xref: /netbsd-src/sys/dev/pci/if_ti.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /* $NetBSD: if_ti.c,v 1.89 2010/04/05 07:20:27 joerg Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.89 2010/04/05 07:20:27 joerg Exp $");
85 
86 #include "opt_inet.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98 
99 #include <uvm/uvm_extern.h>
100 
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/if_ether.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #ifdef INET
110 #include <netinet/in.h>
111 #include <netinet/if_inarp.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114 #endif
115 
116 
117 #include <sys/bus.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122 
123 #include <dev/pci/if_tireg.h>
124 
125 #include <dev/microcode/tigon/ti_fw.h>
126 #include <dev/microcode/tigon/ti_fw2.h>
127 
128 /*
129  * Various supported device vendors/types and their names.
130  */
131 
132 static const struct ti_type ti_devs[] = {
133 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
134 		"Alteon AceNIC 1000BASE-SX Ethernet" },
135 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
136 		"Alteon AceNIC 1000BASE-T Ethernet" },
137 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
138 		"3Com 3c985-SX Gigabit Ethernet" },
139 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
140 		"Netgear GA620 1000BASE-SX Ethernet" },
141 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
142 		"Netgear GA620 1000BASE-T Ethernet" },
143 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
144 		"Silicon Graphics Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static const struct ti_type *ti_type_match(struct pci_attach_args *);
149 static int ti_probe(device_t, cfdata_t, void *);
150 static void ti_attach(device_t, device_t, void *);
151 static bool ti_shutdown(device_t, int);
152 static void ti_txeof_tigon1(struct ti_softc *);
153 static void ti_txeof_tigon2(struct ti_softc *);
154 static void ti_rxeof(struct ti_softc *);
155 
156 static void ti_stats_update(struct ti_softc *);
157 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
158 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
159 
160 static int ti_intr(void *);
161 static void ti_start(struct ifnet *);
162 static int ti_ioctl(struct ifnet *, u_long, void *);
163 static void ti_init(void *);
164 static void ti_init2(struct ti_softc *);
165 static void ti_stop(struct ti_softc *);
166 static void ti_watchdog(struct ifnet *);
167 static int ti_ifmedia_upd(struct ifnet *);
168 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
169 
170 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
171 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
172 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
173 
174 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
175 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
176 static void ti_setmulti(struct ti_softc *);
177 
178 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
179 static void ti_loadfw(struct ti_softc *);
180 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
181 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
182 static void ti_handle_events(struct ti_softc *);
183 static int ti_alloc_jumbo_mem(struct ti_softc *);
184 static void *ti_jalloc(struct ti_softc *);
185 static void ti_jfree(struct mbuf *, void *, size_t, void *);
186 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
187 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
188 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
189 static int ti_init_rx_ring_std(struct ti_softc *);
190 static void ti_free_rx_ring_std(struct ti_softc *);
191 static int ti_init_rx_ring_jumbo(struct ti_softc *);
192 static void ti_free_rx_ring_jumbo(struct ti_softc *);
193 static int ti_init_rx_ring_mini(struct ti_softc *);
194 static void ti_free_rx_ring_mini(struct ti_softc *);
195 static void ti_free_tx_ring(struct ti_softc *);
196 static int ti_init_tx_ring(struct ti_softc *);
197 
198 static int ti_64bitslot_war(struct ti_softc *);
199 static int ti_chipinit(struct ti_softc *);
200 static int ti_gibinit(struct ti_softc *);
201 
202 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
203 
204 CFATTACH_DECL(ti, sizeof(struct ti_softc),
205     ti_probe, ti_attach, NULL, NULL);
206 
207 /*
208  * Send an instruction or address to the EEPROM, check for ACK.
209  */
210 static u_int32_t
211 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
212 {
213 	int i, ack = 0;
214 
215 	/*
216 	 * Make sure we're in TX mode.
217 	 */
218 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
219 
220 	/*
221 	 * Feed in each bit and stobe the clock.
222 	 */
223 	for (i = 0x80; i; i >>= 1) {
224 		if (byte & i) {
225 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
226 		} else {
227 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
228 		}
229 		DELAY(1);
230 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
231 		DELAY(1);
232 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
233 	}
234 
235 	/*
236 	 * Turn off TX mode.
237 	 */
238 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
239 
240 	/*
241 	 * Check for ack.
242 	 */
243 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
244 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
245 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
246 
247 	return (ack);
248 }
249 
250 /*
251  * Read a byte of data stored in the EEPROM at address 'addr.'
252  * We have to send two address bytes since the EEPROM can hold
253  * more than 256 bytes of data.
254  */
255 static u_int8_t
256 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
257 {
258 	int		i;
259 	u_int8_t		byte = 0;
260 
261 	EEPROM_START();
262 
263 	/*
264 	 * Send write control code to EEPROM.
265 	 */
266 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
267 		printf("%s: failed to send write command, status: %x\n",
268 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
269 		return (1);
270 	}
271 
272 	/*
273 	 * Send first byte of address of byte we want to read.
274 	 */
275 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
276 		printf("%s: failed to send address, status: %x\n",
277 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
278 		return (1);
279 	}
280 	/*
281 	 * Send second byte address of byte we want to read.
282 	 */
283 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
284 		printf("%s: failed to send address, status: %x\n",
285 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 		return (1);
287 	}
288 
289 	EEPROM_STOP();
290 	EEPROM_START();
291 	/*
292 	 * Send read control code to EEPROM.
293 	 */
294 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
295 		printf("%s: failed to send read command, status: %x\n",
296 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 		return (1);
298 	}
299 
300 	/*
301 	 * Start reading bits from EEPROM.
302 	 */
303 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
304 	for (i = 0x80; i; i >>= 1) {
305 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 		DELAY(1);
307 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
308 			byte |= i;
309 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310 		DELAY(1);
311 	}
312 
313 	EEPROM_STOP();
314 
315 	/*
316 	 * No ACK generated for read, so just return byte.
317 	 */
318 
319 	*dest = byte;
320 
321 	return (0);
322 }
323 
324 /*
325  * Read a sequence of bytes from the EEPROM.
326  */
327 static int
328 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
329 {
330 	char *dest = destv;
331 	int err = 0, i;
332 	u_int8_t byte = 0;
333 
334 	for (i = 0; i < cnt; i++) {
335 		err = ti_eeprom_getbyte(sc, off + i, &byte);
336 		if (err)
337 			break;
338 		*(dest + i) = byte;
339 	}
340 
341 	return (err ? 1 : 0);
342 }
343 
344 /*
345  * NIC memory access function. Can be used to either clear a section
346  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
347  */
348 static void
349 ti_mem(struct ti_softc *sc, u_int32_t addr, u_int32_t len, const void *xbuf)
350 {
351 	int			segptr, segsize, cnt;
352 	const void		*ptr;
353 
354 	segptr = addr;
355 	cnt = len;
356 	ptr = xbuf;
357 
358 	while (cnt) {
359 		if (cnt < TI_WINLEN)
360 			segsize = cnt;
361 		else
362 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
363 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
364 		if (xbuf == NULL) {
365 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
366 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
367 			    segsize / 4);
368 		} else {
369 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
370 			bus_space_write_region_stream_4(sc->ti_btag,
371 			    sc->ti_bhandle,
372 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
373 			    (const u_int32_t *)ptr, segsize / 4);
374 #else
375 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
376 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
377 			    (const u_int32_t *)ptr, segsize / 4);
378 #endif
379 			ptr = (const char *)ptr + segsize;
380 		}
381 		segptr += segsize;
382 		cnt -= segsize;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Load firmware image into the NIC. Check that the firmware revision
390  * is acceptable and see if we want the firmware for the Tigon 1 or
391  * Tigon 2.
392  */
393 static void
394 ti_loadfw(struct ti_softc *sc)
395 {
396 	switch (sc->ti_hwrev) {
397 	case TI_HWREV_TIGON:
398 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
399 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
400 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
401 			printf("%s: firmware revision mismatch; want "
402 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
403 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
404 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
405 			    tigonFwReleaseMinor, tigonFwReleaseFix);
406 			return;
407 		}
408 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
409 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
410 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
411 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
412 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
413 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
414 		break;
415 	case TI_HWREV_TIGON_II:
416 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
417 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
418 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
419 			printf("%s: firmware revision mismatch; want "
420 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
421 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
422 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
423 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
424 			return;
425 		}
426 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
427 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
428 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
429 		    tigon2FwRodata);
430 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
431 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
432 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
433 		break;
434 	default:
435 		printf("%s: can't load firmware: unknown hardware rev\n",
436 		    device_xname(&sc->sc_dev));
437 		break;
438 	}
439 
440 	return;
441 }
442 
443 /*
444  * Send the NIC a command via the command ring.
445  */
446 static void
447 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
448 {
449 	u_int32_t		index;
450 
451 	index = sc->ti_cmd_saved_prodidx;
452 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
453 	TI_INC(index, TI_CMD_RING_CNT);
454 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
455 	sc->ti_cmd_saved_prodidx = index;
456 }
457 
458 /*
459  * Send the NIC an extended command. The 'len' parameter specifies the
460  * number of command slots to include after the initial command.
461  */
462 static void
463 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
464 {
465 	char *arg = argv;
466 	u_int32_t		index;
467 	int		i;
468 
469 	index = sc->ti_cmd_saved_prodidx;
470 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
471 	TI_INC(index, TI_CMD_RING_CNT);
472 	for (i = 0; i < len; i++) {
473 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
474 		    *(u_int32_t *)(&arg[i * 4]));
475 		TI_INC(index, TI_CMD_RING_CNT);
476 	}
477 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
478 	sc->ti_cmd_saved_prodidx = index;
479 }
480 
481 /*
482  * Handle events that have triggered interrupts.
