xref: /netbsd-src/sys/dev/pci/if_ti.c (revision 5e4c038a45edbc7d63b7c2daa76e29f88b64a4e3)
1 /* $NetBSD: if_ti.c,v 1.48 2002/06/01 23:50:59 lukem Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.48 2002/06/01 23:50:59 lukem Exp $");
85 
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119 
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124 
125 #include <machine/bus.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/pci/if_tireg.h>
132 
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static const struct ti_type ti_devs[] = {
141 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
142 		"Alteon AceNIC 1000BASE-SX Ethernet" },
143 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 		"Alteon AceNIC 1000BASE-T Ethernet" },
145 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 		"Netgear GA620 1000BASE-SX Ethernet" },
149 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 		"Netgear GA620 1000BASE-T Ethernet" },
151 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ 0, 0, NULL }
154 };
155 
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe	__P((struct device *, struct cfdata *, void *));
158 static void ti_attach	__P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1	__P((struct ti_softc *));
161 static void ti_txeof_tigon2	__P((struct ti_softc *));
162 static void ti_rxeof		__P((struct ti_softc *));
163 
164 static void ti_stats_update	__P((struct ti_softc *));
165 static int ti_encap_tigon1	__P((struct ti_softc *, struct mbuf *,
166 					u_int32_t *));
167 static int ti_encap_tigon2	__P((struct ti_softc *, struct mbuf *,
168 					u_int32_t *));
169 
170 static int ti_intr		__P((void *));
171 static void ti_start		__P((struct ifnet *));
172 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
173 static void ti_init		__P((void *));
174 static void ti_init2		__P((struct ti_softc *));
175 static void ti_stop		__P((struct ti_softc *));
176 static void ti_watchdog		__P((struct ifnet *));
177 static int ti_ifmedia_upd	__P((struct ifnet *));
178 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
179 
180 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
181 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
182 						int, u_int8_t *));
183 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
184 
185 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti		__P((struct ti_softc *));
188 
189 static void ti_mem		__P((struct ti_softc *, u_int32_t,
190 					u_int32_t, caddr_t));
191 static void ti_loadfw		__P((struct ti_softc *));
192 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
194 					caddr_t, int));
195 static void ti_handle_events	__P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
197 static void *ti_jalloc		__P((struct ti_softc *));
198 static void ti_jfree		__P((struct mbuf *, caddr_t, u_int, void *));
199 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std	__P((struct ti_softc *));
203 static void ti_free_rx_ring_std	__P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
206 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
207 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
208 static void ti_free_tx_ring	__P((struct ti_softc *));
209 static int ti_init_tx_ring	__P((struct ti_softc *));
210 
211 static int ti_64bitslot_war	__P((struct ti_softc *));
212 static int ti_chipinit		__P((struct ti_softc *));
213 static int ti_gibinit		__P((struct ti_softc *));
214 
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216 
217 struct cfattach ti_ca = {
218 	sizeof(struct ti_softc), ti_probe, ti_attach
219 };
220 
221 /*
222  * Send an instruction or address to the EEPROM, check for ACK.
223  */
224 static u_int32_t ti_eeprom_putbyte(sc, byte)
225 	struct ti_softc		*sc;
226 	int			byte;
227 {
228 	int		i, ack = 0;
229 
230 	/*
231 	 * Make sure we're in TX mode.
232 	 */
233 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
234 
235 	/*
236 	 * Feed in each bit and stobe the clock.
237 	 */
238 	for (i = 0x80; i; i >>= 1) {
239 		if (byte & i) {
240 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
241 		} else {
242 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243 		}
244 		DELAY(1);
245 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
246 		DELAY(1);
247 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248 	}
249 
250 	/*
251 	 * Turn off TX mode.
252 	 */
253 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
254 
255 	/*
256 	 * Check for ack.
257 	 */
258 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
259 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
260 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261 
262 	return(ack);
263 }
264 
265 /*
266  * Read a byte of data stored in the EEPROM at address 'addr.'
267  * We have to send two address bytes since the EEPROM can hold
268  * more than 256 bytes of data.
269  */
270 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
271 	struct ti_softc		*sc;
272 	int			addr;
273 	u_int8_t		*dest;
274 {
275 	int		i;
276 	u_int8_t		byte = 0;
277 
278 	EEPROM_START;
279 
280 	/*
281 	 * Send write control code to EEPROM.
282 	 */
283 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
284 		printf("%s: failed to send write command, status: %x\n",
285 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 		return(1);
287 	}
288 
289 	/*
290 	 * Send first byte of address of byte we want to read.
291 	 */
292 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
293 		printf("%s: failed to send address, status: %x\n",
294 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
295 		return(1);
296 	}
297 	/*
298 	 * Send second byte address of byte we want to read.
299 	 */
300 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
301 		printf("%s: failed to send address, status: %x\n",
302 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 		return(1);
304 	}
305 
306 	EEPROM_STOP;
307 	EEPROM_START;
308 	/*
309 	 * Send read control code to EEPROM.
310 	 */
311 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
312 		printf("%s: failed to send read command, status: %x\n",
313 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
314 		return(1);
315 	}
316 
317 	/*
318 	 * Start reading bits from EEPROM.
319 	 */
320 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
321 	for (i = 0x80; i; i >>= 1) {
322 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
323 		DELAY(1);
324 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
325 			byte |= i;
326 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
327 		DELAY(1);
328 	}
329 
330 	EEPROM_STOP;
331 
332 	/*
333 	 * No ACK generated for read, so just return byte.
334 	 */
335 
336 	*dest = byte;
337 
338 	return(0);
339 }
340 
341 /*
342  * Read a sequence of bytes from the EEPROM.
343  */
344 static int ti_read_eeprom(sc, dest, off, cnt)
345 	struct ti_softc		*sc;
346 	caddr_t			dest;
347 	int			off;
348 	int			cnt;
349 {
350 	int			err = 0, i;
351 	u_int8_t		byte = 0;
352 
353 	for (i = 0; i < cnt; i++) {
354 		err = ti_eeprom_getbyte(sc, off + i, &byte);
355 		if (err)
356 			break;
357 		*(dest + i) = byte;
358 	}
359 
360 	return(err ? 1 : 0);
361 }
362 
363 /*
364  * NIC memory access function. Can be used to either clear a section
365  * of NIC local memory or (if buf is non-NULL) copy data into it.
366  */
367 static void ti_mem(sc, addr, len, buf)
368 	struct ti_softc		*sc;
369 	u_int32_t		addr, len;
370 	caddr_t			buf;
371 {
372 	int			segptr, segsize, cnt;
373 	caddr_t			ptr;
374 
375 	segptr = addr;
376 	cnt = len;
377 	ptr = buf;
378 
379 	while(cnt) {
380 		if (cnt < TI_WINLEN)
381 			segsize = cnt;
382 		else
383 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
384 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
385 		if (buf == NULL) {
386 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
387 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
388 			    segsize / 4);
389 		} else {
390 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
391 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
392 			    (u_int32_t *)ptr, segsize / 4);
393 			ptr += segsize;
394 		}
395 		segptr += segsize;
396 		cnt -= segsize;
397 	}
398 
399 	return;
400 }
401 
402 /*
403  * Load firmware image into the NIC. Check that the firmware revision
404  * is acceptable and see if we want the firmware for the Tigon 1 or
405  * Tigon 2.
406  */
407 static void ti_loadfw(sc)
408 	struct ti_softc		*sc;
409 {
410 	switch(sc->ti_hwrev) {
411 	case TI_HWREV_TIGON:
412 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
413 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
414 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
415 			printf("%s: firmware revision mismatch; want "
416 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
417 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
418 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
419 			    tigonFwReleaseMinor, tigonFwReleaseFix);
420 			return;
421 		}
422 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
423 		    (caddr_t)tigonFwText);
424 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
425 		    (caddr_t)tigonFwData);
426 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
427 		    (caddr_t)tigonFwRodata);
428 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
429 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
430 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
431 		break;
432 	case TI_HWREV_TIGON_II:
433 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
434 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
435 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
436 			printf("%s: firmware revision mismatch; want "
437 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
438 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
439 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
440 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
441 			return;
442 		}
443 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
444 		    (caddr_t)tigon2FwText);
445 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
446 		    (caddr_t)tigon2FwData);
447 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
448 		    (caddr_t)tigon2FwRodata);
449 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
450 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
451 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
452 		break;
453 	default:
454 		printf("%s: can't load firmware: unknown hardware rev\n",
455 		    sc->sc_dev.dv_xname);
456 		break;
457 	}
458 
459 	return;
460 }
461 
462 /*
463  * Send the NIC a command via the command ring.
464  */
465 static void ti_cmd(sc, cmd)
466 	struct ti_softc		*sc;
467 	struct ti_cmd_desc	*cmd;
468 {
469 	u_int32_t		index;
470 
471 	index = sc->ti_cmd_saved_prodidx;
472 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
473 	TI_INC(index, TI_CMD_RING_CNT);
474 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
475 	sc->ti_cmd_saved_prodidx = index;
476 
477 	return;
478 }
479 
480 /*
481  * Send the NIC an extended command. The 'len' parameter specifies the
482  * number of command slots to include after the initial command.
483  */
484 static void ti_cmd_ext(sc, cmd, arg, len)
485 	struct ti_softc		*sc;
486 	struct ti_cmd_desc	*cmd;
487 	caddr_t			arg;
488 	int			len;
489 {
490 	u_int32_t		index;
491 	int		i;
492 
493 	index = sc->ti_cmd_saved_prodidx;
494 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
495 	TI_INC(index, TI_CMD_RING_CNT);
496 	for (i = 0; i < len; i++) {
497 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
498 		    *(u_int32_t *)(&arg[i * 4]));
499 		TI_INC(index, TI_CMD_RING_CNT);
500 	}
501 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
502 	sc->ti_cmd_saved_prodidx = index;
503 
504 	return;
505 }
506 
507 /*
508  * Handle events that have triggered interrupts.
