 		ptr += TI_JLEN;
646 		entry = malloc(sizeof(struct ti_jpool_entry),
647 			       M_DEVBUF, M_NOWAIT);
648 		if (entry == NULL) {
649 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
650 			sc->ti_cdata.ti_jumbo_buf = NULL;
651 			printf("%s: no memory for jumbo "
652 			    "buffer queue!\n", sc->sc_dev.dv_xname);
653 			return(ENOBUFS);
654 		}
655 		entry->slot = i;
656 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
657 				    jpool_entries);
658 	}
659 
660 	return(0);
661 }
662 
663 /*
664  * Allocate a jumbo buffer.
665  */
666 static void *ti_jalloc(sc)
667 	struct ti_softc		*sc;
668 {
669 	struct ti_jpool_entry   *entry;
670 
671 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
672 
673 	if (entry == NULL) {
674 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
675 		return(NULL);
676 	}
677 
678 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
679 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
680 	return(sc->ti_cdata.ti_jslots[entry->slot]);
681 }
682 
683 /*
684  * Release a jumbo buffer.
685  */
686 static void ti_jfree(m, buf, size, arg)
687 	struct mbuf		*m;
688 	caddr_t			buf;
689 	size_t			size;
690 	void *arg;
691 {
692 	struct ti_softc		*sc;
693 	int		        i, s;
694 	struct ti_jpool_entry   *entry;
695 
696 	/* Extract the softc struct pointer. */
697 	sc = (struct ti_softc *)arg;
698 
699 	if (sc == NULL)
700 		panic("ti_jfree: didn't get softc pointer!");
701 
702 	/* calculate the slot this buffer belongs to */
703 
704 	i = ((caddr_t)buf
705 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
706 
707 	if ((i < 0) || (i >= TI_JSLOTS))
708 		panic("ti_jfree: asked to free buffer that we don't manage!");
709 
710 	s = splvm();
711 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
712 	if (entry == NULL)
713 		panic("ti_jfree: buffer not in use!");
714 	entry->slot = i;
715 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
716 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
717 
718 	if (__predict_true(m != NULL))
719 		pool_cache_put(&mbpool_cache, m);
720 	splx(s);
721 }
722 
723 
724 /*
725  * Intialize a standard receive ring descriptor.
726  */
727 static int ti_newbuf_std(sc, i, m, dmamap)
728 	struct ti_softc		*sc;
729 	int			i;
730 	struct mbuf		*m;
731 	bus_dmamap_t dmamap; /* required if (m != NULL) */
732 {
733 	struct mbuf		*m_new = NULL;
734 	struct ti_rx_desc	*r;
735 	int error;
736 
737 	if (dmamap == NULL) {
738 		/* if (m) panic() */
739 
740 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
741 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
742 					       &dmamap)) != 0) {
743 			printf("%s: can't create recv map, error = %d\n",
744 			       sc->sc_dev.dv_xname, error);
745 			return(ENOMEM);
746 		}
747 	}
748 	sc->std_dmamap[i] = dmamap;
749 
750 	if (m == NULL) {
751 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
752 		if (m_new == NULL) {
753 			printf("%s: mbuf allocation failed "
754 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
755 			return(ENOBUFS);
756 		}
757 
758 		MCLGET(m_new, M_DONTWAIT);
759 		if (!(m_new->m_flags & M_EXT)) {
760 			printf("%s: cluster allocation failed "
761 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
762 			m_freem(m_new);
763 			return(ENOBUFS);
764 		}
765 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
766 		m_adj(m_new, ETHER_ALIGN);
767 
768 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
769 				mtod(m_new, caddr_t), m_new->m_len, NULL,
770 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
771 			printf("%s: can't load recv map, error = %d\n",
772 			       sc->sc_dev.dv_xname, error);
773 			return (ENOMEM);
774 		}
775 	} else {
776 		m_new = m;
777 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
778 		m_new->m_data = m_new->m_ext.ext_buf;
779 		m_adj(m_new, ETHER_ALIGN);
780 
781 		/* reuse the dmamap */
782 	}
783 
784 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
785 	r = &sc->ti_rdata->ti_rx_std_ring[i];
786 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
787 	r->ti_type = TI_BDTYPE_RECV_BD;
788 	r->ti_flags = 0;
789 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
790 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
791 	if (sc->ethercom.ec_if.if_capenable &
792 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
793 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
794 	r->ti_len = m_new->m_len; /* == ds_len */
795 	r->ti_idx = i;
796 
797 	return(0);
798 }
799 
800 /*
801  * Intialize a mini receive ring descriptor. This only applies to
802  * the Tigon 2.
803  */
804 static int ti_newbuf_mini(sc, i, m, dmamap)
805 	struct ti_softc		*sc;
806 	int			i;
807 	struct mbuf		*m;
808 	bus_dmamap_t dmamap; /* required if (m != NULL) */
809 {
810 	struct mbuf		*m_new = NULL;
811 	struct ti_rx_desc	*r;
812 	int error;
813 
814 	if (dmamap == NULL) {
815 		/* if (m) panic() */
816 
817 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
818 					       MHLEN, 0, BUS_DMA_NOWAIT,
819 					       &dmamap)) != 0) {
820 			printf("%s: can't create recv map, error = %d\n",
821 			       sc->sc_dev.dv_xname, error);
822 			return(ENOMEM);
823 		}
824 	}
825 	sc->mini_dmamap[i] = dmamap;
826 
827 	if (m == NULL) {
828 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
829 		if (m_new == NULL) {
830 			printf("%s: mbuf allocation failed "
831 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
832 			return(ENOBUFS);
833 		}
834 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
835 		m_adj(m_new, ETHER_ALIGN);
836 
837 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
838 				mtod(m_new, caddr_t), m_new->m_len, NULL,
839 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
840 			printf("%s: can't load recv map, error = %d\n",
841 			       sc->sc_dev.dv_xname, error);
842 			return (ENOMEM);
843 		}
844 	} else {
845 		m_new = m;
846 		m_new->m_data = m_new->m_pktdat;
847 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
848 		m_adj(m_new, ETHER_ALIGN);
849 
850 		/* reuse the dmamap */
851 	}
852 
853 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
854 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
855 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
856 	r->ti_type = TI_BDTYPE_RECV_BD;
857 	r->ti_flags = TI_BDFLAG_MINI_RING;
858 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
859 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
860 	if (sc->ethercom.ec_if.if_capenable &
861 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
862 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
863 	r->ti_len = m_new->m_len; /* == ds_len */
864 	r->ti_idx = i;
865 
866 	return(0);
867 }
868 
869 /*
870  * Initialize a jumbo receive ring descriptor. This allocates
871  * a jumbo buffer from the pool managed internally by the driver.
872  */
873 static int ti_newbuf_jumbo(sc, i, m)
874 	struct ti_softc		*sc;
875 	int			i;
876 	struct mbuf		*m;
877 {
878 	struct mbuf		*m_new = NULL;
879 	struct ti_rx_desc	*r;
880 
881 	if (m == NULL) {
882 		caddr_t			buf = NULL;
883 
884 		/* Allocate the mbuf. */
885 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
886 		if (m_new == NULL) {
887 			printf("%s: mbuf allocation failed "
888 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
889 			return(ENOBUFS);
890 		}
891 
892 		/* Allocate the jumbo buffer */
893 		buf = ti_jalloc(sc);
894 		if (buf == NULL) {
895 			m_freem(m_new);
896 			printf("%s: jumbo allocation failed "
897 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
898 			return(ENOBUFS);
899 		}
900 
901 		/* Attach the buffer to the mbuf. */
902 		MEXTADD(m_new, buf, ETHER_MAX_LEN_JUMBO,
903 		    M_DEVBUF, ti_jfree, sc);
904 		m_new->m_flags |= M_EXT_RW;
905 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
906 	} else {
907 		m_new = m;
908 		m_new->m_data = m_new->m_ext.ext_buf;
909 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
910 	}
911 
912 	m_adj(m_new, ETHER_ALIGN);
913 	/* Set up the descriptor. */
914 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
915 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
916 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
917 		((caddr_t)mtod(m_new, caddr_t)
918 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
919 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
920 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
921 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
922 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
923 	if (sc->ethercom.ec_if.if_capenable &
924 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
925 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
926 	r->ti_len = m_new->m_len;
927 	r->ti_idx = i;
928 
929 	return(0);
930 }
931 
932 /*
933  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
934  * that's 1MB or memory, which is a lot. For now, we fill only the first
935  * 256 ring entries and hope that our CPU is fast enough to keep up with
936  * the NIC.