483  */
484 static void
485 ti_handle_events(struct ti_softc *sc)
486 {
487 	struct ti_event_desc	*e;
488 
489 	if (sc->ti_rdata->ti_event_ring == NULL)
490 		return;
491 
492 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
493 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
494 		switch (TI_EVENT_EVENT(e)) {
495 		case TI_EV_LINKSTAT_CHANGED:
496 			sc->ti_linkstat = TI_EVENT_CODE(e);
497 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
498 				printf("%s: 10/100 link up\n",
499 				       device_xname(&sc->sc_dev));
500 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
501 				printf("%s: gigabit link up\n",
502 				       device_xname(&sc->sc_dev));
503 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
504 				printf("%s: link down\n",
505 				       device_xname(&sc->sc_dev));
506 			break;
507 		case TI_EV_ERROR:
508 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
509 				printf("%s: invalid command\n",
510 				       device_xname(&sc->sc_dev));
511 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
512 				printf("%s: unknown command\n",
513 				       device_xname(&sc->sc_dev));
514 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
515 				printf("%s: bad config data\n",
516 				       device_xname(&sc->sc_dev));
517 			break;
518 		case TI_EV_FIRMWARE_UP:
519 			ti_init2(sc);
520 			break;
521 		case TI_EV_STATS_UPDATED:
522 			ti_stats_update(sc);
523 			break;
524 		case TI_EV_RESET_JUMBO_RING:
525 		case TI_EV_MCAST_UPDATED:
526 			/* Who cares. */
527 			break;
528 		default:
529 			printf("%s: unknown event: %d\n",
530 			    device_xname(&sc->sc_dev), TI_EVENT_EVENT(e));
531 			break;
532 		}
533 		/* Advance the consumer index. */
534 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
535 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
536 	}
537 
538 	return;
539 }
540 
541 /*
542  * Memory management for the jumbo receive ring is a pain in the
543  * butt. We need to allocate at least 9018 bytes of space per frame,
544  * _and_ it has to be contiguous (unless you use the extended
545  * jumbo descriptor format). Using malloc() all the time won't
546  * work: malloc() allocates memory in powers of two, which means we
547  * would end up wasting a considerable amount of space by allocating
548  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
549  * to do our own memory management.
550  *
551  * The driver needs to allocate a contiguous chunk of memory at boot
552  * time. We then chop this up ourselves into 9K pieces and use them
553  * as external mbuf storage.
554  *
555  * One issue here is how much memory to allocate. The jumbo ring has
556  * 256 slots in it, but at 9K per slot than can consume over 2MB of
557  * RAM. This is a bit much, especially considering we also need
558  * RAM for the standard ring and mini ring (on the Tigon 2). To
559  * save space, we only actually allocate enough memory for 64 slots
560  * by default, which works out to between 500 and 600K. This can
561  * be tuned by changing a #define in if_tireg.h.
562  */
563 
564 static int
565 ti_alloc_jumbo_mem(struct ti_softc *sc)
566 {
567 	char *ptr;
568 	int i;
569 	struct ti_jpool_entry   *entry;
570 	bus_dma_segment_t dmaseg;
571 	int error, dmanseg;
572 
573 	/* Grab a big chunk o' storage. */
574 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
575 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
576 	    BUS_DMA_NOWAIT)) != 0) {
577 		aprint_error_dev(&sc->sc_dev, "can't allocate jumbo buffer, error = %d\n",
578 		       error);
579 		return (error);
580 	}
581 
582 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
583 	    TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
584 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
585 		aprint_error_dev(&sc->sc_dev, "can't map jumbo buffer, error = %d\n",
586 		       error);
587 		return (error);
588 	}
589 
590 	if ((error = bus_dmamap_create(sc->sc_dmat,
591 	    TI_JMEM, 1,
592 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
593 	    &sc->jumbo_dmamap)) != 0) {
594 		aprint_error_dev(&sc->sc_dev, "can't create jumbo buffer DMA map, error = %d\n",
595 		       error);
596 		return (error);
597 	}
598 
599 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
600 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
601 	    BUS_DMA_NOWAIT)) != 0) {
602 		aprint_error_dev(&sc->sc_dev, "can't load jumbo buffer DMA map, error = %d\n",
603 		       error);
604 		return (error);
605 	}
606 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
607 
608 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
609 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
610 
611 	/*
612 	 * Now divide it up into 9K pieces and save the addresses
613 	 * in an array.
614 	 */
615 	ptr = sc->ti_cdata.ti_jumbo_buf;
616 	for (i = 0; i < TI_JSLOTS; i++) {
617 		sc->ti_cdata.ti_jslots[i] = ptr;
618 		ptr += TI_JLEN;
619 		entry = malloc(sizeof(struct ti_jpool_entry),
620 			       M_DEVBUF, M_NOWAIT);
621 		if (entry == NULL) {
622 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
623 			sc->ti_cdata.ti_jumbo_buf = NULL;
624 			printf("%s: no memory for jumbo "
625 			    "buffer queue!\n", device_xname(&sc->sc_dev));
626 			return (ENOBUFS);
627 		}
628 		entry->slot = i;
629 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
630 				    jpool_entries);
631 	}
632 
633 	return (0);
634 }
635 
636 /*
637  * Allocate a jumbo buffer.
638  */
639 static void *
640 ti_jalloc(struct ti_softc *sc)
641 {
642 	struct ti_jpool_entry   *entry;
643 
644 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
645 
646 	if (entry == NULL) {
647 		printf("%s: no free jumbo buffers\n", device_xname(&sc->sc_dev));
648 		return (NULL);
649 	}
650 
651 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
652 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
653 
654 	return (sc->ti_cdata.ti_jslots[entry->slot]);
655 }
656 
657 /*
658  * Release a jumbo buffer.
659  */
660 static void
661 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
662 {
663 	struct ti_softc		*sc;
664 	int		        i, s;
665 	struct ti_jpool_entry   *entry;
666 
667 	/* Extract the softc struct pointer. */
668 	sc = (struct ti_softc *)arg;
669 
670 	if (sc == NULL)
671 		panic("ti_jfree: didn't get softc pointer!");
672 
673 	/* calculate the slot this buffer belongs to */
674 
675 	i = ((char *)tbuf
676 	     - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
677 
678 	if ((i < 0) || (i >= TI_JSLOTS))
679 		panic("ti_jfree: asked to free buffer that we don't manage!");
680 
681 	s = splvm();
682 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
683 	if (entry == NULL)
684 		panic("ti_jfree: buffer not in use!");
685 	entry->slot = i;
686 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
687 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
688 
689 	if (__predict_true(m != NULL))
690 		pool_cache_put(mb_cache, m);
691 	splx(s);
692 }
693 
694 
695 /*
696  * Intialize a standard receive ring descriptor.
697  */
698 static int
699 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
700 {
701 	struct mbuf		*m_new = NULL;
702 	struct ti_rx_desc	*r;
703 	int error;
704 
705 	if (dmamap == NULL) {
706 		/* if (m) panic() */
707 
708 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
709 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
710 					       &dmamap)) != 0) {
711 			aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
712 			       error);
713 			return (ENOMEM);
714 		}
715 	}
716 	sc->std_dmamap[i] = dmamap;
717 
718 	if (m == NULL) {
719 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
720 		if (m_new == NULL) {
721 			aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
722 			    "-- packet dropped!\n");
723 			return (ENOBUFS);
724 		}
725 
726 		MCLGET(m_new, M_DONTWAIT);
727 		if (!(m_new->m_flags & M_EXT)) {
728 			aprint_error_dev(&sc->sc_dev, "cluster allocation failed "
729 			    "-- packet dropped!\n");
730 			m_freem(m_new);
731 			return (ENOBUFS);
732 		}
733 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
734 		m_adj(m_new, ETHER_ALIGN);
735 
736 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
737 				mtod(m_new, void *), m_new->m_len, NULL,
738 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
739 			aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
740 			       error);
741 			return (ENOMEM);
742 		}
743 	} else {
744 		m_new = m;
745 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
746 		m_new->m_data = m_new->m_ext.ext_buf;
747 		m_adj(m_new, ETHER_ALIGN);
748 
749 		/* reuse the dmamap */
750 	}
751 
752 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
753 	r = &sc->ti_rdata->ti_rx_std_ring[i];
754 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
755 	r->ti_type = TI_BDTYPE_RECV_BD;
756 	r->ti_flags = 0;
757 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
758 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
759 	if (sc->ethercom.ec_if.if_capenable &
760 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
761 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
762 	r->ti_len = m_new->m_len; /* == ds_len */
763 	r->ti_idx = i;
764 
765 	return (0);
766 }
767 
768 /*
769  * Intialize a mini receive ring descriptor. This only applies to
770  * the Tigon 2.
771  */
772 static int
773 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
774 {
775 	struct mbuf		*m_new = NULL;
776 	struct ti_rx_desc	*r;
777 	int error;
778 
779 	if (dmamap == NULL) {
780 		/* if (m) panic() */
781 
782 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
783 					       MHLEN, 0, BUS_DMA_NOWAIT,
784 					       &dmamap)) != 0) {
785 			aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
786 			       error);
787 			return (ENOMEM);
788 		}
789 	}
790 	sc->mini_dmamap[i] = dmamap;
791 
792 	if (m == NULL) {
793 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
794 		if (m_new == NULL) {
795 			aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
796 			    "-- packet dropped!\n");
797 			return (ENOBUFS);
798 		}
799 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
800 		m_adj(m_new, ETHER_ALIGN);
801 
802 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
803 				mtod(m_new, void *), m_new->m_len, NULL,
804 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
805 			aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
806 			       error);
807 			return (ENOMEM);
808 		}
809 	} else {
810 		m_new = m;
811 		m_new->m_data = m_new->m_pktdat;
812 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
813 		m_adj(m_new, ETHER_ALIGN);
814 
815 		/* reuse the dmamap */
816 	}
817 
818 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
819 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
820 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
821 	r->ti_type = TI_BDTYPE_RECV_BD;
822 	r->ti_flags = TI_BDFLAG_MINI_RING;
823 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
824 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
825 	if (sc->ethercom.ec_if.if_capenable &
826 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
827 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
828 	r->ti_len = m_new->m_len; /* == ds_len */
829 	r->ti_idx = i;
830 
831 	return (0);
832 }
833 
834 /*
835  * Initialize a jumbo receive ring descriptor. This allocates
836  * a jumbo buffer from the pool managed internally by the driver.
