xref: /netbsd-src/sys/dev/pci/if_ti.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* $NetBSD: if_ti.c,v 1.93 2014/03/29 19:28:25 christos Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.93 2014/03/29 19:28:25 christos Exp $");
85 
86 #include "opt_inet.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/ip.h>
112 #endif
113 
114 
115 #include <sys/bus.h>
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120 
121 #include <dev/pci/if_tireg.h>
122 
123 #include <dev/microcode/tigon/ti_fw.h>
124 #include <dev/microcode/tigon/ti_fw2.h>
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 
130 static const struct ti_type ti_devs[] = {
131 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
132 		"Alteon AceNIC 1000BASE-SX Ethernet" },
133 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
134 		"Alteon AceNIC 1000BASE-T Ethernet" },
135 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
136 		"3Com 3c985-SX Gigabit Ethernet" },
137 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
138 		"Netgear GA620 1000BASE-SX Ethernet" },
139 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
140 		"Netgear GA620 1000BASE-T Ethernet" },
141 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
142 		"Silicon Graphics Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static const struct ti_type *ti_type_match(struct pci_attach_args *);
147 static int ti_probe(device_t, cfdata_t, void *);
148 static void ti_attach(device_t, device_t, void *);
149 static bool ti_shutdown(device_t, int);
150 static void ti_txeof_tigon1(struct ti_softc *);
151 static void ti_txeof_tigon2(struct ti_softc *);
152 static void ti_rxeof(struct ti_softc *);
153 
154 static void ti_stats_update(struct ti_softc *);
155 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
156 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
157 
158 static int ti_intr(void *);
159 static void ti_start(struct ifnet *);
160 static int ti_ioctl(struct ifnet *, u_long, void *);
161 static void ti_init(void *);
162 static void ti_init2(struct ti_softc *);
163 static void ti_stop(struct ti_softc *);
164 static void ti_watchdog(struct ifnet *);
165 static int ti_ifmedia_upd(struct ifnet *);
166 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
167 
168 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
169 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
170 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
171 
172 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
173 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
174 static void ti_setmulti(struct ti_softc *);
175 
176 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
177 static void ti_loadfw(struct ti_softc *);
178 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
179 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
180 static void ti_handle_events(struct ti_softc *);
181 static int ti_alloc_jumbo_mem(struct ti_softc *);
182 static void *ti_jalloc(struct ti_softc *);
183 static void ti_jfree(struct mbuf *, void *, size_t, void *);
184 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
185 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
186 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
187 static int ti_init_rx_ring_std(struct ti_softc *);
188 static void ti_free_rx_ring_std(struct ti_softc *);
189 static int ti_init_rx_ring_jumbo(struct ti_softc *);
190 static void ti_free_rx_ring_jumbo(struct ti_softc *);
191 static int ti_init_rx_ring_mini(struct ti_softc *);
192 static void ti_free_rx_ring_mini(struct ti_softc *);
193 static void ti_free_tx_ring(struct ti_softc *);
194 static int ti_init_tx_ring(struct ti_softc *);
195 
196 static int ti_64bitslot_war(struct ti_softc *);
197 static int ti_chipinit(struct ti_softc *);
198 static int ti_gibinit(struct ti_softc *);
199 
200 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
201 
202 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
203     ti_probe, ti_attach, NULL, NULL);
204 
205 /*
206  * Send an instruction or address to the EEPROM, check for ACK.
207  */
208 static u_int32_t
209 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
210 {
211 	int i, ack = 0;
212 
213 	/*
214 	 * Make sure we're in TX mode.
215 	 */
216 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
217 
218 	/*
219 	 * Feed in each bit and stobe the clock.
220 	 */
221 	for (i = 0x80; i; i >>= 1) {
222 		if (byte & i) {
223 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
224 		} else {
225 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
226 		}
227 		DELAY(1);
228 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
229 		DELAY(1);
230 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
231 	}
232 
233 	/*
234 	 * Turn off TX mode.
235 	 */
236 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
237 
238 	/*
239 	 * Check for ack.
240 	 */
241 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
242 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
243 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
244 
245 	return (ack);
246 }
247 
248 /*
249  * Read a byte of data stored in the EEPROM at address 'addr.'
250  * We have to send two address bytes since the EEPROM can hold
251  * more than 256 bytes of data.
252  */
253 static u_int8_t
254 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
255 {
256 	int		i;
257 	u_int8_t		byte = 0;
258 
259 	EEPROM_START();
260 
261 	/*
262 	 * Send write control code to EEPROM.
263 	 */
264 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
265 		printf("%s: failed to send write command, status: %x\n",
266 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
267 		return (1);
268 	}
269 
270 	/*
271 	 * Send first byte of address of byte we want to read.
272 	 */
273 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
274 		printf("%s: failed to send address, status: %x\n",
275 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
276 		return (1);
277 	}
278 	/*
279 	 * Send second byte address of byte we want to read.
280 	 */
281 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
282 		printf("%s: failed to send address, status: %x\n",
283 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
284 		return (1);
285 	}
286 
287 	EEPROM_STOP();
288 	EEPROM_START();
289 	/*
290 	 * Send read control code to EEPROM.
291 	 */
292 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
293 		printf("%s: failed to send read command, status: %x\n",
294 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
295 		return (1);
296 	}
297 
298 	/*
299 	 * Start reading bits from EEPROM.
300 	 */
301 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
302 	for (i = 0x80; i; i >>= 1) {
303 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
304 		DELAY(1);
305 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
306 			byte |= i;
307 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308 		DELAY(1);
309 	}
310 
311 	EEPROM_STOP();
312 
313 	/*
314 	 * No ACK generated for read, so just return byte.
315 	 */
316 
317 	*dest = byte;
318 
319 	return (0);
320 }
321 
322 /*
323  * Read a sequence of bytes from the EEPROM.
324  */
325 static int
326 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
327 {
328 	char *dest = destv;
329 	int err = 0, i;
330 	u_int8_t byte = 0;
331 
332 	for (i = 0; i < cnt; i++) {
333 		err = ti_eeprom_getbyte(sc, off + i, &byte);
334 		if (err)
335 			break;
336 		*(dest + i) = byte;
337 	}
338 
339 	return (err ? 1 : 0);
340 }
341 
342 /*
343  * NIC memory access function. Can be used to either clear a section
344  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
345  */
346 static void
347 ti_mem(struct ti_softc *sc, u_int32_t addr, u_int32_t len, const void *xbuf)
348 {
349 	int			segptr, segsize, cnt;
350 	const void		*ptr;
351 
352 	segptr = addr;
353 	cnt = len;
354 	ptr = xbuf;
355 
356 	while (cnt) {
357 		if (cnt < TI_WINLEN)
358 			segsize = cnt;
359 		else
360 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
361 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
362 		if (xbuf == NULL) {
363 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
364 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
365 			    segsize / 4);
366 		} else {
367 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
368 			bus_space_write_region_stream_4(sc->ti_btag,
369 			    sc->ti_bhandle,
370 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
371 			    (const u_int32_t *)ptr, segsize / 4);
372 #else
373 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
374 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
375 			    (const u_int32_t *)ptr, segsize / 4);
376 #endif
377 			ptr = (const char *)ptr + segsize;
378 		}
379 		segptr += segsize;
380 		cnt -= segsize;
381 	}
382 
383 	return;
384 }
385 
386 /*
387  * Load firmware image into the NIC. Check that the firmware revision
388  * is acceptable and see if we want the firmware for the Tigon 1 or
389  * Tigon 2.
390  */
391 static void
392 ti_loadfw(struct ti_softc *sc)
393 {
394 	switch (sc->ti_hwrev) {
395 	case TI_HWREV_TIGON:
396 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
397 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
398 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
399 			printf("%s: firmware revision mismatch; want "
400 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
401 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
402 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
403 			    tigonFwReleaseMinor, tigonFwReleaseFix);
404 			return;
405 		}
406 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
407 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
408 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
409 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
410 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
411 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
412 		break;
413 	case TI_HWREV_TIGON_II:
414 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
415 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
416 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
417 			printf("%s: firmware revision mismatch; want "
418 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
419 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
420 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
421 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
422 			return;
423 		}
424 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
425 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
426 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
427 		    tigon2FwRodata);
428 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
429 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
430 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
431 		break;
432 	default:
433 		printf("%s: can't load firmware: unknown hardware rev\n",
434 		    device_xname(sc->sc_dev));
435 		break;
436 	}
437 
438 	return;
439 }
440 
441 /*
442  * Send the NIC a command via the command ring.
443  */
444 static void
445 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
446 {
447 	u_int32_t		index;
448 
449 	index = sc->ti_cmd_saved_prodidx;
450 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
451 	TI_INC(index, TI_CMD_RING_CNT);
452 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
453 	sc->ti_cmd_saved_prodidx = index;
454 }
455 
456 /*
457  * Send the NIC an extended command. The 'len' parameter specifies the
458  * number of command slots to include after the initial command.
459  */
460 static void
461 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
462 {
463 	char *arg = argv;
464 	u_int32_t		index;
465 	int		i;
466 
467 	index = sc->ti_cmd_saved_prodidx;
468 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
469 	TI_INC(index, TI_CMD_RING_CNT);
470 	for (i = 0; i < len; i++) {
471 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
472 		    *(u_int32_t *)(&arg[i * 4]));
473 		TI_INC(index, TI_CMD_RING_CNT);
474 	}
475 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
476 	sc->ti_cmd_saved_prodidx = index;
477 }
478 
479 /*
480  * Handle events that have triggered interrupts.
