xref: /netbsd-src/sys/dev/pci/if_ti.c (revision 89c5a767f8fc7a4633b2d409966e2becbb98ff92)
1 /* $NetBSD: if_ti.c,v 1.5 2000/03/06 21:02:37 thorpej Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include "bpfilter.h"
84 #if 0
85 #include "vlan.h"
86 #endif
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #if 0
111 #if NVLAN > 0
112 #include <net/if_types.h>
113 #include <net/if_vlan_var.h>
114 #endif
115 #endif
116 
117 #ifdef INET
118 #include <netinet/in.h>
119 #include <netinet/if_inarp.h>
120 #endif
121 
122 #ifdef NS
123 #include <netns/ns.h>
124 #include <netns/ns_if.h>
125 #endif
126 
127 #if 0
128 #include <vm/vm.h>              /* for vtophys */
129 #include <vm/pmap.h>            /* for vtophys */
130 #include <machine/clock.h>      /* for DELAY */
131 #endif
132 #include <machine/bus.h>
133 #if 0
134 #include <machine/resource.h>
135 #include <sys/bus.h>
136 #include <sys/rman.h>
137 #endif
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142 
143 #include <dev/pci/if_tireg.h>
144 #include <dev/pci/ti_fw.h>
145 #include <dev/pci/ti_fw2.h>
146 
147 #ifdef M_HWCKSUM
148 /*#define TI_CSUM_OFFLOAD*/
149 #endif
150 
151 #define bootverbose 1
152 
153 /*
154  * Various supported device vendors/types and their names.
155  */
156 
157 static struct ti_type ti_devs[] = {
158 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
159 		"Alteon AceNIC Gigabit Ethernet" },
160 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
161 		"3Com 3c985-SX Gigabit Ethernet" },
162 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
163 		"Netgear GA620 Gigabit Ethernet" },
164 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
165 		"Silicon Graphics Gigabit Ethernet" },
166 	{ 0, 0, NULL }
167 };
168 
169 static int ti_probe	__P((struct device *, struct cfdata *, void *));
170 static void ti_attach	__P((struct device *, struct device *, void *));
171 #if 0
172 static int ti_detach		__P((device_t));
173 #endif
174 static void ti_txeof		__P((struct ti_softc *));
175 static void ti_rxeof		__P((struct ti_softc *));
176 
177 static void ti_stats_update	__P((struct ti_softc *));
178 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
179 					u_int32_t *));
180 
181 static int ti_intr		__P((void *));
182 static void ti_start		__P((struct ifnet *));
183 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
184 static void ti_init		__P((void *));
185 static void ti_init2		__P((struct ti_softc *));
186 static void ti_stop		__P((struct ti_softc *));
187 static void ti_watchdog		__P((struct ifnet *));
188 #if 0
189 static void ti_shutdown		__P((device_t));
190 #endif
191 static int ti_ifmedia_upd	__P((struct ifnet *));
192 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
193 
194 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
195 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
196 						int, u_int8_t *));
197 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
198 
199 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
200 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
201 static void ti_setmulti		__P((struct ti_softc *));
202 
203 static void ti_mem		__P((struct ti_softc *, u_int32_t,
204 					u_int32_t, caddr_t));
205 static void ti_loadfw		__P((struct ti_softc *));
206 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
207 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
208 					caddr_t, int));
209 static void ti_handle_events	__P((struct ti_softc *));
210 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
211 static void *ti_jalloc		__P((struct ti_softc *));
212 static void ti_jfree		__P((caddr_t, u_int, void *));
213 #if 0
214 static void ti_jref		__P((caddr_t, u_int));
215 #endif
216 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
217 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
218 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
219 static int ti_init_rx_ring_std	__P((struct ti_softc *));
220 static void ti_free_rx_ring_std	__P((struct ti_softc *));
221 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
222 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
223 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
224 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
225 static void ti_free_tx_ring	__P((struct ti_softc *));
226 static int ti_init_tx_ring	__P((struct ti_softc *));
227 
228 static int ti_64bitslot_war	__P((struct ti_softc *));
229 static int ti_chipinit		__P((struct ti_softc *));
230 static int ti_gibinit		__P((struct ti_softc *));
231 
232 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
233 
234 struct cfattach ti_ca = {
235 	sizeof(struct ti_softc), ti_probe, ti_attach
236 };
237 
238 /*
239  * Send an instruction or address to the EEPROM, check for ACK.
240  */
241 static u_int32_t ti_eeprom_putbyte(sc, byte)
242 	struct ti_softc		*sc;
243 	int			byte;
244 {
245 	register int		i, ack = 0;
246 
247 	/*
248 	 * Make sure we're in TX mode.
249 	 */
250 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
251 
252 	/*
253 	 * Feed in each bit and stobe the clock.
254 	 */
255 	for (i = 0x80; i; i >>= 1) {
256 		if (byte & i) {
257 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
258 		} else {
259 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
260 		}
261 		DELAY(1);
262 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 		DELAY(1);
264 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
265 	}
266 
267 	/*
268 	 * Turn off TX mode.
269 	 */
270 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
271 
272 	/*
273 	 * Check for ack.
274 	 */
275 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
276 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
277 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
278 
279 	return(ack);
280 }
281 
282 /*
283  * Read a byte of data stored in the EEPROM at address 'addr.'
284  * We have to send two address bytes since the EEPROM can hold
285  * more than 256 bytes of data.
286  */
287 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
288 	struct ti_softc		*sc;
289 	int			addr;
290 	u_int8_t		*dest;
291 {
292 	register int		i;
293 	u_int8_t		byte = 0;
294 
295 	EEPROM_START;
296 
297 	/*
298 	 * Send write control code to EEPROM.
299 	 */
300 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
301 		printf("%s: failed to send write command, status: %x\n",
302 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 		return(1);
304 	}
305 
306 	/*
307 	 * Send first byte of address of byte we want to read.
308 	 */
309 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
310 		printf("%s: failed to send address, status: %x\n",
311 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
312 		return(1);
313 	}
314 	/*
315 	 * Send second byte address of byte we want to read.
316 	 */
317 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
318 		printf("%s: failed to send address, status: %x\n",
319 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
320 		return(1);
321 	}
322 
323 	EEPROM_STOP;
324 	EEPROM_START;
325 	/*
326 	 * Send read control code to EEPROM.
327 	 */
328 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
329 		printf("%s: failed to send read command, status: %x\n",
330 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
331 		return(1);
332 	}
333 
334 	/*
335 	 * Start reading bits from EEPROM.
336 	 */
337 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
338 	for (i = 0x80; i; i >>= 1) {
339 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
340 		DELAY(1);
341 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
342 			byte |= i;
343 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
344 		DELAY(1);
345 	}
346 
347 	EEPROM_STOP;
348 
349 	/*
350 	 * No ACK generated for read, so just return byte.
351 	 */
352 
353 	*dest = byte;
354 
355 	return(0);
356 }
357 
358 /*
359  * Read a sequence of bytes from the EEPROM.
360  */
361 static int ti_read_eeprom(sc, dest, off, cnt)
362 	struct ti_softc		*sc;
363 	caddr_t			dest;
364 	int			off;
365 	int			cnt;
366 {
367 	int			err = 0, i;
368 	u_int8_t		byte = 0;
369 
370 	for (i = 0; i < cnt; i++) {
371 		err = ti_eeprom_getbyte(sc, off + i, &byte);
372 		if (err)
373 			break;
374 		*(dest + i) = byte;
375 	}
376 
377 	return(err ? 1 : 0);
378 }
379 
380 /*
381  * NIC memory access function. Can be used to either clear a section
382  * of NIC local memory or (if buf is non-NULL) copy data into it.
383  */
384 static void ti_mem(sc, addr, len, buf)
385 	struct ti_softc		*sc;
386 	u_int32_t		addr, len;
387 	caddr_t			buf;
388 {
389 	int			segptr, segsize, cnt;
390 	caddr_t			ti_winbase, ptr;
391 
392 	segptr = addr;
393 	cnt = len;
394 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
395 	ptr = buf;
396 
397 	while(cnt) {
398 		if (cnt < TI_WINLEN)
399 			segsize = cnt;
400 		else
401 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
402 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
403 		if (buf == NULL)
404 			bzero((char *)ti_winbase + (segptr &
405 			    (TI_WINLEN - 1)), segsize);
406 		else {
407 			bcopy((char *)ptr, (char *)ti_winbase +
408 			    (segptr & (TI_WINLEN - 1)), segsize);
409 			ptr += segsize;
410 		}
411 		segptr += segsize;
412 		cnt -= segsize;
413 	}
414 
415 	return;
416 }
417 
418 /*
419  * Load firmware image into the NIC. Check that the firmware revision
420  * is acceptable and see if we want the firmware for the Tigon 1 or
421  * Tigon 2.
422  */
423 static void ti_loadfw(sc)
424 	struct ti_softc		*sc;
425 {
426 	switch(sc->ti_hwrev) {
427 	case TI_HWREV_TIGON:
428 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
429 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
430 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
431 			printf("%s: firmware revision mismatch; want "
432 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
433 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
434 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
435 			    tigonFwReleaseMinor, tigonFwReleaseFix);
436 			return;
437 		}
438 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
439 		    (caddr_t)tigonFwText);
440 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
441 		    (caddr_t)tigonFwData);
442 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
443 		    (caddr_t)tigonFwRodata);
444 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
445 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
446 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
447 		break;
448 	case TI_HWREV_TIGON_II:
449 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
450 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
451 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
452 			printf("%s: firmware revision mismatch; want "
453 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
454 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
455 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
456 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
457 			return;
458 		}
459 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
460 		    (caddr_t)tigon2FwText);
461 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
462 		    (caddr_t)tigon2FwData);
463 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
464 		    (caddr_t)tigon2FwRodata);
465 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
466 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
467 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
468 		break;
469 	default:
470 		printf("%s: can't load firmware: unknown hardware rev\n",
471 		    sc->sc_dev.dv_xname);
472 		break;
473 	}
474 
475 	return;
476 }
477 
478 /*
479  * Send the NIC a command via the command ring.