837  */
838 static int
839 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
840 {
841 	struct mbuf		*m_new = NULL;
842 	struct ti_rx_desc	*r;
843 
844 	if (m == NULL) {
845 		void *			tbuf = NULL;
846 
847 		/* Allocate the mbuf. */
848 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
849 		if (m_new == NULL) {
850 			aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
851 			    "-- packet dropped!\n");
852 			return (ENOBUFS);
853 		}
854 
855 		/* Allocate the jumbo buffer */
856 		tbuf = ti_jalloc(sc);
857 		if (tbuf == NULL) {
858 			m_freem(m_new);
859 			aprint_error_dev(&sc->sc_dev, "jumbo allocation failed "
860 			    "-- packet dropped!\n");
861 			return (ENOBUFS);
862 		}
863 
864 		/* Attach the buffer to the mbuf. */
865 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
866 		    M_DEVBUF, ti_jfree, sc);
867 		m_new->m_flags |= M_EXT_RW;
868 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
869 	} else {
870 		m_new = m;
871 		m_new->m_data = m_new->m_ext.ext_buf;
872 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
873 	}
874 
875 	m_adj(m_new, ETHER_ALIGN);
876 	/* Set up the descriptor. */
877 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
878 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
879 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
880 		(mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
881 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
882 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
883 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
884 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
885 	if (sc->ethercom.ec_if.if_capenable &
886 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
887 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
888 	r->ti_len = m_new->m_len;
889 	r->ti_idx = i;
890 
891 	return (0);
892 }
893 
894 /*
895  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
896  * that's 1MB or memory, which is a lot. For now, we fill only the first
897  * 256 ring entries and hope that our CPU is fast enough to keep up with
898  * the NIC.
899  */
900 static int
901 ti_init_rx_ring_std(struct ti_softc *sc)
902 {
903 	int		i;
904 	struct ti_cmd_desc	cmd;
905 
906 	for (i = 0; i < TI_SSLOTS; i++) {
907 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
908 			return (ENOBUFS);
909 	};
910 
911 	TI_UPDATE_STDPROD(sc, i - 1);
912 	sc->ti_std = i - 1;
913 
914 	return (0);
915 }
916 
917 static void
918 ti_free_rx_ring_std(struct ti_softc *sc)
919 {
920 	int		i;
921 
922 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
923 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
924 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
925 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
926 
927 			/* if (sc->std_dmamap[i] == 0) panic() */
928 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
929 			sc->std_dmamap[i] = 0;
930 		}
931 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
932 		    sizeof(struct ti_rx_desc));
933 	}
934 
935 	return;
936 }
937 
938 static int
939 ti_init_rx_ring_jumbo(struct ti_softc *sc)
940 {
941 	int		i;
942 	struct ti_cmd_desc	cmd;
943 
944 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
945 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
946 			return (ENOBUFS);
947 	};
948 
949 	TI_UPDATE_JUMBOPROD(sc, i - 1);
950 	sc->ti_jumbo = i - 1;
951 
952 	return (0);
953 }
954 
955 static void
956 ti_free_rx_ring_jumbo(struct ti_softc *sc)
957 {
958 	int		i;
959 
960 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
961 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
962 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
963 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
964 		}
965 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
966 		    sizeof(struct ti_rx_desc));
967 	}
968 
969 	return;
970 }
971 
972 static int
973 ti_init_rx_ring_mini(struct ti_softc *sc)
974 {
975 	int		i;
976 
977 	for (i = 0; i < TI_MSLOTS; i++) {
978 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
979 			return (ENOBUFS);
980 	};
981 
982 	TI_UPDATE_MINIPROD(sc, i - 1);
983 	sc->ti_mini = i - 1;
984 
985 	return (0);
986 }
987 
988 static void
989 ti_free_rx_ring_mini(struct ti_softc *sc)
990 {
991 	int		i;
992 
993 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
994 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
995 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
996 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
997 
998 			/* if (sc->mini_dmamap[i] == 0) panic() */
999 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1000 			sc->mini_dmamap[i] = 0;
1001 		}
1002 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1003 		    sizeof(struct ti_rx_desc));
1004 	}
1005 
1006 	return;
1007 }
1008 
1009 static void
1010 ti_free_tx_ring(struct ti_softc *sc)
1011 {
1012 	int		i;
1013 	struct txdmamap_pool_entry *dma;
1014 
1015 	if (sc->ti_rdata->ti_tx_ring == NULL)
1016 		return;
1017 
1018 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1019 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1020 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1021 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1022 
1023 			/* if (sc->txdma[i] == 0) panic() */
1024 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1025 					    link);
1026 			sc->txdma[i] = 0;
1027 		}
1028 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1029 		    sizeof(struct ti_tx_desc));
1030 	}
1031 
1032 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1033 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1034 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1035 		free(dma, M_DEVBUF);
1036 	}
1037 
1038 	return;
1039 }
1040 
1041 static int
1042 ti_init_tx_ring(struct ti_softc *sc)
1043 {
1044 	int i, error;
1045 	bus_dmamap_t dmamap;
1046 	struct txdmamap_pool_entry *dma;
1047 
1048 	sc->ti_txcnt = 0;
1049 	sc->ti_tx_saved_considx = 0;
1050 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1051 
1052 	SIMPLEQ_INIT(&sc->txdma_list);
1053 	for (i = 0; i < TI_RSLOTS; i++) {
1054 		/* I've seen mbufs with 30 fragments. */
1055 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1056 					       40, ETHER_MAX_LEN_JUMBO, 0,
1057 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1058 			aprint_error_dev(&sc->sc_dev, "can't create tx map, error = %d\n",
1059 			       error);
1060 			return (ENOMEM);
1061 		}
1062 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1063 		if (!dma) {
1064 			aprint_error_dev(&sc->sc_dev, "can't alloc txdmamap_pool_entry\n");
1065 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1066 			return (ENOMEM);
1067 		}
1068 		dma->dmamap = dmamap;
1069 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1070 	}
1071 
1072 	return (0);
1073 }
1074 
1075 /*
1076  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1077  * but we have to support the old way too so that Tigon 1 cards will
1078  * work.
1079  */
1080 static void
1081 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1082 {
1083 	struct ti_cmd_desc	cmd;
1084 	u_int16_t		*m;
1085 	u_int32_t		ext[2] = {0, 0};
1086 
1087 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1088 
1089 	switch (sc->ti_hwrev) {
1090 	case TI_HWREV_TIGON:
1091 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1092 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1093 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1094 		break;
1095 	case TI_HWREV_TIGON_II:
1096 		ext[0] = htons(m[0]);
1097 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1098 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1099 		break;
1100 	default:
1101 		printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
1102 		break;
1103 	}
1104 
1105 	return;
1106 }
1107 
1108 static void
1109 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1110 {
1111 	struct ti_cmd_desc	cmd;
1112 	u_int16_t		*m;
1113 	u_int32_t		ext[2] = {0, 0};
1114 
1115 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1116 
1117 	switch (sc->ti_hwrev) {
1118 	case TI_HWREV_TIGON:
1119 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1120 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1121 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1122 		break;
1123 	case TI_HWREV_TIGON_II:
1124 		ext[0] = htons(m[0]);
1125 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1126 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1127 		break;
1128 	default:
1129 		printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
1130 		break;
1131 	}
1132 
1133 	return;
1134 }
1135 
1136 /*
1137  * Configure the Tigon's multicast address filter.
1138  *
1139  * The actual multicast table management is a bit of a pain, thanks to
1140  * slight brain damage on the part of both Alteon and us. With our
1141  * multicast code, we are only alerted when the multicast address table
1142  * changes and at that point we only have the current list of addresses:
1143  * we only know the current state, not the previous state, so we don't
1144  * actually know what addresses were removed or added. The firmware has
1145  * state, but we can't get our grubby mits on it, and there is no 'delete
1146  * all multicast addresses' command. Hence, we have to maintain our own
1147  * state so we know what addresses have been programmed into the NIC at
1148  * any given time.
1149  */
1150 static void
1151 ti_setmulti(struct ti_softc *sc)
1152 {
1153 	struct ifnet		*ifp;
1154 	struct ti_cmd_desc	cmd;
1155 	struct ti_mc_entry	*mc;
1156 	u_int32_t		intrs;
1157 	struct ether_multi *enm;
1158 	struct ether_multistep step;
1159 
1160 	ifp = &sc->ethercom.ec_if;
1161 
1162 	/* Disable interrupts. */
1163 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1164 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1165 
1166 	/* First, zot all the existing filters. */
1167 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1168 		ti_del_mcast(sc, &mc->mc_addr);
1169 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1170 		free(mc, M_DEVBUF);
1171 	}
1172 
1173 	/*
1174 	 * Remember all multicast addresses so that we can delete them
1175 	 * later.  Punt if there is a range of addresses or memory shortage.