481  */
482 static void
483 ti_handle_events(struct ti_softc *sc)
484 {
485 	struct ti_event_desc	*e;
486 
487 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
488 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
489 		switch (TI_EVENT_EVENT(e)) {
490 		case TI_EV_LINKSTAT_CHANGED:
491 			sc->ti_linkstat = TI_EVENT_CODE(e);
492 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
493 				printf("%s: 10/100 link up\n",
494 				       device_xname(sc->sc_dev));
495 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
496 				printf("%s: gigabit link up\n",
497 				       device_xname(sc->sc_dev));
498 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
499 				printf("%s: link down\n",
500 				       device_xname(sc->sc_dev));
501 			break;
502 		case TI_EV_ERROR:
503 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
504 				printf("%s: invalid command\n",
505 				       device_xname(sc->sc_dev));
506 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
507 				printf("%s: unknown command\n",
508 				       device_xname(sc->sc_dev));
509 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
510 				printf("%s: bad config data\n",
511 				       device_xname(sc->sc_dev));
512 			break;
513 		case TI_EV_FIRMWARE_UP:
514 			ti_init2(sc);
515 			break;
516 		case TI_EV_STATS_UPDATED:
517 			ti_stats_update(sc);
518 			break;
519 		case TI_EV_RESET_JUMBO_RING:
520 		case TI_EV_MCAST_UPDATED:
521 			/* Who cares. */
522 			break;
523 		default:
524 			printf("%s: unknown event: %d\n",
525 			    device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
526 			break;
527 		}
528 		/* Advance the consumer index. */
529 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
530 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
531 	}
532 
533 	return;
534 }
535 
536 /*
537  * Memory management for the jumbo receive ring is a pain in the
538  * butt. We need to allocate at least 9018 bytes of space per frame,
539  * _and_ it has to be contiguous (unless you use the extended
540  * jumbo descriptor format). Using malloc() all the time won't
541  * work: malloc() allocates memory in powers of two, which means we
542  * would end up wasting a considerable amount of space by allocating
543  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
544  * to do our own memory management.
545  *
546  * The driver needs to allocate a contiguous chunk of memory at boot
547  * time. We then chop this up ourselves into 9K pieces and use them
548  * as external mbuf storage.
549  *
550  * One issue here is how much memory to allocate. The jumbo ring has
551  * 256 slots in it, but at 9K per slot than can consume over 2MB of
552  * RAM. This is a bit much, especially considering we also need
553  * RAM for the standard ring and mini ring (on the Tigon 2). To
554  * save space, we only actually allocate enough memory for 64 slots
555  * by default, which works out to between 500 and 600K. This can
556  * be tuned by changing a #define in if_tireg.h.
557  */
558 
559 static int
560 ti_alloc_jumbo_mem(struct ti_softc *sc)
561 {
562 	char *ptr;
563 	int i;
564 	struct ti_jpool_entry   *entry;
565 	bus_dma_segment_t dmaseg;
566 	int error, dmanseg;
567 
568 	/* Grab a big chunk o' storage. */
569 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
570 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
571 	    BUS_DMA_NOWAIT)) != 0) {
572 		aprint_error_dev(sc->sc_dev, "can't allocate jumbo buffer, error = %d\n",
573 		       error);
574 		return (error);
575 	}
576 
577 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
578 	    TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
579 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
580 		aprint_error_dev(sc->sc_dev, "can't map jumbo buffer, error = %d\n",
581 		       error);
582 		return (error);
583 	}
584 
585 	if ((error = bus_dmamap_create(sc->sc_dmat,
586 	    TI_JMEM, 1,
587 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
588 	    &sc->jumbo_dmamap)) != 0) {
589 		aprint_error_dev(sc->sc_dev, "can't create jumbo buffer DMA map, error = %d\n",
590 		       error);
591 		return (error);
592 	}
593 
594 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
595 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
596 	    BUS_DMA_NOWAIT)) != 0) {
597 		aprint_error_dev(sc->sc_dev, "can't load jumbo buffer DMA map, error = %d\n",
598 		       error);
599 		return (error);
600 	}
601 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
602 
603 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
604 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
605 
606 	/*
607 	 * Now divide it up into 9K pieces and save the addresses
608 	 * in an array.
609 	 */
610 	ptr = sc->ti_cdata.ti_jumbo_buf;
611 	for (i = 0; i < TI_JSLOTS; i++) {
612 		sc->ti_cdata.ti_jslots[i] = ptr;
613 		ptr += TI_JLEN;
614 		entry = malloc(sizeof(struct ti_jpool_entry),
615 			       M_DEVBUF, M_NOWAIT);
616 		if (entry == NULL) {
617 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
618 			sc->ti_cdata.ti_jumbo_buf = NULL;
619 			printf("%s: no memory for jumbo "
620 			    "buffer queue!\n", device_xname(sc->sc_dev));
621 			return (ENOBUFS);
622 		}
623 		entry->slot = i;
624 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
625 				    jpool_entries);
626 	}
627 
628 	return (0);
629 }
630 
631 /*
632  * Allocate a jumbo buffer.
633  */
634 static void *
635 ti_jalloc(struct ti_softc *sc)
636 {
637 	struct ti_jpool_entry   *entry;
638 
639 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
640 
641 	if (entry == NULL) {
642 		printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
643 		return (NULL);
644 	}
645 
646 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
647 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
648 
649 	return (sc->ti_cdata.ti_jslots[entry->slot]);
650 }
651 
652 /*
653  * Release a jumbo buffer.
654  */
655 static void
656 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
657 {
658 	struct ti_softc		*sc;
659 	int		        i, s;
660 	struct ti_jpool_entry   *entry;
661 
662 	/* Extract the softc struct pointer. */
663 	sc = (struct ti_softc *)arg;
664 
665 	if (sc == NULL)
666 		panic("ti_jfree: didn't get softc pointer!");
667 
668 	/* calculate the slot this buffer belongs to */
669 
670 	i = ((char *)tbuf
671 	     - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
672 
673 	if ((i < 0) || (i >= TI_JSLOTS))
674 		panic("ti_jfree: asked to free buffer that we don't manage!");
675 
676 	s = splvm();
677 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
678 	if (entry == NULL)
679 		panic("ti_jfree: buffer not in use!");
680 	entry->slot = i;
681 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
682 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
683 
684 	if (__predict_true(m != NULL))
685 		pool_cache_put(mb_cache, m);
686 	splx(s);
687 }
688 
689 
690 /*
691  * Intialize a standard receive ring descriptor.
692  */
693 static int
694 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
695 {
696 	struct mbuf		*m_new = NULL;
697 	struct ti_rx_desc	*r;
698 	int error;
699 
700 	if (dmamap == NULL) {
701 		/* if (m) panic() */
702 
703 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
704 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
705 					       &dmamap)) != 0) {
706 			aprint_error_dev(sc->sc_dev, "can't create recv map, error = %d\n",
707 			       error);
708 			return (ENOMEM);
709 		}
710 	}
711 	sc->std_dmamap[i] = dmamap;
712 
713 	if (m == NULL) {
714 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
715 		if (m_new == NULL) {
716 			aprint_error_dev(sc->sc_dev, "mbuf allocation failed "
717 			    "-- packet dropped!\n");
718 			return (ENOBUFS);
719 		}
720 
721 		MCLGET(m_new, M_DONTWAIT);
722 		if (!(m_new->m_flags & M_EXT)) {
723 			aprint_error_dev(sc->sc_dev, "cluster allocation failed "
724 			    "-- packet dropped!\n");
725 			m_freem(m_new);
726 			return (ENOBUFS);
727 		}
728 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
729 		m_adj(m_new, ETHER_ALIGN);
730 
731 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
732 				mtod(m_new, void *), m_new->m_len, NULL,
733 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
734 			aprint_error_dev(sc->sc_dev, "can't load recv map, error = %d\n",
735 			       error);
736 			return (ENOMEM);
737 		}
738 	} else {
739 		m_new = m;
740 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
741 		m_new->m_data = m_new->m_ext.ext_buf;
742 		m_adj(m_new, ETHER_ALIGN);
743 
744 		/* reuse the dmamap */
745 	}
746 
747 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
748 	r = &sc->ti_rdata->ti_rx_std_ring[i];
749 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
750 	r->ti_type = TI_BDTYPE_RECV_BD;
751 	r->ti_flags = 0;
752 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
753 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
754 	if (sc->ethercom.ec_if.if_capenable &
755 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
756 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
757 	r->ti_len = m_new->m_len; /* == ds_len */
758 	r->ti_idx = i;
759 
760 	return (0);
761 }
762 
763 /*
764  * Intialize a mini receive ring descriptor. This only applies to
765  * the Tigon 2.
766  */
767 static int
768 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
769 {
770 	struct mbuf		*m_new = NULL;
771 	struct ti_rx_desc	*r;
772 	int error;
773 
774 	if (dmamap == NULL) {
775 		/* if (m) panic() */
776 
777 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
778 					       MHLEN, 0, BUS_DMA_NOWAIT,
779 					       &dmamap)) != 0) {
780 			aprint_error_dev(sc->sc_dev, "can't create recv map, error = %d\n",
781 			       error);
782 			return (ENOMEM);
783 		}
784 	}
785 	sc->mini_dmamap[i] = dmamap;
786 
787 	if (m == NULL) {
788 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
789 		if (m_new == NULL) {
790 			aprint_error_dev(sc->sc_dev, "mbuf allocation failed "
791 			    "-- packet dropped!\n");
792 			return (ENOBUFS);
793 		}
794 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
795 		m_adj(m_new, ETHER_ALIGN);
796 
797 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
798 				mtod(m_new, void *), m_new->m_len, NULL,
799 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
800 			aprint_error_dev(sc->sc_dev, "can't load recv map, error = %d\n",
801 			       error);
802 			return (ENOMEM);
803 		}
804 	} else {
805 		m_new = m;
806 		m_new->m_data = m_new->m_pktdat;
807 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
808 		m_adj(m_new, ETHER_ALIGN);
809 
810 		/* reuse the dmamap */
811 	}
812 
813 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
814 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
815 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
816 	r->ti_type = TI_BDTYPE_RECV_BD;
817 	r->ti_flags = TI_BDFLAG_MINI_RING;
818 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
819 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
820 	if (sc->ethercom.ec_if.if_capenable &
821 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
822 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
823 	r->ti_len = m_new->m_len; /* == ds_len */
824 	r->ti_idx = i;
825 
826 	return (0);
827 }
828 
829 /*
830  * Initialize a jumbo receive ring descriptor. This allocates
831  * a jumbo buffer from the pool managed internally by the driver.