937  */
938 static int ti_init_rx_ring_std(sc)
939 	struct ti_softc		*sc;
940 {
941 	int		i;
942 	struct ti_cmd_desc	cmd;
943 
944 	for (i = 0; i < TI_SSLOTS; i++) {
945 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
946 			return(ENOBUFS);
947 	};
948 
949 	TI_UPDATE_STDPROD(sc, i - 1);
950 	sc->ti_std = i - 1;
951 
952 	return(0);
953 }
954 
955 static void ti_free_rx_ring_std(sc)
956 	struct ti_softc		*sc;
957 {
958 	int		i;
959 
960 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
961 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
962 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
963 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
964 
965 			/* if (sc->std_dmamap[i] == 0) panic() */
966 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
967 			sc->std_dmamap[i] = 0;
968 		}
969 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
970 		    sizeof(struct ti_rx_desc));
971 	}
972 
973 	return;
974 }
975 
976 static int ti_init_rx_ring_jumbo(sc)
977 	struct ti_softc		*sc;
978 {
979 	int		i;
980 	struct ti_cmd_desc	cmd;
981 
982 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
983 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
984 			return(ENOBUFS);
985 	};
986 
987 	TI_UPDATE_JUMBOPROD(sc, i - 1);
988 	sc->ti_jumbo = i - 1;
989 
990 	return(0);
991 }
992 
993 static void ti_free_rx_ring_jumbo(sc)
994 	struct ti_softc		*sc;
995 {
996 	int		i;
997 
998 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
999 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1000 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1001 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1002 		}
1003 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1004 		    sizeof(struct ti_rx_desc));
1005 	}
1006 
1007 	return;
1008 }
1009 
1010 static int ti_init_rx_ring_mini(sc)
1011 	struct ti_softc		*sc;
1012 {
1013 	int		i;
1014 
1015 	for (i = 0; i < TI_MSLOTS; i++) {
1016 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1017 			return(ENOBUFS);
1018 	};
1019 
1020 	TI_UPDATE_MINIPROD(sc, i - 1);
1021 	sc->ti_mini = i - 1;
1022 
1023 	return(0);
1024 }
1025 
1026 static void ti_free_rx_ring_mini(sc)
1027 	struct ti_softc		*sc;
1028 {
1029 	int		i;
1030 
1031 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1032 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1033 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1034 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1035 
1036 			/* if (sc->mini_dmamap[i] == 0) panic() */
1037 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1038 			sc->mini_dmamap[i] = 0;
1039 		}
1040 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1041 		    sizeof(struct ti_rx_desc));
1042 	}
1043 
1044 	return;
1045 }
1046 
1047 static void ti_free_tx_ring(sc)
1048 	struct ti_softc		*sc;
1049 {
1050 	int		i;
1051 	struct txdmamap_pool_entry *dma;
1052 
1053 	if (sc->ti_rdata->ti_tx_ring == NULL)
1054 		return;
1055 
1056 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1057 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1058 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1059 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1060 
1061 			/* if (sc->txdma[i] == 0) panic() */
1062 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 					    link);
1064 			sc->txdma[i] = 0;
1065 		}
1066 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1067 		    sizeof(struct ti_tx_desc));
1068 	}
1069 
1070 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1071 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1072 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1073 		free(dma, M_DEVBUF);
1074 	}
1075 
1076 	return;
1077 }
1078 
1079 static int ti_init_tx_ring(sc)
1080 	struct ti_softc		*sc;
1081 {
1082 	int i, error;
1083 	bus_dmamap_t dmamap;
1084 	struct txdmamap_pool_entry *dma;
1085 
1086 	sc->ti_txcnt = 0;
1087 	sc->ti_tx_saved_considx = 0;
1088 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1089 
1090 	SIMPLEQ_INIT(&sc->txdma_list);
1091 	for (i = 0; i < TI_RSLOTS; i++) {
1092 		/* I've seen mbufs with 30 fragments. */
1093 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1094 					       40, ETHER_MAX_LEN_JUMBO, 0,
1095 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1096 			printf("%s: can't create tx map, error = %d\n",
1097 			       sc->sc_dev.dv_xname, error);
1098 			return(ENOMEM);
1099 		}
1100 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1101 		if (!dma) {
1102 			printf("%s: can't alloc txdmamap_pool_entry\n",
1103 			       sc->sc_dev.dv_xname);
1104 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1105 			return (ENOMEM);
1106 		}
1107 		dma->dmamap = dmamap;
1108 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1109 	}
1110 
1111 	return(0);
1112 }
1113 
1114 /*
1115  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1116  * but we have to support the old way too so that Tigon 1 cards will
1117  * work.
1118  */
1119 void ti_add_mcast(sc, addr)
1120 	struct ti_softc		*sc;
1121 	struct ether_addr	*addr;
1122 {
1123 	struct ti_cmd_desc	cmd;
1124 	u_int16_t		*m;
1125 	u_int32_t		ext[2] = {0, 0};
1126 
1127 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1128 
1129 	switch(sc->ti_hwrev) {
1130 	case TI_HWREV_TIGON:
1131 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1132 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1133 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1134 		break;
1135 	case TI_HWREV_TIGON_II:
1136 		ext[0] = htons(m[0]);
1137 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1138 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1139 		break;
1140 	default:
1141 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1142 		break;
1143 	}
1144 
1145 	return;
1146 }
1147 
1148 void ti_del_mcast(sc, addr)
1149 	struct ti_softc		*sc;
1150 	struct ether_addr	*addr;
1151 {
1152 	struct ti_cmd_desc	cmd;
1153 	u_int16_t		*m;
1154 	u_int32_t		ext[2] = {0, 0};
1155 
1156 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1157 
1158 	switch(sc->ti_hwrev) {
1159 	case TI_HWREV_TIGON:
1160 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1161 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1162 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1163 		break;
1164 	case TI_HWREV_TIGON_II:
1165 		ext[0] = htons(m[0]);
1166 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1167 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1168 		break;
1169 	default:
1170 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1171 		break;
1172 	}
1173 
1174 	return;
1175 }
1176 
1177 /*
1178  * Configure the Tigon's multicast address filter.
1179  *
1180  * The actual multicast table management is a bit of a pain, thanks to
1181  * slight brain damage on the part of both Alteon and us. With our
1182  * multicast code, we are only alerted when the multicast address table
1183  * changes and at that point we only have the current list of addresses:
1184  * we only know the current state, not the previous state, so we don't
1185  * actually know what addresses were removed or added. The firmware has
1186  * state, but we can't get our grubby mits on it, and there is no 'delete
1187  * all multicast addresses' command. Hence, we have to maintain our own
1188  * state so we know what addresses have been programmed into the NIC at
1189  * any given time.
1190  */
1191 static void ti_setmulti(sc)
1192 	struct ti_softc		*sc;
1193 {
1194 	struct ifnet		*ifp;
1195 	struct ti_cmd_desc	cmd;
1196 	struct ti_mc_entry	*mc;
1197 	u_int32_t		intrs;
1198 	struct ether_multi *enm;
1199 	struct ether_multistep step;
1200 
1201 	ifp = &sc->ethercom.ec_if;
1202 
1203 	/* Disable interrupts. */
1204 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1205 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1206 
1207 	/* First, zot all the existing filters. */
1208 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1209 		ti_del_mcast(sc, &mc->mc_addr);
1210 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1211 		free(mc, M_DEVBUF);
1212 	}
1213 
1214 	/*
1215 	 * Remember all multicast addresses so that we can delete them
1216 	 * later.  Punt if there is a range of addresses or memory shortage.