1176 	 */
1177 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1178 	while (enm != NULL) {
1179 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1180 		    ETHER_ADDR_LEN) != 0)
1181 			goto allmulti;
1182 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1183 		    M_NOWAIT)) == NULL)
1184 			goto allmulti;
1185 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1186 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1187 		ETHER_NEXT_MULTI(step, enm);
1188 	}
1189 
1190 	/* Accept only programmed multicast addresses */
1191 	ifp->if_flags &= ~IFF_ALLMULTI;
1192 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1193 
1194 	/* Now program new ones. */
1195 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1196 		ti_add_mcast(sc, &mc->mc_addr);
1197 
1198 	/* Re-enable interrupts. */
1199 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1200 
1201 	return;
1202 
1203 allmulti:
1204 	/* No need to keep individual multicast addresses */
1205 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1206 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1207 		free(mc, M_DEVBUF);
1208 	}
1209 
1210 	/* Accept all multicast addresses */
1211 	ifp->if_flags |= IFF_ALLMULTI;
1212 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1213 
1214 	/* Re-enable interrupts. */
1215 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1216 }
1217 
1218 /*
1219  * Check to see if the BIOS has configured us for a 64 bit slot when
1220  * we aren't actually in one. If we detect this condition, we can work
1221  * around it on the Tigon 2 by setting a bit in the PCI state register,
1222  * but for the Tigon 1 we must give up and abort the interface attach.
1223  */
1224 static int
1225 ti_64bitslot_war(struct ti_softc *sc)
1226 {
1227 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1228 		CSR_WRITE_4(sc, 0x600, 0);
1229 		CSR_WRITE_4(sc, 0x604, 0);
1230 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1231 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1232 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1233 				return (EINVAL);
1234 			else {
1235 				TI_SETBIT(sc, TI_PCI_STATE,
1236 				    TI_PCISTATE_32BIT_BUS);
1237 				return (0);
1238 			}
1239 		}
1240 	}
1241 
1242 	return (0);
1243 }
1244 
1245 /*
1246  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1247  * self-test results.
1248  */
1249 static int
1250 ti_chipinit(struct ti_softc *sc)
1251 {
1252 	u_int32_t		cacheline;
1253 	u_int32_t		pci_writemax = 0;
1254 	u_int32_t		rev;
1255 
1256 	/* Initialize link to down state. */
1257 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1258 
1259 	/* Set endianness before we access any non-PCI registers. */
1260 #if BYTE_ORDER == BIG_ENDIAN
1261 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1262 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1263 #else
1264 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1265 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1266 #endif
1267 
1268 	/* Check the ROM failed bit to see if self-tests passed. */
1269 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1270 		printf("%s: board self-diagnostics failed!\n",
1271 		       device_xname(&sc->sc_dev));
1272 		return (ENODEV);
1273 	}
1274 
1275 	/* Halt the CPU. */
1276 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1277 
1278 	/* Figure out the hardware revision. */
1279 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1280 	switch (rev) {
1281 	case TI_REV_TIGON_I:
1282 		sc->ti_hwrev = TI_HWREV_TIGON;
1283 		break;
1284 	case TI_REV_TIGON_II:
1285 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1286 		break;
1287 	default:
1288 		printf("%s: unsupported chip revision 0x%x\n",
1289 		    device_xname(&sc->sc_dev), rev);
1290 		return (ENODEV);
1291 	}
1292 
1293 	/* Do special setup for Tigon 2. */
1294 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1295 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1296 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1297 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1298 	}
1299 
1300 	/* Set up the PCI state register. */
1301 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1302 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1303 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1304 	}
1305 
1306 	/* Clear the read/write max DMA parameters. */
1307 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1308 	    TI_PCISTATE_READ_MAXDMA));
1309 
1310 	/* Get cache line size. */
1311 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1312 
1313 	/*
1314 	 * If the system has set enabled the PCI memory write
1315 	 * and invalidate command in the command register, set
1316 	 * the write max parameter accordingly. This is necessary
1317 	 * to use MWI with the Tigon 2.
1318 	 */
1319 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1320 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1321 		switch (cacheline) {
1322 		case 1:
1323 		case 4:
1324 		case 8:
1325 		case 16:
1326 		case 32:
1327 		case 64:
1328 			break;
1329 		default:
1330 		/* Disable PCI memory write and invalidate. */
1331 			if (bootverbose)
1332 				printf("%s: cache line size %d not "
1333 				    "supported; disabling PCI MWI\n",
1334 				    device_xname(&sc->sc_dev), cacheline);
1335 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1336 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1337 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1338 			break;
1339 		}
1340 	}
1341 
1342 #ifdef __brokenalpha__
1343 	/*
1344 	 * From the Alteon sample driver:
1345 	 * Must insure that we do not cross an 8K (bytes) boundary
1346 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1347 	 * restriction on some ALPHA platforms with early revision
1348 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1349 	 */
1350 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1351 #else
1352 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1353 #endif
1354 
1355 	/* This sets the min dma param all the way up (0xff). */
1356 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1357 
1358 	/* Configure DMA variables. */
1359 #if BYTE_ORDER == BIG_ENDIAN
1360 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1361 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1362 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1363 	    TI_OPMODE_DONT_FRAG_JUMBO);
1364 #else
1365 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1366 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1367 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1368 #endif
1369 
1370 	/*
1371 	 * Only allow 1 DMA channel to be active at a time.
1372 	 * I don't think this is a good idea, but without it
1373 	 * the firmware racks up lots of nicDmaReadRingFull
1374 	 * errors.
1375 	 * Incompatible with hardware assisted checksums.
1376 	 */
1377 	if ((sc->ethercom.ec_if.if_capenable &
1378 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1379 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1380 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1381 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1382 
1383 	/* Recommended settings from Tigon manual. */
1384 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1385 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1386 
1387 	if (ti_64bitslot_war(sc)) {
1388 		printf("%s: bios thinks we're in a 64 bit slot, "
1389 		    "but we aren't", device_xname(&sc->sc_dev));
1390 		return (EINVAL);
1391 	}
1392 
1393 	return (0);
1394 }
1395 
1396 /*
1397  * Initialize the general information block and firmware, and
1398  * start the CPU(s) running.
1399  */
1400 static int
1401 ti_gibinit(struct ti_softc *sc)
1402 {
1403 	struct ti_rcb		*rcb;
1404 	int			i;
1405 	struct ifnet		*ifp;
1406 
1407 	ifp = &sc->ethercom.ec_if;
1408 
1409 	/* Disable interrupts for now. */
1410 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1411 
1412 	/* Tell the chip where to find the general information block. */
1413 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1414 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1415 
1416 	/* Load the firmware into SRAM. */
1417 	ti_loadfw(sc);
1418 
1419 	/* Set up the contents of the general info and ring control blocks. */
1420 
1421 	/* Set up the event ring and producer pointer. */
1422 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1423 
1424 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1425 	rcb->ti_flags = 0;
1426 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1427 	    TI_CDEVPRODADDR(sc);
1428 
1429 	sc->ti_ev_prodidx.ti_idx = 0;
1430 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1431 	sc->ti_ev_saved_considx = 0;
1432 
1433 	/* Set up the command ring and producer mailbox. */
1434 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1435 
1436 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1437 	rcb->ti_flags = 0;
1438 	rcb->ti_max_len = 0;
1439 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1440 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1441 	}
1442 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1443 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1444 	sc->ti_cmd_saved_prodidx = 0;
1445 
1446 	/*
1447 	 * Assign the address of the stats refresh buffer.
1448 	 * We re-use the current stats buffer for this to
1449 	 * conserve memory.
1450 	 */
1451 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1452 	    TI_CDSTATSADDR(sc);
1453 
1454 	/* Set up the standard receive ring. */
1455 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1456 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1457 	rcb->ti_max_len = ETHER_MAX_LEN;
1458 	rcb->ti_flags = 0;
1459 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1460 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1461 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1462 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1463 	if (VLAN_ATTACHED(&sc->ethercom))
1464 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1465 
1466 	/* Set up the jumbo receive ring. */
1467 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1468 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1469 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1470 	rcb->ti_flags = 0;
1471 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1472 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1473 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1474 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1475 	if (VLAN_ATTACHED(&sc->ethercom))
1476 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1477 
1478 	/*
1479 	 * Set up the mini ring. Only activated on the
1480 	 * Tigon 2 but the slot in the config block is
1481 	 * still there on the Tigon 1.
1482 	 */
1483 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1484 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1485 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1486 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1487 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1488 	else
1489 		rcb->ti_flags = 0;
1490 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1491 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1492 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1493 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1494 	if (VLAN_ATTACHED(&sc->ethercom))
1495 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1496 
1497 	/*
1498 	 * Set up the receive return ring.
1499 	 */
1500 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1501 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1502 	rcb->ti_flags = 0;
1503 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1504 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1505 	    TI_CDRTNPRODADDR(sc);
1506 
1507 	/*
1508 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1509 	 * of putting the transmit ring in the host's address space and
1510 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1511 	 * memory and accessing it through the shared memory region. We
1512 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1513 	 * so we have to revert to the shared memory scheme if we detect
1514 	 * a Tigon 1 chip.
1515 	 */
1516 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1517 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1518 		sc->ti_tx_ring_nic =
1519 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1520 	}
1521 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1522 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1523 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1524 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1525 		rcb->ti_flags = 0;
1526 	else
1527 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1528 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1529 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1530 	/*
1531 	 * When we get the packet, there is a pseudo-header seed already
1532 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1533 	 * compute the pseudo-header checksum again!