832  */
833 static int
834 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
835 {
836 	struct mbuf		*m_new = NULL;
837 	struct ti_rx_desc	*r;
838 
839 	if (m == NULL) {
840 		void *			tbuf = NULL;
841 
842 		/* Allocate the mbuf. */
843 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
844 		if (m_new == NULL) {
845 			aprint_error_dev(sc->sc_dev, "mbuf allocation failed "
846 			    "-- packet dropped!\n");
847 			return (ENOBUFS);
848 		}
849 
850 		/* Allocate the jumbo buffer */
851 		tbuf = ti_jalloc(sc);
852 		if (tbuf == NULL) {
853 			m_freem(m_new);
854 			aprint_error_dev(sc->sc_dev, "jumbo allocation failed "
855 			    "-- packet dropped!\n");
856 			return (ENOBUFS);
857 		}
858 
859 		/* Attach the buffer to the mbuf. */
860 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
861 		    M_DEVBUF, ti_jfree, sc);
862 		m_new->m_flags |= M_EXT_RW;
863 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
864 	} else {
865 		m_new = m;
866 		m_new->m_data = m_new->m_ext.ext_buf;
867 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
868 	}
869 
870 	m_adj(m_new, ETHER_ALIGN);
871 	/* Set up the descriptor. */
872 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
873 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
874 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
875 		(mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
876 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
877 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
878 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
879 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
880 	if (sc->ethercom.ec_if.if_capenable &
881 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
882 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
883 	r->ti_len = m_new->m_len;
884 	r->ti_idx = i;
885 
886 	return (0);
887 }
888 
889 /*
890  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
891  * that's 1MB or memory, which is a lot. For now, we fill only the first
892  * 256 ring entries and hope that our CPU is fast enough to keep up with
893  * the NIC.
894  */
895 static int
896 ti_init_rx_ring_std(struct ti_softc *sc)
897 {
898 	int		i;
899 	struct ti_cmd_desc	cmd;
900 
901 	for (i = 0; i < TI_SSLOTS; i++) {
902 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
903 			return (ENOBUFS);
904 	};
905 
906 	TI_UPDATE_STDPROD(sc, i - 1);
907 	sc->ti_std = i - 1;
908 
909 	return (0);
910 }
911 
912 static void
913 ti_free_rx_ring_std(struct ti_softc *sc)
914 {
915 	int		i;
916 
917 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
918 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
919 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
920 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
921 
922 			/* if (sc->std_dmamap[i] == 0) panic() */
923 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
924 			sc->std_dmamap[i] = 0;
925 		}
926 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
927 		    sizeof(struct ti_rx_desc));
928 	}
929 
930 	return;
931 }
932 
933 static int
934 ti_init_rx_ring_jumbo(struct ti_softc *sc)
935 {
936 	int		i;
937 	struct ti_cmd_desc	cmd;
938 
939 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
940 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
941 			return (ENOBUFS);
942 	};
943 
944 	TI_UPDATE_JUMBOPROD(sc, i - 1);
945 	sc->ti_jumbo = i - 1;
946 
947 	return (0);
948 }
949 
950 static void
951 ti_free_rx_ring_jumbo(struct ti_softc *sc)
952 {
953 	int		i;
954 
955 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
956 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
957 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
958 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
959 		}
960 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
961 		    sizeof(struct ti_rx_desc));
962 	}
963 
964 	return;
965 }
966 
967 static int
968 ti_init_rx_ring_mini(struct ti_softc *sc)
969 {
970 	int		i;
971 
972 	for (i = 0; i < TI_MSLOTS; i++) {
973 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
974 			return (ENOBUFS);
975 	};
976 
977 	TI_UPDATE_MINIPROD(sc, i - 1);
978 	sc->ti_mini = i - 1;
979 
980 	return (0);
981 }
982 
983 static void
984 ti_free_rx_ring_mini(struct ti_softc *sc)
985 {
986 	int		i;
987 
988 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
989 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
990 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
991 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
992 
993 			/* if (sc->mini_dmamap[i] == 0) panic() */
994 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
995 			sc->mini_dmamap[i] = 0;
996 		}
997 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
998 		    sizeof(struct ti_rx_desc));
999 	}
1000 
1001 	return;
1002 }
1003 
1004 static void
1005 ti_free_tx_ring(struct ti_softc *sc)
1006 {
1007 	int		i;
1008 	struct txdmamap_pool_entry *dma;
1009 
1010 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1011 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1012 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1013 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1014 
1015 			/* if (sc->txdma[i] == 0) panic() */
1016 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1017 					    link);
1018 			sc->txdma[i] = 0;
1019 		}
1020 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1021 		    sizeof(struct ti_tx_desc));
1022 	}
1023 
1024 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1025 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1026 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1027 		free(dma, M_DEVBUF);
1028 	}
1029 
1030 	return;
1031 }
1032 
1033 static int
1034 ti_init_tx_ring(struct ti_softc *sc)
1035 {
1036 	int i, error;
1037 	bus_dmamap_t dmamap;
1038 	struct txdmamap_pool_entry *dma;
1039 
1040 	sc->ti_txcnt = 0;
1041 	sc->ti_tx_saved_considx = 0;
1042 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1043 
1044 	SIMPLEQ_INIT(&sc->txdma_list);
1045 	for (i = 0; i < TI_RSLOTS; i++) {
1046 		/* I've seen mbufs with 30 fragments. */
1047 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1048 					       40, ETHER_MAX_LEN_JUMBO, 0,
1049 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1050 			aprint_error_dev(sc->sc_dev, "can't create tx map, error = %d\n",
1051 			       error);
1052 			return (ENOMEM);
1053 		}
1054 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1055 		if (!dma) {
1056 			aprint_error_dev(sc->sc_dev, "can't alloc txdmamap_pool_entry\n");
1057 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1058 			return (ENOMEM);
1059 		}
1060 		dma->dmamap = dmamap;
1061 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1062 	}
1063 
1064 	return (0);
1065 }
1066 
1067 /*
1068  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1069  * but we have to support the old way too so that Tigon 1 cards will
1070  * work.
1071  */
1072 static void
1073 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1074 {
1075 	struct ti_cmd_desc	cmd;
1076 	u_int16_t		*m;
1077 	u_int32_t		ext[2] = {0, 0};
1078 
1079 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1080 
1081 	switch (sc->ti_hwrev) {
1082 	case TI_HWREV_TIGON:
1083 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1084 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1085 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1086 		break;
1087 	case TI_HWREV_TIGON_II:
1088 		ext[0] = htons(m[0]);
1089 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1090 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1091 		break;
1092 	default:
1093 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1094 		break;
1095 	}
1096 
1097 	return;
1098 }
1099 
1100 static void
1101 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1102 {
1103 	struct ti_cmd_desc	cmd;
1104 	u_int16_t		*m;
1105 	u_int32_t		ext[2] = {0, 0};
1106 
1107 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1108 
1109 	switch (sc->ti_hwrev) {
1110 	case TI_HWREV_TIGON:
1111 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1112 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1113 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1114 		break;
1115 	case TI_HWREV_TIGON_II:
1116 		ext[0] = htons(m[0]);
1117 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1118 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1119 		break;
1120 	default:
1121 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1122 		break;
1123 	}
1124 
1125 	return;
1126 }
1127 
1128 /*
1129  * Configure the Tigon's multicast address filter.
1130  *
1131  * The actual multicast table management is a bit of a pain, thanks to
1132  * slight brain damage on the part of both Alteon and us. With our
1133  * multicast code, we are only alerted when the multicast address table
1134  * changes and at that point we only have the current list of addresses:
1135  * we only know the current state, not the previous state, so we don't
1136  * actually know what addresses were removed or added. The firmware has
1137  * state, but we can't get our grubby mits on it, and there is no 'delete
1138  * all multicast addresses' command. Hence, we have to maintain our own
1139  * state so we know what addresses have been programmed into the NIC at
1140  * any given time.
1141  */
1142 static void
1143 ti_setmulti(struct ti_softc *sc)
1144 {
1145 	struct ifnet		*ifp;
1146 	struct ti_cmd_desc	cmd;
1147 	struct ti_mc_entry	*mc;
1148 	u_int32_t		intrs;
1149 	struct ether_multi *enm;
1150 	struct ether_multistep step;
1151 
1152 	ifp = &sc->ethercom.ec_if;
1153 
1154 	/* Disable interrupts. */
1155 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1156 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1157 
1158 	/* First, zot all the existing filters. */
1159 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1160 		ti_del_mcast(sc, &mc->mc_addr);
1161 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1162 		free(mc, M_DEVBUF);
1163 	}
1164 
1165 	/*
1166 	 * Remember all multicast addresses so that we can delete them
1167 	 * later.  Punt if there is a range of addresses or memory shortage.