1217 	 */
1218 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1219 	while (enm != NULL) {
1220 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1221 		    ETHER_ADDR_LEN) != 0)
1222 			goto allmulti;
1223 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1224 		    M_NOWAIT)) == NULL)
1225 			goto allmulti;
1226 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1227 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1228 		ETHER_NEXT_MULTI(step, enm);
1229 	}
1230 
1231 	/* Accept only programmed multicast addresses */
1232 	ifp->if_flags &= ~IFF_ALLMULTI;
1233 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1234 
1235 	/* Now program new ones. */
1236 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1237 		ti_add_mcast(sc, &mc->mc_addr);
1238 
1239 	/* Re-enable interrupts. */
1240 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1241 
1242 	return;
1243 
1244 allmulti:
1245 	/* No need to keep individual multicast addresses */
1246 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1247 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1248 		free(mc, M_DEVBUF);
1249 	}
1250 
1251 	/* Accept all multicast addresses */
1252 	ifp->if_flags |= IFF_ALLMULTI;
1253 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1254 
1255 	/* Re-enable interrupts. */
1256 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1257 }
1258 
1259 /*
1260  * Check to see if the BIOS has configured us for a 64 bit slot when
1261  * we aren't actually in one. If we detect this condition, we can work
1262  * around it on the Tigon 2 by setting a bit in the PCI state register,
1263  * but for the Tigon 1 we must give up and abort the interface attach.
1264  */
1265 static int ti_64bitslot_war(sc)
1266 	struct ti_softc		*sc;
1267 {
1268 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1269 		CSR_WRITE_4(sc, 0x600, 0);
1270 		CSR_WRITE_4(sc, 0x604, 0);
1271 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1272 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1273 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1274 				return(EINVAL);
1275 			else {
1276 				TI_SETBIT(sc, TI_PCI_STATE,
1277 				    TI_PCISTATE_32BIT_BUS);
1278 				return(0);
1279 			}
1280 		}
1281 	}
1282 
1283 	return(0);
1284 }
1285 
1286 /*
1287  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1288  * self-test results.
1289  */
1290 static int ti_chipinit(sc)
1291 	struct ti_softc		*sc;
1292 {
1293 	u_int32_t		cacheline;
1294 	u_int32_t		pci_writemax = 0;
1295 	u_int32_t		rev;
1296 
1297 	/* Initialize link to down state. */
1298 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1299 
1300 	/* Set endianness before we access any non-PCI registers. */
1301 #if BYTE_ORDER == BIG_ENDIAN
1302 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1303 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1304 #else
1305 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1306 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1307 #endif
1308 
1309 	/* Check the ROM failed bit to see if self-tests passed. */
1310 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1311 		printf("%s: board self-diagnostics failed!\n",
1312 		       sc->sc_dev.dv_xname);
1313 		return(ENODEV);
1314 	}
1315 
1316 	/* Halt the CPU. */
1317 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1318 
1319 	/* Figure out the hardware revision. */
1320 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1321 	switch(rev) {
1322 	case TI_REV_TIGON_I:
1323 		sc->ti_hwrev = TI_HWREV_TIGON;
1324 		break;
1325 	case TI_REV_TIGON_II:
1326 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1327 		break;
1328 	default:
1329 		printf("%s: unsupported chip revision 0x%x\n",
1330 		    sc->sc_dev.dv_xname, rev);
1331 		return(ENODEV);
1332 	}
1333 
1334 	/* Do special setup for Tigon 2. */
1335 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1336 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1337 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1338 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1339 	}
1340 
1341 	/* Set up the PCI state register. */
1342 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1343 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1344 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1345 	}
1346 
1347 	/* Clear the read/write max DMA parameters. */
1348 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1349 	    TI_PCISTATE_READ_MAXDMA));
1350 
1351 	/* Get cache line size. */
1352 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1353 
1354 	/*
1355 	 * If the system has set enabled the PCI memory write
1356 	 * and invalidate command in the command register, set
1357 	 * the write max parameter accordingly. This is necessary
1358 	 * to use MWI with the Tigon 2.
1359 	 */
1360 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1361 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1362 		switch(cacheline) {
1363 		case 1:
1364 		case 4:
1365 		case 8:
1366 		case 16:
1367 		case 32:
1368 		case 64:
1369 			break;
1370 		default:
1371 		/* Disable PCI memory write and invalidate. */
1372 			if (bootverbose)
1373 				printf("%s: cache line size %d not "
1374 				    "supported; disabling PCI MWI\n",
1375 				    sc->sc_dev.dv_xname, cacheline);
1376 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1377 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1378 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1379 			break;
1380 		}
1381 	}
1382 
1383 #ifdef __brokenalpha__
1384 	/*
1385 	 * From the Alteon sample driver:
1386 	 * Must insure that we do not cross an 8K (bytes) boundary
1387 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1388 	 * restriction on some ALPHA platforms with early revision
1389 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1390 	 */
1391 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1392 #else
1393 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1394 #endif
1395 
1396 	/* This sets the min dma param all the way up (0xff). */
1397 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1398 
1399 	/* Configure DMA variables. */
1400 #if BYTE_ORDER == BIG_ENDIAN
1401 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1402 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1403 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1404 	    TI_OPMODE_DONT_FRAG_JUMBO);
1405 #else
1406 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1407 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1408 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1409 #endif
1410 
1411 	/*
1412 	 * Only allow 1 DMA channel to be active at a time.
1413 	 * I don't think this is a good idea, but without it
1414 	 * the firmware racks up lots of nicDmaReadRingFull
1415 	 * errors.
1416 	 * Incompatible with hardware assisted checksums.
1417 	 */
1418 	if ((sc->ethercom.ec_if.if_capenable &
1419 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1420 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1421 
1422 	/* Recommended settings from Tigon manual. */
1423 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1424 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1425 
1426 	if (ti_64bitslot_war(sc)) {
1427 		printf("%s: bios thinks we're in a 64 bit slot, "
1428 		    "but we aren't", sc->sc_dev.dv_xname);
1429 		return(EINVAL);
1430 	}
1431 
1432 	return(0);
1433 }
1434 
1435 /*
1436  * Initialize the general information block and firmware, and
1437  * start the CPU(s) running.
1438  */
1439 static int ti_gibinit(sc)
1440 	struct ti_softc		*sc;
1441 {
1442 	struct ti_rcb		*rcb;
1443 	int			i;
1444 	struct ifnet		*ifp;
1445 
1446 	ifp = &sc->ethercom.ec_if;
1447 
1448 	/* Disable interrupts for now. */
1449 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1450 
1451 	/* Tell the chip where to find the general information block. */
1452 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1453 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1454 
1455 	/* Load the firmware into SRAM. */
1456 	ti_loadfw(sc);
1457 
1458 	/* Set up the contents of the general info and ring control blocks. */
1459 
1460 	/* Set up the event ring and producer pointer. */
1461 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1462 
1463 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1464 	rcb->ti_flags = 0;
1465 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1466 	    TI_CDEVPRODADDR(sc);
1467 
1468 	sc->ti_ev_prodidx.ti_idx = 0;
1469 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1470 	sc->ti_ev_saved_considx = 0;
1471 
1472 	/* Set up the command ring and producer mailbox. */
1473 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1474 
1475 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1476 	rcb->ti_flags = 0;
1477 	rcb->ti_max_len = 0;
1478 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1479 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1480 	}
1481 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1482 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1483 	sc->ti_cmd_saved_prodidx = 0;
1484 
1485 	/*
1486 	 * Assign the address of the stats refresh buffer.
1487 	 * We re-use the current stats buffer for this to
1488 	 * conserve memory.
1489 	 */
1490 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1491 	    TI_CDSTATSADDR(sc);
1492 
1493 	/* Set up the standard receive ring. */
1494 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1495 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1496 	rcb->ti_max_len = ETHER_MAX_LEN;
1497 	rcb->ti_flags = 0;
1498 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1499 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1500 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1501 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1502 	if (sc->ethercom.ec_nvlans != 0)
1503 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1504 
1505 	/* Set up the jumbo receive ring. */
1506 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1507 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1508 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1509 	rcb->ti_flags = 0;
1510 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1511 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1512 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1513 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1514 	if (sc->ethercom.ec_nvlans != 0)
1515 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1516 
1517 	/*
1518 	 * Set up the mini ring. Only activated on the
1519 	 * Tigon 2 but the slot in the config block is
1520 	 * still there on the Tigon 1.
1521 	 */
1522 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1523 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1524 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1525 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1526 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1527 	else
1528 		rcb->ti_flags = 0;
1529 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1530 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1531 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1532 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1533 	if (sc->ethercom.ec_nvlans != 0)
1534 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1535 
1536 	/*
1537 	 * Set up the receive return ring.
