xref: /netbsd-src/sys/dev/pci/if_ti.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /* $NetBSD: if_ti.c,v 1.70 2006/03/28 17:38:34 thorpej Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.70 2006/03/28 17:38:34 thorpej Exp $");
85 
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119 
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124 
125 #include <machine/bus.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/pci/if_tireg.h>
132 
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static const struct ti_type ti_devs[] = {
141 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
142 		"Alteon AceNIC 1000BASE-SX Ethernet" },
143 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 		"Alteon AceNIC 1000BASE-T Ethernet" },
145 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 		"Netgear GA620 1000BASE-SX Ethernet" },
149 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 		"Netgear GA620 1000BASE-T Ethernet" },
151 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ 0, 0, NULL }
154 };
155 
156 static const struct ti_type *ti_type_match(struct pci_attach_args *);
157 static int ti_probe(struct device *, struct cfdata *, void *);
158 static void ti_attach(struct device *, struct device *, void *);
159 static void ti_shutdown(void *);
160 static void ti_txeof_tigon1(struct ti_softc *);
161 static void ti_txeof_tigon2(struct ti_softc *);
162 static void ti_rxeof(struct ti_softc *);
163 
164 static void ti_stats_update(struct ti_softc *);
165 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
166 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
167 
168 static int ti_intr(void *);
169 static void ti_start(struct ifnet *);
170 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
171 static void ti_init(void *);
172 static void ti_init2(struct ti_softc *);
173 static void ti_stop(struct ti_softc *);
174 static void ti_watchdog(struct ifnet *);
175 static int ti_ifmedia_upd(struct ifnet *);
176 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 
178 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
179 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
180 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
181 
182 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
183 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
184 static void ti_setmulti(struct ti_softc *);
185 
186 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
187 static void ti_loadfw(struct ti_softc *);
188 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
189 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
190 static void ti_handle_events(struct ti_softc *);
191 static int ti_alloc_jumbo_mem(struct ti_softc *);
192 static void *ti_jalloc(struct ti_softc *);
193 static void ti_jfree(struct mbuf *, caddr_t, size_t, void *);
194 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
195 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
196 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
197 static int ti_init_rx_ring_std(struct ti_softc *);
198 static void ti_free_rx_ring_std(struct ti_softc *);
199 static int ti_init_rx_ring_jumbo(struct ti_softc *);
200 static void ti_free_rx_ring_jumbo(struct ti_softc *);
201 static int ti_init_rx_ring_mini(struct ti_softc *);
202 static void ti_free_rx_ring_mini(struct ti_softc *);
203 static void ti_free_tx_ring(struct ti_softc *);
204 static int ti_init_tx_ring(struct ti_softc *);
205 
206 static int ti_64bitslot_war(struct ti_softc *);
207 static int ti_chipinit(struct ti_softc *);
208 static int ti_gibinit(struct ti_softc *);
209 
210 static int ti_ether_ioctl(struct ifnet *, u_long, caddr_t);
211 
212 CFATTACH_DECL(ti, sizeof(struct ti_softc),
213     ti_probe, ti_attach, NULL, NULL);
214 
215 /*
216  * Send an instruction or address to the EEPROM, check for ACK.
217  */
218 static u_int32_t ti_eeprom_putbyte(sc, byte)
219 	struct ti_softc	*sc;
220 	int byte;
221 {
222 	int i, ack = 0;
223 
224 	/*
225 	 * Make sure we're in TX mode.
226 	 */
227 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
228 
229 	/*
230 	 * Feed in each bit and stobe the clock.
231 	 */
232 	for (i = 0x80; i; i >>= 1) {
233 		if (byte & i) {
234 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
235 		} else {
236 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
237 		}
238 		DELAY(1);
239 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
240 		DELAY(1);
241 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
242 	}
243 
244 	/*
245 	 * Turn off TX mode.
246 	 */
247 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
248 
249 	/*
250 	 * Check for ack.
251 	 */
252 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
254 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255 
256 	return(ack);
257 }
258 
259 /*
260  * Read a byte of data stored in the EEPROM at address 'addr.'
261  * We have to send two address bytes since the EEPROM can hold
262  * more than 256 bytes of data.
263  */
264 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
265 	struct ti_softc		*sc;
266 	int			addr;
267 	u_int8_t		*dest;
268 {
269 	int		i;
270 	u_int8_t		byte = 0;
271 
272 	EEPROM_START;
273 
274 	/*
275 	 * Send write control code to EEPROM.
276 	 */
277 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
278 		printf("%s: failed to send write command, status: %x\n",
279 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
280 		return(1);
281 	}
282 
283 	/*
284 	 * Send first byte of address of byte we want to read.
285 	 */
286 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
287 		printf("%s: failed to send address, status: %x\n",
288 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 		return(1);
290 	}
291 	/*
292 	 * Send second byte address of byte we want to read.
293 	 */
294 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
295 		printf("%s: failed to send address, status: %x\n",
296 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 		return(1);
298 	}
299 
300 	EEPROM_STOP;
301 	EEPROM_START;
302 	/*
303 	 * Send read control code to EEPROM.
304 	 */
305 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
306 		printf("%s: failed to send read command, status: %x\n",
307 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
308 		return(1);
309 	}
310 
311 	/*
312 	 * Start reading bits from EEPROM.
313 	 */
314 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
315 	for (i = 0x80; i; i >>= 1) {
316 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
317 		DELAY(1);
318 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
319 			byte |= i;
320 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321 		DELAY(1);
322 	}
323 
324 	EEPROM_STOP;
325 
326 	/*
327 	 * No ACK generated for read, so just return byte.
328 	 */
329 
330 	*dest = byte;
331 
332 	return(0);
333 }
334 
335 /*
336  * Read a sequence of bytes from the EEPROM.
337  */
338 static int ti_read_eeprom(sc, dest, off, cnt)
339 	struct ti_softc		*sc;
340 	caddr_t			dest;
341 	int			off;
342 	int			cnt;
343 {
344 	int			err = 0, i;
345 	u_int8_t		byte = 0;
346 
347 	for (i = 0; i < cnt; i++) {
348 		err = ti_eeprom_getbyte(sc, off + i, &byte);
349 		if (err)
350 			break;
351 		*(dest + i) = byte;
352 	}
353 
354 	return(err ? 1 : 0);
355 }
356 
357 /*
358  * NIC memory access function. Can be used to either clear a section
359  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
360  */
361 static void ti_mem(sc, addr, len, xbuf)
362 	struct ti_softc		*sc;
363 	u_int32_t		addr, len;
364 	const void 		*xbuf;
365 {
366 	int			segptr, segsize, cnt;
367 	const void		*ptr;
368 
369 	segptr = addr;
370 	cnt = len;
371 	ptr = xbuf;
372 
373 	while(cnt) {
374 		if (cnt < TI_WINLEN)
375 			segsize = cnt;
376 		else
377 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
378 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
379 		if (xbuf == NULL) {
380 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
381 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
382 			    segsize / 4);
383 		} else {
384 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
385 			bus_space_write_region_stream_4(sc->ti_btag,
386 			    sc->ti_bhandle,
387 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
388 			    (const u_int32_t *)ptr, segsize / 4);
389 #else
390 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
391 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
392 			    (const u_int32_t *)ptr, segsize / 4);
393 #endif
394 			ptr = (const char *)ptr + segsize;
395 		}
396 		segptr += segsize;
397 		cnt -= segsize;
398 	}
399 
400 	return;
401 }
402 
403 /*
404  * Load firmware image into the NIC. Check that the firmware revision
405  * is acceptable and see if we want the firmware for the Tigon 1 or
406  * Tigon 2.
407  */
408 static void ti_loadfw(sc)
409 	struct ti_softc		*sc;
410 {
411 	switch(sc->ti_hwrev) {
412 	case TI_HWREV_TIGON:
413 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416 			printf("%s: firmware revision mismatch; want "
417 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
418 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420 			    tigonFwReleaseMinor, tigonFwReleaseFix);
421 			return;
422 		}
423 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
424 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
425 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
426 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
427 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
428 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
429 		break;
430 	case TI_HWREV_TIGON_II:
431 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
432 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
433 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
434 			printf("%s: firmware revision mismatch; want "
435 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
436 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
437 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
438 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
439 			return;
440 		}
441 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
442 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
443 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
444 		    tigon2FwRodata);
445 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
446 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
447 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
448 		break;
449 	default:
450 		printf("%s: can't load firmware: unknown hardware rev\n",
451 		    sc->sc_dev.dv_xname);
452 		break;
453 	}
454 
455 	return;
456 }
457 
458 /*
459  * Send the NIC a command via the command ring.
460  */
461 static void ti_cmd(sc, cmd)
462 	struct ti_softc		*sc;
463 	struct ti_cmd_desc	*cmd;
464 {
465 	u_int32_t		index;
466 
467 	index = sc->ti_cmd_saved_prodidx;
468 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
469 	TI_INC(index, TI_CMD_RING_CNT);
470 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
471 	sc->ti_cmd_saved_prodidx = index;
472 
473 	return;
474 }
475 
476 /*
477  * Send the NIC an extended command. The 'len' parameter specifies the
478  * number of command slots to include after the initial command.
479  */
480 static void ti_cmd_ext(sc, cmd, arg, len)
481 	struct ti_softc		*sc;
482 	struct ti_cmd_desc	*cmd;
483 	caddr_t			arg;
484 	int			len;
485 {
486 	u_int32_t		index;
487 	int		i;
488 
489 	index = sc->ti_cmd_saved_prodidx;
490 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
491 	TI_INC(index, TI_CMD_RING_CNT);
492 	for (i = 0; i < len; i++) {
493 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
494 		    *(u_int32_t *)(&arg[i * 4]));
495 		TI_INC(index, TI_CMD_RING_CNT);
496 	}
497 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
498 	sc->ti_cmd_saved_prodidx = index;
499 
500 	return;
501 }
502 
503 /*
504  * Handle events that have triggered interrupts.