480  */
481 static void ti_cmd(sc, cmd)
482 	struct ti_softc		*sc;
483 	struct ti_cmd_desc	*cmd;
484 {
485 	u_int32_t		index;
486 
487 	if (sc->ti_rdata->ti_cmd_ring == NULL)
488 		return;
489 
490 	index = sc->ti_cmd_saved_prodidx;
491 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
492 	TI_INC(index, TI_CMD_RING_CNT);
493 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
494 	sc->ti_cmd_saved_prodidx = index;
495 
496 	return;
497 }
498 
499 /*
500  * Send the NIC an extended command. The 'len' parameter specifies the
501  * number of command slots to include after the initial command.
502  */
503 static void ti_cmd_ext(sc, cmd, arg, len)
504 	struct ti_softc		*sc;
505 	struct ti_cmd_desc	*cmd;
506 	caddr_t			arg;
507 	int			len;
508 {
509 	u_int32_t		index;
510 	register int		i;
511 
512 	if (sc->ti_rdata->ti_cmd_ring == NULL)
513 		return;
514 
515 	index = sc->ti_cmd_saved_prodidx;
516 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
517 	TI_INC(index, TI_CMD_RING_CNT);
518 	for (i = 0; i < len; i++) {
519 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
520 		    *(u_int32_t *)(&arg[i * 4]));
521 		TI_INC(index, TI_CMD_RING_CNT);
522 	}
523 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
524 	sc->ti_cmd_saved_prodidx = index;
525 
526 	return;
527 }
528 
529 /*
530  * Handle events that have triggered interrupts.
531  */
532 static void ti_handle_events(sc)
533 	struct ti_softc		*sc;
534 {
535 	struct ti_event_desc	*e;
536 
537 	if (sc->ti_rdata->ti_event_ring == NULL)
538 		return;
539 
540 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
541 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
542 		switch(e->ti_event) {
543 		case TI_EV_LINKSTAT_CHANGED:
544 			sc->ti_linkstat = e->ti_code;
545 			if (e->ti_code == TI_EV_CODE_LINK_UP)
546 				printf("%s: 10/100 link up\n",
547 				       sc->sc_dev.dv_xname);
548 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
549 				printf("%s: gigabit link up\n",
550 				       sc->sc_dev.dv_xname);
551 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
552 				printf("%s: link down\n",
553 				       sc->sc_dev.dv_xname);
554 			break;
555 		case TI_EV_ERROR:
556 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
557 				printf("%s: invalid command\n",
558 				       sc->sc_dev.dv_xname);
559 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
560 				printf("%s: unknown command\n",
561 				       sc->sc_dev.dv_xname);
562 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
563 				printf("%s: bad config data\n",
564 				       sc->sc_dev.dv_xname);
565 			break;
566 		case TI_EV_FIRMWARE_UP:
567 			ti_init2(sc);
568 			break;
569 		case TI_EV_STATS_UPDATED:
570 			ti_stats_update(sc);
571 			break;
572 		case TI_EV_RESET_JUMBO_RING:
573 		case TI_EV_MCAST_UPDATED:
574 			/* Who cares. */
575 			break;
576 		default:
577 			printf("%s: unknown event: %d\n",
578 			    sc->sc_dev.dv_xname, e->ti_event);
579 			break;
580 		}
581 		/* Advance the consumer index. */
582 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
583 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
584 	}
585 
586 	return;
587 }
588 
589 /*
590  * Memory management for the jumbo receive ring is a pain in the
591  * butt. We need to allocate at least 9018 bytes of space per frame,
592  * _and_ it has to be contiguous (unless you use the extended
593  * jumbo descriptor format). Using malloc() all the time won't
594  * work: malloc() allocates memory in powers of two, which means we
595  * would end up wasting a considerable amount of space by allocating
596  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
597  * to do our own memory management.
598  *
599  * The driver needs to allocate a contiguous chunk of memory at boot
600  * time. We then chop this up ourselves into 9K pieces and use them
601  * as external mbuf storage.
602  *
603  * One issue here is how much memory to allocate. The jumbo ring has
604  * 256 slots in it, but at 9K per slot than can consume over 2MB of
605  * RAM. This is a bit much, especially considering we also need
606  * RAM for the standard ring and mini ring (on the Tigon 2). To
607  * save space, we only actually allocate enough memory for 64 slots
608  * by default, which works out to between 500 and 600K. This can
609  * be tuned by changing a #define in if_tireg.h.
610  */
611 
612 static int ti_alloc_jumbo_mem(sc)
613 	struct ti_softc		*sc;
614 {
615 	caddr_t			ptr;
616 	register int		i;
617 	struct ti_jpool_entry   *entry;
618 	bus_dma_segment_t dmaseg;
619 	int error, dmanseg;
620 
621 	/* Grab a big chunk o' storage. */
622 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
623 	    TI_JMEM, NBPG, 0, &dmaseg, 1, &dmanseg,
624 	    BUS_DMA_NOWAIT)) != 0) {
625 		printf("%s: can't allocate jumbo buffer, error = %d\n",
626 		       sc->sc_dev.dv_xname, error);
627 		return (error);
628 	}
629 
630 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
631 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
632 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
633 		printf("%s: can't map jumbo buffer, error = %d\n",
634 		       sc->sc_dev.dv_xname, error);
635 		return (error);
636 	}
637 
638 	if ((error = bus_dmamap_create(sc->sc_dmat,
639 	    TI_JMEM, 1,
640 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
641 	    &sc->jumbo_dmamap)) != 0) {
642 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
643 		       sc->sc_dev.dv_xname, error);
644 		return (error);
645 	}
646 
647 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
648 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
649 	    BUS_DMA_NOWAIT)) != 0) {
650 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
651 		       sc->sc_dev.dv_xname, error);
652 		return (error);
653 	}
654 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
655 
656 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
657 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
658 
659 	/*
660 	 * Now divide it up into 9K pieces and save the addresses
661 	 * in an array. Note that we play an evil trick here by using
662 	 * the first few bytes in the buffer to hold the address
663 	 * of the softc structure for this interface. This is because
664 	 * ti_jfree() needs it, but it is called by the mbuf management
665 	 * code which will not pass it to us explicitly.
666 	 */
667 	ptr = sc->ti_cdata.ti_jumbo_buf;
668 	for (i = 0; i < TI_JSLOTS; i++) {
669 		u_int64_t		**aptr;
670 		aptr = (u_int64_t **)ptr;
671 		aptr[0] = (u_int64_t *)sc;
672 		ptr += sizeof(u_int64_t);
673 		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
674 		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
675 		ptr += (TI_JLEN - sizeof(u_int64_t));
676 		entry = malloc(sizeof(struct ti_jpool_entry),
677 			       M_DEVBUF, M_NOWAIT);
678 		if (entry == NULL) {
679 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
680 			sc->ti_cdata.ti_jumbo_buf = NULL;
681 			printf("%s: no memory for jumbo "
682 			    "buffer queue!\n", sc->sc_dev.dv_xname);
683 			return(ENOBUFS);
684 		}
685 		entry->slot = i;
686 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
687 				    jpool_entries);
688 	}
689 
690 	return(0);
691 }
692 
693 /*
694  * Allocate a jumbo buffer.
695  */
696 static void *ti_jalloc(sc)
697 	struct ti_softc		*sc;
698 {
699 	struct ti_jpool_entry   *entry;
700 
701 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
702 
703 	if (entry == NULL) {
704 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
705 		return(NULL);
706 	}
707 
708 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
709 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
710 	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
711 	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
712 }
713 
714 #if 0
715 /*
716  * Adjust usage count on a jumbo buffer. In general this doesn't
717  * get used much because our jumbo buffers don't get passed around
718  * too much, but it's implemented for correctness.
719  */
720 static void ti_jref(buf, size)
721 	caddr_t			buf;
722 	u_int			size;
723 {
724 	struct ti_softc		*sc;
725 	u_int64_t		**aptr;
726 	register int		i;
727 
728 	/* Extract the softc struct pointer. */
729 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
730 	sc = (struct ti_softc *)(aptr[0]);
731 
732 	if (sc == NULL)
733 		panic("ti_jref: can't find softc pointer!");
734 
735 	if (size != TI_JUMBO_FRAMELEN)
736 		panic("ti_jref: adjusting refcount of buf of wrong size!");
737 
738 	/* calculate the slot this buffer belongs to */
739 
740 	i = ((caddr_t)aptr
741 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
742 
743 	if ((i < 0) || (i >= TI_JSLOTS))
744 		panic("ti_jref: asked to reference buffer "
745 		    "that we don't manage!");
746 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
747 		panic("ti_jref: buffer already free!");
748 	else
749 		sc->ti_cdata.ti_jslots[i].ti_inuse++;
750 
751 	return;
752 }
753 #endif
754 
755 /*
756  * Release a jumbo buffer.