1538 	 */
1539 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1540 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1541 	rcb->ti_flags = 0;
1542 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1543 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1544 	    TI_CDRTNPRODADDR(sc);
1545 
1546 	/*
1547 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1548 	 * of putting the transmit ring in the host's address space and
1549 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1550 	 * memory and accessing it through the shared memory region. We
1551 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1552 	 * so we have to revert to the shared memory scheme if we detect
1553 	 * a Tigon 1 chip.
1554 	 */
1555 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1556 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1557 		sc->ti_tx_ring_nic =
1558 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1559 	}
1560 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1561 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1562 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1563 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1564 		rcb->ti_flags = 0;
1565 	else
1566 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1567 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1568 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1569 	/*
1570 	 * When we get the packet, there is a pseudo-header seed already
1571 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1572 	 * compute the pseudo-header checksum again!
1573 	 */
1574 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1575 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1576 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1577 	if (sc->ethercom.ec_nvlans != 0)
1578 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1579 	rcb->ti_max_len = TI_TX_RING_CNT;
1580 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1581 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1582 	else
1583 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1584 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1585 	    TI_CDTXCONSADDR(sc);
1586 
1587 	/*
1588 	 * We're done frobbing the General Information Block.  Sync
1589 	 * it.  Note we take care of the first stats sync here, as
1590 	 * well.
1591 	 */
1592 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1593 
1594 	/* Set up tuneables */
1595 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1596 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1597 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1598 		    (sc->ti_rx_coal_ticks / 10));
1599 	else
1600 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1601 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1602 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1603 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1604 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1605 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1606 
1607 	/* Turn interrupts on. */
1608 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1609 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1610 
1611 	/* Start CPU. */
1612 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1613 
1614 	return(0);
1615 }
1616 
1617 /*
1618  * look for id in the device list, returning the first match
1619  */
1620 static const struct ti_type *
1621 ti_type_match(pa)
1622 	struct pci_attach_args *pa;
1623 {
1624 	const struct ti_type          *t;
1625 
1626 	t = ti_devs;
1627 	while(t->ti_name != NULL) {
1628 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1629 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1630 			return (t);
1631 		}
1632 		t++;
1633 	}
1634 
1635 	return(NULL);
1636 }
1637 
1638 /*
1639  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1640  * against our list and return its name if we find a match.
1641  */
1642 static int ti_probe(parent, match, aux)
1643 	struct device *parent;
1644 	struct cfdata *match;
1645 	void *aux;
1646 {
1647 	struct pci_attach_args *pa = aux;
1648 	const struct ti_type		*t;
1649 
1650 	t = ti_type_match(pa);
1651 
1652 	return((t == NULL) ? 0 : 1);
1653 }
1654 
1655 static void ti_attach(parent, self, aux)
1656 	struct device *parent, *self;
1657 	void *aux;
1658 {
1659 	u_int32_t		command;
1660 	struct ifnet		*ifp;
1661 	struct ti_softc		*sc;
1662 	u_char eaddr[ETHER_ADDR_LEN];
1663 	struct pci_attach_args *pa = aux;
1664 	pci_chipset_tag_t pc = pa->pa_pc;
1665 	pci_intr_handle_t ih;
1666 	const char *intrstr = NULL;
1667 	bus_dma_segment_t dmaseg;
1668 	int error, dmanseg, nolinear;
1669 	const struct ti_type		*t;
1670 
1671 	t = ti_type_match(pa);
1672 	if (t == NULL) {
1673 		printf("ti_attach: were did the card go ?\n");
1674 		return;
1675 	}
1676 
1677 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1678 
1679 	sc = (struct ti_softc *)self;
1680 
1681 	/*
1682 	 * Map control/status registers.
1683 	 */
1684 	nolinear = 0;
1685 	if (pci_mapreg_map(pa, 0x10,
1686 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1687 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1688 	    NULL, NULL)) {
1689 		nolinear = 1;
1690 		if (pci_mapreg_map(pa, 0x10,
1691 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1692 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1693 			printf(": can't map memory space\n");
1694 			return;
1695 		}
1696 	}
1697 	if (nolinear == 0)
1698 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1699 	else
1700 		sc->ti_vhandle = NULL;
1701 
1702 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1703 	command |= PCI_COMMAND_MASTER_ENABLE;
1704 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1705 
1706 	/* Allocate interrupt */
1707 	if (pci_intr_map(pa, &ih)) {
1708 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1709 		return;
1710 	}
1711 	intrstr = pci_intr_string(pc, ih);
1712 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1713 	if (sc->sc_ih == NULL) {
1714 		printf("%s: couldn't establish interrupt",
1715 		    sc->sc_dev.dv_xname);
1716 		if (intrstr != NULL)
1717 			printf(" at %s", intrstr);
1718 		printf("\n");
1719 		return;
1720 	}
1721 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1722 	/*
1723 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1724 	 * doing do could allow DMA to corrupt kernel memory during the
1725 	 * reboot before the driver initializes.
1726 	 */
1727 	(void) shutdownhook_establish(ti_shutdown, sc);
1728 
1729 	if (ti_chipinit(sc)) {
1730 		printf("%s: chip initialization failed\n", self->dv_xname);
1731 		goto fail2;
1732 	}
1733 
1734 	/*
1735 	 * Deal with some chip diffrences.
1736 	 */
1737 	switch (sc->ti_hwrev) {
1738 	case TI_HWREV_TIGON:
1739 		sc->sc_tx_encap = ti_encap_tigon1;
1740 		sc->sc_tx_eof = ti_txeof_tigon1;
1741 		if (nolinear == 1)
1742 			printf("%s: memory space not mapped linear\n",
1743 			    self->dv_xname);
1744 		break;
1745 
1746 	case TI_HWREV_TIGON_II:
1747 		sc->sc_tx_encap = ti_encap_tigon2;
1748 		sc->sc_tx_eof = ti_txeof_tigon2;
1749 		break;
1750 
1751 	default:
1752 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
1753 		    sc->ti_hwrev);
1754 		goto fail2;
1755 	}
1756 
1757 	/* Zero out the NIC's on-board SRAM. */
1758 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1759 
1760 	/* Init again -- zeroing memory may have clobbered some registers. */
1761 	if (ti_chipinit(sc)) {
1762 		printf("%s: chip initialization failed\n", self->dv_xname);
1763 		goto fail2;
1764 	}
1765 
1766 	/*
1767 	 * Get station address from the EEPROM. Note: the manual states
1768 	 * that the MAC address is at offset 0x8c, however the data is
1769 	 * stored as two longwords (since that's how it's loaded into
1770 	 * the NIC). This means the MAC address is actually preceded
1771 	 * by two zero bytes. We need to skip over those.
1772 	 */
1773 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1774 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1775 		printf("%s: failed to read station address\n", self->dv_xname);
1776 		goto fail2;
1777 	}
1778 
1779 	/*
1780 	 * A Tigon chip was detected. Inform the world.
1781 	 */
1782 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1783 				ether_sprintf(eaddr));
1784 
1785 	sc->sc_dmat = pa->pa_dmat;
1786 
1787 	/* Allocate the general information block and ring buffers. */
1788 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1789 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1790 	    BUS_DMA_NOWAIT)) != 0) {
1791 		printf("%s: can't allocate ring buffer, error = %d\n",
1792 		       sc->sc_dev.dv_xname, error);
1793 		goto fail2;
1794 	}
1795 
1796 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1797 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1798 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1799 		printf("%s: can't map ring buffer, error = %d\n",
1800 		       sc->sc_dev.dv_xname, error);
1801 		goto fail2;
1802 	}
1803 
1804 	if ((error = bus_dmamap_create(sc->sc_dmat,
1805 	    sizeof(struct ti_ring_data), 1,
1806 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1807 	    &sc->info_dmamap)) != 0) {
1808 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1809 		       sc->sc_dev.dv_xname, error);
1810 		goto fail2;
1811 	}
1812 
1813 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1814 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1815 	    BUS_DMA_NOWAIT)) != 0) {
1816 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1817 		       sc->sc_dev.dv_xname, error);
1818 		goto fail2;
1819 	}
1820 
1821 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1822 
1823 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1824 
1825 	/* Try to allocate memory for jumbo buffers. */
1826 	if (ti_alloc_jumbo_mem(sc)) {
1827 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1828 		goto fail2;
1829 	}
1830 
1831 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1832 
1833 	/*
1834 	 * We really need a better way to tell a 1000baseT card
1835 	 * from a 1000baseSX one, since in theory there could be
1836 	 * OEMed 1000baseT cards from lame vendors who aren't
1837 	 * clever enough to change the PCI ID. For the moment
1838 	 * though, the AceNIC is the only copper card available.