1168 	 */
1169 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1170 	while (enm != NULL) {
1171 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1172 		    ETHER_ADDR_LEN) != 0)
1173 			goto allmulti;
1174 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1175 		    M_NOWAIT)) == NULL)
1176 			goto allmulti;
1177 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1178 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1179 		ETHER_NEXT_MULTI(step, enm);
1180 	}
1181 
1182 	/* Accept only programmed multicast addresses */
1183 	ifp->if_flags &= ~IFF_ALLMULTI;
1184 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1185 
1186 	/* Now program new ones. */
1187 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1188 		ti_add_mcast(sc, &mc->mc_addr);
1189 
1190 	/* Re-enable interrupts. */
1191 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1192 
1193 	return;
1194 
1195 allmulti:
1196 	/* No need to keep individual multicast addresses */
1197 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1198 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1199 		free(mc, M_DEVBUF);
1200 	}
1201 
1202 	/* Accept all multicast addresses */
1203 	ifp->if_flags |= IFF_ALLMULTI;
1204 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1205 
1206 	/* Re-enable interrupts. */
1207 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1208 }
1209 
1210 /*
1211  * Check to see if the BIOS has configured us for a 64 bit slot when
1212  * we aren't actually in one. If we detect this condition, we can work
1213  * around it on the Tigon 2 by setting a bit in the PCI state register,
1214  * but for the Tigon 1 we must give up and abort the interface attach.
1215  */
1216 static int
1217 ti_64bitslot_war(struct ti_softc *sc)
1218 {
1219 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1220 		CSR_WRITE_4(sc, 0x600, 0);
1221 		CSR_WRITE_4(sc, 0x604, 0);
1222 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1223 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1224 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1225 				return (EINVAL);
1226 			else {
1227 				TI_SETBIT(sc, TI_PCI_STATE,
1228 				    TI_PCISTATE_32BIT_BUS);
1229 				return (0);
1230 			}
1231 		}
1232 	}
1233 
1234 	return (0);
1235 }
1236 
1237 /*
1238  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1239  * self-test results.
1240  */
1241 static int
1242 ti_chipinit(struct ti_softc *sc)
1243 {
1244 	u_int32_t		cacheline;
1245 	u_int32_t		pci_writemax = 0;
1246 	u_int32_t		rev;
1247 
1248 	/* Initialize link to down state. */
1249 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1250 
1251 	/* Set endianness before we access any non-PCI registers. */
1252 #if BYTE_ORDER == BIG_ENDIAN
1253 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1254 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1255 #else
1256 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1257 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1258 #endif
1259 
1260 	/* Check the ROM failed bit to see if self-tests passed. */
1261 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1262 		printf("%s: board self-diagnostics failed!\n",
1263 		       device_xname(sc->sc_dev));
1264 		return (ENODEV);
1265 	}
1266 
1267 	/* Halt the CPU. */
1268 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1269 
1270 	/* Figure out the hardware revision. */
1271 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1272 	switch (rev) {
1273 	case TI_REV_TIGON_I:
1274 		sc->ti_hwrev = TI_HWREV_TIGON;
1275 		break;
1276 	case TI_REV_TIGON_II:
1277 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1278 		break;
1279 	default:
1280 		printf("%s: unsupported chip revision 0x%x\n",
1281 		    device_xname(sc->sc_dev), rev);
1282 		return (ENODEV);
1283 	}
1284 
1285 	/* Do special setup for Tigon 2. */
1286 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1287 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1288 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1289 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1290 	}
1291 
1292 	/* Set up the PCI state register. */
1293 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1294 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1295 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1296 	}
1297 
1298 	/* Clear the read/write max DMA parameters. */
1299 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1300 	    TI_PCISTATE_READ_MAXDMA));
1301 
1302 	/* Get cache line size. */
1303 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1304 
1305 	/*
1306 	 * If the system has set enabled the PCI memory write
1307 	 * and invalidate command in the command register, set
1308 	 * the write max parameter accordingly. This is necessary
1309 	 * to use MWI with the Tigon 2.
1310 	 */
1311 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1312 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1313 		switch (cacheline) {
1314 		case 1:
1315 		case 4:
1316 		case 8:
1317 		case 16:
1318 		case 32:
1319 		case 64:
1320 			break;
1321 		default:
1322 		/* Disable PCI memory write and invalidate. */
1323 			if (bootverbose)
1324 				printf("%s: cache line size %d not "
1325 				    "supported; disabling PCI MWI\n",
1326 				    device_xname(sc->sc_dev), cacheline);
1327 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1328 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1329 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1330 			break;
1331 		}
1332 	}
1333 
1334 #ifdef __brokenalpha__
1335 	/*
1336 	 * From the Alteon sample driver:
1337 	 * Must insure that we do not cross an 8K (bytes) boundary
1338 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1339 	 * restriction on some ALPHA platforms with early revision
1340 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1341 	 */
1342 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1343 #else
1344 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1345 #endif
1346 
1347 	/* This sets the min dma param all the way up (0xff). */
1348 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1349 
1350 	/* Configure DMA variables. */
1351 #if BYTE_ORDER == BIG_ENDIAN
1352 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1353 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1354 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1355 	    TI_OPMODE_DONT_FRAG_JUMBO);
1356 #else
1357 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1358 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1359 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1360 #endif
1361 
1362 	/*
1363 	 * Only allow 1 DMA channel to be active at a time.
1364 	 * I don't think this is a good idea, but without it
1365 	 * the firmware racks up lots of nicDmaReadRingFull
1366 	 * errors.
1367 	 * Incompatible with hardware assisted checksums.
1368 	 */
1369 	if ((sc->ethercom.ec_if.if_capenable &
1370 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1371 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1372 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1373 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1374 
1375 	/* Recommended settings from Tigon manual. */
1376 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1377 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1378 
1379 	if (ti_64bitslot_war(sc)) {
1380 		printf("%s: bios thinks we're in a 64 bit slot, "
1381 		    "but we aren't", device_xname(sc->sc_dev));
1382 		return (EINVAL);
1383 	}
1384 
1385 	return (0);
1386 }
1387 
1388 /*
1389  * Initialize the general information block and firmware, and
1390  * start the CPU(s) running.
1391  */
1392 static int
1393 ti_gibinit(struct ti_softc *sc)
1394 {
1395 	struct ti_rcb		*rcb;
1396 	int			i;
1397 	struct ifnet		*ifp;
1398 
1399 	ifp = &sc->ethercom.ec_if;
1400 
1401 	/* Disable interrupts for now. */
1402 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1403 
1404 	/* Tell the chip where to find the general information block. */
1405 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1406 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1407 
1408 	/* Load the firmware into SRAM. */
1409 	ti_loadfw(sc);
1410 
1411 	/* Set up the contents of the general info and ring control blocks. */
1412 
1413 	/* Set up the event ring and producer pointer. */
1414 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1415 
1416 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1417 	rcb->ti_flags = 0;
1418 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1419 	    TI_CDEVPRODADDR(sc);
1420 
1421 	sc->ti_ev_prodidx.ti_idx = 0;
1422 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1423 	sc->ti_ev_saved_considx = 0;
1424 
1425 	/* Set up the command ring and producer mailbox. */
1426 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1427 
1428 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1429 	rcb->ti_flags = 0;
1430 	rcb->ti_max_len = 0;
1431 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1432 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1433 	}
1434 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1435 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1436 	sc->ti_cmd_saved_prodidx = 0;
1437 
1438 	/*
1439 	 * Assign the address of the stats refresh buffer.
1440 	 * We re-use the current stats buffer for this to
1441 	 * conserve memory.
1442 	 */
1443 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1444 	    TI_CDSTATSADDR(sc);
1445 
1446 	/* Set up the standard receive ring. */
1447 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1448 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1449 	rcb->ti_max_len = ETHER_MAX_LEN;
1450 	rcb->ti_flags = 0;
1451 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1452 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1453 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1454 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1455 	if (VLAN_ATTACHED(&sc->ethercom))
1456 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1457 
1458 	/* Set up the jumbo receive ring. */
1459 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1460 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1461 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1462 	rcb->ti_flags = 0;
1463 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1464 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1465 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1466 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1467 	if (VLAN_ATTACHED(&sc->ethercom))
1468 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1469 
1470 	/*
1471 	 * Set up the mini ring. Only activated on the
1472 	 * Tigon 2 but the slot in the config block is
1473 	 * still there on the Tigon 1.
1474 	 */
1475 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1476 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1477 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1478 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1479 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1480 	else
1481 		rcb->ti_flags = 0;
1482 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1483 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1484 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1485 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1486 	if (VLAN_ATTACHED(&sc->ethercom))
1487 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1488 
1489 	/*
1490 	 * Set up the receive return ring.
1491 	 */
1492 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1493 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1494 	rcb->ti_flags = 0;
1495 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1496 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1497 	    TI_CDRTNPRODADDR(sc);
1498 
1499 	/*
1500 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1501 	 * of putting the transmit ring in the host's address space and
1502 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1503 	 * memory and accessing it through the shared memory region. We
1504 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1505 	 * so we have to revert to the shared memory scheme if we detect
1506 	 * a Tigon 1 chip.
1507 	 */
1508 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1509 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1510 		sc->ti_tx_ring_nic =
1511 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1512 	}
1513 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1514 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1515 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1516 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1517 		rcb->ti_flags = 0;
1518 	else
1519 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1520 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1521 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1522 	/*
1523 	 * When we get the packet, there is a pseudo-header seed already
1524 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1525 	 * compute the pseudo-header checksum again!
