1 /* $NetBSD: if_ti.c,v 1.92 2014/02/27 01:30:42 joerg Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998, 1999 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp 35 */ 36 37 /* 38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD. 39 * Manuals, sample driver and firmware source kits are available 40 * from http://www.alteon.com/support/openkits. 41 * 42 * Written by Bill Paul <wpaul@ctr.columbia.edu> 43 * Electrical Engineering Department 44 * Columbia University, New York City 45 */ 46 47 /* 48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU, 49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs 50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The 51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast 52 * filtering and jumbo (9014 byte) frames. The hardware is largely 53 * controlled by firmware, which must be loaded into the NIC during 54 * initialization. 55 * 56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware 57 * revision, which supports new features such as extended commands, 58 * extended jumbo receive ring desciptors and a mini receive ring. 59 * 60 * Alteon Networks is to be commended for releasing such a vast amount 61 * of development material for the Tigon NIC without requiring an NDA 62 * (although they really should have done it a long time ago). With 63 * any luck, the other vendors will finally wise up and follow Alteon's 64 * stellar example. 65 * 66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into 67 * this driver by #including it as a C header file. This bloats the 68 * driver somewhat, but it's the easiest method considering that the 69 * driver code and firmware code need to be kept in sync. The source 70 * for the firmware is not provided with the FreeBSD distribution since 71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3. 72 * 73 * The following people deserve special thanks: 74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board 75 * for testing 76 * - Raymond Lee of Netgear, for providing a pair of Netgear 77 * GA620 Tigon 2 boards for testing 78 * - Ulf Zimmermann, for bringing the GA620 to my attention and 79 * convincing me to write this driver. 80 * - Andrew Gallatin for providing FreeBSD/Alpha support. 81 */ 82 83 #include <sys/cdefs.h> 84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.92 2014/02/27 01:30:42 joerg Exp $"); 85 86 #include "opt_inet.h" 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/sockio.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/kernel.h> 94 #include <sys/socket.h> 95 #include <sys/queue.h> 96 #include <sys/device.h> 97 #include <sys/reboot.h> 98 99 #include <net/if.h> 100 #include <net/if_arp.h> 101 #include <net/if_ether.h> 102 #include <net/if_dl.h> 103 #include <net/if_media.h> 104 105 #include <net/bpf.h> 106 107 #ifdef INET 108 #include <netinet/in.h> 109 #include <netinet/if_inarp.h> 110 #include <netinet/in_systm.h> 111 #include <netinet/ip.h> 112 #endif 113 114 115 #include <sys/bus.h> 116 117 #include <dev/pci/pcireg.h> 118 #include <dev/pci/pcivar.h> 119 #include <dev/pci/pcidevs.h> 120 121 #include <dev/pci/if_tireg.h> 122 123 #include <dev/microcode/tigon/ti_fw.h> 124 #include <dev/microcode/tigon/ti_fw2.h> 125 126 /* 127 * Various supported device vendors/types and their names. 128 */ 129 130 static const struct ti_type ti_devs[] = { 131 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC, 132 "Alteon AceNIC 1000BASE-SX Ethernet" }, 133 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER, 134 "Alteon AceNIC 1000BASE-T Ethernet" }, 135 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985, 136 "3Com 3c985-SX Gigabit Ethernet" }, 137 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620, 138 "Netgear GA620 1000BASE-SX Ethernet" }, 139 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T, 140 "Netgear GA620 1000BASE-T Ethernet" }, 141 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON, 142 "Silicon Graphics Gigabit Ethernet" }, 143 { 0, 0, NULL } 144 }; 145 146 static const struct ti_type *ti_type_match(struct pci_attach_args *); 147 static int ti_probe(device_t, cfdata_t, void *); 148 static void ti_attach(device_t, device_t, void *); 149 static bool ti_shutdown(device_t, int); 150 static void ti_txeof_tigon1(struct ti_softc *); 151 static void ti_txeof_tigon2(struct ti_softc *); 152 static void ti_rxeof(struct ti_softc *); 153 154 static void ti_stats_update(struct ti_softc *); 155 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *); 156 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *); 157 158 static int ti_intr(void *); 159 static void ti_start(struct ifnet *); 160 static int ti_ioctl(struct ifnet *, u_long, void *); 161 static void ti_init(void *); 162 static void ti_init2(struct ti_softc *); 163 static void ti_stop(struct ti_softc *); 164 static