1839 	 */
1840 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1841 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1842 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1843 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1844 		sc->ti_copper = 1;
1845 	else
1846 		sc->ti_copper = 0;
1847 
1848 	/* Set default tuneable values. */
1849 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1850 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1851 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1852 	sc->ti_rx_max_coal_bds = 64;
1853 	sc->ti_tx_max_coal_bds = 128;
1854 	sc->ti_tx_buf_ratio = 21;
1855 
1856 	/* Set up ifnet structure */
1857 	ifp = &sc->ethercom.ec_if;
1858 	ifp->if_softc = sc;
1859 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1860 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1861 	ifp->if_ioctl = ti_ioctl;
1862 	ifp->if_start = ti_start;
1863 	ifp->if_watchdog = ti_watchdog;
1864 	IFQ_SET_READY(&ifp->if_snd);
1865 
1866 #if 0
1867 	/*
1868 	 * XXX This is not really correct -- we don't necessarily
1869 	 * XXX want to queue up as many as we can transmit at the
1870 	 * XXX upper layer like that.  Someone with a board should
1871 	 * XXX check to see how this affects performance.
1872 	 */
1873 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1874 #endif
1875 
1876 	/*
1877 	 * We can support 802.1Q VLAN-sized frames.
1878 	 */
1879 	sc->ethercom.ec_capabilities |=
1880 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1881 
1882 	/*
1883 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1884 	 */
1885 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1886 	    IFCAP_CSUM_UDPv4;
1887 
1888 	/* Set up ifmedia support. */
1889 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1890 	if (sc->ti_copper) {
1891                 /*
1892                  * Copper cards allow manual 10/100 mode selection,
1893                  * but not manual 1000baseT mode selection. Why?
1894                  * Because currently there's no way to specify the
1895                  * master/slave setting through the firmware interface,
1896                  * so Alteon decided to just bag it and handle it
1897                  * via autonegotiation.
1898                  */
1899                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1900                 ifmedia_add(&sc->ifmedia,
1901                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1902                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1903                 ifmedia_add(&sc->ifmedia,
1904                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1905                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1906                 ifmedia_add(&sc->ifmedia,
1907                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1908 	} else {
1909 		/* Fiber cards don't support 10/100 modes. */
1910 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1911 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1912 	}
1913 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1914 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1915 
1916 	/*
1917 	 * Call MI attach routines.
1918 	 */
1919 	if_attach(ifp);
1920 	ether_ifattach(ifp, eaddr);
1921 
1922 	return;
1923 fail2:
1924 	pci_intr_disestablish(pc, sc->sc_ih);
1925 	return;
1926 }
1927 
1928 /*
1929  * Frame reception handling. This is called if there's a frame
1930  * on the receive return list.
1931  *
1932  * Note: we have to be able to handle three possibilities here:
1933  * 1) the frame is from the mini receive ring (can only happen)
1934  *    on Tigon 2 boards)
1935  * 2) the frame is from the jumbo receive ring
1936  * 3) the frame is from the standard receive ring
1937  */
1938 
1939 static void ti_rxeof(sc)
1940 	struct ti_softc		*sc;
1941 {
1942 	struct ifnet		*ifp;
1943 	struct ti_cmd_desc	cmd;
1944 
1945 	ifp = &sc->ethercom.ec_if;
1946 
1947 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1948 		struct ti_rx_desc	*cur_rx;
1949 		u_int32_t		rxidx;
1950 		struct mbuf		*m = NULL;
1951 		u_int16_t		vlan_tag = 0;
1952 		int			have_tag = 0;
1953 		struct ether_header	*eh;
1954 		bus_dmamap_t dmamap;
1955 
1956 		cur_rx =
1957 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1958 		rxidx = cur_rx->ti_idx;
1959 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1960 
1961 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1962 			have_tag = 1;
1963 			/* ti_vlan_tag also has the priority, trim it */
1964 			vlan_tag = cur_rx->ti_vlan_tag & 4095;
1965 		}
1966 
1967 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1968 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1969 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1970 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1971 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1972 				ifp->if_ierrors++;
1973 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1974 				continue;
1975 			}
1976 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1977 			    == ENOBUFS) {
1978 				ifp->if_ierrors++;
1979 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1980 				continue;
1981 			}
1982 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1983 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1984 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1985 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1986 			dmamap = sc->mini_dmamap[rxidx];
1987 			sc->mini_dmamap[rxidx] = 0;
1988 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1989 				ifp->if_ierrors++;
1990 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1991 				continue;
1992 			}
1993 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1994 			    == ENOBUFS) {
1995 				ifp->if_ierrors++;
1996 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1997 				continue;
1998 			}
1999 		} else {
2000 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2001 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2002 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2003 			dmamap = sc->std_dmamap[rxidx];
2004 			sc->std_dmamap[rxidx] = 0;
2005 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2006 				ifp->if_ierrors++;
2007 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2008 				continue;
2009 			}
2010 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2011 			    == ENOBUFS) {
2012 				ifp->if_ierrors++;
2013 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2014 				continue;
2015 			}
2016 		}
2017 
2018 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2019 		ifp->if_ipackets++;
2020 		m->m_pkthdr.rcvif = ifp;
2021 
2022 #if NBPFILTER > 0
2023 		/*
2024 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
2025 	 	 * don't pass it up to the ether_input() layer unless it's
2026 	 	 * a broadcast packet, multicast packet, matches our ethernet
2027 	 	 * address or the interface is in promiscuous mode.
2028 	 	 */
2029 		if (ifp->if_bpf)
2030 			bpf_mtap(ifp->if_bpf, m);
2031 #endif
2032 
2033 		eh = mtod(m, struct ether_header *);
2034 		switch (ntohs(eh->ether_type)) {
2035 #ifdef INET
2036 		case ETHERTYPE_IP:
2037 		    {
2038 			struct ip *ip = (struct ip *) (eh + 1);
2039 
2040 			/*
2041 			 * Note the Tigon firmware does not invert
2042 			 * the checksum for us, hence the XOR.
2043 			 */
2044 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2045 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2046 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2047 			/*
2048 			 * ntohs() the constant so the compiler can
2049 			 * optimize...
2050 			 *
2051 			 * XXX Figure out a sane way to deal with
2052 			 * fragmented packets.
2053 			 */
2054 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2055 				switch (ip->ip_p) {
2056 				case IPPROTO_TCP:
2057 					m->m_pkthdr.csum_data =
2058 					    cur_rx->ti_tcp_udp_cksum;
2059 					m->m_pkthdr.csum_flags |=
2060 					    M_CSUM_TCPv4|M_CSUM_DATA;
2061 					break;
2062 				case IPPROTO_UDP:
2063 					m->m_pkthdr.csum_data =
2064 					    cur_rx->ti_tcp_udp_cksum;
2065 					m->m_pkthdr.csum_flags |=
2066 					    M_CSUM_UDPv4|M_CSUM_DATA;
2067 					break;
2068 				default:
2069 					/* Nothing */;
2070 				}
2071 			}
2072 			break;
2073 		    }
2074 #endif
2075 		default:
2076 			/* Nothing. */
2077 			break;
2078 		}
2079 
2080 		if (have_tag) {
2081 			struct m_tag *mtag;
2082 
2083 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2084 			    M_NOWAIT);
2085 			if (mtag) {
2086 				*(u_int *)(mtag + 1) = vlan_tag;
2087 				m_tag_prepend(m, mtag);
2088 				have_tag = vlan_tag = 0;
2089 			} else {
2090 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2091 				m_freem(m);
2092 				have_tag = vlan_tag = 0;
2093 				continue;
2094 			}
2095 		}
2096 		(*ifp->if_input)(ifp, m);
2097 	}
2098 
2099 	/* Only necessary on the Tigon 1. */
2100 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2101 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2102 		    sc->ti_rx_saved_considx);
2103 
2104 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2105 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2106 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2107 
2108 	return;
2109 }
2110 
2111 static void ti_txeof_tigon1(sc)
2112 	struct ti_softc		*sc;
2113 {
2114 	struct ti_tx_desc	*cur_tx = NULL;
2115 	struct ifnet		*ifp;
2116 	struct txdmamap_pool_entry *dma;
2117 
2118 	ifp = &sc->ethercom.ec_if;
2119 
2120 	/*
2121 	 * Go through our tx ring and free mbufs for those
2122 	 * frames that have been sent.