1534 	 */
1535 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1536 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1537 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1538 	if (VLAN_ATTACHED(&sc->ethercom))
1539 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1540 	rcb->ti_max_len = TI_TX_RING_CNT;
1541 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1542 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1543 	else
1544 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1545 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1546 	    TI_CDTXCONSADDR(sc);
1547 
1548 	/*
1549 	 * We're done frobbing the General Information Block.  Sync
1550 	 * it.  Note we take care of the first stats sync here, as
1551 	 * well.
1552 	 */
1553 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1554 
1555 	/* Set up tuneables */
1556 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1557 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1558 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1559 		    (sc->ti_rx_coal_ticks / 10));
1560 	else
1561 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1562 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1563 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1564 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1565 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1566 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1567 
1568 	/* Turn interrupts on. */
1569 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1570 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1571 
1572 	/* Start CPU. */
1573 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1574 
1575 	return (0);
1576 }
1577 
1578 /*
1579  * look for id in the device list, returning the first match
1580  */
1581 static const struct ti_type *
1582 ti_type_match(struct pci_attach_args *pa)
1583 {
1584 	const struct ti_type          *t;
1585 
1586 	t = ti_devs;
1587 	while (t->ti_name != NULL) {
1588 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1589 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1590 			return (t);
1591 		}
1592 		t++;
1593 	}
1594 
1595 	return (NULL);
1596 }
1597 
1598 /*
1599  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1600  * against our list and return its name if we find a match.
1601  */
1602 static int
1603 ti_probe(device_t parent, cfdata_t match, void *aux)
1604 {
1605 	struct pci_attach_args *pa = aux;
1606 	const struct ti_type		*t;
1607 
1608 	t = ti_type_match(pa);
1609 
1610 	return ((t == NULL) ? 0 : 1);
1611 }
1612 
1613 static void
1614 ti_attach(device_t parent, device_t self, void *aux)
1615 {
1616 	u_int32_t		command;
1617 	struct ifnet		*ifp;
1618 	struct ti_softc		*sc;
1619 	u_int8_t eaddr[ETHER_ADDR_LEN];
1620 	struct pci_attach_args *pa = aux;
1621 	pci_chipset_tag_t pc = pa->pa_pc;
1622 	pci_intr_handle_t ih;
1623 	const char *intrstr = NULL;
1624 	bus_dma_segment_t dmaseg;
1625 	int error, dmanseg, nolinear;
1626 	const struct ti_type		*t;
1627 
1628 	t = ti_type_match(pa);
1629 	if (t == NULL) {
1630 		printf("ti_attach: were did the card go ?\n");
1631 		return;
1632 	}
1633 
1634 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1635 
1636 	sc = device_private(self);
1637 
1638 	/*
1639 	 * Map control/status registers.
1640 	 */
1641 	nolinear = 0;
1642 	if (pci_mapreg_map(pa, 0x10,
1643 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1644 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1645 	    NULL, NULL)) {
1646 		nolinear = 1;
1647 		if (pci_mapreg_map(pa, 0x10,
1648 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1649 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1650 			printf(": can't map memory space\n");
1651 			return;
1652 		}
1653 	}
1654 	if (nolinear == 0)
1655 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1656 	else
1657 		sc->ti_vhandle = NULL;
1658 
1659 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1660 	command |= PCI_COMMAND_MASTER_ENABLE;
1661 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1662 
1663 	/* Allocate interrupt */
1664 	if (pci_intr_map(pa, &ih)) {
1665 		aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
1666 		return;
1667 	}
1668 	intrstr = pci_intr_string(pc, ih);
1669 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1670 	if (sc->sc_ih == NULL) {
1671 		aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
1672 		if (intrstr != NULL)
1673 			aprint_error(" at %s", intrstr);
1674 		aprint_error("\n");
1675 		return;
1676 	}
1677 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
1678 
1679 	if (ti_chipinit(sc)) {
1680 		aprint_error_dev(self, "chip initialization failed\n");
1681 		goto fail2;
1682 	}
1683 
1684 	/*
1685 	 * Deal with some chip diffrences.
1686 	 */
1687 	switch (sc->ti_hwrev) {
1688 	case TI_HWREV_TIGON:
1689 		sc->sc_tx_encap = ti_encap_tigon1;
1690 		sc->sc_tx_eof = ti_txeof_tigon1;
1691 		if (nolinear == 1)
1692 			aprint_error_dev(self, "memory space not mapped linear\n");
1693 		break;
1694 
1695 	case TI_HWREV_TIGON_II:
1696 		sc->sc_tx_encap = ti_encap_tigon2;
1697 		sc->sc_tx_eof = ti_txeof_tigon2;
1698 		break;
1699 
1700 	default:
1701 		printf("%s: Unknown chip version: %d\n", device_xname(self),
1702 		    sc->ti_hwrev);
1703 		goto fail2;
1704 	}
1705 
1706 	/* Zero out the NIC's on-board SRAM. */
1707 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1708 
1709 	/* Init again -- zeroing memory may have clobbered some registers. */
1710 	if (ti_chipinit(sc)) {
1711 		aprint_error_dev(self, "chip initialization failed\n");
1712 		goto fail2;
1713 	}
1714 
1715 	/*
1716 	 * Get station address from the EEPROM. Note: the manual states
1717 	 * that the MAC address is at offset 0x8c, however the data is
1718 	 * stored as two longwords (since that's how it's loaded into
1719 	 * the NIC). This means the MAC address is actually preceded
1720 	 * by two zero bytes. We need to skip over those.
1721 	 */
1722 	if (ti_read_eeprom(sc, (void *)&eaddr,
1723 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1724 		aprint_error_dev(self, "failed to read station address\n");
1725 		goto fail2;
1726 	}
1727 
1728 	/*
1729 	 * A Tigon chip was detected. Inform the world.
1730 	 */
1731 	aprint_error_dev(self, "Ethernet address: %s\n",
1732 				ether_sprintf(eaddr));
1733 
1734 	sc->sc_dmat = pa->pa_dmat;
1735 
1736 	/* Allocate the general information block and ring buffers. */
1737 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1738 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1739 	    BUS_DMA_NOWAIT)) != 0) {
1740 		aprint_error_dev(&sc->sc_dev, "can't allocate ring buffer, error = %d\n",
1741 		       error);
1742 		goto fail2;
1743 	}
1744 
1745 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1746 	    sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1747 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1748 		aprint_error_dev(&sc->sc_dev, "can't map ring buffer, error = %d\n",
1749 		       error);
1750 		goto fail2;
1751 	}
1752 
1753 	if ((error = bus_dmamap_create(sc->sc_dmat,
1754 	    sizeof(struct ti_ring_data), 1,
1755 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1756 	    &sc->info_dmamap)) != 0) {
1757 		aprint_error_dev(&sc->sc_dev, "can't create ring buffer DMA map, error = %d\n",
1758 		       error);
1759 		goto fail2;
1760 	}
1761 
1762 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1763 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1764 	    BUS_DMA_NOWAIT)) != 0) {
1765 		aprint_error_dev(&sc->sc_dev, "can't load ring buffer DMA map, error = %d\n",
1766 		       error);
1767 		goto fail2;
1768 	}
1769 
1770 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1771 
1772 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1773 
1774 	/* Try to allocate memory for jumbo buffers. */
1775 	if (ti_alloc_jumbo_mem(sc)) {
1776 		aprint_error_dev(self, "jumbo buffer allocation failed\n");
1777 		goto fail2;
1778 	}
1779 
1780 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1781 
1782 	/*
1783 	 * We really need a better way to tell a 1000baseT card
1784 	 * from a 1000baseSX one, since in theory there could be
1785 	 * OEMed 1000baseT cards from lame vendors who aren't
1786 	 * clever enough to change the PCI ID. For the moment
1787 	 * though, the AceNIC is the only copper card available.
1788 	 */
1789 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1790 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1791 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1792 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1793 		sc->ti_copper = 1;
1794 	else
1795 		sc->ti_copper = 0;
1796 
1797 	/* Set default tuneable values. */
1798 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1799 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1800 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1801 	sc->ti_rx_max_coal_bds = 64;
1802 	sc->ti_tx_max_coal_bds = 128;
1803 	sc->ti_tx_buf_ratio = 21;
1804 
1805 	/* Set up ifnet structure */
1806 	ifp = &sc->ethercom.ec_if;
1807 	ifp->if_softc = sc;
1808 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1809 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1810 	ifp->if_ioctl = ti_ioctl;
1811 	ifp->if_start = ti_start;
1812 	ifp->if_watchdog = ti_watchdog;
1813 	IFQ_SET_READY(&ifp->if_snd);
1814 
1815 #if 0
1816 	/*
1817 	 * XXX This is not really correct -- we don't necessarily
1818 	 * XXX want to queue up as many as we can transmit at the
1819 	 * XXX upper layer like that.  Someone with a board should
1820 	 * XXX check to see how this affects performance.
1821 	 */
1822 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1823 #endif
1824 
1825 	/*
1826 	 * We can support 802.1Q VLAN-sized frames.
1827 	 */
1828 	sc->ethercom.ec_capabilities |=
1829 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1830 
1831 	/*
1832 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1833 	 */
1834 	ifp->if_capabilities |=
1835 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1836 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1837 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1838 
1839 	/* Set up ifmedia support. */
1840 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1841 	if (sc->ti_copper) {
1842                 /*
1843                  * Copper cards allow manual 10/100 mode selection,
1844                  * but not manual 1000baseT mode selection. Why?
1845                  * Because currently there's no way to specify the
1846                  * master/slave setting through the firmware interface,
1847                  * so Alteon decided to just bag it and handle it
1848                  * via autonegotiation.