void ti_watchdog(struct ifnet *); 165 static int ti_ifmedia_upd(struct ifnet *); 166 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *); 167 168 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int); 169 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *); 170 static int ti_read_eeprom(struct ti_softc *, void *, int, int); 171 172 static void ti_add_mcast(struct ti_softc *, struct ether_addr *); 173 static void ti_del_mcast(struct ti_softc *, struct ether_addr *); 174 static void ti_setmulti(struct ti_softc *); 175 176 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *); 177 static void ti_loadfw(struct ti_softc *); 178 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *); 179 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int); 180 static void ti_handle_events(struct ti_softc *); 181 static int ti_alloc_jumbo_mem(struct ti_softc *); 182 static void *ti_jalloc(struct ti_softc *); 183 static void ti_jfree(struct mbuf *, void *, size_t, void *); 184 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t); 185 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t); 186 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *); 187 static int ti_init_rx_ring_std(struct ti_softc *); 188 static void ti_free_rx_ring_std(struct ti_softc *); 189 static int ti_init_rx_ring_jumbo(struct ti_softc *); 190 static void ti_free_rx_ring_jumbo(struct ti_softc *); 191 static int ti_init_rx_ring_mini(struct ti_softc *); 192 static void ti_free_rx_ring_mini(struct ti_softc *); 193 static void ti_free_tx_ring(struct ti_softc *); 194 static int ti_init_tx_ring(struct ti_softc *); 195 196 static int ti_64bitslot_war(struct ti_softc *); 197 static int ti_chipinit(struct ti_softc *); 198 static int ti_gibinit(struct ti_softc *); 199 200 static int ti_ether_ioctl(struct ifnet *, u_long, void *); 201 202 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc), 203 ti_probe, ti_attach, NULL, NULL); 204 205 /* 206 * Send an instruction or address to the EEPROM, check for ACK. 207 */ 208 static u_int32_t 209 ti_eeprom_putbyte(struct ti_softc *sc, int byte) 210 { 211 int i, ack = 0; 212 213 /* 214 * Make sure we're in TX mode. 215 */ 216 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 217 218 /* 219 * Feed in each bit and stobe the clock. 220 */ 221 for (i = 0x80; i; i >>= 1) { 222 if (byte & i) { 223 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); 224 } else { 225 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); 226 } 227 DELAY(1); 228 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 229 DELAY(1); 230 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 231 } 232 233 /* 234 * Turn off TX mode. 235 */ 236 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 237 238 /* 239 * Check for ack. 240 */ 241 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 242 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN; 243 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 244 245 return (ack); 246 } 247 248 /* 249 * Read a byte of data stored in the EEPROM at address 'addr.' 250 * We have to send two address bytes since the EEPROM can hold 251 * more than 256 bytes of data. 252 */ 253 static u_int8_t 254 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest) 255 { 256 int i; 257 u_int8_t byte = 0; 258 259 EEPROM_START(); 260 261 /* 262 * Send write control code to EEPROM. 263 */ 264 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { 265 printf("%s: failed to send write command, status: %x\n", 266 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 267 return (1); 268 } 269 270 /* 271 * Send first byte of address of byte we want to read. 272 */ 273 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) { 274 printf("%s: failed to send address, status: %x\n", 275 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 276 return (1); 277 } 278 /* 279 * Send second byte address of byte we want to read. 280 */ 281 if (ti_eeprom_putbyte(sc, addr & 0xFF)) { 282 printf("%s: failed to send address, status: %x\n", 283 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 284 return (1); 285 } 286 287 EEPROM_STOP(); 288 EEPROM_START(); 289 /* 290 * Send read control code to EEPROM. 291 */ 292 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) { 293 printf("%s: failed to send read command, status: %x\n", 294 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 295 return (1); 296 } 297 298 /* 299 * Start reading bits from EEPROM. 300 */ 301 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 302 for (i = 0x80; i; i >>= 1) { 303 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 304 DELAY(1); 305 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN) 306 byte |= i; 307 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 308 DELAY(1); 309 } 310 311 EEPROM_STOP(); 312 313 /* 314 * No ACK generated for read, so just return byte. 315 */ 316 317 *dest = byte; 318 319 return (0); 320 } 321 322 /* 323 * Read a sequence of bytes from the EEPROM. 