757  */
758 static void ti_jfree(buf, size, arg)
759 	caddr_t			buf;
760 	u_int			size;
761 	void *arg; /* XXX NetBSD: we should really use it */
762 {
763 	struct ti_softc		*sc;
764 	u_int64_t		**aptr;
765 	int		        i;
766 	struct ti_jpool_entry   *entry;
767 
768 	/* Extract the softc struct pointer. */
769 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
770 	sc = (struct ti_softc *)(aptr[0]);
771 
772 	if (sc == NULL)
773 		panic("ti_jfree: can't find softc pointer!");
774 
775 	if (size != TI_JUMBO_FRAMELEN)
776 		panic("ti_jfree: freeing buffer of wrong size!");
777 
778 	/* calculate the slot this buffer belongs to */
779 
780 	i = ((caddr_t)aptr
781 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
782 
783 	if ((i < 0) || (i >= TI_JSLOTS))
784 		panic("ti_jfree: asked to free buffer that we don't manage!");
785 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
786 		panic("ti_jfree: buffer already free!");
787 	else {
788 		sc->ti_cdata.ti_jslots[i].ti_inuse--;
789 		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
790 			entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
791 			if (entry == NULL)
792 				panic("ti_jfree: buffer not in use!");
793 			entry->slot = i;
794 			SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
795 					    entry, jpool_entries);
796 			SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
797 					     entry, jpool_entries);
798 		}
799 	}
800 
801 	return;
802 }
803 
804 
805 /*
806  * Intialize a standard receive ring descriptor.
807  */
808 static int ti_newbuf_std(sc, i, m, dmamap)
809 	struct ti_softc		*sc;
810 	int			i;
811 	struct mbuf		*m;
812 	bus_dmamap_t dmamap; /* required if (m != NULL) */
813 {
814 	struct mbuf		*m_new = NULL;
815 	struct ti_rx_desc	*r;
816 	int error;
817 
818 	if (dmamap == NULL) {
819 		/* if (m) panic() */
820 
821 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
822 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
823 					       &dmamap)) != 0) {
824 			printf("%s: can't create recv map, error = %d\n",
825 			       sc->sc_dev.dv_xname, error);
826 			return(ENOMEM);
827 		}
828 	}
829 	sc->std_dmamap[i] = dmamap;
830 
831 	if (m == NULL) {
832 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
833 		if (m_new == NULL) {
834 			printf("%s: mbuf allocation failed "
835 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
836 			return(ENOBUFS);
837 		}
838 
839 		MCLGET(m_new, M_DONTWAIT);
840 		if (!(m_new->m_flags & M_EXT)) {
841 			printf("%s: cluster allocation failed "
842 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
843 			m_freem(m_new);
844 			return(ENOBUFS);
845 		}
846 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
847 		m_adj(m_new, ETHER_ALIGN);
848 
849 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
850 				mtod(m_new, caddr_t), m_new->m_len, NULL,
851 				BUS_DMA_NOWAIT)) != 0) {
852 			printf("%s: can't load recv map, error = %d\n",
853 			       sc->sc_dev.dv_xname, error);
854 			return (ENOMEM);
855 		}
856 	} else {
857 		m_new = m;
858 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
859 		m_new->m_data = m_new->m_ext.ext_buf;
860 		m_adj(m_new, ETHER_ALIGN);
861 
862 		/* reuse the dmamap */
863 	}
864 
865 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
866 	r = &sc->ti_rdata->ti_rx_std_ring[i];
867 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
868 	r->ti_type = TI_BDTYPE_RECV_BD;
869 #ifdef TI_CSUM_OFFLOAD
870 	r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
871 #else
872 	r->ti_flags = 0;
873 #endif
874 	r->ti_len = m_new->m_len; /* == ds_len */
875 	r->ti_idx = i;
876 
877 	return(0);
878 }
879 
880 /*
881  * Intialize a mini receive ring descriptor. This only applies to
882  * the Tigon 2.
883  */
884 static int ti_newbuf_mini(sc, i, m, dmamap)
885 	struct ti_softc		*sc;
886 	int			i;
887 	struct mbuf		*m;
888 	bus_dmamap_t dmamap; /* required if (m != NULL) */
889 {
890 	struct mbuf		*m_new = NULL;
891 	struct ti_rx_desc	*r;
892 	int error;
893 
894 	if (dmamap == NULL) {
895 		/* if (m) panic() */
896 
897 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
898 					       MHLEN, 0, BUS_DMA_NOWAIT,
899 					       &dmamap)) != 0) {
900 			printf("%s: can't create recv map, error = %d\n",
901 			       sc->sc_dev.dv_xname, error);
902 			return(ENOMEM);
903 		}
904 	}
905 	sc->mini_dmamap[i] = dmamap;
906 
907 	if (m == NULL) {
908 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
909 		if (m_new == NULL) {
910 			printf("%s: mbuf allocation failed "
911 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
912 			return(ENOBUFS);
913 		}
914 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
915 		m_adj(m_new, ETHER_ALIGN);
916 
917 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
918 				mtod(m_new, caddr_t), m_new->m_len, NULL,
919 				BUS_DMA_NOWAIT)) != 0) {
920 			printf("%s: can't load recv map, error = %d\n",
921 			       sc->sc_dev.dv_xname, error);
922 			return (ENOMEM);
923 		}
924 	} else {
925 		m_new = m;
926 		m_new->m_data = m_new->m_pktdat;
927 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
928 		m_adj(m_new, ETHER_ALIGN);
929 
930 		/* reuse the dmamap */
931 	}
932 
933 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
934 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
935 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
936 	r->ti_type = TI_BDTYPE_RECV_BD;
937 	r->ti_flags = TI_BDFLAG_MINI_RING;
938 #ifdef TI_CSUM_OFFLOAD
939 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
940 #endif
941 	r->ti_len = m_new->m_len; /* == ds_len */
942 	r->ti_idx = i;
943 
944 	return(0);
945 }
946 
947 /*
948  * Initialize a jumbo receive ring descriptor. This allocates
949  * a jumbo buffer from the pool managed internally by the driver.
950  */
951 static int ti_newbuf_jumbo(sc, i, m)
952 	struct ti_softc		*sc;
953 	int			i;
954 	struct mbuf		*m;
955 {
956 	struct mbuf		*m_new = NULL;
957 	struct ti_rx_desc	*r;
958 
959 	if (m == NULL) {
960 		caddr_t			*buf = NULL;
961 
962 		/* Allocate the mbuf. */
963 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
964 		if (m_new == NULL) {
965 			printf("%s: mbuf allocation failed "
966 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
967 			return(ENOBUFS);
968 		}
969 
970 		/* Allocate the jumbo buffer */
971 		buf = ti_jalloc(sc);
972 		if (buf == NULL) {
973 			m_freem(m_new);
974 			printf("%s: jumbo allocation failed "
975 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
976 			return(ENOBUFS);
977 		}
978 
979 		/* Attach the buffer to the mbuf. */
980 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
981 		m_new->m_flags |= M_EXT;
982 		m_new->m_len = m_new->m_pkthdr.len =
983 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
984 		m_new->m_ext.ext_free = ti_jfree;
985 		m_new->m_ext.ext_arg = sc;
986 #if 0
987 		m_new->m_ext.ext_ref = ti_jref;
988 #endif
989 		MCLINITREFERENCE(m_new);
990 	} else {
991 		m_new = m;
992 		m_new->m_data = m_new->m_ext.ext_buf;
993 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
994 	}
995 
996 	m_adj(m_new, ETHER_ALIGN);
997 	/* Set up the descriptor. */
998 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
999 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1000 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
1001 		((caddr_t)mtod(m_new, caddr_t)
1002 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
1003 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1004 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1005 #ifdef TI_CSUM_OFFLOAD
1006 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1007 #endif
1008 	r->ti_len = m_new->m_len;
1009 	r->ti_idx = i;
1010 
1011 	return(0);
1012 }
1013 
1014 /*
1015  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1016  * that's 1MB or memory, which is a lot. For now, we fill only the first
1017  * 256 ring entries and hope that our CPU is fast enough to keep up with
1018  * the NIC.