1849                  */
1850                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1851                 ifmedia_add(&sc->ifmedia,
1852                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1853                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1854                 ifmedia_add(&sc->ifmedia,
1855                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1856                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1857                 ifmedia_add(&sc->ifmedia,
1858                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1859 	} else {
1860 		/* Fiber cards don't support 10/100 modes. */
1861 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1862 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1863 	}
1864 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1865 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1866 
1867 	/*
1868 	 * Call MI attach routines.
1869 	 */
1870 	if_attach(ifp);
1871 	ether_ifattach(ifp, eaddr);
1872 
1873 	/*
1874 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1875 	 * doing do could allow DMA to corrupt kernel memory during the
1876 	 * reboot before the driver initializes.
1877 	 */
1878 	if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1879 		pmf_class_network_register(self, ifp);
1880 	else
1881 		aprint_error_dev(self, "couldn't establish power handler\n");
1882 
1883 	return;
1884 fail2:
1885 	pci_intr_disestablish(pc, sc->sc_ih);
1886 	return;
1887 }
1888 
1889 /*
1890  * Frame reception handling. This is called if there's a frame
1891  * on the receive return list.
1892  *
1893  * Note: we have to be able to handle three possibilities here:
1894  * 1) the frame is from the mini receive ring (can only happen)
1895  *    on Tigon 2 boards)
1896  * 2) the frame is from the jumbo receive ring
1897  * 3) the frame is from the standard receive ring
1898  */
1899 
1900 static void
1901 ti_rxeof(struct ti_softc *sc)
1902 {
1903 	struct ifnet		*ifp;
1904 	struct ti_cmd_desc	cmd;
1905 
1906 	ifp = &sc->ethercom.ec_if;
1907 
1908 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1909 		struct ti_rx_desc	*cur_rx;
1910 		u_int32_t		rxidx;
1911 		struct mbuf		*m = NULL;
1912 		struct ether_header	*eh;
1913 		bus_dmamap_t dmamap;
1914 
1915 		cur_rx =
1916 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1917 		rxidx = cur_rx->ti_idx;
1918 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1919 
1920 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1921 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1922 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1923 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1924 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1925 				ifp->if_ierrors++;
1926 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1927 				continue;
1928 			}
1929 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1930 			    == ENOBUFS) {
1931 				ifp->if_ierrors++;
1932 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1933 				continue;
1934 			}
1935 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1936 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1937 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1938 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1939 			dmamap = sc->mini_dmamap[rxidx];
1940 			sc->mini_dmamap[rxidx] = 0;
1941 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1942 				ifp->if_ierrors++;
1943 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1944 				continue;
1945 			}
1946 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1947 			    == ENOBUFS) {
1948 				ifp->if_ierrors++;
1949 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1950 				continue;
1951 			}
1952 		} else {
1953 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1954 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1955 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1956 			dmamap = sc->std_dmamap[rxidx];
1957 			sc->std_dmamap[rxidx] = 0;
1958 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1959 				ifp->if_ierrors++;
1960 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1961 				continue;
1962 			}
1963 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1964 			    == ENOBUFS) {
1965 				ifp->if_ierrors++;
1966 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1967 				continue;
1968 			}
1969 		}
1970 
1971 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1972 		ifp->if_ipackets++;
1973 		m->m_pkthdr.rcvif = ifp;
1974 
1975 		/*
1976 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1977 	 	 * don't pass it up to the ether_input() layer unless it's
1978 	 	 * a broadcast packet, multicast packet, matches our ethernet
1979 	 	 * address or the interface is in promiscuous mode.
1980 	 	 */
1981 		bpf_mtap(ifp, m);
1982 
1983 		eh = mtod(m, struct ether_header *);
1984 		switch (ntohs(eh->ether_type)) {
1985 #ifdef INET
1986 		case ETHERTYPE_IP:
1987 		    {
1988 			struct ip *ip = (struct ip *) (eh + 1);
1989 
1990 			/*
1991 			 * Note the Tigon firmware does not invert
1992 			 * the checksum for us, hence the XOR.
1993 			 */
1994 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1995 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1996 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1997 			/*
1998 			 * ntohs() the constant so the compiler can
1999 			 * optimize...
2000 			 *
2001 			 * XXX Figure out a sane way to deal with
2002 			 * fragmented packets.
2003 			 */
2004 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2005 				switch (ip->ip_p) {
2006 				case IPPROTO_TCP:
2007 					m->m_pkthdr.csum_data =
2008 					    cur_rx->ti_tcp_udp_cksum;
2009 					m->m_pkthdr.csum_flags |=
2010 					    M_CSUM_TCPv4|M_CSUM_DATA;
2011 					break;
2012 				case IPPROTO_UDP:
2013 					m->m_pkthdr.csum_data =
2014 					    cur_rx->ti_tcp_udp_cksum;
2015 					m->m_pkthdr.csum_flags |=
2016 					    M_CSUM_UDPv4|M_CSUM_DATA;
2017 					break;
2018 				default:
2019 					/* Nothing */;
2020 				}
2021 			}
2022 			break;
2023 		    }
2024 #endif
2025 		default:
2026 			/* Nothing. */
2027 			break;
2028 		}
2029 
2030 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2031 			VLAN_INPUT_TAG(ifp, m,
2032 			    /* ti_vlan_tag also has the priority, trim it */
2033 			    cur_rx->ti_vlan_tag & 4095,
2034 			    continue);
2035 		}
2036 
2037 		(*ifp->if_input)(ifp, m);
2038 	}
2039 
2040 	/* Only necessary on the Tigon 1. */
2041 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2042 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2043 		    sc->ti_rx_saved_considx);
2044 
2045 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2046 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2047 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2048 }
2049 
2050 static void
2051 ti_txeof_tigon1(struct ti_softc *sc)
2052 {
2053 	struct ti_tx_desc	*cur_tx = NULL;
2054 	struct ifnet		*ifp;
2055 	struct txdmamap_pool_entry *dma;
2056 
2057 	ifp = &sc->ethercom.ec_if;
2058 
2059 	/*
2060 	 * Go through our tx ring and free mbufs for those
2061 	 * frames that have been sent.
2062 	 */
2063 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2064 		u_int32_t		idx = 0;
2065 
2066 		idx = sc->ti_tx_saved_considx;
2067 		if (idx > 383)
2068 			CSR_WRITE_4(sc, TI_WINBASE,
2069 			    TI_TX_RING_BASE + 6144);
2070 		else if (idx > 255)
2071 			CSR_WRITE_4(sc, TI_WINBASE,
2072 			    TI_TX_RING_BASE + 4096);
2073 		else if (idx > 127)
2074 			CSR_WRITE_4(sc, TI_WINBASE,
2075 			    TI_TX_RING_BASE + 2048);
2076 		else
2077 			CSR_WRITE_4(sc, TI_WINBASE,
2078 			    TI_TX_RING_BASE);
2079 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2080 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2081 			ifp->if_opackets++;
2082 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2083 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2084 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2085 
2086 			dma = sc->txdma[idx];
2087 			KDASSERT(dma != NULL);
2088 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2089 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2090 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2091 
2092 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2093 			sc->txdma[idx] = NULL;
2094 		}
2095 		sc->ti_txcnt--;
2096 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2097 		ifp->if_timer = 0;
2098 	}
2099 
2100 	if (cur_tx != NULL)
2101 		ifp->if_flags &= ~IFF_OACTIVE;
2102 }
2103 
2104 static void
2105 ti_txeof_tigon2(struct ti_softc *sc)
2106 {
2107 	struct ti_tx_desc	*cur_tx = NULL;
2108 	struct ifnet		*ifp;
2109 	struct txdmamap_pool_entry *dma;
2110 	int firstidx, cnt;
2111 
2112 	ifp = &sc->ethercom.ec_if;
2113 
2114 	/*
2115 	 * Go through our tx ring and free mbufs for those
2116 	 * frames that have been sent.
2117 	 */
2118 	firstidx = sc->ti_tx_saved_considx;
2119 	cnt = 0;
2120 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2121 		u_int32_t		idx = 0;
2122 
2123 		idx = sc->ti_tx_saved_considx;
2124 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2125 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2126 			ifp->if_opackets++;
2127 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2128 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2129 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2130 
2131 			dma = sc->txdma[idx];
2132 			KDASSERT(dma != NULL);
2133 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2134 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2135 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2136 
2137 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2138 			sc->txdma[idx] = NULL;
2139 		}
2140 		cnt++;
2141 		sc->ti_txcnt--;
2142 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2143 		ifp->if_timer = 0;
2144 	}
2145 
2146 	if (cnt != 0)
2147 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2148 
2149 	if (cur_tx != NULL)
2150 		ifp->if_flags &= ~IFF_OACTIVE;
2151 }
2152 
2153 static int
2154 ti_intr(void *xsc)
2155 {
2156 	struct ti_softc		*sc;
2157 	struct ifnet		*ifp;
2158 
2159 	sc = xsc;
2160 	ifp = &sc->ethercom.ec_if;
2161 
2162 #ifdef notdef
2163 	/* Avoid this for now -- checking this register is expensive. */
2164 	/* Make sure this is really our interrupt. */
2165 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2166 		return (0);
2167 #endif
2168 
2169 	/* Ack interrupt and stop others from occuring. */
2170 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2171 
2172 	if (ifp->if_flags & IFF_RUNNING) {
2173 		/* Check RX return ring producer/consumer */
2174 		ti_rxeof(sc);
2175 
2176 		/* Check TX ring producer/consumer */
2177 		(*sc->sc_tx_eof)(sc);
2178 	}
2179 
2180 	ti_handle_events(sc);
2181 
2182 	/* Re-enable interrupts. */
2183 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2184 
2185 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2186 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2187 		ti_start(ifp);
2188 
2189 	return (1);
2190 }
2191 
2192 static void
2193 ti_stats_update(struct ti_softc *sc)
2194 {
2195 	struct ifnet		*ifp;
2196 
2197 	ifp = &sc->ethercom.ec_if;
2198 
2199 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2200 
2201 	ifp->if_collisions +=
2202 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2203 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2204 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2205 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2206 	   ifp->if_collisions;
2207 
2208 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2209 }
2210 
2211 /*
2212  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2213  * pointers to descriptors.