1526 	 */
1527 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1528 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1529 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1530 	if (VLAN_ATTACHED(&sc->ethercom))
1531 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1532 	rcb->ti_max_len = TI_TX_RING_CNT;
1533 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1534 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1535 	else
1536 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1537 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1538 	    TI_CDTXCONSADDR(sc);
1539 
1540 	/*
1541 	 * We're done frobbing the General Information Block.  Sync
1542 	 * it.  Note we take care of the first stats sync here, as
1543 	 * well.
1544 	 */
1545 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1546 
1547 	/* Set up tuneables */
1548 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1549 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1550 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1551 		    (sc->ti_rx_coal_ticks / 10));
1552 	else
1553 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1554 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1555 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1556 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1557 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1558 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1559 
1560 	/* Turn interrupts on. */
1561 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1562 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1563 
1564 	/* Start CPU. */
1565 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1566 
1567 	return (0);
1568 }
1569 
1570 /*
1571  * look for id in the device list, returning the first match
1572  */
1573 static const struct ti_type *
1574 ti_type_match(struct pci_attach_args *pa)
1575 {
1576 	const struct ti_type          *t;
1577 
1578 	t = ti_devs;
1579 	while (t->ti_name != NULL) {
1580 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1581 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1582 			return (t);
1583 		}
1584 		t++;
1585 	}
1586 
1587 	return (NULL);
1588 }
1589 
1590 /*
1591  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1592  * against our list and return its name if we find a match.
1593  */
1594 static int
1595 ti_probe(device_t parent, cfdata_t match, void *aux)
1596 {
1597 	struct pci_attach_args *pa = aux;
1598 	const struct ti_type		*t;
1599 
1600 	t = ti_type_match(pa);
1601 
1602 	return ((t == NULL) ? 0 : 1);
1603 }
1604 
1605 static void
1606 ti_attach(device_t parent, device_t self, void *aux)
1607 {
1608 	u_int32_t		command;
1609 	struct ifnet		*ifp;
1610 	struct ti_softc		*sc;
1611 	u_int8_t eaddr[ETHER_ADDR_LEN];
1612 	struct pci_attach_args *pa = aux;
1613 	pci_chipset_tag_t pc = pa->pa_pc;
1614 	pci_intr_handle_t ih;
1615 	const char *intrstr = NULL;
1616 	bus_dma_segment_t dmaseg;
1617 	int error, dmanseg, nolinear;
1618 	const struct ti_type		*t;
1619 	char intrbuf[PCI_INTRSTR_LEN];
1620 
1621 	t = ti_type_match(pa);
1622 	if (t == NULL) {
1623 		printf("ti_attach: were did the card go ?\n");
1624 		return;
1625 	}
1626 
1627 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1628 
1629 	sc = device_private(self);
1630 	sc->sc_dev = self;
1631 
1632 	/*
1633 	 * Map control/status registers.
1634 	 */
1635 	nolinear = 0;
1636 	if (pci_mapreg_map(pa, 0x10,
1637 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1638 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1639 	    NULL, NULL)) {
1640 		nolinear = 1;
1641 		if (pci_mapreg_map(pa, 0x10,
1642 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1643 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1644 			printf(": can't map memory space\n");
1645 			return;
1646 		}
1647 	}
1648 	if (nolinear == 0)
1649 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1650 	else
1651 		sc->ti_vhandle = NULL;
1652 
1653 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1654 	command |= PCI_COMMAND_MASTER_ENABLE;
1655 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1656 
1657 	/* Allocate interrupt */
1658 	if (pci_intr_map(pa, &ih)) {
1659 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
1660 		return;
1661 	}
1662 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1663 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1664 	if (sc->sc_ih == NULL) {
1665 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
1666 		if (intrstr != NULL)
1667 			aprint_error(" at %s", intrstr);
1668 		aprint_error("\n");
1669 		return;
1670 	}
1671 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1672 
1673 	if (ti_chipinit(sc)) {
1674 		aprint_error_dev(self, "chip initialization failed\n");
1675 		goto fail2;
1676 	}
1677 
1678 	/*
1679 	 * Deal with some chip diffrences.
1680 	 */
1681 	switch (sc->ti_hwrev) {
1682 	case TI_HWREV_TIGON:
1683 		sc->sc_tx_encap = ti_encap_tigon1;
1684 		sc->sc_tx_eof = ti_txeof_tigon1;
1685 		if (nolinear == 1)
1686 			aprint_error_dev(self, "memory space not mapped linear\n");
1687 		break;
1688 
1689 	case TI_HWREV_TIGON_II:
1690 		sc->sc_tx_encap = ti_encap_tigon2;
1691 		sc->sc_tx_eof = ti_txeof_tigon2;
1692 		break;
1693 
1694 	default:
1695 		printf("%s: Unknown chip version: %d\n", device_xname(self),
1696 		    sc->ti_hwrev);
1697 		goto fail2;
1698 	}
1699 
1700 	/* Zero out the NIC's on-board SRAM. */
1701 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1702 
1703 	/* Init again -- zeroing memory may have clobbered some registers. */
1704 	if (ti_chipinit(sc)) {
1705 		aprint_error_dev(self, "chip initialization failed\n");
1706 		goto fail2;
1707 	}
1708 
1709 	/*
1710 	 * Get station address from the EEPROM. Note: the manual states
1711 	 * that the MAC address is at offset 0x8c, however the data is
1712 	 * stored as two longwords (since that's how it's loaded into
1713 	 * the NIC). This means the MAC address is actually preceded
1714 	 * by two zero bytes. We need to skip over those.
1715 	 */
1716 	if (ti_read_eeprom(sc, (void *)&eaddr,
1717 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1718 		aprint_error_dev(self, "failed to read station address\n");
1719 		goto fail2;
1720 	}
1721 
1722 	/*
1723 	 * A Tigon chip was detected. Inform the world.
1724 	 */
1725 	aprint_error_dev(self, "Ethernet address: %s\n",
1726 				ether_sprintf(eaddr));
1727 
1728 	sc->sc_dmat = pa->pa_dmat;
1729 
1730 	/* Allocate the general information block and ring buffers. */
1731 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1732 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1733 	    BUS_DMA_NOWAIT)) != 0) {
1734 		aprint_error_dev(sc->sc_dev, "can't allocate ring buffer, error = %d\n",
1735 		       error);
1736 		goto fail2;
1737 	}
1738 
1739 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1740 	    sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1741 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1742 		aprint_error_dev(sc->sc_dev, "can't map ring buffer, error = %d\n",
1743 		       error);
1744 		goto fail2;
1745 	}
1746 
1747 	if ((error = bus_dmamap_create(sc->sc_dmat,
1748 	    sizeof(struct ti_ring_data), 1,
1749 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1750 	    &sc->info_dmamap)) != 0) {
1751 		aprint_error_dev(sc->sc_dev, "can't create ring buffer DMA map, error = %d\n",
1752 		       error);
1753 		goto fail2;
1754 	}
1755 
1756 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1757 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1758 	    BUS_DMA_NOWAIT)) != 0) {
1759 		aprint_error_dev(sc->sc_dev, "can't load ring buffer DMA map, error = %d\n",
1760 		       error);
1761 		goto fail2;
1762 	}
1763 
1764 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1765 
1766 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1767 
1768 	/* Try to allocate memory for jumbo buffers. */
1769 	if (ti_alloc_jumbo_mem(sc)) {
1770 		aprint_error_dev(self, "jumbo buffer allocation failed\n");
1771 		goto fail2;
1772 	}
1773 
1774 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1775 
1776 	/*
1777 	 * We really need a better way to tell a 1000baseT card
1778 	 * from a 1000baseSX one, since in theory there could be
1779 	 * OEMed 1000baseT cards from lame vendors who aren't
1780 	 * clever enough to change the PCI ID. For the moment
1781 	 * though, the AceNIC is the only copper card available.
1782 	 */
1783 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1784 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1785 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1786 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1787 		sc->ti_copper = 1;
1788 	else
1789 		sc->ti_copper = 0;
1790 
1791 	/* Set default tuneable values. */
1792 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1793 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1794 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1795 	sc->ti_rx_max_coal_bds = 64;
1796 	sc->ti_tx_max_coal_bds = 128;
1797 	sc->ti_tx_buf_ratio = 21;
1798 
1799 	/* Set up ifnet structure */
1800 	ifp = &sc->ethercom.ec_if;
1801 	ifp->if_softc = sc;
1802 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1803 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1804 	ifp->if_ioctl = ti_ioctl;
1805 	ifp->if_start = ti_start;
1806 	ifp->if_watchdog = ti_watchdog;
1807 	IFQ_SET_READY(&ifp->if_snd);
1808 
1809 #if 0
1810 	/*
1811 	 * XXX This is not really correct -- we don't necessarily
1812 	 * XXX want to queue up as many as we can transmit at the
1813 	 * XXX upper layer like that.  Someone with a board should
1814 	 * XXX check to see how this affects performance.
1815 	 */
1816 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1817 #endif
1818 
1819 	/*
1820 	 * We can support 802.1Q VLAN-sized frames.
1821 	 */
1822 	sc->ethercom.ec_capabilities |=
1823 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1824 
1825 	/*
1826 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1827 	 */
1828 	ifp->if_capabilities |=
1829 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1830 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1831 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1832 
1833 	/* Set up ifmedia support. */
1834 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1835 	if (sc->ti_copper) {
1836                 /*
1837                  * Copper cards allow manual 10/100 mode selection,
1838                  * but not manual 1000baseT mode selection. Why?
1839                  * Because currently there's no way to specify the
1840                  * master/slave setting through the firmware interface,
1841                  * so Alteon decided to just bag it and handle it
1842                  * via autonegotiation.