2123 	 */
2124 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2125 		u_int32_t		idx = 0;
2126 
2127 		idx = sc->ti_tx_saved_considx;
2128 		if (idx > 383)
2129 			CSR_WRITE_4(sc, TI_WINBASE,
2130 			    TI_TX_RING_BASE + 6144);
2131 		else if (idx > 255)
2132 			CSR_WRITE_4(sc, TI_WINBASE,
2133 			    TI_TX_RING_BASE + 4096);
2134 		else if (idx > 127)
2135 			CSR_WRITE_4(sc, TI_WINBASE,
2136 			    TI_TX_RING_BASE + 2048);
2137 		else
2138 			CSR_WRITE_4(sc, TI_WINBASE,
2139 			    TI_TX_RING_BASE);
2140 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2141 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2142 			ifp->if_opackets++;
2143 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2144 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2145 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2146 
2147 			dma = sc->txdma[idx];
2148 			KDASSERT(dma != NULL);
2149 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2150 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2151 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2152 
2153 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2154 			sc->txdma[idx] = NULL;
2155 		}
2156 		sc->ti_txcnt--;
2157 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2158 		ifp->if_timer = 0;
2159 	}
2160 
2161 	if (cur_tx != NULL)
2162 		ifp->if_flags &= ~IFF_OACTIVE;
2163 
2164 	return;
2165 }
2166 
2167 static void ti_txeof_tigon2(sc)
2168 	struct ti_softc		*sc;
2169 {
2170 	struct ti_tx_desc	*cur_tx = NULL;
2171 	struct ifnet		*ifp;
2172 	struct txdmamap_pool_entry *dma;
2173 	int firstidx, cnt;
2174 
2175 	ifp = &sc->ethercom.ec_if;
2176 
2177 	/*
2178 	 * Go through our tx ring and free mbufs for those
2179 	 * frames that have been sent.
2180 	 */
2181 	firstidx = sc->ti_tx_saved_considx;
2182 	cnt = 0;
2183 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2184 		u_int32_t		idx = 0;
2185 
2186 		idx = sc->ti_tx_saved_considx;
2187 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2188 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2189 			ifp->if_opackets++;
2190 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2191 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2192 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2193 
2194 			dma = sc->txdma[idx];
2195 			KDASSERT(dma != NULL);
2196 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2197 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2198 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2199 
2200 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2201 			sc->txdma[idx] = NULL;
2202 		}
2203 		cnt++;
2204 		sc->ti_txcnt--;
2205 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2206 		ifp->if_timer = 0;
2207 	}
2208 
2209 	if (cnt != 0)
2210 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2211 
2212 	if (cur_tx != NULL)
2213 		ifp->if_flags &= ~IFF_OACTIVE;
2214 
2215 	return;
2216 }
2217 
2218 static int ti_intr(xsc)
2219 	void			*xsc;
2220 {
2221 	struct ti_softc		*sc;
2222 	struct ifnet		*ifp;
2223 
2224 	sc = xsc;
2225 	ifp = &sc->ethercom.ec_if;
2226 
2227 #ifdef notdef
2228 	/* Avoid this for now -- checking this register is expensive. */
2229 	/* Make sure this is really our interrupt. */
2230 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2231 		return (0);
2232 #endif
2233 
2234 	/* Ack interrupt and stop others from occuring. */
2235 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2236 
2237 	if (ifp->if_flags & IFF_RUNNING) {
2238 		/* Check RX return ring producer/consumer */
2239 		ti_rxeof(sc);
2240 
2241 		/* Check TX ring producer/consumer */
2242 		(*sc->sc_tx_eof)(sc);
2243 	}
2244 
2245 	ti_handle_events(sc);
2246 
2247 	/* Re-enable interrupts. */
2248 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2249 
2250 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2251 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2252 		ti_start(ifp);
2253 
2254 	return (1);
2255 }
2256 
2257 static void ti_stats_update(sc)
2258 	struct ti_softc		*sc;
2259 {
2260 	struct ifnet		*ifp;
2261 
2262 	ifp = &sc->ethercom.ec_if;
2263 
2264 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2265 
2266 	ifp->if_collisions +=
2267 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2268 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2269 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2270 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2271 	   ifp->if_collisions;
2272 
2273 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2274 }
2275 
2276 /*
2277  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2278  * pointers to descriptors.
2279  */
2280 static int ti_encap_tigon1(sc, m_head, txidx)
2281 	struct ti_softc		*sc;
2282 	struct mbuf		*m_head;
2283 	u_int32_t		*txidx;
2284 {
2285 	struct ti_tx_desc	*f = NULL;
2286 	u_int32_t		frag, cur, cnt = 0;
2287 	struct txdmamap_pool_entry *dma;
2288 	bus_dmamap_t dmamap;
2289 	int error, i;
2290 	struct m_tag *mtag;
2291 	u_int16_t csum_flags = 0;
2292 
2293 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2294 	if (dma == NULL) {
2295 		return ENOMEM;
2296 	}
2297 	dmamap = dma->dmamap;
2298 
2299 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2300 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2301 	if (error) {
2302 		struct mbuf *m;
2303 		int i = 0;
2304 		for (m = m_head; m; m = m->m_next)
2305 			i++;
2306 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2307 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2308 		return (ENOMEM);
2309 	}
2310 
2311 	cur = frag = *txidx;
2312 
2313 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2314 		/* IP header checksum field must be 0! */
2315 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2316 	}
2317 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2318 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2319 
2320 	/* XXX fragmented packet checksum capability? */
2321 
2322 	/*
2323  	 * Start packing the mbufs in this chain into
2324 	 * the fragment pointers. Stop when we run out
2325  	 * of fragments or hit the end of the mbuf chain.
2326 	 */
2327 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2328 		if (frag > 383)
2329 			CSR_WRITE_4(sc, TI_WINBASE,
2330 			    TI_TX_RING_BASE + 6144);
2331 		else if (frag > 255)
2332 			CSR_WRITE_4(sc, TI_WINBASE,
2333 			    TI_TX_RING_BASE + 4096);
2334 		else if (frag > 127)
2335 			CSR_WRITE_4(sc, TI_WINBASE,
2336 			    TI_TX_RING_BASE + 2048);
2337 		else
2338 			CSR_WRITE_4(sc, TI_WINBASE,
2339 			    TI_TX_RING_BASE);
2340 		f = &sc->ti_tx_ring_nic[frag % 128];
2341 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2342 			break;
2343 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2344 		f->ti_len = dmamap->dm_segs[i].ds_len;
2345 		f->ti_flags = csum_flags;
2346 		mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2347 		if (mtag) {
2348 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2349 			f->ti_vlan_tag = *(u_int *)(mtag + 1);
2350 		} else {
2351 			f->ti_vlan_tag = 0;
2352 		}
2353 		/*
2354 		 * Sanity check: avoid coming within 16 descriptors
2355 		 * of the end of the ring.
2356 		 */
2357 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2358 			return(ENOBUFS);
2359 		cur = frag;
2360 		TI_INC(frag, TI_TX_RING_CNT);
2361 		cnt++;
2362 	}
2363 
2364 	if (i < dmamap->dm_nsegs)
2365 		return(ENOBUFS);
2366 
2367 	if (frag == sc->ti_tx_saved_considx)
2368 		return(ENOBUFS);
2369 
2370 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2371 	    TI_BDFLAG_END;
2372 
2373 	/* Sync the packet's DMA map. */
2374 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2375 	    BUS_DMASYNC_PREWRITE);
2376 
2377 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2378 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2379 	sc->txdma[cur] = dma;
2380 	sc->ti_txcnt += cnt;
2381 
2382 	*txidx = frag;
2383 
2384 	return(0);
2385 }
2386 
2387 static int ti_encap_tigon2(sc, m_head, txidx)
2388 	struct ti_softc		*sc;
2389 	struct mbuf		*m_head;
2390 	u_int32_t		*txidx;
2391 {
2392 	struct ti_tx_desc	*f = NULL;
2393 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2394 	struct txdmamap_pool_entry *dma;
2395 	bus_dmamap_t dmamap;
2396 	int error, i;
2397 	struct m_tag *mtag;
2398 	u_int16_t csum_flags = 0;
2399 
2400 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2401 	if (dma == NULL) {
2402 		return ENOMEM;
2403 	}
2404 	dmamap = dma->dmamap;
2405 
2406 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2407 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2408 	if (error) {
2409 		struct mbuf *m;
2410 		int i = 0;
2411 		for (m = m_head; m; m = m->m_next)
2412 			i++;
2413 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2414 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2415 		return (ENOMEM);
2416 	}
2417 
2418 	cur = firstfrag = frag = *txidx;
2419 
2420 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2421 		/* IP header checksum field must be 0! */
2422 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2423 	}
2424 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2425 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2426 
2427 	/* XXX fragmented packet checksum capability? */
2428 
2429 	/*
2430  	 * Start packing the mbufs in this chain into
2431 	 * the fragment pointers. Stop when we run out
2432  	 * of fragments or hit the end of the mbuf chain.