505  */
506 static void ti_handle_events(sc)
507 	struct ti_softc		*sc;
508 {
509 	struct ti_event_desc	*e;
510 
511 	if (sc->ti_rdata->ti_event_ring == NULL)
512 		return;
513 
514 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
515 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
516 		switch(e->ti_event) {
517 		case TI_EV_LINKSTAT_CHANGED:
518 			sc->ti_linkstat = e->ti_code;
519 			if (e->ti_code == TI_EV_CODE_LINK_UP)
520 				printf("%s: 10/100 link up\n",
521 				       sc->sc_dev.dv_xname);
522 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
523 				printf("%s: gigabit link up\n",
524 				       sc->sc_dev.dv_xname);
525 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
526 				printf("%s: link down\n",
527 				       sc->sc_dev.dv_xname);
528 			break;
529 		case TI_EV_ERROR:
530 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
531 				printf("%s: invalid command\n",
532 				       sc->sc_dev.dv_xname);
533 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
534 				printf("%s: unknown command\n",
535 				       sc->sc_dev.dv_xname);
536 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
537 				printf("%s: bad config data\n",
538 				       sc->sc_dev.dv_xname);
539 			break;
540 		case TI_EV_FIRMWARE_UP:
541 			ti_init2(sc);
542 			break;
543 		case TI_EV_STATS_UPDATED:
544 			ti_stats_update(sc);
545 			break;
546 		case TI_EV_RESET_JUMBO_RING:
547 		case TI_EV_MCAST_UPDATED:
548 			/* Who cares. */
549 			break;
550 		default:
551 			printf("%s: unknown event: %d\n",
552 			    sc->sc_dev.dv_xname, e->ti_event);
553 			break;
554 		}
555 		/* Advance the consumer index. */
556 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
557 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
558 	}
559 
560 	return;
561 }
562 
563 /*
564  * Memory management for the jumbo receive ring is a pain in the
565  * butt. We need to allocate at least 9018 bytes of space per frame,
566  * _and_ it has to be contiguous (unless you use the extended
567  * jumbo descriptor format). Using malloc() all the time won't
568  * work: malloc() allocates memory in powers of two, which means we
569  * would end up wasting a considerable amount of space by allocating
570  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
571  * to do our own memory management.
572  *
573  * The driver needs to allocate a contiguous chunk of memory at boot
574  * time. We then chop this up ourselves into 9K pieces and use them
575  * as external mbuf storage.
576  *
577  * One issue here is how much memory to allocate. The jumbo ring has
578  * 256 slots in it, but at 9K per slot than can consume over 2MB of
579  * RAM. This is a bit much, especially considering we also need
580  * RAM for the standard ring and mini ring (on the Tigon 2). To
581  * save space, we only actually allocate enough memory for 64 slots
582  * by default, which works out to between 500 and 600K. This can
583  * be tuned by changing a #define in if_tireg.h.
584  */
585 
586 static int ti_alloc_jumbo_mem(sc)
587 	struct ti_softc		*sc;
588 {
589 	caddr_t			ptr;
590 	int		i;
591 	struct ti_jpool_entry   *entry;
592 	bus_dma_segment_t dmaseg;
593 	int error, dmanseg;
594 
595 	/* Grab a big chunk o' storage. */
596 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
597 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
598 	    BUS_DMA_NOWAIT)) != 0) {
599 		printf("%s: can't allocate jumbo buffer, error = %d\n",
600 		       sc->sc_dev.dv_xname, error);
601 		return (error);
602 	}
603 
604 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
605 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
606 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
607 		printf("%s: can't map jumbo buffer, error = %d\n",
608 		       sc->sc_dev.dv_xname, error);
609 		return (error);
610 	}
611 
612 	if ((error = bus_dmamap_create(sc->sc_dmat,
613 	    TI_JMEM, 1,
614 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
615 	    &sc->jumbo_dmamap)) != 0) {
616 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
617 		       sc->sc_dev.dv_xname, error);
618 		return (error);
619 	}
620 
621 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
622 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
623 	    BUS_DMA_NOWAIT)) != 0) {
624 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
625 		       sc->sc_dev.dv_xname, error);
626 		return (error);
627 	}
628 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
629 
630 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
631 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
632 
633 	/*
634 	 * Now divide it up into 9K pieces and save the addresses
635 	 * in an array.
636 	 */
637 	ptr = sc->ti_cdata.ti_jumbo_buf;
638 	for (i = 0; i < TI_JSLOTS; i++) {
639 		sc->ti_cdata.ti_jslots[i] = ptr;
640 		ptr += TI_JLEN;
641 		entry = malloc(sizeof(struct ti_jpool_entry),
642 			       M_DEVBUF, M_NOWAIT);
643 		if (entry == NULL) {
644 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
645 			sc->ti_cdata.ti_jumbo_buf = NULL;
646 			printf("%s: no memory for jumbo "
647 			    "buffer queue!\n", sc->sc_dev.dv_xname);
648 			return(ENOBUFS);
649 		}
650 		entry->slot = i;
651 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
652 				    jpool_entries);
653 	}
654 
655 	return(0);
656 }
657 
658 /*
659  * Allocate a jumbo buffer.
660  */
661 static void *ti_jalloc(sc)
662 	struct ti_softc		*sc;
663 {
664 	struct ti_jpool_entry   *entry;
665 
666 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
667 
668 	if (entry == NULL) {
669 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
670 		return(NULL);
671 	}
672 
673 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
674 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
675 	return(sc->ti_cdata.ti_jslots[entry->slot]);
676 }
677 
678 /*
679  * Release a jumbo buffer.
680  */
681 static void ti_jfree(m, tbuf, size, arg)
682 	struct mbuf		*m;
683 	caddr_t			tbuf;
684 	size_t			size;
685 	void *arg;
686 {
687 	struct ti_softc		*sc;
688 	int		        i, s;
689 	struct ti_jpool_entry   *entry;
690 
691 	/* Extract the softc struct pointer. */
692 	sc = (struct ti_softc *)arg;
693 
694 	if (sc == NULL)
695 		panic("ti_jfree: didn't get softc pointer!");
696 
697 	/* calculate the slot this buffer belongs to */
698 
699 	i = ((caddr_t)tbuf
700 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
701 
702 	if ((i < 0) || (i >= TI_JSLOTS))
703 		panic("ti_jfree: asked to free buffer that we don't manage!");
704 
705 	s = splvm();
706 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
707 	if (entry == NULL)
708 		panic("ti_jfree: buffer not in use!");
709 	entry->slot = i;
710 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
711 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
712 
713 	if (__predict_true(m != NULL))
714 		pool_cache_put(&mbpool_cache, m);
715 	splx(s);
716 }
717 
718 
719 /*
720  * Intialize a standard receive ring descriptor.
721  */
722 static int ti_newbuf_std(sc, i, m, dmamap)
723 	struct ti_softc		*sc;
724 	int			i;
725 	struct mbuf		*m;
726 	bus_dmamap_t dmamap; /* required if (m != NULL) */
727 {
728 	struct mbuf		*m_new = NULL;
729 	struct ti_rx_desc	*r;
730 	int error;
731 
732 	if (dmamap == NULL) {
733 		/* if (m) panic() */
734 
735 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
736 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
737 					       &dmamap)) != 0) {
738 			printf("%s: can't create recv map, error = %d\n",
739 			       sc->sc_dev.dv_xname, error);
740 			return(ENOMEM);
741 		}
742 	}
743 	sc->std_dmamap[i] = dmamap;
744 
745 	if (m == NULL) {
746 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
747 		if (m_new == NULL) {
748 			printf("%s: mbuf allocation failed "
749 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
750 			return(ENOBUFS);
751 		}
752 
753 		MCLGET(m_new, M_DONTWAIT);
754 		if (!(m_new->m_flags & M_EXT)) {
755 			printf("%s: cluster allocation failed "
756 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
757 			m_freem(m_new);
758 			return(ENOBUFS);
759 		}
760 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
761 		m_adj(m_new, ETHER_ALIGN);
762 
763 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
764 				mtod(m_new, caddr_t), m_new->m_len, NULL,
765 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
766 			printf("%s: can't load recv map, error = %d\n",
767 			       sc->sc_dev.dv_xname, error);
768 			return (ENOMEM);
769 		}
770 	} else {
771 		m_new = m;
772 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
773 		m_new->m_data = m_new->m_ext.ext_buf;
774 		m_adj(m_new, ETHER_ALIGN);
775 
776 		/* reuse the dmamap */
777 	}
778 
779 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
780 	r = &sc->ti_rdata->ti_rx_std_ring[i];
781 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
782 	r->ti_type = TI_BDTYPE_RECV_BD;
783 	r->ti_flags = 0;
784 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
785 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
786 	if (sc->ethercom.ec_if.if_capenable &
787 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
788 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
789 	r->ti_len = m_new->m_len; /* == ds_len */
790 	r->ti_idx = i;
791 
792 	return(0);
793 }
794 
795 /*
796  * Intialize a mini receive ring descriptor. This only applies to
797  * the Tigon 2.
798  */
799 static int ti_newbuf_mini(sc, i, m, dmamap)
800 	struct ti_softc		*sc;
801 	int			i;
802 	struct mbuf		*m;
803 	bus_dmamap_t dmamap; /* required if (m != NULL) */
804 {
805 	struct mbuf		*m_new = NULL;
806 	struct ti_rx_desc	*r;
807 	int error;
808 
809 	if (dmamap == NULL) {
810 		/* if (m) panic() */
811 
812 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
813 					       MHLEN, 0, BUS_DMA_NOWAIT,
814 					       &dmamap)) != 0) {
815 			printf("%s: can't create recv map, error = %d\n",
816 			       sc->sc_dev.dv_xname, error);
817 			return(ENOMEM);
818 		}
819 	}
820 	sc->mini_dmamap[i] = dmamap;
821 
822 	if (m == NULL) {
823 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
824 		if (m_new == NULL) {
825 			printf("%s: mbuf allocation failed "
826 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
827 			return(ENOBUFS);
828 		}
829 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
830 		m_adj(m_new, ETHER_ALIGN);
831 
832 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
833 				mtod(m_new, caddr_t), m_new->m_len, NULL,
834 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
835 			printf("%s: can't load recv map, error = %d\n",
836 			       sc->sc_dev.dv_xname, error);
837 			return (ENOMEM);
838 		}
839 	} else {
840 		m_new = m;
841 		m_new->m_data = m_new->m_pktdat;
842 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
843 		m_adj(m_new, ETHER_ALIGN);
844 
845 		/* reuse the dmamap */
846 	}
847 
848 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
849 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
850 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
851 	r->ti_type = TI_BDTYPE_RECV_BD;
852 	r->ti_flags = TI_BDFLAG_MINI_RING;
853 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
854 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
855 	if (sc->ethercom.ec_if.if_capenable &
856 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
857 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
858 	r->ti_len = m_new->m_len; /* == ds_len */
859 	r->ti_idx = i;
860 
861 	return(0);
862 }
863 
864 /*
865  * Initialize a jumbo receive ring descriptor. This allocates
866  * a jumbo buffer from the pool managed internally by the driver.