509  */
510 static void ti_handle_events(sc)
511 	struct ti_softc		*sc;
512 {
513 	struct ti_event_desc	*e;
514 
515 	if (sc->ti_rdata->ti_event_ring == NULL)
516 		return;
517 
518 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
519 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
520 		switch(e->ti_event) {
521 		case TI_EV_LINKSTAT_CHANGED:
522 			sc->ti_linkstat = e->ti_code;
523 			if (e->ti_code == TI_EV_CODE_LINK_UP)
524 				printf("%s: 10/100 link up\n",
525 				       sc->sc_dev.dv_xname);
526 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
527 				printf("%s: gigabit link up\n",
528 				       sc->sc_dev.dv_xname);
529 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
530 				printf("%s: link down\n",
531 				       sc->sc_dev.dv_xname);
532 			break;
533 		case TI_EV_ERROR:
534 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
535 				printf("%s: invalid command\n",
536 				       sc->sc_dev.dv_xname);
537 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
538 				printf("%s: unknown command\n",
539 				       sc->sc_dev.dv_xname);
540 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
541 				printf("%s: bad config data\n",
542 				       sc->sc_dev.dv_xname);
543 			break;
544 		case TI_EV_FIRMWARE_UP:
545 			ti_init2(sc);
546 			break;
547 		case TI_EV_STATS_UPDATED:
548 			ti_stats_update(sc);
549 			break;
550 		case TI_EV_RESET_JUMBO_RING:
551 		case TI_EV_MCAST_UPDATED:
552 			/* Who cares. */
553 			break;
554 		default:
555 			printf("%s: unknown event: %d\n",
556 			    sc->sc_dev.dv_xname, e->ti_event);
557 			break;
558 		}
559 		/* Advance the consumer index. */
560 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
561 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
562 	}
563 
564 	return;
565 }
566 
567 /*
568  * Memory management for the jumbo receive ring is a pain in the
569  * butt. We need to allocate at least 9018 bytes of space per frame,
570  * _and_ it has to be contiguous (unless you use the extended
571  * jumbo descriptor format). Using malloc() all the time won't
572  * work: malloc() allocates memory in powers of two, which means we
573  * would end up wasting a considerable amount of space by allocating
574  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
575  * to do our own memory management.
576  *
577  * The driver needs to allocate a contiguous chunk of memory at boot
578  * time. We then chop this up ourselves into 9K pieces and use them
579  * as external mbuf storage.
580  *
581  * One issue here is how much memory to allocate. The jumbo ring has
582  * 256 slots in it, but at 9K per slot than can consume over 2MB of
583  * RAM. This is a bit much, especially considering we also need
584  * RAM for the standard ring and mini ring (on the Tigon 2). To
585  * save space, we only actually allocate enough memory for 64 slots
586  * by default, which works out to between 500 and 600K. This can
587  * be tuned by changing a #define in if_tireg.h.
588  */
589 
590 static int ti_alloc_jumbo_mem(sc)
591 	struct ti_softc		*sc;
592 {
593 	caddr_t			ptr;
594 	int		i;
595 	struct ti_jpool_entry   *entry;
596 	bus_dma_segment_t dmaseg;
597 	int error, dmanseg;
598 
599 	/* Grab a big chunk o' storage. */
600 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
601 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
602 	    BUS_DMA_NOWAIT)) != 0) {
603 		printf("%s: can't allocate jumbo buffer, error = %d\n",
604 		       sc->sc_dev.dv_xname, error);
605 		return (error);
606 	}
607 
608 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
609 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
610 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
611 		printf("%s: can't map jumbo buffer, error = %d\n",
612 		       sc->sc_dev.dv_xname, error);
613 		return (error);
614 	}
615 
616 	if ((error = bus_dmamap_create(sc->sc_dmat,
617 	    TI_JMEM, 1,
618 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
619 	    &sc->jumbo_dmamap)) != 0) {
620 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
621 		       sc->sc_dev.dv_xname, error);
622 		return (error);
623 	}
624 
625 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
626 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
627 	    BUS_DMA_NOWAIT)) != 0) {
628 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
629 		       sc->sc_dev.dv_xname, error);
630 		return (error);
631 	}
632 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
633 
634 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
635 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
636 
637 	/*
638 	 * Now divide it up into 9K pieces and save the addresses
639 	 * in an array.
640 	 */
641 	ptr = sc->ti_cdata.ti_jumbo_buf;
642 	for (i = 0; i < TI_JSLOTS; i++) {
643 		sc->ti_cdata.ti_jslots[i] = ptr;
644 		ptr += TI_JLEN;
645 		entry = malloc(sizeof(struct ti_jpool_entry),
646 			       M_DEVBUF, M_NOWAIT);
647 		if (entry == NULL) {
648 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
649 			sc->ti_cdata.ti_jumbo_buf = NULL;
650 			printf("%s: no memory for jumbo "
651 			    "buffer queue!\n", sc->sc_dev.dv_xname);
652 			return(ENOBUFS);
653 		}
654 		entry->slot = i;
655 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
656 				    jpool_entries);
657 	}
658 
659 	return(0);
660 }
661 
662 /*
663  * Allocate a jumbo buffer.
664  */
665 static void *ti_jalloc(sc)
666 	struct ti_softc		*sc;
667 {
668 	struct ti_jpool_entry   *entry;
669 
670 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
671 
672 	if (entry == NULL) {
673 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
674 		return(NULL);
675 	}
676 
677 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
678 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
679 	return(sc->ti_cdata.ti_jslots[entry->slot]);
680 }
681 
682 /*
683  * Release a jumbo buffer.
684  */
685 static void ti_jfree(m, buf, size, arg)
686 	struct mbuf		*m;
687 	caddr_t			buf;
688 	u_int			size;
689 	void *arg;
690 {
691 	struct ti_softc		*sc;
692 	int		        i, s;
693 	struct ti_jpool_entry   *entry;
694 
695 	/* Extract the softc struct pointer. */
696 	sc = (struct ti_softc *)arg;
697 
698 	if (sc == NULL)
699 		panic("ti_jfree: didn't get softc pointer!");
700 
701 	/* calculate the slot this buffer belongs to */
702 
703 	i = ((caddr_t)buf
704 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
705 
706 	if ((i < 0) || (i >= TI_JSLOTS))
707 		panic("ti_jfree: asked to free buffer that we don't manage!");
708 
709 	s = splvm();
710 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
711 	if (entry == NULL)
712 		panic("ti_jfree: buffer not in use!");
713 	entry->slot = i;
714 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
715 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
716 
717 	if (__predict_true(m != NULL))
718 		pool_cache_put(&mbpool_cache, m);
719 	splx(s);
720 }
721 
722 
723 /*
724  * Intialize a standard receive ring descriptor.
725  */
726 static int ti_newbuf_std(sc, i, m, dmamap)
727 	struct ti_softc		*sc;
728 	int			i;
729 	struct mbuf		*m;
730 	bus_dmamap_t dmamap; /* required if (m != NULL) */
731 {
732 	struct mbuf		*m_new = NULL;
733 	struct ti_rx_desc	*r;
734 	int error;
735 
736 	if (dmamap == NULL) {
737 		/* if (m) panic() */
738 
739 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
740 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
741 					       &dmamap)) != 0) {
742 			printf("%s: can't create recv map, error = %d\n",
743 			       sc->sc_dev.dv_xname, error);
744 			return(ENOMEM);
745 		}
746 	}
747 	sc->std_dmamap[i] = dmamap;
748 
749 	if (m == NULL) {
750 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
751 		if (m_new == NULL) {
752 			printf("%s: mbuf allocation failed "
753 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
754 			return(ENOBUFS);
755 		}
756 
757 		MCLGET(m_new, M_DONTWAIT);
758 		if (!(m_new->m_flags & M_EXT)) {
759 			printf("%s: cluster allocation failed "
760 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
761 			m_freem(m_new);
762 			return(ENOBUFS);
763 		}
764 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
765 		m_adj(m_new, ETHER_ALIGN);
766 
767 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
768 				mtod(m_new, caddr_t), m_new->m_len, NULL,
769 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
770 			printf("%s: can't load recv map, error = %d\n",
771 			       sc->sc_dev.dv_xname, error);
772 			return (ENOMEM);
773 		}
774 	} else {
775 		m_new = m;
776 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
777 		m_new->m_data = m_new->m_ext.ext_buf;
778 		m_adj(m_new, ETHER_ALIGN);
779 
780 		/* reuse the dmamap */
781 	}
782 
783 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
784 	r = &sc->ti_rdata->ti_rx_std_ring[i];
785 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
786 	r->ti_type = TI_BDTYPE_RECV_BD;
787 	r->ti_flags = 0;
788 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
789 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
790 	if (sc->ethercom.ec_if.if_capenable &
791 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
792 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
793 	r->ti_len = m_new->m_len; /* == ds_len */
794 	r->ti_idx = i;
795 
796 	return(0);
797 }
798 
799 /*
800  * Intialize a mini receive ring descriptor. This only applies to
801  * the Tigon 2.
802  */
803 static int ti_newbuf_mini(sc, i, m, dmamap)
804 	struct ti_softc		*sc;
805 	int			i;
806 	struct mbuf		*m;
807 	bus_dmamap_t dmamap; /* required if (m != NULL) */
808 {
809 	struct mbuf		*m_new = NULL;
810 	struct ti_rx_desc	*r;
811 	int error;
812 
813 	if (dmamap == NULL) {
814 		/* if (m) panic() */
815 
816 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
817 					       MHLEN, 0, BUS_DMA_NOWAIT,
818 					       &dmamap)) != 0) {
819 			printf("%s: can't create recv map, error = %d\n",
820 			       sc->sc_dev.dv_xname, error);
821 			return(ENOMEM);
822 		}
823 	}
824 	sc->mini_dmamap[i] = dmamap;
825 
826 	if (m == NULL) {
827 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
828 		if (m_new == NULL) {
829 			printf("%s: mbuf allocation failed "
830 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
831 			return(ENOBUFS);
832 		}
833 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
834 		m_adj(m_new, ETHER_ALIGN);
835 
836 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
837 				mtod(m_new, caddr_t), m_new->m_len, NULL,
838 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
839 			printf("%s: can't load recv map, error = %d\n",
840 			       sc->sc_dev.dv_xname, error);
841 			return (ENOMEM);
842 		}
843 	} else {
844 		m_new = m;
845 		m_new->m_data = m_new->m_pktdat;
846 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
847 		m_adj(m_new, ETHER_ALIGN);
848 
849 		/* reuse the dmamap */
850 	}
851 
852 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
853 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
854 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
855 	r->ti_type = TI_BDTYPE_RECV_BD;
856 	r->ti_flags = TI_BDFLAG_MINI_RING;
857 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
858 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
859 	if (sc->ethercom.ec_if.if_capenable &
860 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
861 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
862 	r->ti_len = m_new->m_len; /* == ds_len */
863 	r->ti_idx = i;
864 
865 	return(0);
866 }
867 
868 /*
869  * Initialize a jumbo receive ring descriptor. This allocates
870  * a jumbo buffer from the pool managed internally by the driver.