1019  */
1020 static int ti_init_rx_ring_std(sc)
1021 	struct ti_softc		*sc;
1022 {
1023 	register int		i;
1024 	struct ti_cmd_desc	cmd;
1025 
1026 	for (i = 0; i < TI_SSLOTS; i++) {
1027 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1028 			return(ENOBUFS);
1029 	};
1030 
1031 	TI_UPDATE_STDPROD(sc, i - 1);
1032 	sc->ti_std = i - 1;
1033 
1034 	return(0);
1035 }
1036 
1037 static void ti_free_rx_ring_std(sc)
1038 	struct ti_softc		*sc;
1039 {
1040 	register int		i;
1041 
1042 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1043 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1044 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1045 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1046 
1047 			/* if (sc->std_dmamap[i] == 0) panic() */
1048 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
1049 			sc->std_dmamap[i] = 0;
1050 		}
1051 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1052 		    sizeof(struct ti_rx_desc));
1053 	}
1054 
1055 	return;
1056 }
1057 
1058 static int ti_init_rx_ring_jumbo(sc)
1059 	struct ti_softc		*sc;
1060 {
1061 	register int		i;
1062 	struct ti_cmd_desc	cmd;
1063 
1064 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
1065 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1066 			return(ENOBUFS);
1067 	};
1068 
1069 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1070 	sc->ti_jumbo = i - 1;
1071 
1072 	return(0);
1073 }
1074 
1075 static void ti_free_rx_ring_jumbo(sc)
1076 	struct ti_softc		*sc;
1077 {
1078 	register int		i;
1079 
1080 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1081 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1082 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1083 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1084 		}
1085 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1086 		    sizeof(struct ti_rx_desc));
1087 	}
1088 
1089 	return;
1090 }
1091 
1092 static int ti_init_rx_ring_mini(sc)
1093 	struct ti_softc		*sc;
1094 {
1095 	register int		i;
1096 
1097 	for (i = 0; i < TI_MSLOTS; i++) {
1098 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1099 			return(ENOBUFS);
1100 	};
1101 
1102 	TI_UPDATE_MINIPROD(sc, i - 1);
1103 	sc->ti_mini = i - 1;
1104 
1105 	return(0);
1106 }
1107 
1108 static void ti_free_rx_ring_mini(sc)
1109 	struct ti_softc		*sc;
1110 {
1111 	register int		i;
1112 
1113 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1114 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1115 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1116 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1117 
1118 			/* if (sc->mini_dmamap[i] == 0) panic() */
1119 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1120 			sc->mini_dmamap[i] = 0;
1121 		}
1122 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1123 		    sizeof(struct ti_rx_desc));
1124 	}
1125 
1126 	return;
1127 }
1128 
1129 static void ti_free_tx_ring(sc)
1130 	struct ti_softc		*sc;
1131 {
1132 	register int		i;
1133 	struct txdmamap_pool_entry *dma;
1134 
1135 	if (sc->ti_rdata->ti_tx_ring == NULL)
1136 		return;
1137 
1138 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1139 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1140 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1141 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1142 
1143 			/* if (sc->txdma[i] == 0) panic() */
1144 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1145 					    link);
1146 			sc->txdma[i] = 0;
1147 		}
1148 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1149 		    sizeof(struct ti_tx_desc));
1150 	}
1151 
1152 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1153 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1154 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1155 		free(dma, M_DEVBUF);
1156 	}
1157 
1158 	return;
1159 }
1160 
1161 static int ti_init_tx_ring(sc)
1162 	struct ti_softc		*sc;
1163 {
1164 	int i, error;
1165 	bus_dmamap_t dmamap;
1166 	struct txdmamap_pool_entry *dma;
1167 
1168 	sc->ti_txcnt = 0;
1169 	sc->ti_tx_saved_considx = 0;
1170 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1171 
1172 	SIMPLEQ_INIT(&sc->txdma_list);
1173 	for (i = 0; i < TI_RSLOTS; i++) {
1174 		/* I've seen mbufs with 30 fragments. */
1175 		if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1176 					       40, TI_JUMBO_FRAMELEN, 0,
1177 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1178 			printf("%s: can't create tx map, error = %d\n",
1179 			       sc->sc_dev.dv_xname, error);
1180 			return(ENOMEM);
1181 		}
1182 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1183 		if (!dma) {
1184 			printf("%s: can't alloc txdmamap_pool_entry\n",
1185 			       sc->sc_dev.dv_xname);
1186 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1187 			return (ENOMEM);
1188 		}
1189 		dma->dmamap = dmamap;
1190 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1191 	}
1192 
1193 	return(0);
1194 }
1195 
1196 /*
1197  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1198  * but we have to support the old way too so that Tigon 1 cards will
1199  * work.
1200  */
1201 void ti_add_mcast(sc, addr)
1202 	struct ti_softc		*sc;
1203 	struct ether_addr	*addr;
1204 {
1205 	struct ti_cmd_desc	cmd;
1206 	u_int16_t		*m;
1207 	u_int32_t		ext[2] = {0, 0};
1208 
1209 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1210 
1211 	switch(sc->ti_hwrev) {
1212 	case TI_HWREV_TIGON:
1213 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1214 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1215 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1216 		break;
1217 	case TI_HWREV_TIGON_II:
1218 		ext[0] = htons(m[0]);
1219 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1220 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1221 		break;
1222 	default:
1223 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1224 		break;
1225 	}
1226 
1227 	return;
1228 }
1229 
1230 void ti_del_mcast(sc, addr)
1231 	struct ti_softc		*sc;
1232 	struct ether_addr	*addr;
1233 {
1234 	struct ti_cmd_desc	cmd;
1235 	u_int16_t		*m;
1236 	u_int32_t		ext[2] = {0, 0};
1237 
1238 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1239 
1240 	switch(sc->ti_hwrev) {
1241 	case TI_HWREV_TIGON:
1242 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1243 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1244 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1245 		break;
1246 	case TI_HWREV_TIGON_II:
1247 		ext[0] = htons(m[0]);
1248 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1249 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1250 		break;
1251 	default:
1252 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1253 		break;
1254 	}
1255 
1256 	return;
1257 }
1258 
1259 /*
1260  * Configure the Tigon's multicast address filter.
1261  *
1262  * The actual multicast table management is a bit of a pain, thanks to
1263  * slight brain damage on the part of both Alteon and us. With our
1264  * multicast code, we are only alerted when the multicast address table
1265  * changes and at that point we only have the current list of addresses:
1266  * we only know the current state, not the previous state, so we don't
1267  * actually know what addresses were removed or added. The firmware has
1268  * state, but we can't get our grubby mits on it, and there is no 'delete
1269  * all multicast addresses' command. Hence, we have to maintain our own
1270  * state so we know what addresses have been programmed into the NIC at
1271  * any given time.
1272  */
1273 static void ti_setmulti(sc)
1274 	struct ti_softc		*sc;
1275 {
1276 	struct ifnet		*ifp;
1277 	struct ti_cmd_desc	cmd;
1278 	struct ti_mc_entry	*mc;
1279 	u_int32_t		intrs;
1280 	struct ether_multi *enm;
1281 	struct ether_multistep step;
1282 
1283 	ifp = &sc->ethercom.ec_if;
1284 
1285 	if (ifp->if_flags & IFF_ALLMULTI) {
1286 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1287 		return;
1288 	} else {
1289 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1290 	}
1291 
1292 	/* Disable interrupts. */
1293 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1294 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1295 
1296 	/* First, zot all the existing filters. */
1297 	while (SIMPLEQ_FIRST(&sc->ti_mc_listhead) != NULL) {
1298 		mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead);
1299 		ti_del_mcast(sc, &mc->mc_addr);
1300 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1301 		free(mc, M_DEVBUF);
1302 	}
1303 
1304 	/* Now program new ones. */
1305 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1306 	while (enm != NULL) {
1307 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1308 		bcopy(enm->enm_addrlo,
1309 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1310 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1311 		ti_add_mcast(sc, &mc->mc_addr);
1312 		ETHER_NEXT_MULTI(step, enm);
1313 	}
1314 
1315 	/* Re-enable interrupts. */
1316 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1317 
1318 	return;
1319 }
1320 
1321 /*
1322  * Check to see if the BIOS has configured us for a 64 bit slot when
1323  * we aren't actually in one. If we detect this condition, we can work
1324  * around it on the Tigon 2 by setting a bit in the PCI state register,
1325  * but for the Tigon 1 we must give up and abort the interface attach.
1326  */
1327 static int ti_64bitslot_war(sc)
1328 	struct ti_softc		*sc;
1329 {
1330 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1331 		CSR_WRITE_4(sc, 0x600, 0);
1332 		CSR_WRITE_4(sc, 0x604, 0);
1333 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1334 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1335 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1336 				return(EINVAL);
1337 			else {
1338 				TI_SETBIT(sc, TI_PCI_STATE,
1339 				    TI_PCISTATE_32BIT_BUS);
1340 				return(0);
1341 			}
1342 		}
1343 	}
1344 
1345 	return(0);
1346 }
1347 
1348 /*
1349  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1350  * self-test results.
1351  */
1352 static int ti_chipinit(sc)
1353 	struct ti_softc		*sc;
1354 {
1355 	u_int32_t		cacheline;
1356 	u_int32_t		pci_writemax = 0;
1357 
1358 	/* Initialize link to down state. */
1359 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1360 
1361 	/* Set endianness before we access any non-PCI registers. */
1362 #if BYTE_ORDER == BIG_ENDIAN
1363 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1364 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1365 #else
1366 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1367 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1368 #endif
1369 
1370 	/* Check the ROM failed bit to see if self-tests passed. */
1371 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1372 		printf("%s: board self-diagnostics failed!\n",
1373 		       sc->sc_dev.dv_xname);
1374 		return(ENODEV);
1375 	}
1376 
1377 	/* Halt the CPU. */
1378 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1379 
1380 	/* Figure out the hardware revision. */
1381 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1382 	case TI_REV_TIGON_I:
1383 		sc->ti_hwrev = TI_HWREV_TIGON;
1384 		break;
1385 	case TI_REV_TIGON_II:
1386 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1387 		break;
1388 	default:
1389 		printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1390 		return(ENODEV);
1391 	}
1392 
1393 	/* Do special setup for Tigon 2. */
1394 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1395 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1396 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1397 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1398 	}
1399 
1400 	/* Set up the PCI state register. */
1401 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1402 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1403 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1404 	}
1405 
1406 	/* Clear the read/write max DMA parameters. */
1407 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1408 	    TI_PCISTATE_READ_MAXDMA));
1409 
1410 	/* Get cache line size. */
1411 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1412 
1413 	/*
1414 	 * If the system has set enabled the PCI memory write
1415 	 * and invalidate command in the command register, set
1416 	 * the write max parameter accordingly. This is necessary
1417 	 * to use MWI with the Tigon 2.