867  */
868 static int ti_newbuf_jumbo(sc, i, m)
869 	struct ti_softc		*sc;
870 	int			i;
871 	struct mbuf		*m;
872 {
873 	struct mbuf		*m_new = NULL;
874 	struct ti_rx_desc	*r;
875 
876 	if (m == NULL) {
877 		caddr_t			tbuf = NULL;
878 
879 		/* Allocate the mbuf. */
880 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
881 		if (m_new == NULL) {
882 			printf("%s: mbuf allocation failed "
883 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
884 			return(ENOBUFS);
885 		}
886 
887 		/* Allocate the jumbo buffer */
888 		tbuf = ti_jalloc(sc);
889 		if (tbuf == NULL) {
890 			m_freem(m_new);
891 			printf("%s: jumbo allocation failed "
892 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
893 			return(ENOBUFS);
894 		}
895 
896 		/* Attach the buffer to the mbuf. */
897 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
898 		    M_DEVBUF, ti_jfree, sc);
899 		m_new->m_flags |= M_EXT_RW;
900 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
901 	} else {
902 		m_new = m;
903 		m_new->m_data = m_new->m_ext.ext_buf;
904 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
905 	}
906 
907 	m_adj(m_new, ETHER_ALIGN);
908 	/* Set up the descriptor. */
909 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
910 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
911 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
912 		((caddr_t)mtod(m_new, caddr_t)
913 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
914 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
915 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
916 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
917 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
918 	if (sc->ethercom.ec_if.if_capenable &
919 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
920 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
921 	r->ti_len = m_new->m_len;
922 	r->ti_idx = i;
923 
924 	return(0);
925 }
926 
927 /*
928  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
929  * that's 1MB or memory, which is a lot. For now, we fill only the first
930  * 256 ring entries and hope that our CPU is fast enough to keep up with
931  * the NIC.
932  */
933 static int ti_init_rx_ring_std(sc)
934 	struct ti_softc		*sc;
935 {
936 	int		i;
937 	struct ti_cmd_desc	cmd;
938 
939 	for (i = 0; i < TI_SSLOTS; i++) {
940 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
941 			return(ENOBUFS);
942 	};
943 
944 	TI_UPDATE_STDPROD(sc, i - 1);
945 	sc->ti_std = i - 1;
946 
947 	return(0);
948 }
949 
950 static void ti_free_rx_ring_std(sc)
951 	struct ti_softc		*sc;
952 {
953 	int		i;
954 
955 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
956 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
957 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
958 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
959 
960 			/* if (sc->std_dmamap[i] == 0) panic() */
961 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
962 			sc->std_dmamap[i] = 0;
963 		}
964 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
965 		    sizeof(struct ti_rx_desc));
966 	}
967 
968 	return;
969 }
970 
971 static int ti_init_rx_ring_jumbo(sc)
972 	struct ti_softc		*sc;
973 {
974 	int		i;
975 	struct ti_cmd_desc	cmd;
976 
977 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
978 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
979 			return(ENOBUFS);
980 	};
981 
982 	TI_UPDATE_JUMBOPROD(sc, i - 1);
983 	sc->ti_jumbo = i - 1;
984 
985 	return(0);
986 }
987 
988 static void ti_free_rx_ring_jumbo(sc)
989 	struct ti_softc		*sc;
990 {
991 	int		i;
992 
993 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
994 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
995 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
996 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
997 		}
998 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
999 		    sizeof(struct ti_rx_desc));
1000 	}
1001 
1002 	return;
1003 }
1004 
1005 static int ti_init_rx_ring_mini(sc)
1006 	struct ti_softc		*sc;
1007 {
1008 	int		i;
1009 
1010 	for (i = 0; i < TI_MSLOTS; i++) {
1011 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1012 			return(ENOBUFS);
1013 	};
1014 
1015 	TI_UPDATE_MINIPROD(sc, i - 1);
1016 	sc->ti_mini = i - 1;
1017 
1018 	return(0);
1019 }
1020 
1021 static void ti_free_rx_ring_mini(sc)
1022 	struct ti_softc		*sc;
1023 {
1024 	int		i;
1025 
1026 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1027 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1028 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1029 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1030 
1031 			/* if (sc->mini_dmamap[i] == 0) panic() */
1032 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1033 			sc->mini_dmamap[i] = 0;
1034 		}
1035 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1036 		    sizeof(struct ti_rx_desc));
1037 	}
1038 
1039 	return;
1040 }
1041 
1042 static void ti_free_tx_ring(sc)
1043 	struct ti_softc		*sc;
1044 {
1045 	int		i;
1046 	struct txdmamap_pool_entry *dma;
1047 
1048 	if (sc->ti_rdata->ti_tx_ring == NULL)
1049 		return;
1050 
1051 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1052 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1053 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1054 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1055 
1056 			/* if (sc->txdma[i] == 0) panic() */
1057 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1058 					    link);
1059 			sc->txdma[i] = 0;
1060 		}
1061 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1062 		    sizeof(struct ti_tx_desc));
1063 	}
1064 
1065 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1066 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1067 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1068 		free(dma, M_DEVBUF);
1069 	}
1070 
1071 	return;
1072 }
1073 
1074 static int ti_init_tx_ring(sc)
1075 	struct ti_softc		*sc;
1076 {
1077 	int i, error;
1078 	bus_dmamap_t dmamap;
1079 	struct txdmamap_pool_entry *dma;
1080 
1081 	sc->ti_txcnt = 0;
1082 	sc->ti_tx_saved_considx = 0;
1083 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1084 
1085 	SIMPLEQ_INIT(&sc->txdma_list);
1086 	for (i = 0; i < TI_RSLOTS; i++) {
1087 		/* I've seen mbufs with 30 fragments. */
1088 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1089 					       40, ETHER_MAX_LEN_JUMBO, 0,
1090 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1091 			printf("%s: can't create tx map, error = %d\n",
1092 			       sc->sc_dev.dv_xname, error);
1093 			return(ENOMEM);
1094 		}
1095 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1096 		if (!dma) {
1097 			printf("%s: can't alloc txdmamap_pool_entry\n",
1098 			       sc->sc_dev.dv_xname);
1099 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1100 			return (ENOMEM);
1101 		}
1102 		dma->dmamap = dmamap;
1103 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1104 	}
1105 
1106 	return(0);
1107 }
1108 
1109 /*
1110  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1111  * but we have to support the old way too so that Tigon 1 cards will
1112  * work.
1113  */
1114 void ti_add_mcast(sc, addr)
1115 	struct ti_softc		*sc;
1116 	struct ether_addr	*addr;
1117 {
1118 	struct ti_cmd_desc	cmd;
1119 	u_int16_t		*m;
1120 	u_int32_t		ext[2] = {0, 0};
1121 
1122 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1123 
1124 	switch(sc->ti_hwrev) {
1125 	case TI_HWREV_TIGON:
1126 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1127 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1128 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1129 		break;
1130 	case TI_HWREV_TIGON_II:
1131 		ext[0] = htons(m[0]);
1132 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1133 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1134 		break;
1135 	default:
1136 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1137 		break;
1138 	}
1139 
1140 	return;
1141 }
1142 
1143 void ti_del_mcast(sc, addr)
1144 	struct ti_softc		*sc;
1145 	struct ether_addr	*addr;
1146 {
1147 	struct ti_cmd_desc	cmd;
1148 	u_int16_t		*m;
1149 	u_int32_t		ext[2] = {0, 0};
1150 
1151 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1152 
1153 	switch(sc->ti_hwrev) {
1154 	case TI_HWREV_TIGON:
1155 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1156 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1157 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1158 		break;
1159 	case TI_HWREV_TIGON_II:
1160 		ext[0] = htons(m[0]);
1161 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1162 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1163 		break;
1164 	default:
1165 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1166 		break;
1167 	}
1168 
1169 	return;
1170 }
1171 
1172 /*
1173  * Configure the Tigon's multicast address filter.
1174  *
1175  * The actual multicast table management is a bit of a pain, thanks to
1176  * slight brain damage on the part of both Alteon and us. With our
1177  * multicast code, we are only alerted when the multicast address table
1178  * changes and at that point we only have the current list of addresses:
1179  * we only know the current state, not the previous state, so we don't
1180  * actually know what addresses were removed or added. The firmware has
1181  * state, but we can't get our grubby mits on it, and there is no 'delete
1182  * all multicast addresses' command. Hence, we have to maintain our own
1183  * state so we know what addresses have been programmed into the NIC at
1184  * any given time.
1185  */
1186 static void ti_setmulti(sc)
1187 	struct ti_softc		*sc;
1188 {
1189 	struct ifnet		*ifp;
1190 	struct ti_cmd_desc	cmd;
1191 	struct ti_mc_entry	*mc;
1192 	u_int32_t		intrs;
1193 	struct ether_multi *enm;
1194 	struct ether_multistep step;
1195 
1196 	ifp = &sc->ethercom.ec_if;
1197 
1198 	/* Disable interrupts. */
1199 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1200 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1201 
1202 	/* First, zot all the existing filters. */
1203 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1204 		ti_del_mcast(sc, &mc->mc_addr);
1205 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1206 		free(mc, M_DEVBUF);
1207 	}
1208 
1209 	/*
1210 	 * Remember all multicast addresses so that we can delete them
1211 	 * later.  Punt if there is a range of addresses or memory shortage.