871  */
872 static int ti_newbuf_jumbo(sc, i, m)
873 	struct ti_softc		*sc;
874 	int			i;
875 	struct mbuf		*m;
876 {
877 	struct mbuf		*m_new = NULL;
878 	struct ti_rx_desc	*r;
879 
880 	if (m == NULL) {
881 		caddr_t			*buf = NULL;
882 
883 		/* Allocate the mbuf. */
884 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
885 		if (m_new == NULL) {
886 			printf("%s: mbuf allocation failed "
887 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
888 			return(ENOBUFS);
889 		}
890 
891 		/* Allocate the jumbo buffer */
892 		buf = ti_jalloc(sc);
893 		if (buf == NULL) {
894 			m_freem(m_new);
895 			printf("%s: jumbo allocation failed "
896 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
897 			return(ENOBUFS);
898 		}
899 
900 		/* Attach the buffer to the mbuf. */
901 		MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
902 		    M_DEVBUF, ti_jfree, sc);
903 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
904 	} else {
905 		m_new = m;
906 		m_new->m_data = m_new->m_ext.ext_buf;
907 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
908 	}
909 
910 	m_adj(m_new, ETHER_ALIGN);
911 	/* Set up the descriptor. */
912 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
913 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
914 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
915 		((caddr_t)mtod(m_new, caddr_t)
916 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
917 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
918 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
919 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
920 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
921 	if (sc->ethercom.ec_if.if_capenable &
922 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
923 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
924 	r->ti_len = m_new->m_len;
925 	r->ti_idx = i;
926 
927 	return(0);
928 }
929 
930 /*
931  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
932  * that's 1MB or memory, which is a lot. For now, we fill only the first
933  * 256 ring entries and hope that our CPU is fast enough to keep up with
934  * the NIC.
935  */
936 static int ti_init_rx_ring_std(sc)
937 	struct ti_softc		*sc;
938 {
939 	int		i;
940 	struct ti_cmd_desc	cmd;
941 
942 	for (i = 0; i < TI_SSLOTS; i++) {
943 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
944 			return(ENOBUFS);
945 	};
946 
947 	TI_UPDATE_STDPROD(sc, i - 1);
948 	sc->ti_std = i - 1;
949 
950 	return(0);
951 }
952 
953 static void ti_free_rx_ring_std(sc)
954 	struct ti_softc		*sc;
955 {
956 	int		i;
957 
958 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
959 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
960 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
961 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
962 
963 			/* if (sc->std_dmamap[i] == 0) panic() */
964 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
965 			sc->std_dmamap[i] = 0;
966 		}
967 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
968 		    sizeof(struct ti_rx_desc));
969 	}
970 
971 	return;
972 }
973 
974 static int ti_init_rx_ring_jumbo(sc)
975 	struct ti_softc		*sc;
976 {
977 	int		i;
978 	struct ti_cmd_desc	cmd;
979 
980 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
981 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
982 			return(ENOBUFS);
983 	};
984 
985 	TI_UPDATE_JUMBOPROD(sc, i - 1);
986 	sc->ti_jumbo = i - 1;
987 
988 	return(0);
989 }
990 
991 static void ti_free_rx_ring_jumbo(sc)
992 	struct ti_softc		*sc;
993 {
994 	int		i;
995 
996 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
997 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
998 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
999 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1000 		}
1001 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1002 		    sizeof(struct ti_rx_desc));
1003 	}
1004 
1005 	return;
1006 }
1007 
1008 static int ti_init_rx_ring_mini(sc)
1009 	struct ti_softc		*sc;
1010 {
1011 	int		i;
1012 
1013 	for (i = 0; i < TI_MSLOTS; i++) {
1014 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1015 			return(ENOBUFS);
1016 	};
1017 
1018 	TI_UPDATE_MINIPROD(sc, i - 1);
1019 	sc->ti_mini = i - 1;
1020 
1021 	return(0);
1022 }
1023 
1024 static void ti_free_rx_ring_mini(sc)
1025 	struct ti_softc		*sc;
1026 {
1027 	int		i;
1028 
1029 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1030 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1031 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1032 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1033 
1034 			/* if (sc->mini_dmamap[i] == 0) panic() */
1035 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1036 			sc->mini_dmamap[i] = 0;
1037 		}
1038 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1039 		    sizeof(struct ti_rx_desc));
1040 	}
1041 
1042 	return;
1043 }
1044 
1045 static void ti_free_tx_ring(sc)
1046 	struct ti_softc		*sc;
1047 {
1048 	int		i;
1049 	struct txdmamap_pool_entry *dma;
1050 
1051 	if (sc->ti_rdata->ti_tx_ring == NULL)
1052 		return;
1053 
1054 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1055 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1056 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1057 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1058 
1059 			/* if (sc->txdma[i] == 0) panic() */
1060 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1061 					    link);
1062 			sc->txdma[i] = 0;
1063 		}
1064 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1065 		    sizeof(struct ti_tx_desc));
1066 	}
1067 
1068 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1069 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1070 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1071 		free(dma, M_DEVBUF);
1072 	}
1073 
1074 	return;
1075 }
1076 
1077 static int ti_init_tx_ring(sc)
1078 	struct ti_softc		*sc;
1079 {
1080 	int i, error;
1081 	bus_dmamap_t dmamap;
1082 	struct txdmamap_pool_entry *dma;
1083 
1084 	sc->ti_txcnt = 0;
1085 	sc->ti_tx_saved_considx = 0;
1086 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1087 
1088 	SIMPLEQ_INIT(&sc->txdma_list);
1089 	for (i = 0; i < TI_RSLOTS; i++) {
1090 		/* I've seen mbufs with 30 fragments. */
1091 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1092 					       40, ETHER_MAX_LEN_JUMBO, 0,
1093 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1094 			printf("%s: can't create tx map, error = %d\n",
1095 			       sc->sc_dev.dv_xname, error);
1096 			return(ENOMEM);
1097 		}
1098 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1099 		if (!dma) {
1100 			printf("%s: can't alloc txdmamap_pool_entry\n",
1101 			       sc->sc_dev.dv_xname);
1102 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1103 			return (ENOMEM);
1104 		}
1105 		dma->dmamap = dmamap;
1106 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1107 	}
1108 
1109 	return(0);
1110 }
1111 
1112 /*
1113  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1114  * but we have to support the old way too so that Tigon 1 cards will
1115  * work.
1116  */
1117 void ti_add_mcast(sc, addr)
1118 	struct ti_softc		*sc;
1119 	struct ether_addr	*addr;
1120 {
1121 	struct ti_cmd_desc	cmd;
1122 	u_int16_t		*m;
1123 	u_int32_t		ext[2] = {0, 0};
1124 
1125 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1126 
1127 	switch(sc->ti_hwrev) {
1128 	case TI_HWREV_TIGON:
1129 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1130 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1131 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1132 		break;
1133 	case TI_HWREV_TIGON_II:
1134 		ext[0] = htons(m[0]);
1135 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1136 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1137 		break;
1138 	default:
1139 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1140 		break;
1141 	}
1142 
1143 	return;
1144 }
1145 
1146 void ti_del_mcast(sc, addr)
1147 	struct ti_softc		*sc;
1148 	struct ether_addr	*addr;
1149 {
1150 	struct ti_cmd_desc	cmd;
1151 	u_int16_t		*m;
1152 	u_int32_t		ext[2] = {0, 0};
1153 
1154 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1155 
1156 	switch(sc->ti_hwrev) {
1157 	case TI_HWREV_TIGON:
1158 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1159 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1160 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1161 		break;
1162 	case TI_HWREV_TIGON_II:
1163 		ext[0] = htons(m[0]);
1164 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1165 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1166 		break;
1167 	default:
1168 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1169 		break;
1170 	}
1171 
1172 	return;
1173 }
1174 
1175 /*
1176  * Configure the Tigon's multicast address filter.
1177  *
1178  * The actual multicast table management is a bit of a pain, thanks to
1179  * slight brain damage on the part of both Alteon and us. With our
1180  * multicast code, we are only alerted when the multicast address table
1181  * changes and at that point we only have the current list of addresses:
1182  * we only know the current state, not the previous state, so we don't
1183  * actually know what addresses were removed or added. The firmware has
1184  * state, but we can't get our grubby mits on it, and there is no 'delete
1185  * all multicast addresses' command. Hence, we have to maintain our own
1186  * state so we know what addresses have been programmed into the NIC at
1187  * any given time.
1188  */
1189 static void ti_setmulti(sc)
1190 	struct ti_softc		*sc;
1191 {
1192 	struct ifnet		*ifp;
1193 	struct ti_cmd_desc	cmd;
1194 	struct ti_mc_entry	*mc;
1195 	u_int32_t		intrs;
1196 	struct ether_multi *enm;
1197 	struct ether_multistep step;
1198 
1199 	ifp = &sc->ethercom.ec_if;
1200 
1201 	/* Disable interrupts. */
1202 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1203 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1204 
1205 	/* First, zot all the existing filters. */
1206 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1207 		ti_del_mcast(sc, &mc->mc_addr);
1208 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1209 		free(mc, M_DEVBUF);
1210 	}
1211 
1212 	/*
1213 	 * Remember all multicast addresses so that we can delete them
1214 	 * later.  Punt if there is a range of addresses or memory shortage.