1418 	 */
1419 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1420 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1421 		switch(cacheline) {
1422 		case 1:
1423 		case 4:
1424 		case 8:
1425 		case 16:
1426 		case 32:
1427 		case 64:
1428 			break;
1429 		default:
1430 		/* Disable PCI memory write and invalidate. */
1431 			if (bootverbose)
1432 				printf("%s: cache line size %d not "
1433 				    "supported; disabling PCI MWI\n",
1434 				    sc->sc_dev.dv_xname, cacheline);
1435 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1436 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1437 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1438 			break;
1439 		}
1440 	}
1441 
1442 #ifdef __brokenalpha__
1443 	/*
1444 	 * From the Alteon sample driver:
1445 	 * Must insure that we do not cross an 8K (bytes) boundary
1446 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1447 	 * restriction on some ALPHA platforms with early revision
1448 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1449 	 */
1450 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1451 #else
1452 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1453 #endif
1454 
1455 	/* This sets the min dma param all the way up (0xff). */
1456 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1457 
1458 	/* Configure DMA variables. */
1459 #if BYTE_ORDER == BIG_ENDIAN
1460 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1461 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1462 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1463 	    TI_OPMODE_DONT_FRAG_JUMBO);
1464 #else
1465 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1466 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1467 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1468 #endif
1469 
1470 	/*
1471 	 * Only allow 1 DMA channel to be active at a time.
1472 	 * I don't think this is a good idea, but without it
1473 	 * the firmware racks up lots of nicDmaReadRingFull
1474 	 * errors.
1475 	 */
1476 #ifndef TI_CSUM_OFFLOAD
1477 	TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1478 #endif
1479 
1480 	/* Recommended settings from Tigon manual. */
1481 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1482 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1483 
1484 	if (ti_64bitslot_war(sc)) {
1485 		printf("%s: bios thinks we're in a 64 bit slot, "
1486 		    "but we aren't", sc->sc_dev.dv_xname);
1487 		return(EINVAL);
1488 	}
1489 
1490 	return(0);
1491 }
1492 
1493 /*
1494  * Initialize the general information block and firmware, and
1495  * start the CPU(s) running.
1496  */
1497 static int ti_gibinit(sc)
1498 	struct ti_softc		*sc;
1499 {
1500 	struct ti_rcb		*rcb;
1501 	int			i;
1502 	struct ifnet		*ifp;
1503 
1504 	ifp = &sc->ethercom.ec_if;
1505 
1506 	/* Disable interrupts for now. */
1507 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1508 
1509 	/* Tell the chip where to find the general information block. */
1510 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1511 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1512 		    ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1513 
1514 	/* Load the firmware into SRAM. */
1515 	ti_loadfw(sc);
1516 
1517 	/* Set up the contents of the general info and ring control blocks. */
1518 
1519 	/* Set up the event ring and producer pointer. */
1520 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1521 
1522 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1523 		((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1524 	rcb->ti_flags = 0;
1525 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1526 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1527 				- (caddr_t)sc->ti_rdata);
1528 	sc->ti_ev_prodidx.ti_idx = 0;
1529 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1530 	sc->ti_ev_saved_considx = 0;
1531 
1532 	/* Set up the command ring and producer mailbox. */
1533 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1534 
1535 	sc->ti_rdata->ti_cmd_ring =
1536 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1537 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1538 	rcb->ti_flags = 0;
1539 	rcb->ti_max_len = 0;
1540 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1541 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1542 	}
1543 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1544 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1545 	sc->ti_cmd_saved_prodidx = 0;
1546 
1547 	/*
1548 	 * Assign the address of the stats refresh buffer.
1549 	 * We re-use the current stats buffer for this to
1550 	 * conserve memory.
1551 	 */
1552 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1553 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1554 		    - (caddr_t)sc->ti_rdata);
1555 
1556 	/* Set up the standard receive ring. */
1557 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1558 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1559 		((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1560 		 - (caddr_t)sc->ti_rdata);
1561 	rcb->ti_max_len = TI_FRAMELEN;
1562 	rcb->ti_flags = 0;
1563 #ifdef TI_CSUM_OFFLOAD
1564 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1565 #endif
1566 #if NVLAN > 0
1567 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1568 #endif
1569 
1570 	/* Set up the jumbo receive ring. */
1571 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1572 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1573 	    ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1574 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1575 	rcb->ti_flags = 0;
1576 #ifdef TI_CSUM_OFFLOAD
1577 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1578 #endif
1579 #if NVLAN > 0
1580 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1581 #endif
1582 
1583 	/*
1584 	 * Set up the mini ring. Only activated on the
1585 	 * Tigon 2 but the slot in the config block is
1586 	 * still there on the Tigon 1.
1587 	 */
1588 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1589 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1590 	    ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1591 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1592 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1593 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1594 	else
1595 		rcb->ti_flags = 0;
1596 #ifdef TI_CSUM_OFFLOAD
1597 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1598 #endif
1599 #if NVLAN > 0
1600 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1601 #endif
1602 
1603 	/*
1604 	 * Set up the receive return ring.
1605 	 */
1606 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1607 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1608 	    ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1609 	rcb->ti_flags = 0;
1610 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1611 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1612 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1613 		    - (caddr_t)sc->ti_rdata);
1614 
1615 	/*
1616 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1617 	 * of putting the transmit ring in the host's address space and
1618 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1619 	 * memory and accessing it through the shared memory region. We
1620 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1621 	 * so we have to revert to the shared memory scheme if we detect
1622 	 * a Tigon 1 chip.
1623 	 */
1624 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1625 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1626 		sc->ti_rdata->ti_tx_ring_nic =
1627 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1628 	}
1629 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1630 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1631 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1632 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1633 		rcb->ti_flags = 0;
1634 	else
1635 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1636 #if NVLAN > 0
1637 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1638 #endif
1639 	rcb->ti_max_len = TI_TX_RING_CNT;
1640 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1641 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1642 	else
1643 		TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1644 		    ((caddr_t)&sc->ti_rdata->ti_tx_ring
1645 		     - (caddr_t)sc->ti_rdata);
1646 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1647 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1648 		    - (caddr_t)sc->ti_rdata);
1649 
1650 	/* Set up tuneables */
1651 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1652 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1653 		    (sc->ti_rx_coal_ticks / 10));
1654 	else
1655 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1656 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1657 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1658 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1659 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1660 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1661 
1662 	/* Turn interrupts on. */
1663 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1664 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1665 
1666 	/* Start CPU. */
1667 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1668 
1669 	return(0);
1670 }
1671 
1672 /*
1673  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1674  * against our list and return its name if we find a match.
1675  */
1676 static int ti_probe(parent, match, aux)
1677 	struct device *parent;
1678 	struct cfdata *match;
1679 	void *aux;
1680 {
1681 	struct pci_attach_args *pa = aux;
1682 	struct ti_type		*t;
1683 
1684 	t = ti_devs;
1685 
1686 	while(t->ti_name != NULL) {
1687 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1688 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1689 			return(1);
1690 		}
1691 		t++;
1692 	}
1693 
1694 	return(0);
1695 }
1696 
1697 static void ti_attach(parent, self, aux)
1698 	struct device *parent, *self;
1699 	void *aux;
1700 {
1701 	int			s;
1702 	u_int32_t		command;
1703 	struct ifnet		*ifp;
1704 	struct ti_softc		*sc;
1705 	u_char eaddr[ETHER_ADDR_LEN];
1706 	struct pci_attach_args *pa = aux;
1707 	pci_chipset_tag_t pc = pa->pa_pc;
1708 	pci_intr_handle_t ih;
1709 	const char *intrstr = NULL;
1710 	bus_dma_segment_t dmaseg;
1711 	int error, dmanseg;
1712 
1713 	s = splimp();
1714 
1715 	sc = (struct ti_softc *)self;
1716 
1717 	/*
1718 	 * Map control/status registers.
1719 	 */
1720 	if (pci_mapreg_map(pa, 0x10, PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
1721 	    &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1722 		printf(": can't map memory space\n");
1723 		goto fail;
1724 	}
1725 	sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1726 
1727 	printf("\n");
1728 
1729 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1730 	command |= PCI_COMMAND_MASTER_ENABLE;
1731 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1732 
1733 	/* Allocate interrupt */
1734 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
1735 	    pa->pa_intrline, &ih)) {
1736 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1737 		goto fail;
1738 	}
1739 	intrstr = pci_intr_string(pc, ih);
1740 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1741 	if (sc->sc_ih == NULL) {
1742 		printf("%s: couldn't establish interrupt",
1743 		    sc->sc_dev.dv_xname);
1744 		if (intrstr != NULL)
1745 			printf(" at %s", intrstr);
1746 		printf("\n");
1747 		goto fail;
1748 	}
1749 
1750 	if (ti_chipinit(sc)) {
1751 		printf("%s: chip initialization failed\n", self->dv_xname);
1752 #if 0
1753 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1754 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1755 		bus_release_resource(dev, SYS_RES_MEMORY,
1756 		    TI_PCI_LOMEM, sc->ti_res);
1757 #endif
1758 		goto fail;
1759 	}
1760 
1761 	/* Zero out the NIC's on-board SRAM. */
1762 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1763 
1764 	/* Init again -- zeroing memory may have clobbered some registers. */
1765 	if (ti_chipinit(sc)) {
1766 		printf("%s: chip initialization failed\n", self->dv_xname);
1767 #if 0
1768 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1769 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1770 		bus_release_resource(dev, SYS_RES_MEMORY,
1771 		    TI_PCI_LOMEM, sc->ti_res);
1772 #endif
1773 		goto fail;
1774 	}
1775 
1776 	/*
1777 	 * Get station address from the EEPROM. Note: the manual states
1778 	 * that the MAC address is at offset 0x8c, however the data is
1779 	 * stored as two longwords (since that's how it's loaded into
1780 	 * the NIC). This means the MAC address is actually preceeded
1781 	 * by two zero bytes. We need to skip over those.