2433 	 */
2434 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2435 		f = &sc->ti_rdata->ti_tx_ring[frag];
2436 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2437 			break;
2438 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2439 		f->ti_len = dmamap->dm_segs[i].ds_len;
2440 		f->ti_flags = csum_flags;
2441 		mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2442 		if (mtag) {
2443 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2444 			f->ti_vlan_tag = *(u_int *)(mtag + 1);
2445 		} else {
2446 			f->ti_vlan_tag = 0;
2447 		}
2448 		/*
2449 		 * Sanity check: avoid coming within 16 descriptors
2450 		 * of the end of the ring.
2451 		 */
2452 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2453 			return(ENOBUFS);
2454 		cur = frag;
2455 		TI_INC(frag, TI_TX_RING_CNT);
2456 		cnt++;
2457 	}
2458 
2459 	if (i < dmamap->dm_nsegs)
2460 		return(ENOBUFS);
2461 
2462 	if (frag == sc->ti_tx_saved_considx)
2463 		return(ENOBUFS);
2464 
2465 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2466 
2467 	/* Sync the packet's DMA map. */
2468 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2469 	    BUS_DMASYNC_PREWRITE);
2470 
2471 	/* Sync the descriptors we are using. */
2472 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2473 
2474 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2475 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2476 	sc->txdma[cur] = dma;
2477 	sc->ti_txcnt += cnt;
2478 
2479 	*txidx = frag;
2480 
2481 	return(0);
2482 }
2483 
2484 /*
2485  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2486  * to the mbuf data regions directly in the transmit descriptors.
2487  */
2488 static void ti_start(ifp)
2489 	struct ifnet		*ifp;
2490 {
2491 	struct ti_softc		*sc;
2492 	struct mbuf		*m_head = NULL;
2493 	u_int32_t		prodidx = 0;
2494 
2495 	sc = ifp->if_softc;
2496 
2497 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2498 
2499 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2500 		IFQ_POLL(&ifp->if_snd, m_head);
2501 		if (m_head == NULL)
2502 			break;
2503 
2504 		/*
2505 		 * Pack the data into the transmit ring. If we
2506 		 * don't have room, set the OACTIVE flag and wait
2507 		 * for the NIC to drain the ring.
2508 		 */
2509 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2510 			ifp->if_flags |= IFF_OACTIVE;
2511 			break;
2512 		}
2513 
2514 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2515 
2516 		/*
2517 		 * If there's a BPF listener, bounce a copy of this frame
2518 		 * to him.
2519 		 */
2520 #if NBPFILTER > 0
2521 		if (ifp->if_bpf)
2522 			bpf_mtap(ifp->if_bpf, m_head);
2523 #endif
2524 	}
2525 
2526 	/* Transmit */
2527 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2528 
2529 	/*
2530 	 * Set a timeout in case the chip goes out to lunch.
2531 	 */
2532 	ifp->if_timer = 5;
2533 
2534 	return;
2535 }
2536 
2537 static void ti_init(xsc)
2538 	void			*xsc;
2539 {
2540 	struct ti_softc		*sc = xsc;
2541         int			s;
2542 
2543 	s = splnet();
2544 
2545 	/* Cancel pending I/O and flush buffers. */
2546 	ti_stop(sc);
2547 
2548 	/* Init the gen info block, ring control blocks and firmware. */
2549 	if (ti_gibinit(sc)) {
2550 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2551 		splx(s);
2552 		return;
2553 	}
2554 
2555 	splx(s);
2556 
2557 	return;
2558 }
2559 
2560 static void ti_init2(sc)
2561 	struct ti_softc		*sc;
2562 {
2563 	struct ti_cmd_desc	cmd;
2564 	struct ifnet		*ifp;
2565 	u_int8_t		*m;
2566 	struct ifmedia		*ifm;
2567 	int			tmp;
2568 
2569 	ifp = &sc->ethercom.ec_if;
2570 
2571 	/* Specify MTU and interface index. */
2572 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2573 
2574 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2575 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2576 		tmp += ETHER_VLAN_ENCAP_LEN;
2577 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2578 
2579 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2580 
2581 	/* Load our MAC address. */
2582 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2583 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2584 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2585 		    | (m[4] << 8) | m[5]);
2586 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2587 
2588 	/* Enable or disable promiscuous mode as needed. */
2589 	if (ifp->if_flags & IFF_PROMISC) {
2590 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2591 	} else {
2592 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2593 	}
2594 
2595 	/* Program multicast filter. */
2596 	ti_setmulti(sc);
2597 
2598 	/*
2599 	 * If this is a Tigon 1, we should tell the
2600 	 * firmware to use software packet filtering.
2601 	 */
2602 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2603 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2604 	}
2605 
2606 	/* Init RX ring. */
2607 	ti_init_rx_ring_std(sc);
2608 
2609 	/* Init jumbo RX ring. */
2610 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2611 		ti_init_rx_ring_jumbo(sc);
2612 
2613 	/*
2614 	 * If this is a Tigon 2, we can also configure the
2615 	 * mini ring.
2616 	 */
2617 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2618 		ti_init_rx_ring_mini(sc);
2619 
2620 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2621 	sc->ti_rx_saved_considx = 0;
2622 
2623 	/* Init TX ring. */
2624 	ti_init_tx_ring(sc);
2625 
2626 	/* Tell firmware we're alive. */
2627 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2628 
2629 	/* Enable host interrupts. */
2630 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2631 
2632 	ifp->if_flags |= IFF_RUNNING;
2633 	ifp->if_flags &= ~IFF_OACTIVE;
2634 
2635 	/*
2636 	 * Make sure to set media properly. We have to do this
2637 	 * here since we have to issue commands in order to set
2638 	 * the link negotiation and we can't issue commands until
2639 	 * the firmware is running.
2640 	 */
2641 	ifm = &sc->ifmedia;
2642 	tmp = ifm->ifm_media;
2643 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2644 	ti_ifmedia_upd(ifp);
2645 	ifm->ifm_media = tmp;
2646 
2647 	return;
2648 }
2649 
2650 /*
2651  * Set media options.
2652  */
2653 static int ti_ifmedia_upd(ifp)
2654 	struct ifnet		*ifp;
2655 {
2656 	struct ti_softc		*sc;
2657 	struct ifmedia		*ifm;
2658 	struct ti_cmd_desc	cmd;
2659 
2660 	sc = ifp->if_softc;
2661 	ifm = &sc->ifmedia;
2662 
2663 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2664 		return(EINVAL);
2665 
2666 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2667 	case IFM_AUTO:
2668 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2669 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2670 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2671 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2672 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2673 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2674 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2675 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2676 		break;
2677 	case IFM_1000_SX:
2678 	case IFM_1000_T:
2679 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2680 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2681 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2682 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2683 		} else {
2684 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2685 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2686 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2687 		}
2688 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2689 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2690 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2691 		break;
2692 	case IFM_100_FX:
2693 	case IFM_10_FL:
2694 	case IFM_100_TX:
2695 	case IFM_10_T:
2696 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2697 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2698 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2699 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2700 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2701 		} else {
2702 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2703 		}
2704 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2705 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2706 		} else {
2707 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2708 		}
2709 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2710 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2711 		break;
2712 	}
2713 
2714 	sc->ethercom.ec_if.if_baudrate =
2715 	    ifmedia_baudrate(ifm->ifm_media);
2716 
2717 	return(0);
2718 }
2719 
2720 /*
2721  * Report current media status.