1215 	 */
1216 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1217 	while (enm != NULL) {
1218 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1219 		    ETHER_ADDR_LEN) != 0)
1220 			goto allmulti;
1221 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1222 		    M_NOWAIT)) == NULL)
1223 			goto allmulti;
1224 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1225 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1226 		ETHER_NEXT_MULTI(step, enm);
1227 	}
1228 
1229 	/* Accept only programmed multicast addresses */
1230 	ifp->if_flags &= ~IFF_ALLMULTI;
1231 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1232 
1233 	/* Now program new ones. */
1234 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1235 		ti_add_mcast(sc, &mc->mc_addr);
1236 
1237 	/* Re-enable interrupts. */
1238 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1239 
1240 	return;
1241 
1242 allmulti:
1243 	/* No need to keep individual multicast addresses */
1244 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1245 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1246 		free(mc, M_DEVBUF);
1247 	}
1248 
1249 	/* Accept all multicast addresses */
1250 	ifp->if_flags |= IFF_ALLMULTI;
1251 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1252 
1253 	/* Re-enable interrupts. */
1254 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1255 }
1256 
1257 /*
1258  * Check to see if the BIOS has configured us for a 64 bit slot when
1259  * we aren't actually in one. If we detect this condition, we can work
1260  * around it on the Tigon 2 by setting a bit in the PCI state register,
1261  * but for the Tigon 1 we must give up and abort the interface attach.
1262  */
1263 static int ti_64bitslot_war(sc)
1264 	struct ti_softc		*sc;
1265 {
1266 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1267 		CSR_WRITE_4(sc, 0x600, 0);
1268 		CSR_WRITE_4(sc, 0x604, 0);
1269 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1270 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1271 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1272 				return(EINVAL);
1273 			else {
1274 				TI_SETBIT(sc, TI_PCI_STATE,
1275 				    TI_PCISTATE_32BIT_BUS);
1276 				return(0);
1277 			}
1278 		}
1279 	}
1280 
1281 	return(0);
1282 }
1283 
1284 /*
1285  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1286  * self-test results.
1287  */
1288 static int ti_chipinit(sc)
1289 	struct ti_softc		*sc;
1290 {
1291 	u_int32_t		cacheline;
1292 	u_int32_t		pci_writemax = 0;
1293 
1294 	/* Initialize link to down state. */
1295 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1296 
1297 	/* Set endianness before we access any non-PCI registers. */
1298 #if BYTE_ORDER == BIG_ENDIAN
1299 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1300 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1301 #else
1302 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1303 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1304 #endif
1305 
1306 	/* Check the ROM failed bit to see if self-tests passed. */
1307 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1308 		printf("%s: board self-diagnostics failed!\n",
1309 		       sc->sc_dev.dv_xname);
1310 		return(ENODEV);
1311 	}
1312 
1313 	/* Halt the CPU. */
1314 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1315 
1316 	/* Figure out the hardware revision. */
1317 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1318 	case TI_REV_TIGON_I:
1319 		sc->ti_hwrev = TI_HWREV_TIGON;
1320 		break;
1321 	case TI_REV_TIGON_II:
1322 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1323 		break;
1324 	default:
1325 		printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1326 		return(ENODEV);
1327 	}
1328 
1329 	/* Do special setup for Tigon 2. */
1330 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1331 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1332 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1333 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1334 	}
1335 
1336 	/* Set up the PCI state register. */
1337 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1338 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1339 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1340 	}
1341 
1342 	/* Clear the read/write max DMA parameters. */
1343 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1344 	    TI_PCISTATE_READ_MAXDMA));
1345 
1346 	/* Get cache line size. */
1347 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1348 
1349 	/*
1350 	 * If the system has set enabled the PCI memory write
1351 	 * and invalidate command in the command register, set
1352 	 * the write max parameter accordingly. This is necessary
1353 	 * to use MWI with the Tigon 2.
1354 	 */
1355 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1356 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1357 		switch(cacheline) {
1358 		case 1:
1359 		case 4:
1360 		case 8:
1361 		case 16:
1362 		case 32:
1363 		case 64:
1364 			break;
1365 		default:
1366 		/* Disable PCI memory write and invalidate. */
1367 			if (bootverbose)
1368 				printf("%s: cache line size %d not "
1369 				    "supported; disabling PCI MWI\n",
1370 				    sc->sc_dev.dv_xname, cacheline);
1371 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1372 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1373 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1374 			break;
1375 		}
1376 	}
1377 
1378 #ifdef __brokenalpha__
1379 	/*
1380 	 * From the Alteon sample driver:
1381 	 * Must insure that we do not cross an 8K (bytes) boundary
1382 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1383 	 * restriction on some ALPHA platforms with early revision
1384 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1385 	 */
1386 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1387 #else
1388 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1389 #endif
1390 
1391 	/* This sets the min dma param all the way up (0xff). */
1392 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1393 
1394 	/* Configure DMA variables. */
1395 #if BYTE_ORDER == BIG_ENDIAN
1396 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1397 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1398 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1399 	    TI_OPMODE_DONT_FRAG_JUMBO);
1400 #else
1401 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1402 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1403 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1404 #endif
1405 
1406 	/*
1407 	 * Only allow 1 DMA channel to be active at a time.
1408 	 * I don't think this is a good idea, but without it
1409 	 * the firmware racks up lots of nicDmaReadRingFull
1410 	 * errors.
1411 	 * Incompatible with hardware assisted checksums.
1412 	 */
1413 	if ((sc->ethercom.ec_if.if_capenable &
1414 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1415 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1416 
1417 	/* Recommended settings from Tigon manual. */
1418 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1419 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1420 
1421 	if (ti_64bitslot_war(sc)) {
1422 		printf("%s: bios thinks we're in a 64 bit slot, "
1423 		    "but we aren't", sc->sc_dev.dv_xname);
1424 		return(EINVAL);
1425 	}
1426 
1427 	return(0);
1428 }
1429 
1430 /*
1431  * Initialize the general information block and firmware, and
1432  * start the CPU(s) running.
1433  */
1434 static int ti_gibinit(sc)
1435 	struct ti_softc		*sc;
1436 {
1437 	struct ti_rcb		*rcb;
1438 	int			i;
1439 	struct ifnet		*ifp;
1440 
1441 	ifp = &sc->ethercom.ec_if;
1442 
1443 	/* Disable interrupts for now. */
1444 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1445 
1446 	/* Tell the chip where to find the general information block. */
1447 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1448 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1449 
1450 	/* Load the firmware into SRAM. */
1451 	ti_loadfw(sc);
1452 
1453 	/* Set up the contents of the general info and ring control blocks. */
1454 
1455 	/* Set up the event ring and producer pointer. */
1456 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1457 
1458 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1459 	rcb->ti_flags = 0;
1460 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1461 	    TI_CDEVPRODADDR(sc);
1462 
1463 	sc->ti_ev_prodidx.ti_idx = 0;
1464 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1465 	sc->ti_ev_saved_considx = 0;
1466 
1467 	/* Set up the command ring and producer mailbox. */
1468 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1469 
1470 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1471 	rcb->ti_flags = 0;
1472 	rcb->ti_max_len = 0;
1473 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1474 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1475 	}
1476 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1477 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1478 	sc->ti_cmd_saved_prodidx = 0;
1479 
1480 	/*
1481 	 * Assign the address of the stats refresh buffer.
1482 	 * We re-use the current stats buffer for this to
1483 	 * conserve memory.
1484 	 */
1485 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1486 	    TI_CDSTATSADDR(sc);
1487 
1488 	/* Set up the standard receive ring. */
1489 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1490 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1491 	rcb->ti_max_len = ETHER_MAX_LEN;
1492 	rcb->ti_flags = 0;
1493 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1494 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1495 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1496 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1497 	if (sc->ethercom.ec_nvlans != 0)
1498 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1499 
1500 	/* Set up the jumbo receive ring. */
1501 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1502 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1503 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1504 	rcb->ti_flags = 0;
1505 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1506 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1507 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1508 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1509 	if (sc->ethercom.ec_nvlans != 0)
1510 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1511 
1512 	/*
1513 	 * Set up the mini ring. Only activated on the
1514 	 * Tigon 2 but the slot in the config block is
1515 	 * still there on the Tigon 1.
1516 	 */
1517 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1518 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1519 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1520 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1521 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1522 	else
1523 		rcb->ti_flags = 0;
1524 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1525 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1526 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1527 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1528 	if (sc->ethercom.ec_nvlans != 0)
1529 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1530 
1531 	/*
1532 	 * Set up the receive return ring.
1533 	 */
1534 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1535 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1536 	rcb->ti_flags = 0;
1537 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1538 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1539 	    TI_CDRTNPRODADDR(sc);
1540 
1541 	/*
1542 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1543 	 * of putting the transmit ring in the host's address space and
1544 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1545 	 * memory and accessing it through the shared memory region. We
1546 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1547 	 * so we have to revert to the shared memory scheme if we detect
1548 	 * a Tigon 1 chip.
1549 	 */
1550 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1551 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1552 		sc->ti_tx_ring_nic =
1553 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1554 	}
1555 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1556 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1557 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1558 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1559 		rcb->ti_flags = 0;
1560 	else
1561 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1562 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1563 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1564 	/*
1565 	 * When we get the packet, there is a pseudo-header seed already
1566 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1567 	 * compute the pseudo-header checksum again!
1568 	 */
1569 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1570 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1571 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1572 	if (sc->ethercom.ec_nvlans != 0)
1573 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1574 	rcb->ti_max_len = TI_TX_RING_CNT;
1575 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1576 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1577 	else
1578 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1579 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1580 	    TI_CDTXCONSADDR(sc);
1581 
1582 	/*
1583 	 * We're done frobbing the General Information Block.  Sync
1584 	 * it.  Note we take care of the first stats sync here, as
1585 	 * well.