1212 	 */
1213 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1214 	while (enm != NULL) {
1215 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1216 		    ETHER_ADDR_LEN) != 0)
1217 			goto allmulti;
1218 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1219 		    M_NOWAIT)) == NULL)
1220 			goto allmulti;
1221 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1222 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1223 		ETHER_NEXT_MULTI(step, enm);
1224 	}
1225 
1226 	/* Accept only programmed multicast addresses */
1227 	ifp->if_flags &= ~IFF_ALLMULTI;
1228 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1229 
1230 	/* Now program new ones. */
1231 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1232 		ti_add_mcast(sc, &mc->mc_addr);
1233 
1234 	/* Re-enable interrupts. */
1235 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1236 
1237 	return;
1238 
1239 allmulti:
1240 	/* No need to keep individual multicast addresses */
1241 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1242 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1243 		free(mc, M_DEVBUF);
1244 	}
1245 
1246 	/* Accept all multicast addresses */
1247 	ifp->if_flags |= IFF_ALLMULTI;
1248 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1249 
1250 	/* Re-enable interrupts. */
1251 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1252 }
1253 
1254 /*
1255  * Check to see if the BIOS has configured us for a 64 bit slot when
1256  * we aren't actually in one. If we detect this condition, we can work
1257  * around it on the Tigon 2 by setting a bit in the PCI state register,
1258  * but for the Tigon 1 we must give up and abort the interface attach.
1259  */
1260 static int ti_64bitslot_war(sc)
1261 	struct ti_softc		*sc;
1262 {
1263 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1264 		CSR_WRITE_4(sc, 0x600, 0);
1265 		CSR_WRITE_4(sc, 0x604, 0);
1266 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1267 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1268 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1269 				return(EINVAL);
1270 			else {
1271 				TI_SETBIT(sc, TI_PCI_STATE,
1272 				    TI_PCISTATE_32BIT_BUS);
1273 				return(0);
1274 			}
1275 		}
1276 	}
1277 
1278 	return(0);
1279 }
1280 
1281 /*
1282  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1283  * self-test results.
1284  */
1285 static int ti_chipinit(sc)
1286 	struct ti_softc		*sc;
1287 {
1288 	u_int32_t		cacheline;
1289 	u_int32_t		pci_writemax = 0;
1290 	u_int32_t		rev;
1291 
1292 	/* Initialize link to down state. */
1293 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1294 
1295 	/* Set endianness before we access any non-PCI registers. */
1296 #if BYTE_ORDER == BIG_ENDIAN
1297 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1298 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1299 #else
1300 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1301 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1302 #endif
1303 
1304 	/* Check the ROM failed bit to see if self-tests passed. */
1305 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1306 		printf("%s: board self-diagnostics failed!\n",
1307 		       sc->sc_dev.dv_xname);
1308 		return(ENODEV);
1309 	}
1310 
1311 	/* Halt the CPU. */
1312 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1313 
1314 	/* Figure out the hardware revision. */
1315 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1316 	switch(rev) {
1317 	case TI_REV_TIGON_I:
1318 		sc->ti_hwrev = TI_HWREV_TIGON;
1319 		break;
1320 	case TI_REV_TIGON_II:
1321 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1322 		break;
1323 	default:
1324 		printf("%s: unsupported chip revision 0x%x\n",
1325 		    sc->sc_dev.dv_xname, rev);
1326 		return(ENODEV);
1327 	}
1328 
1329 	/* Do special setup for Tigon 2. */
1330 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1331 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1332 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1333 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1334 	}
1335 
1336 	/* Set up the PCI state register. */
1337 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1338 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1339 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1340 	}
1341 
1342 	/* Clear the read/write max DMA parameters. */
1343 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1344 	    TI_PCISTATE_READ_MAXDMA));
1345 
1346 	/* Get cache line size. */
1347 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1348 
1349 	/*
1350 	 * If the system has set enabled the PCI memory write
1351 	 * and invalidate command in the command register, set
1352 	 * the write max parameter accordingly. This is necessary
1353 	 * to use MWI with the Tigon 2.
1354 	 */
1355 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1356 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1357 		switch(cacheline) {
1358 		case 1:
1359 		case 4:
1360 		case 8:
1361 		case 16:
1362 		case 32:
1363 		case 64:
1364 			break;
1365 		default:
1366 		/* Disable PCI memory write and invalidate. */
1367 			if (bootverbose)
1368 				printf("%s: cache line size %d not "
1369 				    "supported; disabling PCI MWI\n",
1370 				    sc->sc_dev.dv_xname, cacheline);
1371 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1372 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1373 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1374 			break;
1375 		}
1376 	}
1377 
1378 #ifdef __brokenalpha__
1379 	/*
1380 	 * From the Alteon sample driver:
1381 	 * Must insure that we do not cross an 8K (bytes) boundary
1382 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1383 	 * restriction on some ALPHA platforms with early revision
1384 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1385 	 */
1386 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1387 #else
1388 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1389 #endif
1390 
1391 	/* This sets the min dma param all the way up (0xff). */
1392 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1393 
1394 	/* Configure DMA variables. */
1395 #if BYTE_ORDER == BIG_ENDIAN
1396 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1397 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1398 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1399 	    TI_OPMODE_DONT_FRAG_JUMBO);
1400 #else
1401 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1402 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1403 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1404 #endif
1405 
1406 	/*
1407 	 * Only allow 1 DMA channel to be active at a time.
1408 	 * I don't think this is a good idea, but without it
1409 	 * the firmware racks up lots of nicDmaReadRingFull
1410 	 * errors.
1411 	 * Incompatible with hardware assisted checksums.
1412 	 */
1413 	if ((sc->ethercom.ec_if.if_capenable &
1414 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1415 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1416 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1417 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1418 
1419 	/* Recommended settings from Tigon manual. */
1420 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1421 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1422 
1423 	if (ti_64bitslot_war(sc)) {
1424 		printf("%s: bios thinks we're in a 64 bit slot, "
1425 		    "but we aren't", sc->sc_dev.dv_xname);
1426 		return(EINVAL);
1427 	}
1428 
1429 	return(0);
1430 }
1431 
1432 /*
1433  * Initialize the general information block and firmware, and
1434  * start the CPU(s) running.
1435  */
1436 static int ti_gibinit(sc)
1437 	struct ti_softc		*sc;
1438 {
1439 	struct ti_rcb		*rcb;
1440 	int			i;
1441 	struct ifnet		*ifp;
1442 
1443 	ifp = &sc->ethercom.ec_if;
1444 
1445 	/* Disable interrupts for now. */
1446 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1447 
1448 	/* Tell the chip where to find the general information block. */
1449 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1450 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1451 
1452 	/* Load the firmware into SRAM. */
1453 	ti_loadfw(sc);
1454 
1455 	/* Set up the contents of the general info and ring control blocks. */
1456 
1457 	/* Set up the event ring and producer pointer. */
1458 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1459 
1460 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1461 	rcb->ti_flags = 0;
1462 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1463 	    TI_CDEVPRODADDR(sc);
1464 
1465 	sc->ti_ev_prodidx.ti_idx = 0;
1466 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1467 	sc->ti_ev_saved_considx = 0;
1468 
1469 	/* Set up the command ring and producer mailbox. */
1470 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1471 
1472 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1473 	rcb->ti_flags = 0;
1474 	rcb->ti_max_len = 0;
1475 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1476 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1477 	}
1478 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1479 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1480 	sc->ti_cmd_saved_prodidx = 0;
1481 
1482 	/*
1483 	 * Assign the address of the stats refresh buffer.
1484 	 * We re-use the current stats buffer for this to
1485 	 * conserve memory.
1486 	 */
1487 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1488 	    TI_CDSTATSADDR(sc);
1489 
1490 	/* Set up the standard receive ring. */
1491 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1492 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1493 	rcb->ti_max_len = ETHER_MAX_LEN;
1494 	rcb->ti_flags = 0;
1495 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1496 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1497 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1498 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1499 	if (VLAN_ATTACHED(&sc->ethercom))
1500 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1501 
1502 	/* Set up the jumbo receive ring. */
1503 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1504 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1505 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1506 	rcb->ti_flags = 0;
1507 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1508 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1509 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1510 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1511 	if (VLAN_ATTACHED(&sc->ethercom))
1512 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1513 
1514 	/*
1515 	 * Set up the mini ring. Only activated on the
1516 	 * Tigon 2 but the slot in the config block is
1517 	 * still there on the Tigon 1.
1518 	 */
1519 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1520 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1521 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1522 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1523 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1524 	else
1525 		rcb->ti_flags = 0;
1526 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1527 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1528 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1529 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1530 	if (VLAN_ATTACHED(&sc->ethercom))
1531 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1532 
1533 	/*
1534 	 * Set up the receive return ring.
1535 	 */
1536 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1537 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1538 	rcb->ti_flags = 0;
1539 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1540 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1541 	    TI_CDRTNPRODADDR(sc);
1542 
1543 	/*
1544 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1545 	 * of putting the transmit ring in the host's address space and
1546 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1547 	 * memory and accessing it through the shared memory region. We
1548 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1549 	 * so we have to revert to the shared memory scheme if we detect
1550 	 * a Tigon 1 chip.
1551 	 */
1552 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1553 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1554 		sc->ti_tx_ring_nic =
1555 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1556 	}
1557 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1558 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1559 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1560 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1561 		rcb->ti_flags = 0;
1562 	else
1563 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1564 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1565 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1566 	/*
1567 	 * When we get the packet, there is a pseudo-header seed already
1568 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1569 	 * compute the pseudo-header checksum again!