1843                  */
1844                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1845                 ifmedia_add(&sc->ifmedia,
1846                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1847                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1848                 ifmedia_add(&sc->ifmedia,
1849                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1850                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1851                 ifmedia_add(&sc->ifmedia,
1852                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1853 	} else {
1854 		/* Fiber cards don't support 10/100 modes. */
1855 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1856 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1857 	}
1858 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1859 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1860 
1861 	/*
1862 	 * Call MI attach routines.
1863 	 */
1864 	if_attach(ifp);
1865 	ether_ifattach(ifp, eaddr);
1866 
1867 	/*
1868 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1869 	 * doing do could allow DMA to corrupt kernel memory during the
1870 	 * reboot before the driver initializes.
1871 	 */
1872 	if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1873 		pmf_class_network_register(self, ifp);
1874 	else
1875 		aprint_error_dev(self, "couldn't establish power handler\n");
1876 
1877 	return;
1878 fail2:
1879 	pci_intr_disestablish(pc, sc->sc_ih);
1880 	return;
1881 }
1882 
1883 /*
1884  * Frame reception handling. This is called if there's a frame
1885  * on the receive return list.
1886  *
1887  * Note: we have to be able to handle three possibilities here:
1888  * 1) the frame is from the mini receive ring (can only happen)
1889  *    on Tigon 2 boards)
1890  * 2) the frame is from the jumbo receive ring
1891  * 3) the frame is from the standard receive ring
1892  */
1893 
1894 static void
1895 ti_rxeof(struct ti_softc *sc)
1896 {
1897 	struct ifnet		*ifp;
1898 	struct ti_cmd_desc	cmd;
1899 
1900 	ifp = &sc->ethercom.ec_if;
1901 
1902 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1903 		struct ti_rx_desc	*cur_rx;
1904 		u_int32_t		rxidx;
1905 		struct mbuf		*m = NULL;
1906 		struct ether_header	*eh;
1907 		bus_dmamap_t dmamap;
1908 
1909 		cur_rx =
1910 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1911 		rxidx = cur_rx->ti_idx;
1912 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1913 
1914 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1915 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1916 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1917 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1918 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1919 				ifp->if_ierrors++;
1920 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1921 				continue;
1922 			}
1923 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1924 			    == ENOBUFS) {
1925 				ifp->if_ierrors++;
1926 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1927 				continue;
1928 			}
1929 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1930 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1931 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1932 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1933 			dmamap = sc->mini_dmamap[rxidx];
1934 			sc->mini_dmamap[rxidx] = 0;
1935 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1936 				ifp->if_ierrors++;
1937 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1938 				continue;
1939 			}
1940 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1941 			    == ENOBUFS) {
1942 				ifp->if_ierrors++;
1943 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1944 				continue;
1945 			}
1946 		} else {
1947 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1948 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1949 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1950 			dmamap = sc->std_dmamap[rxidx];
1951 			sc->std_dmamap[rxidx] = 0;
1952 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1953 				ifp->if_ierrors++;
1954 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1955 				continue;
1956 			}
1957 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1958 			    == ENOBUFS) {
1959 				ifp->if_ierrors++;
1960 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1961 				continue;
1962 			}
1963 		}
1964 
1965 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1966 		ifp->if_ipackets++;
1967 		m->m_pkthdr.rcvif = ifp;
1968 
1969 		/*
1970 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1971 	 	 * don't pass it up to the ether_input() layer unless it's
1972 	 	 * a broadcast packet, multicast packet, matches our ethernet
1973 	 	 * address or the interface is in promiscuous mode.
1974 	 	 */
1975 		bpf_mtap(ifp, m);
1976 
1977 		eh = mtod(m, struct ether_header *);
1978 		switch (ntohs(eh->ether_type)) {
1979 #ifdef INET
1980 		case ETHERTYPE_IP:
1981 		    {
1982 			struct ip *ip = (struct ip *) (eh + 1);
1983 
1984 			/*
1985 			 * Note the Tigon firmware does not invert
1986 			 * the checksum for us, hence the XOR.
1987 			 */
1988 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1989 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1990 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1991 			/*
1992 			 * ntohs() the constant so the compiler can
1993 			 * optimize...
1994 			 *
1995 			 * XXX Figure out a sane way to deal with
1996 			 * fragmented packets.
1997 			 */
1998 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
1999 				switch (ip->ip_p) {
2000 				case IPPROTO_TCP:
2001 					m->m_pkthdr.csum_data =
2002 					    cur_rx->ti_tcp_udp_cksum;
2003 					m->m_pkthdr.csum_flags |=
2004 					    M_CSUM_TCPv4|M_CSUM_DATA;
2005 					break;
2006 				case IPPROTO_UDP:
2007 					m->m_pkthdr.csum_data =
2008 					    cur_rx->ti_tcp_udp_cksum;
2009 					m->m_pkthdr.csum_flags |=
2010 					    M_CSUM_UDPv4|M_CSUM_DATA;
2011 					break;
2012 				default:
2013 					/* Nothing */;
2014 				}
2015 			}
2016 			break;
2017 		    }
2018 #endif
2019 		default:
2020 			/* Nothing. */
2021 			break;
2022 		}
2023 
2024 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2025 			VLAN_INPUT_TAG(ifp, m,
2026 			    /* ti_vlan_tag also has the priority, trim it */
2027 			    cur_rx->ti_vlan_tag & 4095,
2028 			    continue);
2029 		}
2030 
2031 		(*ifp->if_input)(ifp, m);
2032 	}
2033 
2034 	/* Only necessary on the Tigon 1. */
2035 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2036 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2037 		    sc->ti_rx_saved_considx);
2038 
2039 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2040 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2041 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2042 }
2043 
2044 static void
2045 ti_txeof_tigon1(struct ti_softc *sc)
2046 {
2047 	struct ti_tx_desc	*cur_tx = NULL;
2048 	struct ifnet		*ifp;
2049 	struct txdmamap_pool_entry *dma;
2050 
2051 	ifp = &sc->ethercom.ec_if;
2052 
2053 	/*
2054 	 * Go through our tx ring and free mbufs for those
2055 	 * frames that have been sent.
2056 	 */
2057 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2058 		u_int32_t		idx = 0;
2059 
2060 		idx = sc->ti_tx_saved_considx;
2061 		if (idx > 383)
2062 			CSR_WRITE_4(sc, TI_WINBASE,
2063 			    TI_TX_RING_BASE + 6144);
2064 		else if (idx > 255)
2065 			CSR_WRITE_4(sc, TI_WINBASE,
2066 			    TI_TX_RING_BASE + 4096);
2067 		else if (idx > 127)
2068 			CSR_WRITE_4(sc, TI_WINBASE,
2069 			    TI_TX_RING_BASE + 2048);
2070 		else
2071 			CSR_WRITE_4(sc, TI_WINBASE,
2072 			    TI_TX_RING_BASE);
2073 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2074 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2075 			ifp->if_opackets++;
2076 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2077 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2078 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2079 
2080 			dma = sc->txdma[idx];
2081 			KDASSERT(dma != NULL);
2082 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2083 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2084 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2085 
2086 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2087 			sc->txdma[idx] = NULL;
2088 		}
2089 		sc->ti_txcnt--;
2090 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2091 		ifp->if_timer = 0;
2092 	}
2093 
2094 	if (cur_tx != NULL)
2095 		ifp->if_flags &= ~IFF_OACTIVE;
2096 }
2097 
2098 static void
2099 ti_txeof_tigon2(struct ti_softc *sc)
2100 {
2101 	struct ti_tx_desc	*cur_tx = NULL;
2102 	struct ifnet		*ifp;
2103 	struct txdmamap_pool_entry *dma;
2104 	int firstidx, cnt;
2105 
2106 	ifp = &sc->ethercom.ec_if;
2107 
2108 	/*
2109 	 * Go through our tx ring and free mbufs for those
2110 	 * frames that have been sent.
2111 	 */
2112 	firstidx = sc->ti_tx_saved_considx;
2113 	cnt = 0;
2114 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2115 		u_int32_t		idx = 0;
2116 
2117 		idx = sc->ti_tx_saved_considx;
2118 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2119 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2120 			ifp->if_opackets++;
2121 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2122 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2123 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2124 
2125 			dma = sc->txdma[idx];
2126 			KDASSERT(dma != NULL);
2127 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2128 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2129 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2130 
2131 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2132 			sc->txdma[idx] = NULL;
2133 		}
2134 		cnt++;
2135 		sc->ti_txcnt--;
2136 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2137 		ifp->if_timer = 0;
2138 	}
2139 
2140 	if (cnt != 0)
2141 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2142 
2143 	if (cur_tx != NULL)
2144 		ifp->if_flags &= ~IFF_OACTIVE;
2145 }
2146 
2147 static int
2148 ti_intr(void *xsc)
2149 {
2150 	struct ti_softc		*sc;
2151 	struct ifnet		*ifp;
2152 
2153 	sc = xsc;
2154 	ifp = &sc->ethercom.ec_if;
2155 
2156 #ifdef notdef
2157 	/* Avoid this for now -- checking this register is expensive. */
2158 	/* Make sure this is really our interrupt. */
2159 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2160 		return (0);
2161 #endif
2162 
2163 	/* Ack interrupt and stop others from occuring. */
2164 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2165 
2166 	if (ifp->if_flags & IFF_RUNNING) {
2167 		/* Check RX return ring producer/consumer */
2168 		ti_rxeof(sc);
2169 
2170 		/* Check TX ring producer/consumer */
2171 		(*sc->sc_tx_eof)(sc);
2172 	}
2173 
2174 	ti_handle_events(sc);
2175 
2176 	/* Re-enable interrupts. */
2177 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2178 
2179 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2180 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2181 		ti_start(ifp);
2182 
2183 	return (1);
2184 }
2185 
2186 static void
2187 ti_stats_update(struct ti_softc *sc)
2188 {
2189 	struct ifnet		*ifp;
2190 
2191 	ifp = &sc->ethercom.ec_if;
2192 
2193 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2194 
2195 	ifp->if_collisions +=
2196 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2197 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2198 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2199 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2200 	   ifp->if_collisions;
2201 
2202 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2203 }
2204 
2205 /*
2206  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2207  * pointers to descriptors.