1782 	 */
1783 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1784 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1785 		printf("%s: failed to read station address\n", self->dv_xname);
1786 #if 0
1787 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1788 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1789 		bus_release_resource(dev, SYS_RES_MEMORY,
1790 		    TI_PCI_LOMEM, sc->ti_res);
1791 #endif
1792 		goto fail;
1793 	}
1794 
1795 	/*
1796 	 * A Tigon chip was detected. Inform the world.
1797 	 */
1798 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1799 				ether_sprintf(eaddr));
1800 
1801 	sc->sc_dmat = pa->pa_dmat;
1802 
1803 	/* Allocate the general information block and ring buffers. */
1804 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1805 	    sizeof(struct ti_ring_data), NBPG, 0, &dmaseg, 1, &dmanseg,
1806 	    BUS_DMA_NOWAIT)) != 0) {
1807 		printf("%s: can't allocate ring buffer, error = %d\n",
1808 		       sc->sc_dev.dv_xname, error);
1809 		goto fail;
1810 	}
1811 
1812 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1813 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1814 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1815 		printf("%s: can't map ring buffer, error = %d\n",
1816 		       sc->sc_dev.dv_xname, error);
1817 		goto fail;
1818 	}
1819 
1820 	if ((error = bus_dmamap_create(sc->sc_dmat,
1821 	    sizeof(struct ti_ring_data), 1,
1822 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1823 	    &sc->info_dmamap)) != 0) {
1824 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1825 		       sc->sc_dev.dv_xname, error);
1826 		goto fail;
1827 	}
1828 
1829 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1830 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1831 	    BUS_DMA_NOWAIT)) != 0) {
1832 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1833 		       sc->sc_dev.dv_xname, error);
1834 		goto fail;
1835 	}
1836 
1837 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1838 
1839 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1840 
1841 	/* Try to allocate memory for jumbo buffers. */
1842 	if (ti_alloc_jumbo_mem(sc)) {
1843 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1844 #if 0
1845 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1846 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1847 		bus_release_resource(dev, SYS_RES_MEMORY,
1848 		    TI_PCI_LOMEM, sc->ti_res);
1849 		free(sc->ti_rdata, M_DEVBUF);
1850 #endif
1851 		goto fail;
1852 	}
1853 
1854 	/* Set default tuneable values. */
1855 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1856 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1857 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1858 	sc->ti_rx_max_coal_bds = 64;
1859 	sc->ti_tx_max_coal_bds = 128;
1860 	sc->ti_tx_buf_ratio = 21;
1861 
1862 	/* Set up ifnet structure */
1863 	ifp = &sc->ethercom.ec_if;
1864 	ifp->if_softc = sc;
1865 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1866 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1867 	ifp->if_ioctl = ti_ioctl;
1868 #if 0
1869 	ifp->if_output = ether_output;
1870 #endif
1871 	ifp->if_start = ti_start;
1872 	ifp->if_watchdog = ti_watchdog;
1873 #if 0
1874 	ifp->if_baudrate = 10000000;
1875 	ifp->if_init = ti_init;
1876 	ifp->if_mtu = ETHERMTU;
1877 #endif
1878 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1879 
1880 	/* Set up ifmedia support. */
1881 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1882 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1883 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1884 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1885 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1886 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1887 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1888 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1889 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1890 
1891 	/*
1892 	 * Call MI attach routines.
1893 	 */
1894 	if_attach(ifp);
1895 	ether_ifattach(ifp, eaddr);
1896 
1897 #if NBPFILTER > 0
1898 	bpfattach(&sc->ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
1899 		  sizeof(struct ether_header));
1900 #endif
1901 
1902 fail:
1903 	splx(s);
1904 }
1905 
1906 #if 0
1907 static int ti_detach(dev)
1908 	device_t		dev;
1909 {
1910 	struct ti_softc		*sc;
1911 	struct ifnet		*ifp;
1912 	int			s;
1913 
1914 	s = splimp();
1915 
1916 	sc = device_get_softc(dev);
1917 	ifp = &sc->arpcom.ac_if;
1918 
1919 	if_detach(ifp);
1920 	ti_stop(sc);
1921 
1922 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1923 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1924 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1925 
1926 	free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1927 	free(sc->ti_rdata, M_DEVBUF);
1928 	ifmedia_removeall(&sc->ifmedia);
1929 
1930 	splx(s);
1931 
1932 	return(0);
1933 }
1934 #endif
1935 
1936 /*
1937  * Frame reception handling. This is called if there's a frame
1938  * on the receive return list.
1939  *
1940  * Note: we have to be able to handle three possibilities here:
1941  * 1) the frame is from the mini receive ring (can only happen)
1942  *    on Tigon 2 boards)
1943  * 2) the frame is from the jumbo recieve ring
1944  * 3) the frame is from the standard receive ring
1945  */
1946 
1947 static void ti_rxeof(sc)
1948 	struct ti_softc		*sc;
1949 {
1950 	struct ifnet		*ifp;
1951 	struct ti_cmd_desc	cmd;
1952 
1953 	ifp = &sc->ethercom.ec_if;
1954 
1955 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1956 		struct ti_rx_desc	*cur_rx;
1957 		u_int32_t		rxidx;
1958 		struct ether_header	*eh;
1959 		struct mbuf		*m = NULL;
1960 #if NVLAN > 0
1961 		u_int16_t		vlan_tag = 0;
1962 		int			have_tag = 0;
1963 #endif
1964 #ifdef TI_CSUM_OFFLOAD
1965 		struct ip		*ip;
1966 #endif
1967 		bus_dmamap_t dmamap;
1968 
1969 		cur_rx =
1970 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1971 		rxidx = cur_rx->ti_idx;
1972 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1973 
1974 #if NVLAN > 0
1975 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1976 			have_tag = 1;
1977 			vlan_tag = cur_rx->ti_vlan_tag;
1978 		}
1979 #endif
1980 
1981 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1982 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1983 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1984 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1985 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1986 				ifp->if_ierrors++;
1987 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1988 				continue;
1989 			}
1990 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1991 			    == ENOBUFS) {
1992 				ifp->if_ierrors++;
1993 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1994 				continue;
1995 			}
1996 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1997 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1998 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1999 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2000 			dmamap = sc->mini_dmamap[rxidx];
2001 			sc->mini_dmamap[rxidx] = 0;
2002 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2003 				ifp->if_ierrors++;
2004 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2005 				continue;
2006 			}
2007 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
2008 			    == ENOBUFS) {
2009 				ifp->if_ierrors++;
2010 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2011 				continue;
2012 			}
2013 		} else {
2014 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2015 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2016 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2017 			dmamap = sc->std_dmamap[rxidx];
2018 			sc->std_dmamap[rxidx] = 0;
2019 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2020 				ifp->if_ierrors++;
2021 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2022 				continue;
2023 			}
2024 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2025 			    == ENOBUFS) {
2026 				ifp->if_ierrors++;
2027 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2028 				continue;
2029 			}
2030 		}
2031 
2032 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2033 		ifp->if_ipackets++;
2034 		eh = mtod(m, struct ether_header *);
2035 		m->m_pkthdr.rcvif = ifp;
2036 
2037 #if NBPFILTER > 0
2038 		/*
2039 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
2040 	 	 * don't pass it up to the ether_input() layer unless it's
2041 	 	 * a broadcast packet, multicast packet, matches our ethernet
2042 	 	 * address or the interface is in promiscuous mode.
2043 	 	 */
2044 		if (ifp->if_bpf) {
2045 			bpf_mtap(ifp->if_bpf, m);
2046 			if (ifp->if_flags & IFF_PROMISC &&
2047 				(bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
2048 		 			ETHER_ADDR_LEN) &&
2049 					(eh->ether_dhost[0] & 1) == 0)) {
2050 				m_freem(m);
2051 				continue;
2052 			}
2053 		}
2054 #endif
2055 
2056 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
2057 		ip = mtod(m, struct ip *);
2058 		if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
2059 		    !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
2060 			m->m_flags |= M_HWCKSUM;
2061 #endif
2062 
2063 #if NVLAN > 0 /* XXX NetBSD: broken because m points to ether pkt */
2064 		/*
2065 		 * If we received a packet with a vlan tag, pass it
2066 		 * to vlan_input() instead of ether_input().
2067 		 */
2068 		if (have_tag) {
2069 			vlan_input_tag(eh, m, vlan_tag);
2070 			have_tag = vlan_tag = 0;
2071 			continue;
2072 		}
2073 #endif
2074 		(*ifp->if_input)(ifp, m);
2075 	}
2076 
2077 	/* Only necessary on the Tigon 1. */
2078 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2079 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2080 		    sc->ti_rx_saved_considx);
2081 
2082 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2083 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2084 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2085 
2086 	return;
2087 }
2088 
2089 static void ti_txeof(sc)
2090 	struct ti_softc		*sc;
2091 {
2092 	struct ti_tx_desc	*cur_tx = NULL;
2093 	struct ifnet		*ifp;
2094 
2095 	ifp = &sc->ethercom.ec_if;
2096 
2097 	/*
2098 	 * Go through our tx ring and free mbufs for those
2099 	 * frames that have been sent.