1570 	 */
1571 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1572 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1573 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1574 	if (VLAN_ATTACHED(&sc->ethercom))
1575 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1576 	rcb->ti_max_len = TI_TX_RING_CNT;
1577 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1578 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1579 	else
1580 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1581 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1582 	    TI_CDTXCONSADDR(sc);
1583 
1584 	/*
1585 	 * We're done frobbing the General Information Block.  Sync
1586 	 * it.  Note we take care of the first stats sync here, as
1587 	 * well.
1588 	 */
1589 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1590 
1591 	/* Set up tuneables */
1592 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1593 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1594 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1595 		    (sc->ti_rx_coal_ticks / 10));
1596 	else
1597 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1598 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1599 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1600 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1601 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1602 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1603 
1604 	/* Turn interrupts on. */
1605 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1606 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1607 
1608 	/* Start CPU. */
1609 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1610 
1611 	return(0);
1612 }
1613 
1614 /*
1615  * look for id in the device list, returning the first match
1616  */
1617 static const struct ti_type *
1618 ti_type_match(pa)
1619 	struct pci_attach_args *pa;
1620 {
1621 	const struct ti_type          *t;
1622 
1623 	t = ti_devs;
1624 	while(t->ti_name != NULL) {
1625 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1626 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1627 			return (t);
1628 		}
1629 		t++;
1630 	}
1631 
1632 	return(NULL);
1633 }
1634 
1635 /*
1636  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1637  * against our list and return its name if we find a match.
1638  */
1639 static int ti_probe(parent, match, aux)
1640 	struct device *parent;
1641 	struct cfdata *match;
1642 	void *aux;
1643 {
1644 	struct pci_attach_args *pa = aux;
1645 	const struct ti_type		*t;
1646 
1647 	t = ti_type_match(pa);
1648 
1649 	return((t == NULL) ? 0 : 1);
1650 }
1651 
1652 static void ti_attach(parent, self, aux)
1653 	struct device *parent, *self;
1654 	void *aux;
1655 {
1656 	u_int32_t		command;
1657 	struct ifnet		*ifp;
1658 	struct ti_softc		*sc;
1659 	u_char eaddr[ETHER_ADDR_LEN];
1660 	struct pci_attach_args *pa = aux;
1661 	pci_chipset_tag_t pc = pa->pa_pc;
1662 	pci_intr_handle_t ih;
1663 	const char *intrstr = NULL;
1664 	bus_dma_segment_t dmaseg;
1665 	int error, dmanseg, nolinear;
1666 	const struct ti_type		*t;
1667 
1668 	t = ti_type_match(pa);
1669 	if (t == NULL) {
1670 		printf("ti_attach: were did the card go ?\n");
1671 		return;
1672 	}
1673 
1674 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1675 
1676 	sc = (struct ti_softc *)self;
1677 
1678 	/*
1679 	 * Map control/status registers.
1680 	 */
1681 	nolinear = 0;
1682 	if (pci_mapreg_map(pa, 0x10,
1683 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1684 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1685 	    NULL, NULL)) {
1686 		nolinear = 1;
1687 		if (pci_mapreg_map(pa, 0x10,
1688 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1689 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1690 			printf(": can't map memory space\n");
1691 			return;
1692 		}
1693 	}
1694 	if (nolinear == 0)
1695 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1696 	else
1697 		sc->ti_vhandle = NULL;
1698 
1699 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1700 	command |= PCI_COMMAND_MASTER_ENABLE;
1701 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1702 
1703 	/* Allocate interrupt */
1704 	if (pci_intr_map(pa, &ih)) {
1705 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1706 		return;
1707 	}
1708 	intrstr = pci_intr_string(pc, ih);
1709 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1710 	if (sc->sc_ih == NULL) {
1711 		printf("%s: couldn't establish interrupt",
1712 		    sc->sc_dev.dv_xname);
1713 		if (intrstr != NULL)
1714 			printf(" at %s", intrstr);
1715 		printf("\n");
1716 		return;
1717 	}
1718 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1719 	/*
1720 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1721 	 * doing do could allow DMA to corrupt kernel memory during the
1722 	 * reboot before the driver initializes.
1723 	 */
1724 	(void) shutdownhook_establish(ti_shutdown, sc);
1725 
1726 	if (ti_chipinit(sc)) {
1727 		printf("%s: chip initialization failed\n", self->dv_xname);
1728 		goto fail2;
1729 	}
1730 
1731 	/*
1732 	 * Deal with some chip diffrences.
1733 	 */
1734 	switch (sc->ti_hwrev) {
1735 	case TI_HWREV_TIGON:
1736 		sc->sc_tx_encap = ti_encap_tigon1;
1737 		sc->sc_tx_eof = ti_txeof_tigon1;
1738 		if (nolinear == 1)
1739 			printf("%s: memory space not mapped linear\n",
1740 			    self->dv_xname);
1741 		break;
1742 
1743 	case TI_HWREV_TIGON_II:
1744 		sc->sc_tx_encap = ti_encap_tigon2;
1745 		sc->sc_tx_eof = ti_txeof_tigon2;
1746 		break;
1747 
1748 	default:
1749 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
1750 		    sc->ti_hwrev);
1751 		goto fail2;
1752 	}
1753 
1754 	/* Zero out the NIC's on-board SRAM. */
1755 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1756 
1757 	/* Init again -- zeroing memory may have clobbered some registers. */
1758 	if (ti_chipinit(sc)) {
1759 		printf("%s: chip initialization failed\n", self->dv_xname);
1760 		goto fail2;
1761 	}
1762 
1763 	/*
1764 	 * Get station address from the EEPROM. Note: the manual states
1765 	 * that the MAC address is at offset 0x8c, however the data is
1766 	 * stored as two longwords (since that's how it's loaded into
1767 	 * the NIC). This means the MAC address is actually preceded
1768 	 * by two zero bytes. We need to skip over those.
1769 	 */
1770 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1771 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1772 		printf("%s: failed to read station address\n", self->dv_xname);
1773 		goto fail2;
1774 	}
1775 
1776 	/*
1777 	 * A Tigon chip was detected. Inform the world.
1778 	 */
1779 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1780 				ether_sprintf(eaddr));
1781 
1782 	sc->sc_dmat = pa->pa_dmat;
1783 
1784 	/* Allocate the general information block and ring buffers. */
1785 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1786 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1787 	    BUS_DMA_NOWAIT)) != 0) {
1788 		printf("%s: can't allocate ring buffer, error = %d\n",
1789 		       sc->sc_dev.dv_xname, error);
1790 		goto fail2;
1791 	}
1792 
1793 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1794 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1795 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1796 		printf("%s: can't map ring buffer, error = %d\n",
1797 		       sc->sc_dev.dv_xname, error);
1798 		goto fail2;
1799 	}
1800 
1801 	if ((error = bus_dmamap_create(sc->sc_dmat,
1802 	    sizeof(struct ti_ring_data), 1,
1803 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1804 	    &sc->info_dmamap)) != 0) {
1805 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1806 		       sc->sc_dev.dv_xname, error);
1807 		goto fail2;
1808 	}
1809 
1810 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1811 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1812 	    BUS_DMA_NOWAIT)) != 0) {
1813 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1814 		       sc->sc_dev.dv_xname, error);
1815 		goto fail2;
1816 	}
1817 
1818 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1819 
1820 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1821 
1822 	/* Try to allocate memory for jumbo buffers. */
1823 	if (ti_alloc_jumbo_mem(sc)) {
1824 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1825 		goto fail2;
1826 	}
1827 
1828 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1829 
1830 	/*
1831 	 * We really need a better way to tell a 1000baseT card
1832 	 * from a 1000baseSX one, since in theory there could be
1833 	 * OEMed 1000baseT cards from lame vendors who aren't
1834 	 * clever enough to change the PCI ID. For the moment
1835 	 * though, the AceNIC is the only copper card available.
1836 	 */
1837 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1838 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1839 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1840 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1841 		sc->ti_copper = 1;
1842 	else
1843 		sc->ti_copper = 0;
1844 
1845 	/* Set default tuneable values. */
1846 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1847 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1848 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1849 	sc->ti_rx_max_coal_bds = 64;
1850 	sc->ti_tx_max_coal_bds = 128;
1851 	sc->ti_tx_buf_ratio = 21;
1852 
1853 	/* Set up ifnet structure */
1854 	ifp = &sc->ethercom.ec_if;
1855 	ifp->if_softc = sc;
1856 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1857 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1858 	ifp->if_ioctl = ti_ioctl;
1859 	ifp->if_start = ti_start;
1860 	ifp->if_watchdog = ti_watchdog;
1861 	IFQ_SET_READY(&ifp->if_snd);
1862 
1863 #if 0
1864 	/*
1865 	 * XXX This is not really correct -- we don't necessarily
1866 	 * XXX want to queue up as many as we can transmit at the
1867 	 * XXX upper layer like that.  Someone with a board should
1868 	 * XXX check to see how this affects performance.
1869 	 */
1870 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1871 #endif
1872 
1873 	/*
1874 	 * We can support 802.1Q VLAN-sized frames.
1875 	 */
1876 	sc->ethercom.ec_capabilities |=
1877 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1878 
1879 	/*
1880 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1881 	 */
1882 	ifp->if_capabilities |=
1883 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1884 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1885 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1886 
1887 	/* Set up ifmedia support. */
1888 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1889 	if (sc->ti_copper) {
1890                 /*
1891                  * Copper cards allow manual 10/100 mode selection,
1892                  * but not manual 1000baseT mode selection. Why?
1893                  * Because currently there's no way to specify the
1894                  * master/slave setting through the firmware interface,
1895                  * so Alteon decided to just bag it and handle it
1896                  * via autonegotiation.
1897                  */
1898                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1899                 ifmedia_add(&sc->ifmedia,
1900                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1901                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1902                 ifmedia_add(&sc->ifmedia,
1903                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1904                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1905                 ifmedia_add(&sc->ifmedia,
1906                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1907 	} else {
1908 		/* Fiber cards don't support 10/100 modes. */
1909 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1910 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1911 	}
1912 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1913 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1914 
1915 	/*
1916 	 * Call MI attach routines.