2214  */
2215 static int
2216 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2217 {
2218 	struct ti_tx_desc	*f = NULL;
2219 	u_int32_t		frag, cur, cnt = 0;
2220 	struct txdmamap_pool_entry *dma;
2221 	bus_dmamap_t dmamap;
2222 	int error, i;
2223 	struct m_tag *mtag;
2224 	u_int16_t csum_flags = 0;
2225 
2226 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2227 	if (dma == NULL) {
2228 		return ENOMEM;
2229 	}
2230 	dmamap = dma->dmamap;
2231 
2232 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2233 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2234 	if (error) {
2235 		struct mbuf *m;
2236 		int j = 0;
2237 		for (m = m_head; m; m = m->m_next)
2238 			j++;
2239 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2240 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2241 		return (ENOMEM);
2242 	}
2243 
2244 	cur = frag = *txidx;
2245 
2246 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2247 		/* IP header checksum field must be 0! */
2248 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2249 	}
2250 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2251 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2252 
2253 	/* XXX fragmented packet checksum capability? */
2254 
2255 	/*
2256  	 * Start packing the mbufs in this chain into
2257 	 * the fragment pointers. Stop when we run out
2258  	 * of fragments or hit the end of the mbuf chain.
2259 	 */
2260 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2261 		if (frag > 383)
2262 			CSR_WRITE_4(sc, TI_WINBASE,
2263 			    TI_TX_RING_BASE + 6144);
2264 		else if (frag > 255)
2265 			CSR_WRITE_4(sc, TI_WINBASE,
2266 			    TI_TX_RING_BASE + 4096);
2267 		else if (frag > 127)
2268 			CSR_WRITE_4(sc, TI_WINBASE,
2269 			    TI_TX_RING_BASE + 2048);
2270 		else
2271 			CSR_WRITE_4(sc, TI_WINBASE,
2272 			    TI_TX_RING_BASE);
2273 		f = &sc->ti_tx_ring_nic[frag % 128];
2274 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2275 			break;
2276 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2277 		f->ti_len = dmamap->dm_segs[i].ds_len;
2278 		f->ti_flags = csum_flags;
2279 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2280 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2281 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2282 		} else {
2283 			f->ti_vlan_tag = 0;
2284 		}
2285 		/*
2286 		 * Sanity check: avoid coming within 16 descriptors
2287 		 * of the end of the ring.
2288 		 */
2289 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2290 			return (ENOBUFS);
2291 		cur = frag;
2292 		TI_INC(frag, TI_TX_RING_CNT);
2293 		cnt++;
2294 	}
2295 
2296 	if (i < dmamap->dm_nsegs)
2297 		return (ENOBUFS);
2298 
2299 	if (frag == sc->ti_tx_saved_considx)
2300 		return (ENOBUFS);
2301 
2302 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2303 	    TI_BDFLAG_END;
2304 
2305 	/* Sync the packet's DMA map. */
2306 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2307 	    BUS_DMASYNC_PREWRITE);
2308 
2309 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2310 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2311 	sc->txdma[cur] = dma;
2312 	sc->ti_txcnt += cnt;
2313 
2314 	*txidx = frag;
2315 
2316 	return (0);
2317 }
2318 
2319 static int
2320 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2321 {
2322 	struct ti_tx_desc	*f = NULL;
2323 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2324 	struct txdmamap_pool_entry *dma;
2325 	bus_dmamap_t dmamap;
2326 	int error, i;
2327 	struct m_tag *mtag;
2328 	u_int16_t csum_flags = 0;
2329 
2330 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2331 	if (dma == NULL) {
2332 		return ENOMEM;
2333 	}
2334 	dmamap = dma->dmamap;
2335 
2336 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2337 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2338 	if (error) {
2339 		struct mbuf *m;
2340 		int j = 0;
2341 		for (m = m_head; m; m = m->m_next)
2342 			j++;
2343 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2344 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2345 		return (ENOMEM);
2346 	}
2347 
2348 	cur = firstfrag = frag = *txidx;
2349 
2350 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2351 		/* IP header checksum field must be 0! */
2352 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2353 	}
2354 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2355 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2356 
2357 	/* XXX fragmented packet checksum capability? */
2358 
2359 	/*
2360  	 * Start packing the mbufs in this chain into
2361 	 * the fragment pointers. Stop when we run out
2362  	 * of fragments or hit the end of the mbuf chain.
2363 	 */
2364 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2365 		f = &sc->ti_rdata->ti_tx_ring[frag];
2366 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2367 			break;
2368 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2369 		f->ti_len = dmamap->dm_segs[i].ds_len;
2370 		f->ti_flags = csum_flags;
2371 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2372 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2373 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2374 		} else {
2375 			f->ti_vlan_tag = 0;
2376 		}
2377 		/*
2378 		 * Sanity check: avoid coming within 16 descriptors
2379 		 * of the end of the ring.
2380 		 */
2381 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2382 			return (ENOBUFS);
2383 		cur = frag;
2384 		TI_INC(frag, TI_TX_RING_CNT);
2385 		cnt++;
2386 	}
2387 
2388 	if (i < dmamap->dm_nsegs)
2389 		return (ENOBUFS);
2390 
2391 	if (frag == sc->ti_tx_saved_considx)
2392 		return (ENOBUFS);
2393 
2394 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2395 
2396 	/* Sync the packet's DMA map. */
2397 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2398 	    BUS_DMASYNC_PREWRITE);
2399 
2400 	/* Sync the descriptors we are using. */
2401 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2402 
2403 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2404 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2405 	sc->txdma[cur] = dma;
2406 	sc->ti_txcnt += cnt;
2407 
2408 	*txidx = frag;
2409 
2410 	return (0);
2411 }
2412 
2413 /*
2414  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2415  * to the mbuf data regions directly in the transmit descriptors.
2416  */
2417 static void
2418 ti_start(struct ifnet *ifp)
2419 {
2420 	struct ti_softc		*sc;
2421 	struct mbuf		*m_head = NULL;
2422 	u_int32_t		prodidx = 0;
2423 
2424 	sc = ifp->if_softc;
2425 
2426 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2427 
2428 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2429 		IFQ_POLL(&ifp->if_snd, m_head);
2430 		if (m_head == NULL)
2431 			break;
2432 
2433 		/*
2434 		 * Pack the data into the transmit ring. If we
2435 		 * don't have room, set the OACTIVE flag and wait
2436 		 * for the NIC to drain the ring.
2437 		 */
2438 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2439 			ifp->if_flags |= IFF_OACTIVE;
2440 			break;
2441 		}
2442 
2443 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2444 
2445 		/*
2446 		 * If there's a BPF listener, bounce a copy of this frame
2447 		 * to him.
2448 		 */
2449 		bpf_mtap(ifp, m_head);
2450 	}
2451 
2452 	/* Transmit */
2453 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2454 
2455 	/*
2456 	 * Set a timeout in case the chip goes out to lunch.
2457 	 */
2458 	ifp->if_timer = 5;
2459 }
2460 
2461 static void
2462 ti_init(void *xsc)
2463 {
2464 	struct ti_softc		*sc = xsc;
2465         int			s;
2466 
2467 	s = splnet();
2468 
2469 	/* Cancel pending I/O and flush buffers. */
2470 	ti_stop(sc);
2471 
2472 	/* Init the gen info block, ring control blocks and firmware. */
2473 	if (ti_gibinit(sc)) {
2474 		aprint_error_dev(&sc->sc_dev, "initialization failure\n");
2475 		splx(s);
2476 		return;
2477 	}
2478 
2479 	splx(s);
2480 }
2481 
2482 static void
2483 ti_init2(struct ti_softc *sc)
2484 {
2485 	struct ti_cmd_desc	cmd;
2486 	struct ifnet		*ifp;
2487 	const u_int8_t		*m;
2488 	struct ifmedia		*ifm;
2489 	int			tmp;
2490 
2491 	ifp = &sc->ethercom.ec_if;
2492 
2493 	/* Specify MTU and interface index. */
2494 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
2495 
2496 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2497 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2498 		tmp += ETHER_VLAN_ENCAP_LEN;
2499 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2500 
2501 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2502 
2503 	/* Load our MAC address. */
2504 	m = (const u_int8_t *)CLLADDR(ifp->if_sadl);
2505 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2506 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2507 		    | (m[4] << 8) | m[5]);
2508 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2509 
2510 	/* Enable or disable promiscuous mode as needed. */
2511 	if (ifp->if_flags & IFF_PROMISC) {
2512 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2513 	} else {
2514 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2515 	}
2516 
2517 	/* Program multicast filter. */
2518 	ti_setmulti(sc);
2519 
2520 	/*
2521 	 * If this is a Tigon 1, we should tell the
2522 	 * firmware to use software packet filtering.
2523 	 */
2524 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2525 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2526 	}
2527 
2528 	/* Init RX ring. */
2529 	ti_init_rx_ring_std(sc);
2530 
2531 	/* Init jumbo RX ring. */
2532 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2533 		ti_init_rx_ring_jumbo(sc);
2534 
2535 	/*
2536 	 * If this is a Tigon 2, we can also configure the
2537 	 * mini ring.