2100 	 */
2101 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2102 		u_int32_t		idx = 0;
2103 
2104 		idx = sc->ti_tx_saved_considx;
2105 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2106 			if (idx > 383)
2107 				CSR_WRITE_4(sc, TI_WINBASE,
2108 				    TI_TX_RING_BASE + 6144);
2109 			else if (idx > 255)
2110 				CSR_WRITE_4(sc, TI_WINBASE,
2111 				    TI_TX_RING_BASE + 4096);
2112 			else if (idx > 127)
2113 				CSR_WRITE_4(sc, TI_WINBASE,
2114 				    TI_TX_RING_BASE + 2048);
2115 			else
2116 				CSR_WRITE_4(sc, TI_WINBASE,
2117 				    TI_TX_RING_BASE);
2118 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2119 		} else
2120 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2121 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2122 			ifp->if_opackets++;
2123 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2124 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2125 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2126 
2127 			/* if (sc->txdma[idx] == 0) panic() */
2128 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2129 					    link);
2130 			sc->txdma[idx] = 0;
2131 		}
2132 		sc->ti_txcnt--;
2133 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2134 		ifp->if_timer = 0;
2135 	}
2136 
2137 	if (cur_tx != NULL)
2138 		ifp->if_flags &= ~IFF_OACTIVE;
2139 
2140 	return;
2141 }
2142 
2143 static int ti_intr(xsc)
2144 	void			*xsc;
2145 {
2146 	struct ti_softc		*sc;
2147 	struct ifnet		*ifp;
2148 
2149 	sc = xsc;
2150 	ifp = &sc->ethercom.ec_if;
2151 
2152 #ifdef notdef
2153 	/* Avoid this for now -- checking this register is expensive. */
2154 	/* Make sure this is really our interrupt. */
2155 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2156 		return (0);
2157 #endif
2158 
2159 	/* Ack interrupt and stop others from occuring. */
2160 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2161 
2162 	if (ifp->if_flags & IFF_RUNNING) {
2163 		/* Check RX return ring producer/consumer */
2164 		ti_rxeof(sc);
2165 
2166 		/* Check TX ring producer/consumer */
2167 		ti_txeof(sc);
2168 	}
2169 
2170 	ti_handle_events(sc);
2171 
2172 	/* Re-enable interrupts. */
2173 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2174 
2175 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2176 		ti_start(ifp);
2177 
2178 	return (1);
2179 }
2180 
2181 static void ti_stats_update(sc)
2182 	struct ti_softc		*sc;
2183 {
2184 	struct ifnet		*ifp;
2185 
2186 	ifp = &sc->ethercom.ec_if;
2187 
2188 	ifp->if_collisions +=
2189 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2190 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2191 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2192 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2193 	   ifp->if_collisions;
2194 
2195 	return;
2196 }
2197 
2198 /*
2199  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2200  * pointers to descriptors.
2201  */
2202 static int ti_encap(sc, m_head, txidx)
2203 	struct ti_softc		*sc;
2204 	struct mbuf		*m_head;
2205 	u_int32_t		*txidx;
2206 {
2207 	struct ti_tx_desc	*f = NULL;
2208 	u_int32_t		frag, cur, cnt = 0;
2209 	struct txdmamap_pool_entry *dma;
2210 	bus_dmamap_t dmamap;
2211 	int error, i;
2212 #if NVLAN > 0
2213 	struct ifvlan		*ifv = NULL;
2214 
2215 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2216 	    m_head->m_pkthdr.rcvif != NULL &&
2217 	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2218 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2219 #endif
2220 
2221 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2222 	dmamap = dma->dmamap;
2223 
2224 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2225 	if (error) {
2226 		struct mbuf *m;
2227 		int i = 0;
2228 		for (m = m_head; m; m = m->m_next)
2229 			i++;
2230 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2231 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2232 		return (ENOMEM);
2233 	}
2234 
2235 	cur = frag = *txidx;
2236 
2237 	/*
2238  	 * Start packing the mbufs in this chain into
2239 	 * the fragment pointers. Stop when we run out
2240  	 * of fragments or hit the end of the mbuf chain.
2241 	 */
2242 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2243 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2244 				if (frag > 383)
2245 					CSR_WRITE_4(sc, TI_WINBASE,
2246 					    TI_TX_RING_BASE + 6144);
2247 				else if (frag > 255)
2248 					CSR_WRITE_4(sc, TI_WINBASE,
2249 					    TI_TX_RING_BASE + 4096);
2250 				else if (frag > 127)
2251 					CSR_WRITE_4(sc, TI_WINBASE,
2252 					    TI_TX_RING_BASE + 2048);
2253 				else
2254 					CSR_WRITE_4(sc, TI_WINBASE,
2255 					    TI_TX_RING_BASE);
2256 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2257 			} else
2258 				f = &sc->ti_rdata->ti_tx_ring[frag];
2259 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2260 				break;
2261 			TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2262 			f->ti_len = dmamap->dm_segs[i].ds_len;
2263 			f->ti_flags = 0;
2264 #if NVLAN > 0
2265 			if (ifv != NULL) {
2266 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2267 				f->ti_vlan_tag = ifv->ifv_tag;
2268 			} else {
2269 				f->ti_vlan_tag = 0;
2270 			}
2271 #endif
2272 			/*
2273 			 * Sanity check: avoid coming within 16 descriptors
2274 			 * of the end of the ring.
2275 			 */
2276 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2277 				return(ENOBUFS);
2278 			cur = frag;
2279 			TI_INC(frag, TI_TX_RING_CNT);
2280 			cnt++;
2281 	}
2282 
2283 	if (i < dmamap->dm_nsegs)
2284 		return(ENOBUFS);
2285 
2286 	if (frag == sc->ti_tx_saved_considx)
2287 		return(ENOBUFS);
2288 
2289 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2290 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2291 		    TI_BDFLAG_END;
2292 	else
2293 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2294 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2295 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2296 	sc->txdma[cur] = dma;
2297 	sc->ti_txcnt += cnt;
2298 
2299 	*txidx = frag;
2300 
2301 	return(0);
2302 }
2303 
2304 /*
2305  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2306  * to the mbuf data regions directly in the transmit descriptors.
2307  */
2308 static void ti_start(ifp)
2309 	struct ifnet		*ifp;
2310 {
2311 	struct ti_softc		*sc;
2312 	struct mbuf		*m_head = NULL;
2313 	u_int32_t		prodidx = 0;
2314 
2315 	sc = ifp->if_softc;
2316 
2317 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2318 
2319 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2320 		IF_DEQUEUE(&ifp->if_snd, m_head);
2321 		if (m_head == NULL)
2322 			break;
2323 
2324 		/*
2325 		 * Pack the data into the transmit ring. If we
2326 		 * don't have room, set the OACTIVE flag and wait
2327 		 * for the NIC to drain the ring.
2328 		 */
2329 		if (ti_encap(sc, m_head, &prodidx)) {
2330 			IF_PREPEND(&ifp->if_snd, m_head);
2331 			ifp->if_flags |= IFF_OACTIVE;
2332 			break;
2333 		}
2334 
2335 		/*
2336 		 * If there's a BPF listener, bounce a copy of this frame
2337 		 * to him.
2338 		 */
2339 #if NBPFILTER > 0
2340 		if (ifp->if_bpf)
2341 			bpf_mtap(ifp->if_bpf, m_head);
2342 #endif
2343 	}
2344 
2345 	/* Transmit */
2346 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2347 
2348 	/*
2349 	 * Set a timeout in case the chip goes out to lunch.
2350 	 */
2351 	ifp->if_timer = 5;
2352 
2353 	return;
2354 }
2355 
2356 static void ti_init(xsc)
2357 	void			*xsc;
2358 {
2359 	struct ti_softc		*sc = xsc;
2360         int			s;
2361 
2362 	s = splimp();
2363 
2364 	/* Cancel pending I/O and flush buffers. */
2365 	ti_stop(sc);
2366 
2367 	/* Init the gen info block, ring control blocks and firmware. */
2368 	if (ti_gibinit(sc)) {
2369 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2370 		splx(s);
2371 		return;
2372 	}
2373 
2374 	splx(s);
2375 
2376 	return;
2377 }
2378 
2379 static void ti_init2(sc)
2380 	struct ti_softc		*sc;
2381 {
2382 	struct ti_cmd_desc	cmd;
2383 	struct ifnet		*ifp;
2384 	u_int8_t		*m;
2385 	struct ifmedia		*ifm;
2386 	int			tmp;
2387 
2388 	ifp = &sc->ethercom.ec_if;
2389 
2390 	/* Specify MTU and interface index. */
2391 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2392 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2393 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2394 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2395 
2396 	/* Load our MAC address. */
2397 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2398 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2399 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2400 		    | (m[4] << 8) | m[5]);
2401 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2402 
2403 	/* Enable or disable promiscuous mode as needed. */
2404 	if (ifp->if_flags & IFF_PROMISC) {
2405 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2406 	} else {
2407 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2408 	}
2409 
2410 	/* Program multicast filter. */
2411 	ti_setmulti(sc);
2412 
2413 	/*
2414 	 * If this is a Tigon 1, we should tell the
2415 	 * firmware to use software packet filtering.
2416 	 */
2417 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2418 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2419 	}
2420 
2421 	/* Init RX ring. */
2422 	ti_init_rx_ring_std(sc);
2423 
2424 	/* Init jumbo RX ring. */
2425 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2426 		ti_init_rx_ring_jumbo(sc);
2427 
2428 	/*
2429 	 * If this is a Tigon 2, we can also configure the
2430 	 * mini ring.