1917 	 */
1918 	if_attach(ifp);
1919 	ether_ifattach(ifp, eaddr);
1920 
1921 	return;
1922 fail2:
1923 	pci_intr_disestablish(pc, sc->sc_ih);
1924 	return;
1925 }
1926 
1927 /*
1928  * Frame reception handling. This is called if there's a frame
1929  * on the receive return list.
1930  *
1931  * Note: we have to be able to handle three possibilities here:
1932  * 1) the frame is from the mini receive ring (can only happen)
1933  *    on Tigon 2 boards)
1934  * 2) the frame is from the jumbo receive ring
1935  * 3) the frame is from the standard receive ring
1936  */
1937 
1938 static void ti_rxeof(sc)
1939 	struct ti_softc		*sc;
1940 {
1941 	struct ifnet		*ifp;
1942 	struct ti_cmd_desc	cmd;
1943 
1944 	ifp = &sc->ethercom.ec_if;
1945 
1946 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1947 		struct ti_rx_desc	*cur_rx;
1948 		u_int32_t		rxidx;
1949 		struct mbuf		*m = NULL;
1950 		struct ether_header	*eh;
1951 		bus_dmamap_t dmamap;
1952 
1953 		cur_rx =
1954 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1955 		rxidx = cur_rx->ti_idx;
1956 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1957 
1958 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1959 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1960 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1961 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1962 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1963 				ifp->if_ierrors++;
1964 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1965 				continue;
1966 			}
1967 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1968 			    == ENOBUFS) {
1969 				ifp->if_ierrors++;
1970 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1971 				continue;
1972 			}
1973 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1974 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1975 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1976 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1977 			dmamap = sc->mini_dmamap[rxidx];
1978 			sc->mini_dmamap[rxidx] = 0;
1979 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1980 				ifp->if_ierrors++;
1981 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1982 				continue;
1983 			}
1984 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1985 			    == ENOBUFS) {
1986 				ifp->if_ierrors++;
1987 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1988 				continue;
1989 			}
1990 		} else {
1991 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1992 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1993 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1994 			dmamap = sc->std_dmamap[rxidx];
1995 			sc->std_dmamap[rxidx] = 0;
1996 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1997 				ifp->if_ierrors++;
1998 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1999 				continue;
2000 			}
2001 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2002 			    == ENOBUFS) {
2003 				ifp->if_ierrors++;
2004 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2005 				continue;
2006 			}
2007 		}
2008 
2009 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2010 		ifp->if_ipackets++;
2011 		m->m_pkthdr.rcvif = ifp;
2012 
2013 #if NBPFILTER > 0
2014 		/*
2015 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
2016 	 	 * don't pass it up to the ether_input() layer unless it's
2017 	 	 * a broadcast packet, multicast packet, matches our ethernet
2018 	 	 * address or the interface is in promiscuous mode.
2019 	 	 */
2020 		if (ifp->if_bpf)
2021 			bpf_mtap(ifp->if_bpf, m);
2022 #endif
2023 
2024 		eh = mtod(m, struct ether_header *);
2025 		switch (ntohs(eh->ether_type)) {
2026 #ifdef INET
2027 		case ETHERTYPE_IP:
2028 		    {
2029 			struct ip *ip = (struct ip *) (eh + 1);
2030 
2031 			/*
2032 			 * Note the Tigon firmware does not invert
2033 			 * the checksum for us, hence the XOR.
2034 			 */
2035 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2036 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2037 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2038 			/*
2039 			 * ntohs() the constant so the compiler can
2040 			 * optimize...
2041 			 *
2042 			 * XXX Figure out a sane way to deal with
2043 			 * fragmented packets.
2044 			 */
2045 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2046 				switch (ip->ip_p) {
2047 				case IPPROTO_TCP:
2048 					m->m_pkthdr.csum_data =
2049 					    cur_rx->ti_tcp_udp_cksum;
2050 					m->m_pkthdr.csum_flags |=
2051 					    M_CSUM_TCPv4|M_CSUM_DATA;
2052 					break;
2053 				case IPPROTO_UDP:
2054 					m->m_pkthdr.csum_data =
2055 					    cur_rx->ti_tcp_udp_cksum;
2056 					m->m_pkthdr.csum_flags |=
2057 					    M_CSUM_UDPv4|M_CSUM_DATA;
2058 					break;
2059 				default:
2060 					/* Nothing */;
2061 				}
2062 			}
2063 			break;
2064 		    }
2065 #endif
2066 		default:
2067 			/* Nothing. */
2068 			break;
2069 		}
2070 
2071 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2072 			VLAN_INPUT_TAG(ifp, m,
2073 			    /* ti_vlan_tag also has the priority, trim it */
2074 			    cur_rx->ti_vlan_tag & 4095,
2075 			    continue);
2076 		}
2077 
2078 		(*ifp->if_input)(ifp, m);
2079 	}
2080 
2081 	/* Only necessary on the Tigon 1. */
2082 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2083 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2084 		    sc->ti_rx_saved_considx);
2085 
2086 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2087 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2088 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2089 
2090 	return;
2091 }
2092 
2093 static void ti_txeof_tigon1(sc)
2094 	struct ti_softc		*sc;
2095 {
2096 	struct ti_tx_desc	*cur_tx = NULL;
2097 	struct ifnet		*ifp;
2098 	struct txdmamap_pool_entry *dma;
2099 
2100 	ifp = &sc->ethercom.ec_if;
2101 
2102 	/*
2103 	 * Go through our tx ring and free mbufs for those
2104 	 * frames that have been sent.
2105 	 */
2106 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2107 		u_int32_t		idx = 0;
2108 
2109 		idx = sc->ti_tx_saved_considx;
2110 		if (idx > 383)
2111 			CSR_WRITE_4(sc, TI_WINBASE,
2112 			    TI_TX_RING_BASE + 6144);
2113 		else if (idx > 255)
2114 			CSR_WRITE_4(sc, TI_WINBASE,
2115 			    TI_TX_RING_BASE + 4096);
2116 		else if (idx > 127)
2117 			CSR_WRITE_4(sc, TI_WINBASE,
2118 			    TI_TX_RING_BASE + 2048);
2119 		else
2120 			CSR_WRITE_4(sc, TI_WINBASE,
2121 			    TI_TX_RING_BASE);
2122 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2123 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2124 			ifp->if_opackets++;
2125 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2126 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2127 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2128 
2129 			dma = sc->txdma[idx];
2130 			KDASSERT(dma != NULL);
2131 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2132 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2133 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2134 
2135 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2136 			sc->txdma[idx] = NULL;
2137 		}
2138 		sc->ti_txcnt--;
2139 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2140 		ifp->if_timer = 0;
2141 	}
2142 
2143 	if (cur_tx != NULL)
2144 		ifp->if_flags &= ~IFF_OACTIVE;
2145 
2146 	return;
2147 }
2148 
2149 static void ti_txeof_tigon2(sc)
2150 	struct ti_softc		*sc;
2151 {
2152 	struct ti_tx_desc	*cur_tx = NULL;
2153 	struct ifnet		*ifp;
2154 	struct txdmamap_pool_entry *dma;
2155 	int firstidx, cnt;
2156 
2157 	ifp = &sc->ethercom.ec_if;
2158 
2159 	/*
2160 	 * Go through our tx ring and free mbufs for those
2161 	 * frames that have been sent.
2162 	 */
2163 	firstidx = sc->ti_tx_saved_considx;
2164 	cnt = 0;
2165 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2166 		u_int32_t		idx = 0;
2167 
2168 		idx = sc->ti_tx_saved_considx;
2169 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2170 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2171 			ifp->if_opackets++;
2172 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2173 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2174 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2175 
2176 			dma = sc->txdma[idx];
2177 			KDASSERT(dma != NULL);
2178 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2179 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2180 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2181 
2182 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2183 			sc->txdma[idx] = NULL;
2184 		}
2185 		cnt++;
2186 		sc->ti_txcnt--;
2187 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2188 		ifp->if_timer = 0;
2189 	}
2190 
2191 	if (cnt != 0)
2192 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2193 
2194 	if (cur_tx != NULL)
2195 		ifp->if_flags &= ~IFF_OACTIVE;
2196 
2197 	return;
2198 }
2199 
2200 static int ti_intr(xsc)
2201 	void			*xsc;
2202 {
2203 	struct ti_softc		*sc;
2204 	struct ifnet		*ifp;
2205 
2206 	sc = xsc;
2207 	ifp = &sc->ethercom.ec_if;
2208 
2209 #ifdef notdef
2210 	/* Avoid this for now -- checking this register is expensive. */
2211 	/* Make sure this is really our interrupt. */
2212 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2213 		return (0);
2214 #endif
2215 
2216 	/* Ack interrupt and stop others from occuring. */
2217 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2218 
2219 	if (ifp->if_flags & IFF_RUNNING) {
2220 		/* Check RX return ring producer/consumer */
2221 		ti_rxeof(sc);
2222 
2223 		/* Check TX ring producer/consumer */
2224 		(*sc->sc_tx_eof)(sc);
2225 	}
2226 
2227 	ti_handle_events(sc);
2228 
2229 	/* Re-enable interrupts. */
2230 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2231 
2232 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2233 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2234 		ti_start(ifp);
2235 
2236 	return (1);
2237 }
2238 
2239 static void ti_stats_update(sc)
2240 	struct ti_softc		*sc;
2241 {
2242 	struct ifnet		*ifp;
2243 
2244 	ifp = &sc->ethercom.ec_if;
2245 
2246 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2247 
2248 	ifp->if_collisions +=
2249 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2250 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2251 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2252 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2253 	   ifp->if_collisions;
2254 
2255 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2256 }
2257 
2258 /*
2259  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2260  * pointers to descriptors.