2208  */
2209 static int
2210 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2211 {
2212 	struct ti_tx_desc	*f = NULL;
2213 	u_int32_t		frag, cur, cnt = 0;
2214 	struct txdmamap_pool_entry *dma;
2215 	bus_dmamap_t dmamap;
2216 	int error, i;
2217 	struct m_tag *mtag;
2218 	u_int16_t csum_flags = 0;
2219 
2220 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2221 	if (dma == NULL) {
2222 		return ENOMEM;
2223 	}
2224 	dmamap = dma->dmamap;
2225 
2226 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2227 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2228 	if (error) {
2229 		struct mbuf *m;
2230 		int j = 0;
2231 		for (m = m_head; m; m = m->m_next)
2232 			j++;
2233 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2234 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2235 		return (ENOMEM);
2236 	}
2237 
2238 	cur = frag = *txidx;
2239 
2240 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2241 		/* IP header checksum field must be 0! */
2242 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2243 	}
2244 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2245 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2246 
2247 	/* XXX fragmented packet checksum capability? */
2248 
2249 	/*
2250  	 * Start packing the mbufs in this chain into
2251 	 * the fragment pointers. Stop when we run out
2252  	 * of fragments or hit the end of the mbuf chain.
2253 	 */
2254 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2255 		if (frag > 383)
2256 			CSR_WRITE_4(sc, TI_WINBASE,
2257 			    TI_TX_RING_BASE + 6144);
2258 		else if (frag > 255)
2259 			CSR_WRITE_4(sc, TI_WINBASE,
2260 			    TI_TX_RING_BASE + 4096);
2261 		else if (frag > 127)
2262 			CSR_WRITE_4(sc, TI_WINBASE,
2263 			    TI_TX_RING_BASE + 2048);
2264 		else
2265 			CSR_WRITE_4(sc, TI_WINBASE,
2266 			    TI_TX_RING_BASE);
2267 		f = &sc->ti_tx_ring_nic[frag % 128];
2268 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2269 			break;
2270 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2271 		f->ti_len = dmamap->dm_segs[i].ds_len;
2272 		f->ti_flags = csum_flags;
2273 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2274 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2275 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2276 		} else {
2277 			f->ti_vlan_tag = 0;
2278 		}
2279 		/*
2280 		 * Sanity check: avoid coming within 16 descriptors
2281 		 * of the end of the ring.
2282 		 */
2283 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2284 			return (ENOBUFS);
2285 		cur = frag;
2286 		TI_INC(frag, TI_TX_RING_CNT);
2287 		cnt++;
2288 	}
2289 
2290 	if (i < dmamap->dm_nsegs)
2291 		return (ENOBUFS);
2292 
2293 	if (frag == sc->ti_tx_saved_considx)
2294 		return (ENOBUFS);
2295 
2296 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2297 	    TI_BDFLAG_END;
2298 
2299 	/* Sync the packet's DMA map. */
2300 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2301 	    BUS_DMASYNC_PREWRITE);
2302 
2303 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2304 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2305 	sc->txdma[cur] = dma;
2306 	sc->ti_txcnt += cnt;
2307 
2308 	*txidx = frag;
2309 
2310 	return (0);
2311 }
2312 
2313 static int
2314 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2315 {
2316 	struct ti_tx_desc	*f = NULL;
2317 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2318 	struct txdmamap_pool_entry *dma;
2319 	bus_dmamap_t dmamap;
2320 	int error, i;
2321 	struct m_tag *mtag;
2322 	u_int16_t csum_flags = 0;
2323 
2324 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2325 	if (dma == NULL) {
2326 		return ENOMEM;
2327 	}
2328 	dmamap = dma->dmamap;
2329 
2330 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2331 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2332 	if (error) {
2333 		struct mbuf *m;
2334 		int j = 0;
2335 		for (m = m_head; m; m = m->m_next)
2336 			j++;
2337 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2338 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2339 		return (ENOMEM);
2340 	}
2341 
2342 	cur = firstfrag = frag = *txidx;
2343 
2344 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2345 		/* IP header checksum field must be 0! */
2346 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2347 	}
2348 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2349 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2350 
2351 	/* XXX fragmented packet checksum capability? */
2352 
2353 	/*
2354  	 * Start packing the mbufs in this chain into
2355 	 * the fragment pointers. Stop when we run out
2356  	 * of fragments or hit the end of the mbuf chain.
2357 	 */
2358 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2359 		f = &sc->ti_rdata->ti_tx_ring[frag];
2360 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2361 			break;
2362 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2363 		f->ti_len = dmamap->dm_segs[i].ds_len;
2364 		f->ti_flags = csum_flags;
2365 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2366 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2367 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2368 		} else {
2369 			f->ti_vlan_tag = 0;
2370 		}
2371 		/*
2372 		 * Sanity check: avoid coming within 16 descriptors
2373 		 * of the end of the ring.
2374 		 */
2375 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2376 			return (ENOBUFS);
2377 		cur = frag;
2378 		TI_INC(frag, TI_TX_RING_CNT);
2379 		cnt++;
2380 	}
2381 
2382 	if (i < dmamap->dm_nsegs)
2383 		return (ENOBUFS);
2384 
2385 	if (frag == sc->ti_tx_saved_considx)
2386 		return (ENOBUFS);
2387 
2388 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2389 
2390 	/* Sync the packet's DMA map. */
2391 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2392 	    BUS_DMASYNC_PREWRITE);
2393 
2394 	/* Sync the descriptors we are using. */
2395 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2396 
2397 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2398 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2399 	sc->txdma[cur] = dma;
2400 	sc->ti_txcnt += cnt;
2401 
2402 	*txidx = frag;
2403 
2404 	return (0);
2405 }
2406 
2407 /*
2408  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2409  * to the mbuf data regions directly in the transmit descriptors.
2410  */
2411 static void
2412 ti_start(struct ifnet *ifp)
2413 {
2414 	struct ti_softc		*sc;
2415 	struct mbuf		*m_head = NULL;
2416 	u_int32_t		prodidx = 0;
2417 
2418 	sc = ifp->if_softc;
2419 
2420 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2421 
2422 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2423 		IFQ_POLL(&ifp->if_snd, m_head);
2424 		if (m_head == NULL)
2425 			break;
2426 
2427 		/*
2428 		 * Pack the data into the transmit ring. If we
2429 		 * don't have room, set the OACTIVE flag and wait
2430 		 * for the NIC to drain the ring.
2431 		 */
2432 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2433 			ifp->if_flags |= IFF_OACTIVE;
2434 			break;
2435 		}
2436 
2437 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2438 
2439 		/*
2440 		 * If there's a BPF listener, bounce a copy of this frame
2441 		 * to him.
2442 		 */
2443 		bpf_mtap(ifp, m_head);
2444 	}
2445 
2446 	/* Transmit */
2447 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2448 
2449 	/*
2450 	 * Set a timeout in case the chip goes out to lunch.
2451 	 */
2452 	ifp->if_timer = 5;
2453 }
2454 
2455 static void
2456 ti_init(void *xsc)
2457 {
2458 	struct ti_softc		*sc = xsc;
2459         int			s;
2460 
2461 	s = splnet();
2462 
2463 	/* Cancel pending I/O and flush buffers. */
2464 	ti_stop(sc);
2465 
2466 	/* Init the gen info block, ring control blocks and firmware. */
2467 	if (ti_gibinit(sc)) {
2468 		aprint_error_dev(sc->sc_dev, "initialization failure\n");
2469 		splx(s);
2470 		return;
2471 	}
2472 
2473 	splx(s);
2474 }
2475 
2476 static void
2477 ti_init2(struct ti_softc *sc)
2478 {
2479 	struct ti_cmd_desc	cmd;
2480 	struct ifnet		*ifp;
2481 	const u_int8_t		*m;
2482 	struct ifmedia		*ifm;
2483 	int			tmp;
2484 
2485 	ifp = &sc->ethercom.ec_if;
2486 
2487 	/* Specify MTU and interface index. */
2488 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
2489 
2490 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2491 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2492 		tmp += ETHER_VLAN_ENCAP_LEN;
2493 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2494 
2495 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2496 
2497 	/* Load our MAC address. */
2498 	m = (const u_int8_t *)CLLADDR(ifp->if_sadl);
2499 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2500 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2501 		    | (m[4] << 8) | m[5]);
2502 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2503 
2504 	/* Enable or disable promiscuous mode as needed. */
2505 	if (ifp->if_flags & IFF_PROMISC) {
2506 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2507 	} else {
2508 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2509 	}
2510 
2511 	/* Program multicast filter. */
2512 	ti_setmulti(sc);
2513 
2514 	/*
2515 	 * If this is a Tigon 1, we should tell the
2516 	 * firmware to use software packet filtering.
2517 	 */
2518 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2519 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2520 	}
2521 
2522 	/* Init RX ring. */
2523 	ti_init_rx_ring_std(sc);
2524 
2525 	/* Init jumbo RX ring. */
2526 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2527 		ti_init_rx_ring_jumbo(sc);
2528 
2529 	/*
2530 	 * If this is a Tigon 2, we can also configure the
2531 	 * mini ring.