1586 	 */
1587 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1588 
1589 	/* Set up tuneables */
1590 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1591 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1592 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1593 		    (sc->ti_rx_coal_ticks / 10));
1594 	else
1595 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1596 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1597 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1598 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1599 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1600 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1601 
1602 	/* Turn interrupts on. */
1603 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1604 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1605 
1606 	/* Start CPU. */
1607 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1608 
1609 	return(0);
1610 }
1611 
1612 /*
1613  * look for id in the device list, returning the first match
1614  */
1615 static const struct ti_type *
1616 ti_type_match(pa)
1617 	struct pci_attach_args *pa;
1618 {
1619 	const struct ti_type          *t;
1620 
1621 	t = ti_devs;
1622 	while(t->ti_name != NULL) {
1623 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1624 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1625 			return (t);
1626 		}
1627 		t++;
1628 	}
1629 
1630 	return(NULL);
1631 }
1632 
1633 /*
1634  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1635  * against our list and return its name if we find a match.
1636  */
1637 static int ti_probe(parent, match, aux)
1638 	struct device *parent;
1639 	struct cfdata *match;
1640 	void *aux;
1641 {
1642 	struct pci_attach_args *pa = aux;
1643 	const struct ti_type		*t;
1644 
1645 	t = ti_type_match(pa);
1646 
1647 	return((t == NULL) ? 0 : 1);
1648 }
1649 
1650 static void ti_attach(parent, self, aux)
1651 	struct device *parent, *self;
1652 	void *aux;
1653 {
1654 	u_int32_t		command;
1655 	struct ifnet		*ifp;
1656 	struct ti_softc		*sc;
1657 	u_char eaddr[ETHER_ADDR_LEN];
1658 	struct pci_attach_args *pa = aux;
1659 	pci_chipset_tag_t pc = pa->pa_pc;
1660 	pci_intr_handle_t ih;
1661 	const char *intrstr = NULL;
1662 	bus_dma_segment_t dmaseg;
1663 	int error, dmanseg, nolinear;
1664 	const struct ti_type		*t;
1665 
1666 	t = ti_type_match(pa);
1667 	if (t == NULL) {
1668 		printf("ti_attach: were did the card go ?\n");
1669 		return;
1670 	}
1671 
1672 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1673 
1674 	sc = (struct ti_softc *)self;
1675 
1676 	/*
1677 	 * Map control/status registers.
1678 	 */
1679 	nolinear = 0;
1680 	if (pci_mapreg_map(pa, 0x10,
1681 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1682 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1683 	    NULL, NULL)) {
1684 		nolinear = 1;
1685 		if (pci_mapreg_map(pa, 0x10,
1686 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1687 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1688 			printf(": can't map memory space\n");
1689 			return;
1690 		}
1691 	}
1692 	if (nolinear == 0)
1693 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1694 	else
1695 		sc->ti_vhandle = NULL;
1696 
1697 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1698 	command |= PCI_COMMAND_MASTER_ENABLE;
1699 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1700 
1701 	/* Allocate interrupt */
1702 	if (pci_intr_map(pa, &ih)) {
1703 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1704 		return;;
1705 	}
1706 	intrstr = pci_intr_string(pc, ih);
1707 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1708 	if (sc->sc_ih == NULL) {
1709 		printf("%s: couldn't establish interrupt",
1710 		    sc->sc_dev.dv_xname);
1711 		if (intrstr != NULL)
1712 			printf(" at %s", intrstr);
1713 		printf("\n");
1714 		return;;
1715 	}
1716 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1717 	/*
1718 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1719 	 * doing do could allow DMA to corrupt kernel memory during the
1720 	 * reboot before the driver initializes.
1721 	 */
1722 	(void) shutdownhook_establish(ti_shutdown, sc);
1723 
1724 	if (ti_chipinit(sc)) {
1725 		printf("%s: chip initialization failed\n", self->dv_xname);
1726 		goto fail2;
1727 	}
1728 
1729 	/*
1730 	 * Deal with some chip diffrences.
1731 	 */
1732 	switch (sc->ti_hwrev) {
1733 	case TI_HWREV_TIGON:
1734 		sc->sc_tx_encap = ti_encap_tigon1;
1735 		sc->sc_tx_eof = ti_txeof_tigon1;
1736 		if (nolinear == 1)
1737 			printf("%s: memory space not mapped linear\n",
1738 			    self->dv_xname);
1739 		break;
1740 
1741 	case TI_HWREV_TIGON_II:
1742 		sc->sc_tx_encap = ti_encap_tigon2;
1743 		sc->sc_tx_eof = ti_txeof_tigon2;
1744 		break;
1745 
1746 	default:
1747 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
1748 		    sc->ti_hwrev);
1749 		goto fail2;
1750 	}
1751 
1752 	/* Zero out the NIC's on-board SRAM. */
1753 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1754 
1755 	/* Init again -- zeroing memory may have clobbered some registers. */
1756 	if (ti_chipinit(sc)) {
1757 		printf("%s: chip initialization failed\n", self->dv_xname);
1758 		goto fail2;
1759 	}
1760 
1761 	/*
1762 	 * Get station address from the EEPROM. Note: the manual states
1763 	 * that the MAC address is at offset 0x8c, however the data is
1764 	 * stored as two longwords (since that's how it's loaded into
1765 	 * the NIC). This means the MAC address is actually preceded
1766 	 * by two zero bytes. We need to skip over those.
1767 	 */
1768 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1769 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1770 		printf("%s: failed to read station address\n", self->dv_xname);
1771 		goto fail2;
1772 	}
1773 
1774 	/*
1775 	 * A Tigon chip was detected. Inform the world.
1776 	 */
1777 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1778 				ether_sprintf(eaddr));
1779 
1780 	sc->sc_dmat = pa->pa_dmat;
1781 
1782 	/* Allocate the general information block and ring buffers. */
1783 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1784 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1785 	    BUS_DMA_NOWAIT)) != 0) {
1786 		printf("%s: can't allocate ring buffer, error = %d\n",
1787 		       sc->sc_dev.dv_xname, error);
1788 		goto fail2;
1789 	}
1790 
1791 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1792 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1793 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1794 		printf("%s: can't map ring buffer, error = %d\n",
1795 		       sc->sc_dev.dv_xname, error);
1796 		goto fail2;
1797 	}
1798 
1799 	if ((error = bus_dmamap_create(sc->sc_dmat,
1800 	    sizeof(struct ti_ring_data), 1,
1801 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1802 	    &sc->info_dmamap)) != 0) {
1803 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1804 		       sc->sc_dev.dv_xname, error);
1805 		goto fail2;
1806 	}
1807 
1808 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1809 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1810 	    BUS_DMA_NOWAIT)) != 0) {
1811 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1812 		       sc->sc_dev.dv_xname, error);
1813 		goto fail2;
1814 	}
1815 
1816 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1817 
1818 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1819 
1820 	/* Try to allocate memory for jumbo buffers. */
1821 	if (ti_alloc_jumbo_mem(sc)) {
1822 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1823 		goto fail2;
1824 	}
1825 
1826 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1827 
1828 	/*
1829 	 * We really need a better way to tell a 1000baseT card
1830 	 * from a 1000baseSX one, since in theory there could be
1831 	 * OEMed 1000baseT cards from lame vendors who aren't
1832 	 * clever enough to change the PCI ID. For the moment
1833 	 * though, the AceNIC is the only copper card available.
1834 	 */
1835 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1836 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1837 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1838 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1839 		sc->ti_copper = 1;
1840 	else
1841 		sc->ti_copper = 0;
1842 
1843 	/* Set default tuneable values. */
1844 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1845 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1846 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1847 	sc->ti_rx_max_coal_bds = 64;
1848 	sc->ti_tx_max_coal_bds = 128;
1849 	sc->ti_tx_buf_ratio = 21;
1850 
1851 	/* Set up ifnet structure */
1852 	ifp = &sc->ethercom.ec_if;
1853 	ifp->if_softc = sc;
1854 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1855 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1856 	ifp->if_ioctl = ti_ioctl;
1857 	ifp->if_start = ti_start;
1858 	ifp->if_watchdog = ti_watchdog;
1859 	IFQ_SET_READY(&ifp->if_snd);
1860 
1861 #if 0
1862 	/*
1863 	 * XXX This is not really correct -- we don't necessarily
1864 	 * XXX want to queue up as many as we can transmit at the
1865 	 * XXX upper layer like that.  Someone with a board should
1866 	 * XXX check to see how this affects performance.
1867 	 */
1868 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1869 #endif
1870 
1871 	/*
1872 	 * We can support 802.1Q VLAN-sized frames.
1873 	 */
1874 	sc->ethercom.ec_capabilities |=
1875 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1876 
1877 	/*
1878 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1879 	 */
1880 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1881 	    IFCAP_CSUM_UDPv4;
1882 
1883 	/* Set up ifmedia support. */
1884 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1885 	if (sc->ti_copper) {
1886                 /*
1887                  * Copper cards allow manual 10/100 mode selection,
1888                  * but not manual 1000baseT mode selection. Why?
1889                  * Becuase currently there's no way to specify the
1890                  * master/slave setting through the firmware interface,
1891                  * so Alteon decided to just bag it and handle it
1892                  * via autonegotiation.
1893                  */
1894                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1895                 ifmedia_add(&sc->ifmedia,
1896                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1897                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1898                 ifmedia_add(&sc->ifmedia,
1899                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1900                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1901                 ifmedia_add(&sc->ifmedia,
1902                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1903 	} else {
1904 		/* Fiber cards don't support 10/100 modes. */
1905 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1906 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1907 	}
1908 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1909 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1910 
1911 	/*
1912 	 * Call MI attach routines.
1913 	 */
1914 	if_attach(ifp);
1915 	ether_ifattach(ifp, eaddr);
1916 
1917 	return;
1918 fail2:
1919 	pci_intr_disestablish(pc, sc->sc_ih);
1920 	return;
1921 }
1922 
1923 /*
1924  * Frame reception handling. This is called if there's a frame
1925  * on the receive return list.