2538 	 */
2539 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2540 		ti_init_rx_ring_mini(sc);
2541 
2542 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2543 	sc->ti_rx_saved_considx = 0;
2544 
2545 	/* Init TX ring. */
2546 	ti_init_tx_ring(sc);
2547 
2548 	/* Tell firmware we're alive. */
2549 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2550 
2551 	/* Enable host interrupts. */
2552 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2553 
2554 	ifp->if_flags |= IFF_RUNNING;
2555 	ifp->if_flags &= ~IFF_OACTIVE;
2556 
2557 	/*
2558 	 * Make sure to set media properly. We have to do this
2559 	 * here since we have to issue commands in order to set
2560 	 * the link negotiation and we can't issue commands until
2561 	 * the firmware is running.
2562 	 */
2563 	ifm = &sc->ifmedia;
2564 	tmp = ifm->ifm_media;
2565 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2566 	ti_ifmedia_upd(ifp);
2567 	ifm->ifm_media = tmp;
2568 }
2569 
2570 /*
2571  * Set media options.
2572  */
2573 static int
2574 ti_ifmedia_upd(struct ifnet *ifp)
2575 {
2576 	struct ti_softc		*sc;
2577 	struct ifmedia		*ifm;
2578 	struct ti_cmd_desc	cmd;
2579 
2580 	sc = ifp->if_softc;
2581 	ifm = &sc->ifmedia;
2582 
2583 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2584 		return (EINVAL);
2585 
2586 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2587 	case IFM_AUTO:
2588 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2589 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2590 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2591 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2592 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2593 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2594 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2595 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2596 		break;
2597 	case IFM_1000_SX:
2598 	case IFM_1000_T:
2599 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2600 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2601 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2602 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2603 		} else {
2604 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2605 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2606 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2607 		}
2608 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2609 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2610 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2611 		break;
2612 	case IFM_100_FX:
2613 	case IFM_10_FL:
2614 	case IFM_100_TX:
2615 	case IFM_10_T:
2616 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2617 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2618 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2619 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2620 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2621 		} else {
2622 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2623 		}
2624 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2625 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2626 		} else {
2627 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2628 		}
2629 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2630 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2631 		break;
2632 	}
2633 
2634 	sc->ethercom.ec_if.if_baudrate =
2635 	    ifmedia_baudrate(ifm->ifm_media);
2636 
2637 	return (0);
2638 }
2639 
2640 /*
2641  * Report current media status.
2642  */
2643 static void
2644 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2645 {
2646 	struct ti_softc		*sc;
2647 	u_int32_t               media = 0;
2648 
2649 	sc = ifp->if_softc;
2650 
2651 	ifmr->ifm_status = IFM_AVALID;
2652 	ifmr->ifm_active = IFM_ETHER;
2653 
2654 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2655 		return;
2656 
2657 	ifmr->ifm_status |= IFM_ACTIVE;
2658 
2659 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2660 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2661 		if (sc->ti_copper)
2662 			ifmr->ifm_active |= IFM_1000_T;
2663 		else
2664 			ifmr->ifm_active |= IFM_1000_SX;
2665 		if (media & TI_GLNK_FULL_DUPLEX)
2666 			ifmr->ifm_active |= IFM_FDX;
2667 		else
2668 			ifmr->ifm_active |= IFM_HDX;
2669 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2670 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2671 		if (sc->ti_copper) {
2672 			if (media & TI_LNK_100MB)
2673 				ifmr->ifm_active |= IFM_100_TX;
2674 			if (media & TI_LNK_10MB)
2675 				ifmr->ifm_active |= IFM_10_T;
2676 		} else {
2677 			if (media & TI_LNK_100MB)
2678 				ifmr->ifm_active |= IFM_100_FX;
2679 			if (media & TI_LNK_10MB)
2680 				ifmr->ifm_active |= IFM_10_FL;
2681 		}
2682 		if (media & TI_LNK_FULL_DUPLEX)
2683 			ifmr->ifm_active |= IFM_FDX;
2684 		if (media & TI_LNK_HALF_DUPLEX)
2685 			ifmr->ifm_active |= IFM_HDX;
2686 	}
2687 
2688 	sc->ethercom.ec_if.if_baudrate =
2689 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2690 }
2691 
2692 static int
2693 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2694 {
2695 	struct ifaddr *ifa = (struct ifaddr *) data;
2696 	struct ti_softc *sc = ifp->if_softc;
2697 
2698 	if ((ifp->if_flags & IFF_UP) == 0) {
2699 		ifp->if_flags |= IFF_UP;
2700 		ti_init(sc);
2701 	}
2702 
2703 	switch (cmd) {
2704 	case SIOCINITIFADDR:
2705 
2706 		switch (ifa->ifa_addr->sa_family) {
2707 #ifdef INET
2708 		case AF_INET:
2709 			arp_ifinit(ifp, ifa);
2710 			break;
2711 #endif
2712 		default:
2713 			break;
2714 		}
2715 		break;
2716 
2717 	default:
2718 		return (EINVAL);
2719 	}
2720 
2721 	return (0);
2722 }
2723 
2724 static int
2725 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2726 {
2727 	struct ti_softc		*sc = ifp->if_softc;
2728 	struct ifreq		*ifr = (struct ifreq *) data;
2729 	int			s, error = 0;
2730 	struct ti_cmd_desc	cmd;
2731 
2732 	s = splnet();
2733 
2734 	switch (command) {
2735 	case SIOCINITIFADDR:
2736 		error = ti_ether_ioctl(ifp, command, data);
2737 		break;
2738 	case SIOCSIFMTU:
2739 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2740 			error = EINVAL;
2741 		else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET){
2742 			ti_init(sc);
2743 			error = 0;
2744 		}
2745 		break;
2746 	case SIOCSIFFLAGS:
2747 		if ((error = ifioctl_common(ifp, command, data)) != 0)
2748 			break;
2749 		if (ifp->if_flags & IFF_UP) {
2750 			/*
2751 			 * If only the state of the PROMISC flag changed,
2752 			 * then just use the 'set promisc mode' command
2753 			 * instead of reinitializing the entire NIC. Doing
2754 			 * a full re-init means reloading the firmware and
2755 			 * waiting for it to start up, which may take a
2756 			 * second or two.
2757 			 */
2758 			if (ifp->if_flags & IFF_RUNNING &&
2759 			    ifp->if_flags & IFF_PROMISC &&
2760 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2761 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2762 				    TI_CMD_CODE_PROMISC_ENB, 0);
2763 			} else if (ifp->if_flags & IFF_RUNNING &&
2764 			    !(ifp->if_flags & IFF_PROMISC) &&
2765 			    sc->ti_if_flags & IFF_PROMISC) {
2766 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2767 				    TI_CMD_CODE_PROMISC_DIS, 0);
2768 			} else
2769 				ti_init(sc);
2770 		} else {
2771 			if (ifp->if_flags & IFF_RUNNING) {
2772 				ti_stop(sc);
2773 			}
2774 		}
2775 		sc->ti_if_flags = ifp->if_flags;
2776 		error = 0;
2777 		break;
2778 	case SIOCSIFMEDIA:
2779 	case SIOCGIFMEDIA:
2780 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2781 		break;
2782 	default:
2783 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2784 			break;
2785 
2786 		error = 0;
2787 
2788 		if (command == SIOCSIFCAP)
2789 			ti_init(sc);
2790 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2791 			;
2792 		else if (ifp->if_flags & IFF_RUNNING)
2793 			ti_setmulti(sc);
2794 		break;
2795 	}
2796 
2797 	(void)splx(s);
2798 
2799 	return (error);
2800 }
2801 
2802 static void
2803 ti_watchdog(struct ifnet *ifp)
2804 {
2805 	struct ti_softc		*sc;
2806 
2807 	sc = ifp->if_softc;
2808 
2809 	aprint_error_dev(&sc->sc_dev, "watchdog timeout -- resetting\n");
2810 	ti_stop(sc);
2811 	ti_init(sc);
2812 
2813 	ifp->if_oerrors++;
2814 }
2815 
2816 /*
2817  * Stop the adapter and free any mbufs allocated to the
2818  * RX and TX lists.
2819  */
2820 static void
2821 ti_stop(struct ti_softc *sc)
2822 {
2823 	struct ifnet		*ifp;
2824 	struct ti_cmd_desc	cmd;
2825 
2826 	ifp = &sc->ethercom.ec_if;
2827 
2828 	/* Disable host interrupts. */
2829 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2830 	/*
2831 	 * Tell firmware we're shutting down.
2832 	 */
2833 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2834 
2835 	/* Halt and reinitialize. */
2836 	ti_chipinit(sc);
2837 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2838 	ti_chipinit(sc);
2839 
2840 	/* Free the RX lists. */
2841 	ti_free_rx_ring_std(sc);
2842 
2843 	/* Free jumbo RX list. */
2844 	ti_free_rx_ring_jumbo(sc);
2845 
2846 	/* Free mini RX list. */
2847 	ti_free_rx_ring_mini(sc);
2848 
2849 	/* Free TX buffers. */
2850 	ti_free_tx_ring(sc);
2851 
2852 	sc->ti_ev_prodidx.ti_idx = 0;
2853 	sc->ti_return_prodidx.ti_idx = 0;
2854 	sc->ti_tx_considx.ti_idx = 0;
2855 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2856 
2857 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2858 }
2859 
2860 /*
2861  * Stop all chip I/O so that the kernel's probe routines don't
2862  * get confused by errant DMAs when rebooting.
2863  */
2864 static bool
2865 ti_shutdown(device_t self, int howto)
2866 {
2867 	struct ti_softc *sc;
2868 
2869 	sc = device_private(self);
2870 	ti_chipinit(sc);
2871 
2872 	return true;
2873 }
2874