2532 	 */
2533 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2534 		ti_init_rx_ring_mini(sc);
2535 
2536 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2537 	sc->ti_rx_saved_considx = 0;
2538 
2539 	/* Init TX ring. */
2540 	ti_init_tx_ring(sc);
2541 
2542 	/* Tell firmware we're alive. */
2543 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2544 
2545 	/* Enable host interrupts. */
2546 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2547 
2548 	ifp->if_flags |= IFF_RUNNING;
2549 	ifp->if_flags &= ~IFF_OACTIVE;
2550 
2551 	/*
2552 	 * Make sure to set media properly. We have to do this
2553 	 * here since we have to issue commands in order to set
2554 	 * the link negotiation and we can't issue commands until
2555 	 * the firmware is running.
2556 	 */
2557 	ifm = &sc->ifmedia;
2558 	tmp = ifm->ifm_media;
2559 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2560 	ti_ifmedia_upd(ifp);
2561 	ifm->ifm_media = tmp;
2562 }
2563 
2564 /*
2565  * Set media options.
2566  */
2567 static int
2568 ti_ifmedia_upd(struct ifnet *ifp)
2569 {
2570 	struct ti_softc		*sc;
2571 	struct ifmedia		*ifm;
2572 	struct ti_cmd_desc	cmd;
2573 
2574 	sc = ifp->if_softc;
2575 	ifm = &sc->ifmedia;
2576 
2577 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2578 		return (EINVAL);
2579 
2580 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2581 	case IFM_AUTO:
2582 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2583 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2584 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2585 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2586 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2587 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2588 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2589 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2590 		break;
2591 	case IFM_1000_SX:
2592 	case IFM_1000_T:
2593 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2594 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2595 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2596 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2597 		} else {
2598 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2599 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2600 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2601 		}
2602 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2603 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2604 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2605 		break;
2606 	case IFM_100_FX:
2607 	case IFM_10_FL:
2608 	case IFM_100_TX:
2609 	case IFM_10_T:
2610 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2611 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2612 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2613 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2614 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2615 		} else {
2616 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2617 		}
2618 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2619 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2620 		} else {
2621 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2622 		}
2623 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2624 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2625 		break;
2626 	}
2627 
2628 	sc->ethercom.ec_if.if_baudrate =
2629 	    ifmedia_baudrate(ifm->ifm_media);
2630 
2631 	return (0);
2632 }
2633 
2634 /*
2635  * Report current media status.
2636  */
2637 static void
2638 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2639 {
2640 	struct ti_softc		*sc;
2641 	u_int32_t               media = 0;
2642 
2643 	sc = ifp->if_softc;
2644 
2645 	ifmr->ifm_status = IFM_AVALID;
2646 	ifmr->ifm_active = IFM_ETHER;
2647 
2648 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2649 		return;
2650 
2651 	ifmr->ifm_status |= IFM_ACTIVE;
2652 
2653 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2654 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2655 		if (sc->ti_copper)
2656 			ifmr->ifm_active |= IFM_1000_T;
2657 		else
2658 			ifmr->ifm_active |= IFM_1000_SX;
2659 		if (media & TI_GLNK_FULL_DUPLEX)
2660 			ifmr->ifm_active |= IFM_FDX;
2661 		else
2662 			ifmr->ifm_active |= IFM_HDX;
2663 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2664 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2665 		if (sc->ti_copper) {
2666 			if (media & TI_LNK_100MB)
2667 				ifmr->ifm_active |= IFM_100_TX;
2668 			if (media & TI_LNK_10MB)
2669 				ifmr->ifm_active |= IFM_10_T;
2670 		} else {
2671 			if (media & TI_LNK_100MB)
2672 				ifmr->ifm_active |= IFM_100_FX;
2673 			if (media & TI_LNK_10MB)
2674 				ifmr->ifm_active |= IFM_10_FL;
2675 		}
2676 		if (media & TI_LNK_FULL_DUPLEX)
2677 			ifmr->ifm_active |= IFM_FDX;
2678 		if (media & TI_LNK_HALF_DUPLEX)
2679 			ifmr->ifm_active |= IFM_HDX;
2680 	}
2681 
2682 	sc->ethercom.ec_if.if_baudrate =
2683 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2684 }
2685 
2686 static int
2687 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2688 {
2689 	struct ifaddr *ifa = (struct ifaddr *) data;
2690 	struct ti_softc *sc = ifp->if_softc;
2691 
2692 	if ((ifp->if_flags & IFF_UP) == 0) {
2693 		ifp->if_flags |= IFF_UP;
2694 		ti_init(sc);
2695 	}
2696 
2697 	switch (cmd) {
2698 	case SIOCINITIFADDR:
2699 
2700 		switch (ifa->ifa_addr->sa_family) {
2701 #ifdef INET
2702 		case AF_INET:
2703 			arp_ifinit(ifp, ifa);
2704 			break;
2705 #endif
2706 		default:
2707 			break;
2708 		}
2709 		break;
2710 
2711 	default:
2712 		return (EINVAL);
2713 	}
2714 
2715 	return (0);
2716 }
2717 
2718 static int
2719 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2720 {
2721 	struct ti_softc		*sc = ifp->if_softc;
2722 	struct ifreq		*ifr = (struct ifreq *) data;
2723 	int			s, error = 0;
2724 	struct ti_cmd_desc	cmd;
2725 
2726 	s = splnet();
2727 
2728 	switch (command) {
2729 	case SIOCINITIFADDR:
2730 		error = ti_ether_ioctl(ifp, command, data);
2731 		break;
2732 	case SIOCSIFMTU:
2733 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2734 			error = EINVAL;
2735 		else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET){
2736 			ti_init(sc);
2737 			error = 0;
2738 		}
2739 		break;
2740 	case SIOCSIFFLAGS:
2741 		if ((error = ifioctl_common(ifp, command, data)) != 0)
2742 			break;
2743 		if (ifp->if_flags & IFF_UP) {
2744 			/*
2745 			 * If only the state of the PROMISC flag changed,
2746 			 * then just use the 'set promisc mode' command
2747 			 * instead of reinitializing the entire NIC. Doing
2748 			 * a full re-init means reloading the firmware and
2749 			 * waiting for it to start up, which may take a
2750 			 * second or two.
2751 			 */
2752 			if (ifp->if_flags & IFF_RUNNING &&
2753 			    ifp->if_flags & IFF_PROMISC &&
2754 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2755 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2756 				    TI_CMD_CODE_PROMISC_ENB, 0);
2757 			} else if (ifp->if_flags & IFF_RUNNING &&
2758 			    !(ifp->if_flags & IFF_PROMISC) &&
2759 			    sc->ti_if_flags & IFF_PROMISC) {
2760 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2761 				    TI_CMD_CODE_PROMISC_DIS, 0);
2762 			} else
2763 				ti_init(sc);
2764 		} else {
2765 			if (ifp->if_flags & IFF_RUNNING) {
2766 				ti_stop(sc);
2767 			}
2768 		}
2769 		sc->ti_if_flags = ifp->if_flags;
2770 		error = 0;
2771 		break;
2772 	case SIOCSIFMEDIA:
2773 	case SIOCGIFMEDIA:
2774 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2775 		break;
2776 	default:
2777 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2778 			break;
2779 
2780 		error = 0;
2781 
2782 		if (command == SIOCSIFCAP)
2783 			ti_init(sc);
2784 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2785 			;
2786 		else if (ifp->if_flags & IFF_RUNNING)
2787 			ti_setmulti(sc);
2788 		break;
2789 	}
2790 
2791 	(void)splx(s);
2792 
2793 	return (error);
2794 }
2795 
2796 static void
2797 ti_watchdog(struct ifnet *ifp)
2798 {
2799 	struct ti_softc		*sc;
2800 
2801 	sc = ifp->if_softc;
2802 
2803 	aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
2804 	ti_stop(sc);
2805 	ti_init(sc);
2806 
2807 	ifp->if_oerrors++;
2808 }
2809 
2810 /*
2811  * Stop the adapter and free any mbufs allocated to the
2812  * RX and TX lists.
2813  */
2814 static void
2815 ti_stop(struct ti_softc *sc)
2816 {
2817 	struct ifnet		*ifp;
2818 	struct ti_cmd_desc	cmd;
2819 
2820 	ifp = &sc->ethercom.ec_if;
2821 
2822 	/* Disable host interrupts. */
2823 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2824 	/*
2825 	 * Tell firmware we're shutting down.
2826 	 */
2827 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2828 
2829 	/* Halt and reinitialize. */
2830 	ti_chipinit(sc);
2831 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2832 	ti_chipinit(sc);
2833 
2834 	/* Free the RX lists. */
2835 	ti_free_rx_ring_std(sc);
2836 
2837 	/* Free jumbo RX list. */
2838 	ti_free_rx_ring_jumbo(sc);
2839 
2840 	/* Free mini RX list. */
2841 	ti_free_rx_ring_mini(sc);
2842 
2843 	/* Free TX buffers. */
2844 	ti_free_tx_ring(sc);
2845 
2846 	sc->ti_ev_prodidx.ti_idx = 0;
2847 	sc->ti_return_prodidx.ti_idx = 0;
2848 	sc->ti_tx_considx.ti_idx = 0;
2849 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2850 
2851 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2852 }
2853 
2854 /*
2855  * Stop all chip I/O so that the kernel's probe routines don't
2856  * get confused by errant DMAs when rebooting.
2857  */
2858 static bool
2859 ti_shutdown(device_t self, int howto)
2860 {
2861 	struct ti_softc *sc;
2862 
2863 	sc = device_private(self);
2864 	ti_chipinit(sc);
2865 
2866 	return true;
2867 }
2868