1926  *
1927  * Note: we have to be able to handle three possibilities here:
1928  * 1) the frame is from the mini receive ring (can only happen)
1929  *    on Tigon 2 boards)
1930  * 2) the frame is from the jumbo receive ring
1931  * 3) the frame is from the standard receive ring
1932  */
1933 
1934 static void ti_rxeof(sc)
1935 	struct ti_softc		*sc;
1936 {
1937 	struct ifnet		*ifp;
1938 	struct ti_cmd_desc	cmd;
1939 
1940 	ifp = &sc->ethercom.ec_if;
1941 
1942 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1943 		struct ti_rx_desc	*cur_rx;
1944 		u_int32_t		rxidx;
1945 		struct mbuf		*m = NULL;
1946 		u_int16_t		vlan_tag = 0;
1947 		int			have_tag = 0;
1948 		struct ether_header	*eh;
1949 		bus_dmamap_t dmamap;
1950 
1951 		cur_rx =
1952 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1953 		rxidx = cur_rx->ti_idx;
1954 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1955 
1956 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1957 			have_tag = 1;
1958 			vlan_tag = cur_rx->ti_vlan_tag;
1959 		}
1960 
1961 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1962 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1963 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1964 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1965 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1966 				ifp->if_ierrors++;
1967 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1968 				continue;
1969 			}
1970 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1971 			    == ENOBUFS) {
1972 				ifp->if_ierrors++;
1973 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1974 				continue;
1975 			}
1976 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1977 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1978 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1979 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1980 			dmamap = sc->mini_dmamap[rxidx];
1981 			sc->mini_dmamap[rxidx] = 0;
1982 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1983 				ifp->if_ierrors++;
1984 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1985 				continue;
1986 			}
1987 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1988 			    == ENOBUFS) {
1989 				ifp->if_ierrors++;
1990 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1991 				continue;
1992 			}
1993 		} else {
1994 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1995 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1996 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1997 			dmamap = sc->std_dmamap[rxidx];
1998 			sc->std_dmamap[rxidx] = 0;
1999 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2000 				ifp->if_ierrors++;
2001 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2002 				continue;
2003 			}
2004 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2005 			    == ENOBUFS) {
2006 				ifp->if_ierrors++;
2007 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2008 				continue;
2009 			}
2010 		}
2011 
2012 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2013 		ifp->if_ipackets++;
2014 		m->m_pkthdr.rcvif = ifp;
2015 
2016 #if NBPFILTER > 0
2017 		/*
2018 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
2019 	 	 * don't pass it up to the ether_input() layer unless it's
2020 	 	 * a broadcast packet, multicast packet, matches our ethernet
2021 	 	 * address or the interface is in promiscuous mode.
2022 	 	 */
2023 		if (ifp->if_bpf)
2024 			bpf_mtap(ifp->if_bpf, m);
2025 #endif
2026 
2027 		eh = mtod(m, struct ether_header *);
2028 		switch (ntohs(eh->ether_type)) {
2029 #ifdef INET
2030 		case ETHERTYPE_IP:
2031 		    {
2032 			struct ip *ip = (struct ip *) (eh + 1);
2033 
2034 			/*
2035 			 * Note the Tigon firmware does not invert
2036 			 * the checksum for us, hence the XOR.
2037 			 */
2038 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2039 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2040 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2041 			/*
2042 			 * ntohs() the constant so the compiler can
2043 			 * optimize...
2044 			 *
2045 			 * XXX Figure out a sane way to deal with
2046 			 * fragmented packets.
2047 			 */
2048 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2049 				switch (ip->ip_p) {
2050 				case IPPROTO_TCP:
2051 					m->m_pkthdr.csum_data =
2052 					    cur_rx->ti_tcp_udp_cksum;
2053 					m->m_pkthdr.csum_flags |=
2054 					    M_CSUM_TCPv4|M_CSUM_DATA;
2055 					break;
2056 				case IPPROTO_UDP:
2057 					m->m_pkthdr.csum_data =
2058 					    cur_rx->ti_tcp_udp_cksum;
2059 					m->m_pkthdr.csum_flags |=
2060 					    M_CSUM_UDPv4|M_CSUM_DATA;
2061 					break;
2062 				default:
2063 					/* Nothing */;
2064 				}
2065 			}
2066 			break;
2067 		    }
2068 #endif
2069 		default:
2070 			/* Nothing. */
2071 			break;
2072 		}
2073 
2074 		if (have_tag) {
2075 			struct mbuf *n;
2076 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2077 			if (n) {
2078 				*mtod(n, int *) = vlan_tag;
2079 				n->m_len = sizeof(int);
2080 			} else {
2081 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2082 				m_freem(m);
2083 				continue;
2084 			}
2085 			have_tag = vlan_tag = 0;
2086 		}
2087 		(*ifp->if_input)(ifp, m);
2088 	}
2089 
2090 	/* Only necessary on the Tigon 1. */
2091 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2092 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2093 		    sc->ti_rx_saved_considx);
2094 
2095 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2096 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2097 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2098 
2099 	return;
2100 }
2101 
2102 static void ti_txeof_tigon1(sc)
2103 	struct ti_softc		*sc;
2104 {
2105 	struct ti_tx_desc	*cur_tx = NULL;
2106 	struct ifnet		*ifp;
2107 	struct txdmamap_pool_entry *dma;
2108 
2109 	ifp = &sc->ethercom.ec_if;
2110 
2111 	/*
2112 	 * Go through our tx ring and free mbufs for those
2113 	 * frames that have been sent.
2114 	 */
2115 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2116 		u_int32_t		idx = 0;
2117 
2118 		idx = sc->ti_tx_saved_considx;
2119 		if (idx > 383)
2120 			CSR_WRITE_4(sc, TI_WINBASE,
2121 			    TI_TX_RING_BASE + 6144);
2122 		else if (idx > 255)
2123 			CSR_WRITE_4(sc, TI_WINBASE,
2124 			    TI_TX_RING_BASE + 4096);
2125 		else if (idx > 127)
2126 			CSR_WRITE_4(sc, TI_WINBASE,
2127 			    TI_TX_RING_BASE + 2048);
2128 		else
2129 			CSR_WRITE_4(sc, TI_WINBASE,
2130 			    TI_TX_RING_BASE);
2131 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2132 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2133 			ifp->if_opackets++;
2134 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2135 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2136 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2137 
2138 			dma = sc->txdma[idx];
2139 			KDASSERT(dma != NULL);
2140 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2141 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2142 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2143 
2144 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2145 			sc->txdma[idx] = NULL;
2146 		}
2147 		sc->ti_txcnt--;
2148 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2149 		ifp->if_timer = 0;
2150 	}
2151 
2152 	if (cur_tx != NULL)
2153 		ifp->if_flags &= ~IFF_OACTIVE;
2154 
2155 	return;
2156 }
2157 
2158 static void ti_txeof_tigon2(sc)
2159 	struct ti_softc		*sc;
2160 {
2161 	struct ti_tx_desc	*cur_tx = NULL;
2162 	struct ifnet		*ifp;
2163 	struct txdmamap_pool_entry *dma;
2164 	int firstidx, cnt;
2165 
2166 	ifp = &sc->ethercom.ec_if;
2167 
2168 	/*
2169 	 * Go through our tx ring and free mbufs for those
2170 	 * frames that have been sent.
2171 	 */
2172 	firstidx = sc->ti_tx_saved_considx;
2173 	cnt = 0;
2174 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2175 		u_int32_t		idx = 0;
2176 
2177 		idx = sc->ti_tx_saved_considx;
2178 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2179 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2180 			ifp->if_opackets++;
2181 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2182 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2183 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2184 
2185 			dma = sc->txdma[idx];
2186 			KDASSERT(dma != NULL);
2187 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2188 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2189 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2190 
2191 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2192 			sc->txdma[idx] = NULL;
2193 		}
2194 		cnt++;
2195 		sc->ti_txcnt--;
2196 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2197 		ifp->if_timer = 0;
2198 	}
2199 
2200 	if (cnt != 0)
2201 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2202 
2203 	if (cur_tx != NULL)
2204 		ifp->if_flags &= ~IFF_OACTIVE;
2205 
2206 	return;
2207 }
2208 
2209 static int ti_intr(xsc)
2210 	void			*xsc;
2211 {
2212 	struct ti_softc		*sc;
2213 	struct ifnet		*ifp;
2214 
2215 	sc = xsc;
2216 	ifp = &sc->ethercom.ec_if;
2217 
2218 #ifdef notdef
2219 	/* Avoid this for now -- checking this register is expensive. */
2220 	/* Make sure this is really our interrupt. */
2221 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2222 		return (0);
2223 #endif
2224 
2225 	/* Ack interrupt and stop others from occuring. */
2226 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2227 
2228 	if (ifp->if_flags & IFF_RUNNING) {
2229 		/* Check RX return ring producer/consumer */
2230 		ti_rxeof(sc);
2231 
2232 		/* Check TX ring producer/consumer */
2233 		(*sc->sc_tx_eof)(sc);
2234 	}
2235 
2236 	ti_handle_events(sc);
2237 
2238 	/* Re-enable interrupts. */
2239 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2240 
2241 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2242 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2243 		ti_start(ifp);
2244 
2245 	return (1);
2246 }
2247 
2248 static void ti_stats_update(sc)
2249 	struct ti_softc		*sc;
2250 {
2251 	struct ifnet		*ifp;
2252 
2253 	ifp = &sc->ethercom.ec_if;
2254 
2255 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2256 
2257 	ifp->if_collisions +=
2258 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2259 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2260 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2261 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2262 	   ifp->if_collisions;
2263 
2264 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2265 }
2266 
2267 /*
2268  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2269  * pointers to descriptors.