324 */ 325 static int 326 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt) 327 { 328 char *dest = destv; 329 int err = 0, i; 330 u_int8_t byte = 0; 331 332 for (i = 0; i < cnt; i++) { 333 err = ti_eeprom_getbyte(sc, off + i, &byte); 334 if (err) 335 break; 336 *(dest + i) = byte; 337 } 338 339 return (err ? 1 : 0); 340 } 341 342 /* 343 * NIC memory access function. Can be used to either clear a section 344 * of NIC local memory or (if tbuf is non-NULL) copy data into it. 345 */ 346 static void 347 ti_mem(struct ti_softc *sc, u_int32_t addr, u_int32_t len, const void *xbuf) 348 { 349 int segptr, segsize, cnt; 350 const void *ptr; 351 352 segptr = addr; 353 cnt = len; 354 ptr = xbuf; 355 356 while (cnt) { 357 if (cnt < TI_WINLEN) 358 segsize = cnt; 359 else 360 segsize = TI_WINLEN - (segptr % TI_WINLEN); 361 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); 362 if (xbuf == NULL) { 363 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle, 364 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, 365 segsize / 4); 366 } else { 367 #ifdef __BUS_SPACE_HAS_STREAM_METHODS 368 bus_space_write_region_stream_4(sc->ti_btag, 369 sc->ti_bhandle, 370 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 371 (const u_int32_t *)ptr, segsize / 4); 372 #else 373 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, 374 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 375 (const u_int32_t *)ptr, segsize / 4); 376 #endif 377 ptr = (const char *)ptr + segsize; 378 } 379 segptr += segsize; 380 cnt -= segsize; 381 } 382 383 return; 384 } 385 386 /* 387 * Load firmware image into the NIC. Check that the firmware revision 388 * is acceptable and see if we want the firmware for the Tigon 1 or 389 * Tigon 2. 390 */ 391 static void 392 ti_loadfw(struct ti_softc *sc) 393 { 394 switch (sc->ti_hwrev) { 395 case TI_HWREV_TIGON: 396 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR || 397 tigonFwReleaseMinor != TI_FIRMWARE_MINOR || 398 tigonFwReleaseFix != TI_FIRMWARE_FIX) { 399 printf("%s: firmware revision mismatch; want " 400 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev), 401 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, 402 TI_FIRMWARE_FIX, tigonFwReleaseMajor, 403 tigonFwReleaseMinor, tigonFwReleaseFix); 404 return; 405 } 406 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText); 407 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData); 408 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata); 409 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL); 410 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL); 411 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr); 412 break; 413 case TI_HWREV_TIGON_II: 414 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR || 415 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR || 416 tigon2FwReleaseFix != TI_FIRMWARE_FIX) { 417 printf("%s: firmware revision mismatch; want " 418 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev), 419 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, 420 TI_FIRMWARE_FIX, tigon2FwReleaseMajor, 421 tigon2FwReleaseMinor, tigon2FwReleaseFix); 422 return; 423 } 424 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText); 425 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData); 426 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen, 427 tigon2FwRodata); 428 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL); 429 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL); 430 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr); 431 break; 432 default: 433 printf("%s: can't load firmware: unknown hardware rev\n", 434 device_xname(sc->sc_dev)); 435 break; 436 } 437 438 return; 439 } 440 441 /* 442 * Send the NIC a command via the command ring. 443 */ 444 static void 445 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd) 446 { 447 u_int32_t index; 448 449 index = sc->ti_cmd_saved_prodidx; 450 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); 451 TI_INC(index, TI_CMD_RING_CNT); 452 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); 453 sc->ti_cmd_saved_prodidx = index; 454 } 455 456 /* 457 * Send the NIC an extended command. The 'len' parameter specifies the 458 * number of command slots to include after the initial command. 459 */ 460 static void 461 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len) 462 { 463 char *arg = argv; 464 u_int32_t index; 465 int i; 466 467 index = sc->ti_cmd_saved_prodidx; 468 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); 469 TI_INC(index, TI_CMD_RING_CNT); 470 for (i = 0; i < len; i++) { 471 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), 472 *(u_int32_t *)(&arg[i * 4])); 473 TI_INC(index, TI_CMD_RING_CNT); 474 } 475 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); 476 sc->ti_cmd_saved_prodidx = index; 477 } 478 479 /* 480 * Handle events that have triggered interrupts. 