2431 	 */
2432 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2433 		ti_init_rx_ring_mini(sc);
2434 
2435 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2436 	sc->ti_rx_saved_considx = 0;
2437 
2438 	/* Init TX ring. */
2439 	ti_init_tx_ring(sc);
2440 
2441 	/* Tell firmware we're alive. */
2442 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2443 
2444 	/* Enable host interrupts. */
2445 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2446 
2447 	ifp->if_flags |= IFF_RUNNING;
2448 	ifp->if_flags &= ~IFF_OACTIVE;
2449 
2450 	/*
2451 	 * Make sure to set media properly. We have to do this
2452 	 * here since we have to issue commands in order to set
2453 	 * the link negotiation and we can't issue commands until
2454 	 * the firmware is running.
2455 	 */
2456 	ifm = &sc->ifmedia;
2457 	tmp = ifm->ifm_media;
2458 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2459 	ti_ifmedia_upd(ifp);
2460 	ifm->ifm_media = tmp;
2461 
2462 	return;
2463 }
2464 
2465 /*
2466  * Set media options.
2467  */
2468 static int ti_ifmedia_upd(ifp)
2469 	struct ifnet		*ifp;
2470 {
2471 	struct ti_softc		*sc;
2472 	struct ifmedia		*ifm;
2473 	struct ti_cmd_desc	cmd;
2474 
2475 	sc = ifp->if_softc;
2476 	ifm = &sc->ifmedia;
2477 
2478 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2479 		return(EINVAL);
2480 
2481 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2482 	case IFM_AUTO:
2483 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2484 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2485 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2486 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2487 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2488 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2489 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2490 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2491 		break;
2492 	case IFM_1000_SX:
2493 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2494 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2495 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2496 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2497 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2498 		break;
2499 	case IFM_100_FX:
2500 	case IFM_10_FL:
2501 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2502 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2503 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2504 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2505 		} else {
2506 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2507 		}
2508 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2509 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2510 		} else {
2511 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2512 		}
2513 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2514 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2515 		break;
2516 	}
2517 
2518 	sc->ethercom.ec_if.if_baudrate =
2519 	    ifmedia_baudrate(ifm->ifm_media);
2520 
2521 	return(0);
2522 }
2523 
2524 /*
2525  * Report current media status.
2526  */
2527 static void ti_ifmedia_sts(ifp, ifmr)
2528 	struct ifnet		*ifp;
2529 	struct ifmediareq	*ifmr;
2530 {
2531 	struct ti_softc		*sc;
2532 
2533 	sc = ifp->if_softc;
2534 
2535 	ifmr->ifm_status = IFM_AVALID;
2536 	ifmr->ifm_active = IFM_ETHER;
2537 
2538 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2539 		return;
2540 
2541 	ifmr->ifm_status |= IFM_ACTIVE;
2542 
2543 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2544 		ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2545 	else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2546 		u_int32_t		media;
2547 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2548 		if (media & TI_LNK_100MB)
2549 			ifmr->ifm_active |= IFM_100_FX;
2550 		if (media & TI_LNK_10MB)
2551 			ifmr->ifm_active |= IFM_10_FL;
2552 		if (media & TI_LNK_FULL_DUPLEX)
2553 			ifmr->ifm_active |= IFM_FDX;
2554 		if (media & TI_LNK_HALF_DUPLEX)
2555 			ifmr->ifm_active |= IFM_HDX;
2556 	}
2557 
2558 	sc->ethercom.ec_if.if_baudrate =
2559 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2560 
2561 	return;
2562 }
2563 
2564 static int
2565 ti_ether_ioctl(ifp, cmd, data)
2566 	struct ifnet *ifp;
2567 	u_long cmd;
2568 	caddr_t data;
2569 {
2570 	struct ifaddr *ifa = (struct ifaddr *) data;
2571 	struct ti_softc *sc = ifp->if_softc;
2572 
2573 	switch (cmd) {
2574 	case SIOCSIFADDR:
2575 		ifp->if_flags |= IFF_UP;
2576 
2577 		switch (ifa->ifa_addr->sa_family) {
2578 #ifdef INET
2579 		case AF_INET:
2580 			ti_init(sc);
2581 			arp_ifinit(ifp, ifa);
2582 			break;
2583 #endif
2584 #ifdef NS
2585 		case AF_NS:
2586 		    {
2587 			 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2588 
2589 			 if (ns_nullhost(*ina))
2590 				ina->x_host = *(union ns_host *)
2591 				    LLADDR(ifp->if_sadl);
2592 			 else
2593 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2594 				    ifp->if_addrlen);
2595 			 /* Set new address. */
2596 			 ti_init(sc);
2597 			 break;
2598 		    }
2599 #endif
2600 		default:
2601 			ti_init(sc);
2602 			break;
2603 		}
2604 		break;
2605 
2606 	default:
2607 		return (EINVAL);
2608 	}
2609 
2610 	return (0);
2611 }
2612 
2613 static int ti_ioctl(ifp, command, data)
2614 	struct ifnet		*ifp;
2615 	u_long			command;
2616 	caddr_t			data;
2617 {
2618 	struct ti_softc		*sc = ifp->if_softc;
2619 	struct ifreq		*ifr = (struct ifreq *) data;
2620 	int			s, error = 0;
2621 	struct ti_cmd_desc	cmd;
2622 
2623 	s = splimp();
2624 
2625 	switch(command) {
2626 	case SIOCSIFADDR:
2627 	case SIOCGIFADDR:
2628 		error = ti_ether_ioctl(ifp, command, data);
2629 		break;
2630 	case SIOCSIFMTU:
2631 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2632 			error = EINVAL;
2633 		else {
2634 			ifp->if_mtu = ifr->ifr_mtu;
2635 			ti_init(sc);
2636 		}
2637 		break;
2638 	case SIOCSIFFLAGS:
2639 		if (ifp->if_flags & IFF_UP) {
2640 			/*
2641 			 * If only the state of the PROMISC flag changed,
2642 			 * then just use the 'set promisc mode' command
2643 			 * instead of reinitializing the entire NIC. Doing
2644 			 * a full re-init means reloading the firmware and
2645 			 * waiting for it to start up, which may take a
2646 			 * second or two.
2647 			 */
2648 			if (ifp->if_flags & IFF_RUNNING &&
2649 			    ifp->if_flags & IFF_PROMISC &&
2650 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2651 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2652 				    TI_CMD_CODE_PROMISC_ENB, 0);
2653 			} else if (ifp->if_flags & IFF_RUNNING &&
2654 			    !(ifp->if_flags & IFF_PROMISC) &&
2655 			    sc->ti_if_flags & IFF_PROMISC) {
2656 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2657 				    TI_CMD_CODE_PROMISC_DIS, 0);
2658 			} else
2659 				ti_init(sc);
2660 		} else {
2661 			if (ifp->if_flags & IFF_RUNNING) {
2662 				ti_stop(sc);
2663 			}
2664 		}
2665 		sc->ti_if_flags = ifp->if_flags;
2666 		error = 0;
2667 		break;
2668 	case SIOCADDMULTI:
2669 	case SIOCDELMULTI:
2670 		if (ifp->if_flags & IFF_RUNNING) {
2671 			ti_setmulti(sc);
2672 			error = 0;
2673 		}
2674 		break;
2675 	case SIOCSIFMEDIA:
2676 	case SIOCGIFMEDIA:
2677 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2678 		break;
2679 	default:
2680 		error = EINVAL;
2681 		break;
2682 	}
2683 
2684 	(void)splx(s);
2685 
2686 	return(error);
2687 }
2688 
2689 static void ti_watchdog(ifp)
2690 	struct ifnet		*ifp;
2691 {
2692 	struct ti_softc		*sc;
2693 
2694 	sc = ifp->if_softc;
2695 
2696 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2697 	ti_stop(sc);
2698 	ti_init(sc);
2699 
2700 	ifp->if_oerrors++;
2701 
2702 	return;
2703 }
2704 
2705 /*
2706  * Stop the adapter and free any mbufs allocated to the
2707  * RX and TX lists.
2708  */
2709 static void ti_stop(sc)
2710 	struct ti_softc		*sc;
2711 {
2712 	struct ifnet		*ifp;
2713 	struct ti_cmd_desc	cmd;
2714 
2715 	ifp = &sc->ethercom.ec_if;
2716 
2717 	/* Disable host interrupts. */
2718 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2719 	/*
2720 	 * Tell firmware we're shutting down.
2721 	 */
2722 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2723 
2724 	/* Halt and reinitialize. */
2725 	ti_chipinit(sc);
2726 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2727 	ti_chipinit(sc);
2728 
2729 	/* Free the RX lists. */
2730 	ti_free_rx_ring_std(sc);
2731 
2732 	/* Free jumbo RX list. */
2733 	ti_free_rx_ring_jumbo(sc);
2734 
2735 	/* Free mini RX list. */
2736 	ti_free_rx_ring_mini(sc);
2737 
2738 	/* Free TX buffers. */
2739 	ti_free_tx_ring(sc);
2740 
2741 	sc->ti_ev_prodidx.ti_idx = 0;
2742 	sc->ti_return_prodidx.ti_idx = 0;
2743 	sc->ti_tx_considx.ti_idx = 0;
2744 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2745 
2746 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2747 
2748 	return;
2749 }
2750 
2751 #if 0
2752 /*
2753  * Stop all chip I/O so that the kernel's probe routines don't
2754  * get confused by errant DMAs when rebooting.
2755  */
2756 static void ti_shutdown(dev)
2757 	device_t		dev;
2758 {
2759 	struct ti_softc		*sc;
2760 
2761 	sc = device_get_softc(dev);
2762 
2763 	ti_chipinit(sc);
2764 
2765 	return;
2766 }
2767 #endif
2768