2270  */
2271 static int ti_encap_tigon1(sc, m_head, txidx)
2272 	struct ti_softc		*sc;
2273 	struct mbuf		*m_head;
2274 	u_int32_t		*txidx;
2275 {
2276 	struct ti_tx_desc	*f = NULL;
2277 	u_int32_t		frag, cur, cnt = 0;
2278 	struct txdmamap_pool_entry *dma;
2279 	bus_dmamap_t dmamap;
2280 	int error, i;
2281 	struct mbuf *n;
2282 	u_int16_t csum_flags = 0;
2283 
2284 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2285 	if (dma == NULL) {
2286 		return ENOMEM;
2287 	}
2288 	dmamap = dma->dmamap;
2289 
2290 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2291 	    BUS_DMA_WRITE);
2292 	if (error) {
2293 		struct mbuf *m;
2294 		int i = 0;
2295 		for (m = m_head; m; m = m->m_next)
2296 			i++;
2297 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2298 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2299 		return (ENOMEM);
2300 	}
2301 
2302 	cur = frag = *txidx;
2303 
2304 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2305 		/* IP header checksum field must be 0! */
2306 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2307 	}
2308 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2309 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2310 
2311 	/* XXX fragmented packet checksum capability? */
2312 
2313 	/*
2314  	 * Start packing the mbufs in this chain into
2315 	 * the fragment pointers. Stop when we run out
2316  	 * of fragments or hit the end of the mbuf chain.
2317 	 */
2318 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2319 		if (frag > 383)
2320 			CSR_WRITE_4(sc, TI_WINBASE,
2321 			    TI_TX_RING_BASE + 6144);
2322 		else if (frag > 255)
2323 			CSR_WRITE_4(sc, TI_WINBASE,
2324 			    TI_TX_RING_BASE + 4096);
2325 		else if (frag > 127)
2326 			CSR_WRITE_4(sc, TI_WINBASE,
2327 			    TI_TX_RING_BASE + 2048);
2328 		else
2329 			CSR_WRITE_4(sc, TI_WINBASE,
2330 			    TI_TX_RING_BASE);
2331 		f = &sc->ti_tx_ring_nic[frag % 128];
2332 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2333 			break;
2334 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2335 		f->ti_len = dmamap->dm_segs[i].ds_len;
2336 		f->ti_flags = csum_flags;
2337 		n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2338 		if (n) {
2339 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2340 			f->ti_vlan_tag = *mtod(n, int *);
2341 		} else {
2342 			f->ti_vlan_tag = 0;
2343 		}
2344 		/*
2345 		 * Sanity check: avoid coming within 16 descriptors
2346 		 * of the end of the ring.
2347 		 */
2348 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2349 			return(ENOBUFS);
2350 		cur = frag;
2351 		TI_INC(frag, TI_TX_RING_CNT);
2352 		cnt++;
2353 	}
2354 
2355 	if (i < dmamap->dm_nsegs)
2356 		return(ENOBUFS);
2357 
2358 	if (frag == sc->ti_tx_saved_considx)
2359 		return(ENOBUFS);
2360 
2361 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2362 	    TI_BDFLAG_END;
2363 
2364 	/* Sync the packet's DMA map. */
2365 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2366 	    BUS_DMASYNC_PREWRITE);
2367 
2368 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2369 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2370 	sc->txdma[cur] = dma;
2371 	sc->ti_txcnt += cnt;
2372 
2373 	*txidx = frag;
2374 
2375 	return(0);
2376 }
2377 
2378 static int ti_encap_tigon2(sc, m_head, txidx)
2379 	struct ti_softc		*sc;
2380 	struct mbuf		*m_head;
2381 	u_int32_t		*txidx;
2382 {
2383 	struct ti_tx_desc	*f = NULL;
2384 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2385 	struct txdmamap_pool_entry *dma;
2386 	bus_dmamap_t dmamap;
2387 	int error, i;
2388 	struct mbuf *n;
2389 	u_int16_t csum_flags = 0;
2390 
2391 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2392 	if (dma == NULL) {
2393 		return ENOMEM;
2394 	}
2395 	dmamap = dma->dmamap;
2396 
2397 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2398 	    BUS_DMA_WRITE);
2399 	if (error) {
2400 		struct mbuf *m;
2401 		int i = 0;
2402 		for (m = m_head; m; m = m->m_next)
2403 			i++;
2404 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2405 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2406 		return (ENOMEM);
2407 	}
2408 
2409 	cur = firstfrag = frag = *txidx;
2410 
2411 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2412 		/* IP header checksum field must be 0! */
2413 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2414 	}
2415 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2416 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2417 
2418 	/* XXX fragmented packet checksum capability? */
2419 
2420 	/*
2421  	 * Start packing the mbufs in this chain into
2422 	 * the fragment pointers. Stop when we run out
2423  	 * of fragments or hit the end of the mbuf chain.
2424 	 */
2425 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2426 		f = &sc->ti_rdata->ti_tx_ring[frag];
2427 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2428 			break;
2429 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2430 		f->ti_len = dmamap->dm_segs[i].ds_len;
2431 		f->ti_flags = csum_flags;
2432 		n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2433 		if (n) {
2434 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2435 			f->ti_vlan_tag = *mtod(n, int *);
2436 		} else {
2437 			f->ti_vlan_tag = 0;
2438 		}
2439 		/*
2440 		 * Sanity check: avoid coming within 16 descriptors
2441 		 * of the end of the ring.
2442 		 */
2443 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2444 			return(ENOBUFS);
2445 		cur = frag;
2446 		TI_INC(frag, TI_TX_RING_CNT);
2447 		cnt++;
2448 	}
2449 
2450 	if (i < dmamap->dm_nsegs)
2451 		return(ENOBUFS);
2452 
2453 	if (frag == sc->ti_tx_saved_considx)
2454 		return(ENOBUFS);
2455 
2456 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2457 
2458 	/* Sync the packet's DMA map. */
2459 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2460 	    BUS_DMASYNC_PREWRITE);
2461 
2462 	/* Sync the descriptors we are using. */
2463 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2464 
2465 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2466 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2467 	sc->txdma[cur] = dma;
2468 	sc->ti_txcnt += cnt;
2469 
2470 	*txidx = frag;
2471 
2472 	return(0);
2473 }
2474 
2475 /*
2476  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2477  * to the mbuf data regions directly in the transmit descriptors.
2478  */
2479 static void ti_start(ifp)
2480 	struct ifnet		*ifp;
2481 {
2482 	struct ti_softc		*sc;
2483 	struct mbuf		*m_head = NULL;
2484 	u_int32_t		prodidx = 0;
2485 
2486 	sc = ifp->if_softc;
2487 
2488 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2489 
2490 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2491 		IFQ_POLL(&ifp->if_snd, m_head);
2492 		if (m_head == NULL)
2493 			break;
2494 
2495 		/*
2496 		 * Pack the data into the transmit ring. If we
2497 		 * don't have room, set the OACTIVE flag and wait
2498 		 * for the NIC to drain the ring.
2499 		 */
2500 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2501 			ifp->if_flags |= IFF_OACTIVE;
2502 			break;
2503 		}
2504 
2505 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2506 
2507 		/*
2508 		 * If there's a BPF listener, bounce a copy of this frame
2509 		 * to him.
2510 		 */
2511 #if NBPFILTER > 0
2512 		if (ifp->if_bpf)
2513 			bpf_mtap(ifp->if_bpf, m_head);
2514 #endif
2515 	}
2516 
2517 	/* Transmit */
2518 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2519 
2520 	/*
2521 	 * Set a timeout in case the chip goes out to lunch.
2522 	 */
2523 	ifp->if_timer = 5;
2524 
2525 	return;
2526 }
2527 
2528 static void ti_init(xsc)
2529 	void			*xsc;
2530 {
2531 	struct ti_softc		*sc = xsc;
2532         int			s;
2533 
2534 	s = splnet();
2535 
2536 	/* Cancel pending I/O and flush buffers. */
2537 	ti_stop(sc);
2538 
2539 	/* Init the gen info block, ring control blocks and firmware. */
2540 	if (ti_gibinit(sc)) {
2541 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2542 		splx(s);
2543 		return;
2544 	}
2545 
2546 	splx(s);
2547 
2548 	return;
2549 }
2550 
2551 static void ti_init2(sc)
2552 	struct ti_softc		*sc;
2553 {
2554 	struct ti_cmd_desc	cmd;
2555 	struct ifnet		*ifp;
2556 	u_int8_t		*m;
2557 	struct ifmedia		*ifm;
2558 	int			tmp;
2559 
2560 	ifp = &sc->ethercom.ec_if;
2561 
2562 	/* Specify MTU and interface index. */
2563 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2564 
2565 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2566 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2567 		tmp += ETHER_VLAN_ENCAP_LEN;
2568 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2569 
2570 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2571 
2572 	/* Load our MAC address. */
2573 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2574 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2575 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2576 		    | (m[4] << 8) | m[5]);
2577 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2578 
2579 	/* Enable or disable promiscuous mode as needed. */
2580 	if (ifp->if_flags & IFF_PROMISC) {
2581 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2582 	} else {
2583 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2584 	}
2585 
2586 	/* Program multicast filter. */
2587 	ti_setmulti(sc);
2588 
2589 	/*
2590 	 * If this is a Tigon 1, we should tell the
2591 	 * firmware to use software packet filtering.
2592 	 */
2593 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2594 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2595 	}
2596 
2597 	/* Init RX ring. */
2598 	ti_init_rx_ring_std(sc);
2599 
2600 	/* Init jumbo RX ring. */
2601 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2602 		ti_init_rx_ring_jumbo(sc);
2603 
2604 	/*
2605 	 * If this is a Tigon 2, we can also configure the
2606 	 * mini ring.
2607 	 */
2608 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2609 		ti_init_rx_ring_mini(sc);
2610 
2611 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2612 	sc->ti_rx_saved_considx = 0;
2613 
2614 	/* Init TX ring. */
2615 	ti_init_tx_ring(sc);
2616 
2617 	/* Tell firmware we're alive. */
2618 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2619 
2620 	/* Enable host interrupts. */
2621 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2622 
2623 	ifp->if_flags |= IFF_RUNNING;
2624 	ifp->if_flags &= ~IFF_OACTIVE;
2625 
2626 	/*
2627 	 * Make sure to set media properly. We have to do this
2628 	 * here since we have to issue commands in order to set
2629 	 * the link negotiation and we can't issue commands until
2630 	 * the firmware is running.