2261  */
2262 static int ti_encap_tigon1(sc, m_head, txidx)
2263 	struct ti_softc		*sc;
2264 	struct mbuf		*m_head;
2265 	u_int32_t		*txidx;
2266 {
2267 	struct ti_tx_desc	*f = NULL;
2268 	u_int32_t		frag, cur, cnt = 0;
2269 	struct txdmamap_pool_entry *dma;
2270 	bus_dmamap_t dmamap;
2271 	int error, i;
2272 	struct m_tag *mtag;
2273 	u_int16_t csum_flags = 0;
2274 
2275 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2276 	if (dma == NULL) {
2277 		return ENOMEM;
2278 	}
2279 	dmamap = dma->dmamap;
2280 
2281 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2282 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2283 	if (error) {
2284 		struct mbuf *m;
2285 		int j = 0;
2286 		for (m = m_head; m; m = m->m_next)
2287 			j++;
2288 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2289 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2290 		return (ENOMEM);
2291 	}
2292 
2293 	cur = frag = *txidx;
2294 
2295 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2296 		/* IP header checksum field must be 0! */
2297 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2298 	}
2299 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2300 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2301 
2302 	/* XXX fragmented packet checksum capability? */
2303 
2304 	/*
2305  	 * Start packing the mbufs in this chain into
2306 	 * the fragment pointers. Stop when we run out
2307  	 * of fragments or hit the end of the mbuf chain.
2308 	 */
2309 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2310 		if (frag > 383)
2311 			CSR_WRITE_4(sc, TI_WINBASE,
2312 			    TI_TX_RING_BASE + 6144);
2313 		else if (frag > 255)
2314 			CSR_WRITE_4(sc, TI_WINBASE,
2315 			    TI_TX_RING_BASE + 4096);
2316 		else if (frag > 127)
2317 			CSR_WRITE_4(sc, TI_WINBASE,
2318 			    TI_TX_RING_BASE + 2048);
2319 		else
2320 			CSR_WRITE_4(sc, TI_WINBASE,
2321 			    TI_TX_RING_BASE);
2322 		f = &sc->ti_tx_ring_nic[frag % 128];
2323 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2324 			break;
2325 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2326 		f->ti_len = dmamap->dm_segs[i].ds_len;
2327 		f->ti_flags = csum_flags;
2328 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2329 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2330 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2331 		} else {
2332 			f->ti_vlan_tag = 0;
2333 		}
2334 		/*
2335 		 * Sanity check: avoid coming within 16 descriptors
2336 		 * of the end of the ring.
2337 		 */
2338 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2339 			return(ENOBUFS);
2340 		cur = frag;
2341 		TI_INC(frag, TI_TX_RING_CNT);
2342 		cnt++;
2343 	}
2344 
2345 	if (i < dmamap->dm_nsegs)
2346 		return(ENOBUFS);
2347 
2348 	if (frag == sc->ti_tx_saved_considx)
2349 		return(ENOBUFS);
2350 
2351 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2352 	    TI_BDFLAG_END;
2353 
2354 	/* Sync the packet's DMA map. */
2355 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2356 	    BUS_DMASYNC_PREWRITE);
2357 
2358 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2359 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2360 	sc->txdma[cur] = dma;
2361 	sc->ti_txcnt += cnt;
2362 
2363 	*txidx = frag;
2364 
2365 	return(0);
2366 }
2367 
2368 static int ti_encap_tigon2(sc, m_head, txidx)
2369 	struct ti_softc		*sc;
2370 	struct mbuf		*m_head;
2371 	u_int32_t		*txidx;
2372 {
2373 	struct ti_tx_desc	*f = NULL;
2374 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2375 	struct txdmamap_pool_entry *dma;
2376 	bus_dmamap_t dmamap;
2377 	int error, i;
2378 	struct m_tag *mtag;
2379 	u_int16_t csum_flags = 0;
2380 
2381 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2382 	if (dma == NULL) {
2383 		return ENOMEM;
2384 	}
2385 	dmamap = dma->dmamap;
2386 
2387 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2388 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2389 	if (error) {
2390 		struct mbuf *m;
2391 		int j = 0;
2392 		for (m = m_head; m; m = m->m_next)
2393 			j++;
2394 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2395 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2396 		return (ENOMEM);
2397 	}
2398 
2399 	cur = firstfrag = frag = *txidx;
2400 
2401 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2402 		/* IP header checksum field must be 0! */
2403 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2404 	}
2405 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2406 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2407 
2408 	/* XXX fragmented packet checksum capability? */
2409 
2410 	/*
2411  	 * Start packing the mbufs in this chain into
2412 	 * the fragment pointers. Stop when we run out
2413  	 * of fragments or hit the end of the mbuf chain.
2414 	 */
2415 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2416 		f = &sc->ti_rdata->ti_tx_ring[frag];
2417 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2418 			break;
2419 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2420 		f->ti_len = dmamap->dm_segs[i].ds_len;
2421 		f->ti_flags = csum_flags;
2422 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2423 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2424 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2425 		} else {
2426 			f->ti_vlan_tag = 0;
2427 		}
2428 		/*
2429 		 * Sanity check: avoid coming within 16 descriptors
2430 		 * of the end of the ring.
2431 		 */
2432 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2433 			return(ENOBUFS);
2434 		cur = frag;
2435 		TI_INC(frag, TI_TX_RING_CNT);
2436 		cnt++;
2437 	}
2438 
2439 	if (i < dmamap->dm_nsegs)
2440 		return(ENOBUFS);
2441 
2442 	if (frag == sc->ti_tx_saved_considx)
2443 		return(ENOBUFS);
2444 
2445 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2446 
2447 	/* Sync the packet's DMA map. */
2448 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2449 	    BUS_DMASYNC_PREWRITE);
2450 
2451 	/* Sync the descriptors we are using. */
2452 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2453 
2454 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2455 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2456 	sc->txdma[cur] = dma;
2457 	sc->ti_txcnt += cnt;
2458 
2459 	*txidx = frag;
2460 
2461 	return(0);
2462 }
2463 
2464 /*
2465  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2466  * to the mbuf data regions directly in the transmit descriptors.
2467  */
2468 static void ti_start(ifp)
2469 	struct ifnet		*ifp;
2470 {
2471 	struct ti_softc		*sc;
2472 	struct mbuf		*m_head = NULL;
2473 	u_int32_t		prodidx = 0;
2474 
2475 	sc = ifp->if_softc;
2476 
2477 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2478 
2479 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2480 		IFQ_POLL(&ifp->if_snd, m_head);
2481 		if (m_head == NULL)
2482 			break;
2483 
2484 		/*
2485 		 * Pack the data into the transmit ring. If we
2486 		 * don't have room, set the OACTIVE flag and wait
2487 		 * for the NIC to drain the ring.
2488 		 */
2489 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2490 			ifp->if_flags |= IFF_OACTIVE;
2491 			break;
2492 		}
2493 
2494 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2495 
2496 		/*
2497 		 * If there's a BPF listener, bounce a copy of this frame
2498 		 * to him.
2499 		 */
2500 #if NBPFILTER > 0
2501 		if (ifp->if_bpf)
2502 			bpf_mtap(ifp->if_bpf, m_head);
2503 #endif
2504 	}
2505 
2506 	/* Transmit */
2507 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2508 
2509 	/*
2510 	 * Set a timeout in case the chip goes out to lunch.
2511 	 */
2512 	ifp->if_timer = 5;
2513 
2514 	return;
2515 }
2516 
2517 static void ti_init(xsc)
2518 	void			*xsc;
2519 {
2520 	struct ti_softc		*sc = xsc;
2521         int			s;
2522 
2523 	s = splnet();
2524 
2525 	/* Cancel pending I/O and flush buffers. */
2526 	ti_stop(sc);
2527 
2528 	/* Init the gen info block, ring control blocks and firmware. */
2529 	if (ti_gibinit(sc)) {
2530 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2531 		splx(s);
2532 		return;
2533 	}
2534 
2535 	splx(s);
2536 
2537 	return;
2538 }
2539 
2540 static void ti_init2(sc)
2541 	struct ti_softc		*sc;
2542 {
2543 	struct ti_cmd_desc	cmd;
2544 	struct ifnet		*ifp;
2545 	u_int8_t		*m;
2546 	struct ifmedia		*ifm;
2547 	int			tmp;
2548 
2549 	ifp = &sc->ethercom.ec_if;
2550 
2551 	/* Specify MTU and interface index. */
2552 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
2553 
2554 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2555 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2556 		tmp += ETHER_VLAN_ENCAP_LEN;
2557 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2558 
2559 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2560 
2561 	/* Load our MAC address. */
2562 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2563 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2564 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2565 		    | (m[4] << 8) | m[5]);
2566 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2567 
2568 	/* Enable or disable promiscuous mode as needed. */
2569 	if (ifp->if_flags & IFF_PROMISC) {
2570 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2571 	} else {
2572 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2573 	}
2574 
2575 	/* Program multicast filter. */
2576 	ti_setmulti(sc);
2577 
2578 	/*
2579 	 * If this is a Tigon 1, we should tell the
2580 	 * firmware to use software packet filtering.
2581 	 */
2582 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2583 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2584 	}
2585 
2586 	/* Init RX ring. */
2587 	ti_init_rx_ring_std(sc);
2588 
2589 	/* Init jumbo RX ring. */
2590 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2591 		ti_init_rx_ring_jumbo(sc);
2592 
2593 	/*
2594 	 * If this is a Tigon 2, we can also configure the
2595 	 * mini ring.
2596 	 */
2597 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2598 		ti_init_rx_ring_mini(sc);
2599 
2600 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2601 	sc->ti_rx_saved_considx = 0;
2602 
2603 	/* Init TX ring. */
2604 	ti_init_tx_ring(sc);
2605 
2606 	/* Tell firmware we're alive. */
2607 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2608 
2609 	/* Enable host interrupts. */
2610 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2611 
2612 	ifp->if_flags |= IFF_RUNNING;
2613 	ifp->if_flags &= ~IFF_OACTIVE;
2614 
2615 	/*
2616 	 * Make sure to set media properly. We have to do this
2617 	 * here since we have to issue commands in order to set
2618 	 * the link negotiation and we can't issue commands until
2619 	 * the firmware is running.