2722  */
2723 static void ti_ifmedia_sts(ifp, ifmr)
2724 	struct ifnet		*ifp;
2725 	struct ifmediareq	*ifmr;
2726 {
2727 	struct ti_softc		*sc;
2728 	u_int32_t               media = 0;
2729 
2730 	sc = ifp->if_softc;
2731 
2732 	ifmr->ifm_status = IFM_AVALID;
2733 	ifmr->ifm_active = IFM_ETHER;
2734 
2735 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2736 		return;
2737 
2738 	ifmr->ifm_status |= IFM_ACTIVE;
2739 
2740 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2741 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2742 		if (sc->ti_copper)
2743 			ifmr->ifm_active |= IFM_1000_T;
2744 		else
2745 			ifmr->ifm_active |= IFM_1000_SX;
2746 		if (media & TI_GLNK_FULL_DUPLEX)
2747 			ifmr->ifm_active |= IFM_FDX;
2748 		else
2749 			ifmr->ifm_active |= IFM_HDX;
2750 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2751 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2752 		if (sc->ti_copper) {
2753 			if (media & TI_LNK_100MB)
2754 				ifmr->ifm_active |= IFM_100_TX;
2755 			if (media & TI_LNK_10MB)
2756 				ifmr->ifm_active |= IFM_10_T;
2757 		} else {
2758 			if (media & TI_LNK_100MB)
2759 				ifmr->ifm_active |= IFM_100_FX;
2760 			if (media & TI_LNK_10MB)
2761 				ifmr->ifm_active |= IFM_10_FL;
2762 		}
2763 		if (media & TI_LNK_FULL_DUPLEX)
2764 			ifmr->ifm_active |= IFM_FDX;
2765 		if (media & TI_LNK_HALF_DUPLEX)
2766 			ifmr->ifm_active |= IFM_HDX;
2767 	}
2768 
2769 	sc->ethercom.ec_if.if_baudrate =
2770 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2771 
2772 	return;
2773 }
2774 
2775 static int
2776 ti_ether_ioctl(ifp, cmd, data)
2777 	struct ifnet *ifp;
2778 	u_long cmd;
2779 	caddr_t data;
2780 {
2781 	struct ifaddr *ifa = (struct ifaddr *) data;
2782 	struct ti_softc *sc = ifp->if_softc;
2783 
2784 	if ((ifp->if_flags & IFF_UP) == 0) {
2785 		ifp->if_flags |= IFF_UP;
2786 		ti_init(sc);
2787 	}
2788 
2789 	switch (cmd) {
2790 	case SIOCSIFADDR:
2791 
2792 		switch (ifa->ifa_addr->sa_family) {
2793 #ifdef INET
2794 		case AF_INET:
2795 			arp_ifinit(ifp, ifa);
2796 			break;
2797 #endif
2798 #ifdef NS
2799 		case AF_NS:
2800 		    {
2801 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2802 
2803 			 if (ns_nullhost(*ina))
2804 				ina->x_host = *(union ns_host *)
2805 				    LLADDR(ifp->if_sadl);
2806 			 else
2807 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2808 				    ifp->if_addrlen);
2809 			 break;
2810 		    }
2811 #endif
2812 		default:
2813 			break;
2814 		}
2815 		break;
2816 
2817 	default:
2818 		return (EINVAL);
2819 	}
2820 
2821 	return (0);
2822 }
2823 
2824 static int ti_ioctl(ifp, command, data)
2825 	struct ifnet		*ifp;
2826 	u_long			command;
2827 	caddr_t			data;
2828 {
2829 	struct ti_softc		*sc = ifp->if_softc;
2830 	struct ifreq		*ifr = (struct ifreq *) data;
2831 	int			s, error = 0;
2832 	struct ti_cmd_desc	cmd;
2833 
2834 	s = splnet();
2835 
2836 	switch(command) {
2837 	case SIOCSIFADDR:
2838 	case SIOCGIFADDR:
2839 		error = ti_ether_ioctl(ifp, command, data);
2840 		break;
2841 	case SIOCSIFMTU:
2842 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2843 			error = EINVAL;
2844 		else {
2845 			ifp->if_mtu = ifr->ifr_mtu;
2846 			ti_init(sc);
2847 		}
2848 		break;
2849 	case SIOCSIFFLAGS:
2850 		if (ifp->if_flags & IFF_UP) {
2851 			/*
2852 			 * If only the state of the PROMISC flag changed,
2853 			 * then just use the 'set promisc mode' command
2854 			 * instead of reinitializing the entire NIC. Doing
2855 			 * a full re-init means reloading the firmware and
2856 			 * waiting for it to start up, which may take a
2857 			 * second or two.
2858 			 */
2859 			if (ifp->if_flags & IFF_RUNNING &&
2860 			    ifp->if_flags & IFF_PROMISC &&
2861 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2862 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2863 				    TI_CMD_CODE_PROMISC_ENB, 0);
2864 			} else if (ifp->if_flags & IFF_RUNNING &&
2865 			    !(ifp->if_flags & IFF_PROMISC) &&
2866 			    sc->ti_if_flags & IFF_PROMISC) {
2867 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2868 				    TI_CMD_CODE_PROMISC_DIS, 0);
2869 			} else
2870 				ti_init(sc);
2871 		} else {
2872 			if (ifp->if_flags & IFF_RUNNING) {
2873 				ti_stop(sc);
2874 			}
2875 		}
2876 		sc->ti_if_flags = ifp->if_flags;
2877 		error = 0;
2878 		break;
2879 	case SIOCADDMULTI:
2880 	case SIOCDELMULTI:
2881 		error = (command == SIOCADDMULTI) ?
2882 		    ether_addmulti(ifr, &sc->ethercom) :
2883 		    ether_delmulti(ifr, &sc->ethercom);
2884 		if (error == ENETRESET) {
2885 			if (ifp->if_flags & IFF_RUNNING)
2886 				ti_setmulti(sc);
2887 			error = 0;
2888 		}
2889 		break;
2890 	case SIOCSIFMEDIA:
2891 	case SIOCGIFMEDIA:
2892 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2893 		break;
2894 	default:
2895 		error = EINVAL;
2896 		break;
2897 	}
2898 
2899 	(void)splx(s);
2900 
2901 	return(error);
2902 }
2903 
2904 static void ti_watchdog(ifp)
2905 	struct ifnet		*ifp;
2906 {
2907 	struct ti_softc		*sc;
2908 
2909 	sc = ifp->if_softc;
2910 
2911 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2912 	ti_stop(sc);
2913 	ti_init(sc);
2914 
2915 	ifp->if_oerrors++;
2916 
2917 	return;
2918 }
2919 
2920 /*
2921  * Stop the adapter and free any mbufs allocated to the
2922  * RX and TX lists.
2923  */
2924 static void ti_stop(sc)
2925 	struct ti_softc		*sc;
2926 {
2927 	struct ifnet		*ifp;
2928 	struct ti_cmd_desc	cmd;
2929 
2930 	ifp = &sc->ethercom.ec_if;
2931 
2932 	/* Disable host interrupts. */
2933 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2934 	/*
2935 	 * Tell firmware we're shutting down.
2936 	 */
2937 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2938 
2939 	/* Halt and reinitialize. */
2940 	ti_chipinit(sc);
2941 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2942 	ti_chipinit(sc);
2943 
2944 	/* Free the RX lists. */
2945 	ti_free_rx_ring_std(sc);
2946 
2947 	/* Free jumbo RX list. */
2948 	ti_free_rx_ring_jumbo(sc);
2949 
2950 	/* Free mini RX list. */
2951 	ti_free_rx_ring_mini(sc);
2952 
2953 	/* Free TX buffers. */
2954 	ti_free_tx_ring(sc);
2955 
2956 	sc->ti_ev_prodidx.ti_idx = 0;
2957 	sc->ti_return_prodidx.ti_idx = 0;
2958 	sc->ti_tx_considx.ti_idx = 0;
2959 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2960 
2961 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2962 
2963 	return;
2964 }
2965 
2966 /*
2967  * Stop all chip I/O so that the kernel's probe routines don't
2968  * get confused by errant DMAs when rebooting.
2969  */
2970 static void ti_shutdown(v)
2971 	void *v;
2972 {
2973 	struct ti_softc		*sc = v;
2974 
2975 	ti_chipinit(sc);
2976 
2977 	return;
2978 }
2979