2631 	 */
2632 	ifm = &sc->ifmedia;
2633 	tmp = ifm->ifm_media;
2634 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2635 	ti_ifmedia_upd(ifp);
2636 	ifm->ifm_media = tmp;
2637 
2638 	return;
2639 }
2640 
2641 /*
2642  * Set media options.
2643  */
2644 static int ti_ifmedia_upd(ifp)
2645 	struct ifnet		*ifp;
2646 {
2647 	struct ti_softc		*sc;
2648 	struct ifmedia		*ifm;
2649 	struct ti_cmd_desc	cmd;
2650 
2651 	sc = ifp->if_softc;
2652 	ifm = &sc->ifmedia;
2653 
2654 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2655 		return(EINVAL);
2656 
2657 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2658 	case IFM_AUTO:
2659 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2660 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2661 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2662 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2663 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2664 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2665 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2666 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2667 		break;
2668 	case IFM_1000_SX:
2669 	case IFM_1000_T:
2670 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2671 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2672 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2673 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2674 		} else {
2675 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2676 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2677 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2678 		}
2679 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2680 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2681 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2682 		break;
2683 	case IFM_100_FX:
2684 	case IFM_10_FL:
2685 	case IFM_100_TX:
2686 	case IFM_10_T:
2687 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2688 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2689 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2690 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2691 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2692 		} else {
2693 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2694 		}
2695 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2696 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2697 		} else {
2698 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2699 		}
2700 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2701 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2702 		break;
2703 	}
2704 
2705 	sc->ethercom.ec_if.if_baudrate =
2706 	    ifmedia_baudrate(ifm->ifm_media);
2707 
2708 	return(0);
2709 }
2710 
2711 /*
2712  * Report current media status.
2713  */
2714 static void ti_ifmedia_sts(ifp, ifmr)
2715 	struct ifnet		*ifp;
2716 	struct ifmediareq	*ifmr;
2717 {
2718 	struct ti_softc		*sc;
2719 	u_int32_t               media = 0;
2720 
2721 	sc = ifp->if_softc;
2722 
2723 	ifmr->ifm_status = IFM_AVALID;
2724 	ifmr->ifm_active = IFM_ETHER;
2725 
2726 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2727 		return;
2728 
2729 	ifmr->ifm_status |= IFM_ACTIVE;
2730 
2731 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2732 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2733 		if (sc->ti_copper)
2734 			ifmr->ifm_active |= IFM_1000_T;
2735 		else
2736 			ifmr->ifm_active |= IFM_1000_SX;
2737 		if (media & TI_GLNK_FULL_DUPLEX)
2738 			ifmr->ifm_active |= IFM_FDX;
2739 		else
2740 			ifmr->ifm_active |= IFM_HDX;
2741 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2742 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2743 		if (sc->ti_copper) {
2744 			if (media & TI_LNK_100MB)
2745 				ifmr->ifm_active |= IFM_100_TX;
2746 			if (media & TI_LNK_10MB)
2747 				ifmr->ifm_active |= IFM_10_T;
2748 		} else {
2749 			if (media & TI_LNK_100MB)
2750 				ifmr->ifm_active |= IFM_100_FX;
2751 			if (media & TI_LNK_10MB)
2752 				ifmr->ifm_active |= IFM_10_FL;
2753 		}
2754 		if (media & TI_LNK_FULL_DUPLEX)
2755 			ifmr->ifm_active |= IFM_FDX;
2756 		if (media & TI_LNK_HALF_DUPLEX)
2757 			ifmr->ifm_active |= IFM_HDX;
2758 	}
2759 
2760 	sc->ethercom.ec_if.if_baudrate =
2761 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2762 
2763 	return;
2764 }
2765 
2766 static int
2767 ti_ether_ioctl(ifp, cmd, data)
2768 	struct ifnet *ifp;
2769 	u_long cmd;
2770 	caddr_t data;
2771 {
2772 	struct ifaddr *ifa = (struct ifaddr *) data;
2773 	struct ti_softc *sc = ifp->if_softc;
2774 
2775 	if ((ifp->if_flags & IFF_UP) == 0) {
2776 		ifp->if_flags |= IFF_UP;
2777 		ti_init(sc);
2778 	}
2779 
2780 	switch (cmd) {
2781 	case SIOCSIFADDR:
2782 
2783 		switch (ifa->ifa_addr->sa_family) {
2784 #ifdef INET
2785 		case AF_INET:
2786 			arp_ifinit(ifp, ifa);
2787 			break;
2788 #endif
2789 #ifdef NS
2790 		case AF_NS:
2791 		    {
2792 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2793 
2794 			 if (ns_nullhost(*ina))
2795 				ina->x_host = *(union ns_host *)
2796 				    LLADDR(ifp->if_sadl);
2797 			 else
2798 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2799 				    ifp->if_addrlen);
2800 			 break;
2801 		    }
2802 #endif
2803 		default:
2804 			break;
2805 		}
2806 		break;
2807 
2808 	default:
2809 		return (EINVAL);
2810 	}
2811 
2812 	return (0);
2813 }
2814 
2815 static int ti_ioctl(ifp, command, data)
2816 	struct ifnet		*ifp;
2817 	u_long			command;
2818 	caddr_t			data;
2819 {
2820 	struct ti_softc		*sc = ifp->if_softc;
2821 	struct ifreq		*ifr = (struct ifreq *) data;
2822 	int			s, error = 0;
2823 	struct ti_cmd_desc	cmd;
2824 
2825 	s = splnet();
2826 
2827 	switch(command) {
2828 	case SIOCSIFADDR:
2829 	case SIOCGIFADDR:
2830 		error = ti_ether_ioctl(ifp, command, data);
2831 		break;
2832 	case SIOCSIFMTU:
2833 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2834 			error = EINVAL;
2835 		else {
2836 			ifp->if_mtu = ifr->ifr_mtu;
2837 			ti_init(sc);
2838 		}
2839 		break;
2840 	case SIOCSIFFLAGS:
2841 		if (ifp->if_flags & IFF_UP) {
2842 			/*
2843 			 * If only the state of the PROMISC flag changed,
2844 			 * then just use the 'set promisc mode' command
2845 			 * instead of reinitializing the entire NIC. Doing
2846 			 * a full re-init means reloading the firmware and
2847 			 * waiting for it to start up, which may take a
2848 			 * second or two.
2849 			 */
2850 			if (ifp->if_flags & IFF_RUNNING &&
2851 			    ifp->if_flags & IFF_PROMISC &&
2852 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2853 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2854 				    TI_CMD_CODE_PROMISC_ENB, 0);
2855 			} else if (ifp->if_flags & IFF_RUNNING &&
2856 			    !(ifp->if_flags & IFF_PROMISC) &&
2857 			    sc->ti_if_flags & IFF_PROMISC) {
2858 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2859 				    TI_CMD_CODE_PROMISC_DIS, 0);
2860 			} else
2861 				ti_init(sc);
2862 		} else {
2863 			if (ifp->if_flags & IFF_RUNNING) {
2864 				ti_stop(sc);
2865 			}
2866 		}
2867 		sc->ti_if_flags = ifp->if_flags;
2868 		error = 0;
2869 		break;
2870 	case SIOCADDMULTI:
2871 	case SIOCDELMULTI:
2872 		error = (command == SIOCADDMULTI) ?
2873 		    ether_addmulti(ifr, &sc->ethercom) :
2874 		    ether_delmulti(ifr, &sc->ethercom);
2875 		if (error == ENETRESET) {
2876 			if (ifp->if_flags & IFF_RUNNING)
2877 				ti_setmulti(sc);
2878 			error = 0;
2879 		}
2880 		break;
2881 	case SIOCSIFMEDIA:
2882 	case SIOCGIFMEDIA:
2883 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2884 		break;
2885 	default:
2886 		error = EINVAL;
2887 		break;
2888 	}
2889 
2890 	(void)splx(s);
2891 
2892 	return(error);
2893 }
2894 
2895 static void ti_watchdog(ifp)
2896 	struct ifnet		*ifp;
2897 {
2898 	struct ti_softc		*sc;
2899 
2900 	sc = ifp->if_softc;
2901 
2902 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2903 	ti_stop(sc);
2904 	ti_init(sc);
2905 
2906 	ifp->if_oerrors++;
2907 
2908 	return;
2909 }
2910 
2911 /*
2912  * Stop the adapter and free any mbufs allocated to the
2913  * RX and TX lists.
2914  */
2915 static void ti_stop(sc)
2916 	struct ti_softc		*sc;
2917 {
2918 	struct ifnet		*ifp;
2919 	struct ti_cmd_desc	cmd;
2920 
2921 	ifp = &sc->ethercom.ec_if;
2922 
2923 	/* Disable host interrupts. */
2924 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2925 	/*
2926 	 * Tell firmware we're shutting down.
2927 	 */
2928 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2929 
2930 	/* Halt and reinitialize. */
2931 	ti_chipinit(sc);
2932 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2933 	ti_chipinit(sc);
2934 
2935 	/* Free the RX lists. */
2936 	ti_free_rx_ring_std(sc);
2937 
2938 	/* Free jumbo RX list. */
2939 	ti_free_rx_ring_jumbo(sc);
2940 
2941 	/* Free mini RX list. */
2942 	ti_free_rx_ring_mini(sc);
2943 
2944 	/* Free TX buffers. */
2945 	ti_free_tx_ring(sc);
2946 
2947 	sc->ti_ev_prodidx.ti_idx = 0;
2948 	sc->ti_return_prodidx.ti_idx = 0;
2949 	sc->ti_tx_considx.ti_idx = 0;
2950 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2951 
2952 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2953 
2954 	return;
2955 }
2956 
2957 /*
2958  * Stop all chip I/O so that the kernel's probe routines don't
2959  * get confused by errant DMAs when rebooting.
2960  */
2961 static void ti_shutdown(v)
2962 	void *v;
2963 {
2964 	struct ti_softc		*sc = v;
2965 
2966 	ti_chipinit(sc);
2967 
2968 	return;
2969 }
2970