2620 	 */
2621 	ifm = &sc->ifmedia;
2622 	tmp = ifm->ifm_media;
2623 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2624 	ti_ifmedia_upd(ifp);
2625 	ifm->ifm_media = tmp;
2626 
2627 	return;
2628 }
2629 
2630 /*
2631  * Set media options.
2632  */
2633 static int ti_ifmedia_upd(ifp)
2634 	struct ifnet		*ifp;
2635 {
2636 	struct ti_softc		*sc;
2637 	struct ifmedia		*ifm;
2638 	struct ti_cmd_desc	cmd;
2639 
2640 	sc = ifp->if_softc;
2641 	ifm = &sc->ifmedia;
2642 
2643 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2644 		return(EINVAL);
2645 
2646 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2647 	case IFM_AUTO:
2648 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2649 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2650 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2651 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2652 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2653 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2654 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2655 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2656 		break;
2657 	case IFM_1000_SX:
2658 	case IFM_1000_T:
2659 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2660 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2661 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2662 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2663 		} else {
2664 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2665 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2666 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2667 		}
2668 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2669 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2670 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2671 		break;
2672 	case IFM_100_FX:
2673 	case IFM_10_FL:
2674 	case IFM_100_TX:
2675 	case IFM_10_T:
2676 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2677 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2678 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2679 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2680 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2681 		} else {
2682 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2683 		}
2684 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2685 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2686 		} else {
2687 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2688 		}
2689 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2690 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2691 		break;
2692 	}
2693 
2694 	sc->ethercom.ec_if.if_baudrate =
2695 	    ifmedia_baudrate(ifm->ifm_media);
2696 
2697 	return(0);
2698 }
2699 
2700 /*
2701  * Report current media status.
2702  */
2703 static void ti_ifmedia_sts(ifp, ifmr)
2704 	struct ifnet		*ifp;
2705 	struct ifmediareq	*ifmr;
2706 {
2707 	struct ti_softc		*sc;
2708 	u_int32_t               media = 0;
2709 
2710 	sc = ifp->if_softc;
2711 
2712 	ifmr->ifm_status = IFM_AVALID;
2713 	ifmr->ifm_active = IFM_ETHER;
2714 
2715 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2716 		return;
2717 
2718 	ifmr->ifm_status |= IFM_ACTIVE;
2719 
2720 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2721 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2722 		if (sc->ti_copper)
2723 			ifmr->ifm_active |= IFM_1000_T;
2724 		else
2725 			ifmr->ifm_active |= IFM_1000_SX;
2726 		if (media & TI_GLNK_FULL_DUPLEX)
2727 			ifmr->ifm_active |= IFM_FDX;
2728 		else
2729 			ifmr->ifm_active |= IFM_HDX;
2730 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2731 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2732 		if (sc->ti_copper) {
2733 			if (media & TI_LNK_100MB)
2734 				ifmr->ifm_active |= IFM_100_TX;
2735 			if (media & TI_LNK_10MB)
2736 				ifmr->ifm_active |= IFM_10_T;
2737 		} else {
2738 			if (media & TI_LNK_100MB)
2739 				ifmr->ifm_active |= IFM_100_FX;
2740 			if (media & TI_LNK_10MB)
2741 				ifmr->ifm_active |= IFM_10_FL;
2742 		}
2743 		if (media & TI_LNK_FULL_DUPLEX)
2744 			ifmr->ifm_active |= IFM_FDX;
2745 		if (media & TI_LNK_HALF_DUPLEX)
2746 			ifmr->ifm_active |= IFM_HDX;
2747 	}
2748 
2749 	sc->ethercom.ec_if.if_baudrate =
2750 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2751 
2752 	return;
2753 }
2754 
2755 static int
2756 ti_ether_ioctl(ifp, cmd, data)
2757 	struct ifnet *ifp;
2758 	u_long cmd;
2759 	caddr_t data;
2760 {
2761 	struct ifaddr *ifa = (struct ifaddr *) data;
2762 	struct ti_softc *sc = ifp->if_softc;
2763 
2764 	if ((ifp->if_flags & IFF_UP) == 0) {
2765 		ifp->if_flags |= IFF_UP;
2766 		ti_init(sc);
2767 	}
2768 
2769 	switch (cmd) {
2770 	case SIOCSIFADDR:
2771 
2772 		switch (ifa->ifa_addr->sa_family) {
2773 #ifdef INET
2774 		case AF_INET:
2775 			arp_ifinit(ifp, ifa);
2776 			break;
2777 #endif
2778 #ifdef NS
2779 		case AF_NS:
2780 		    {
2781 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2782 
2783 			 if (ns_nullhost(*ina))
2784 				ina->x_host = *(union ns_host *)
2785 				    LLADDR(ifp->if_sadl);
2786 			 else
2787 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2788 				    ifp->if_addrlen);
2789 			 break;
2790 		    }
2791 #endif
2792 		default:
2793 			break;
2794 		}
2795 		break;
2796 
2797 	default:
2798 		return (EINVAL);
2799 	}
2800 
2801 	return (0);
2802 }
2803 
2804 static int ti_ioctl(ifp, command, data)
2805 	struct ifnet		*ifp;
2806 	u_long			command;
2807 	caddr_t			data;
2808 {
2809 	struct ti_softc		*sc = ifp->if_softc;
2810 	struct ifreq		*ifr = (struct ifreq *) data;
2811 	int			s, error = 0;
2812 	struct ti_cmd_desc	cmd;
2813 
2814 	s = splnet();
2815 
2816 	switch(command) {
2817 	case SIOCSIFADDR:
2818 	case SIOCGIFADDR:
2819 		error = ti_ether_ioctl(ifp, command, data);
2820 		break;
2821 	case SIOCSIFMTU:
2822 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2823 			error = EINVAL;
2824 		else {
2825 			ifp->if_mtu = ifr->ifr_mtu;
2826 			ti_init(sc);
2827 		}
2828 		break;
2829 	case SIOCSIFFLAGS:
2830 		if (ifp->if_flags & IFF_UP) {
2831 			/*
2832 			 * If only the state of the PROMISC flag changed,
2833 			 * then just use the 'set promisc mode' command
2834 			 * instead of reinitializing the entire NIC. Doing
2835 			 * a full re-init means reloading the firmware and
2836 			 * waiting for it to start up, which may take a
2837 			 * second or two.
2838 			 */
2839 			if (ifp->if_flags & IFF_RUNNING &&
2840 			    ifp->if_flags & IFF_PROMISC &&
2841 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2842 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2843 				    TI_CMD_CODE_PROMISC_ENB, 0);
2844 			} else if (ifp->if_flags & IFF_RUNNING &&
2845 			    !(ifp->if_flags & IFF_PROMISC) &&
2846 			    sc->ti_if_flags & IFF_PROMISC) {
2847 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2848 				    TI_CMD_CODE_PROMISC_DIS, 0);
2849 			} else
2850 				ti_init(sc);
2851 		} else {
2852 			if (ifp->if_flags & IFF_RUNNING) {
2853 				ti_stop(sc);
2854 			}
2855 		}
2856 		sc->ti_if_flags = ifp->if_flags;
2857 		error = 0;
2858 		break;
2859 	case SIOCADDMULTI:
2860 	case SIOCDELMULTI:
2861 		error = (command == SIOCADDMULTI) ?
2862 		    ether_addmulti(ifr, &sc->ethercom) :
2863 		    ether_delmulti(ifr, &sc->ethercom);
2864 		if (error == ENETRESET) {
2865 			if (ifp->if_flags & IFF_RUNNING)
2866 				ti_setmulti(sc);
2867 			error = 0;
2868 		}
2869 		break;
2870 	case SIOCSIFMEDIA:
2871 	case SIOCGIFMEDIA:
2872 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2873 		break;
2874 	default:
2875 		error = EINVAL;
2876 		break;
2877 	}
2878 
2879 	(void)splx(s);
2880 
2881 	return(error);
2882 }
2883 
2884 static void ti_watchdog(ifp)
2885 	struct ifnet		*ifp;
2886 {
2887 	struct ti_softc		*sc;
2888 
2889 	sc = ifp->if_softc;
2890 
2891 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2892 	ti_stop(sc);
2893 	ti_init(sc);
2894 
2895 	ifp->if_oerrors++;
2896 
2897 	return;
2898 }
2899 
2900 /*
2901  * Stop the adapter and free any mbufs allocated to the
2902  * RX and TX lists.
2903  */
2904 static void ti_stop(sc)
2905 	struct ti_softc		*sc;
2906 {
2907 	struct ifnet		*ifp;
2908 	struct ti_cmd_desc	cmd;
2909 
2910 	ifp = &sc->ethercom.ec_if;
2911 
2912 	/* Disable host interrupts. */
2913 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2914 	/*
2915 	 * Tell firmware we're shutting down.
2916 	 */
2917 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2918 
2919 	/* Halt and reinitialize. */
2920 	ti_chipinit(sc);
2921 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2922 	ti_chipinit(sc);
2923 
2924 	/* Free the RX lists. */
2925 	ti_free_rx_ring_std(sc);
2926 
2927 	/* Free jumbo RX list. */
2928 	ti_free_rx_ring_jumbo(sc);
2929 
2930 	/* Free mini RX list. */
2931 	ti_free_rx_ring_mini(sc);
2932 
2933 	/* Free TX buffers. */
2934 	ti_free_tx_ring(sc);
2935 
2936 	sc->ti_ev_prodidx.ti_idx = 0;
2937 	sc->ti_return_prodidx.ti_idx = 0;
2938 	sc->ti_tx_considx.ti_idx = 0;
2939 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2940 
2941 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2942 
2943 	return;
2944 }
2945 
2946 /*
2947  * Stop all chip I/O so that the kernel's probe routines don't
2948  * get confused by errant DMAs when rebooting.
2949  */
2950 static void ti_shutdown(v)
2951 	void *v;
2952 {
2953 	struct ti_softc		*sc = v;
2954 
2955 	ti_chipinit(sc);
2956 
2957 	return;
2958 }
2959