481 */ 482 static void 483 ti_handle_events(struct ti_softc *sc) 484 { 485 struct ti_event_desc *e; 486 487 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) { 488 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx]; 489 switch (TI_EVENT_EVENT(e)) { 490 case TI_EV_LINKSTAT_CHANGED: 491 sc->ti_linkstat = TI_EVENT_CODE(e); 492 if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) 493 printf("%s: 10/100 link up\n", 494 device_xname(sc->sc_dev)); 495 else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) 496 printf("%s: gigabit link up\n", 497 device_xname(sc->sc_dev)); 498 else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) 499 printf("%s: link down\n", 500 device_xname(sc->sc_dev)); 501 break; 502 case TI_EV_ERROR: 503 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD) 504 printf("%s: invalid command\n", 505 device_xname(sc->sc_dev)); 506 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD) 507 printf("%s: unknown command\n", 508 device_xname(sc->sc_dev)); 509 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG) 510 printf("%s: bad config data\n", 511 device_xname(sc->sc_dev)); 512 break; 513 case TI_EV_FIRMWARE_UP: 514 ti_init2(sc); 515 break; 516 case TI_EV_STATS_UPDATED: 517 ti_stats_update(sc); 518 break; 519 case TI_EV_RESET_JUMBO_RING: 520 case TI_EV_MCAST_UPDATED: 521 /* Who cares. */ 522 break; 523 default: 524 printf("%s: unknown event: %d\n", 525 device_xname(sc->sc_dev), TI_EVENT_EVENT(e)); 526 break; 527 } 528 /* Advance the consumer index. */ 529 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT); 530 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx); 531 } 532 533 return; 534 } 535 536 /* 537 * Memory management for the jumbo receive ring is a pain in the 538 * butt. We need to allocate at least 9018 bytes of space per frame, 539 * _and_ it has to be contiguous (unless you use the extended 540 * jumbo descriptor format). Using malloc() all the time won't 541 * work: malloc() allocates memory in powers of two, which means we 542 * would end up wasting a considerable amount of space by allocating 543 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have 544 * to do our own memory management. 545 * 546 * The driver needs to allocate a contiguous chunk of memory at boot 547 * time. We then chop this up ourselves into 9K pieces and use them 548 * as external mbuf storage. 549 * 550 * One issue here is how much memory to allocate. The jumbo ring has 551 * 256 slots in it, but at 9K per slot than can consume over 2MB of 552 * RAM. This is a bit much, especially considering we also need 553 * RAM for the standard ring and mini ring (on the Tigon 2). To 554 * save space, we only actually allocate enough memory for 64 slots 555 * by default, which works out to between 500 and 600K. This can 556 * be tuned by changing a #define in if_tireg.h. 557 */ 558 559 static int 560 ti_alloc_jumbo_mem(struct ti_softc *sc) 561 { 562 char *ptr; 563 int i; 564 struct ti_jpool_entry *entry; 565 bus_dma_segment_t dmaseg; 566 int error, dmanseg; 567 568 /* Grab a big chunk o' storage. */ 569 if ((error = bus_dmamem_alloc(sc->sc_dmat, 570 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg, 571 BUS_DMA_NOWAIT)) != 0) { 572 aprint_error_dev(sc->sc_dev, "can't allocate jumbo buffer, error = %d\n", 573 error); 574 return (error); 575 } 576 577 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg, 578 TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf, 579 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 580 aprint_error_dev(sc->sc_dev, "can't map jumbo buffer, error = %d\n", 581 error); 582 return (error); 583 } 584 585 if ((error = bus_dmamap_create(sc->sc_dmat, 586 TI_JMEM, 1, 587 TI_JMEM, 0, BUS_DMA_NOWAIT, 588 &sc->jumbo_dmamap)) != 0) { 589 aprint_error_dev(sc->sc_dev, "can't create jumbo buffer DMA map, error = %d\n", 590 error); 591 return (error); 592 } 593 594 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap, 595 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL, 596 BUS_DMA_NOWAIT)) != 0) { 597 aprint_error_dev(sc->sc_dev, "can't load jumbo buffer DMA map, error = %d\n", 598 error); 599 return (error); 600 } 601 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr; 602 603 SIMPLEQ_INIT(&sc->ti_jfree_listhead); 604 SIMPLEQ_INIT(&sc->ti_jinuse_listhead); 605 606 /* 607 * Now divide it up into 9K pieces and save the addresses 608 * in an array. 609 */ 610 ptr = sc->ti_cdata.ti_jumbo_buf; 611 for (i = 0; i < TI_JSLOTS; i++) { 612 sc->ti_cdata.ti_jslots[i] = ptr; 613 ptr += TI_JLEN; 614 entry = malloc(sizeof(struct ti_jpool_entry), 615 M_DEVBUF, M_NOWAIT); 616 if (entry == NULL) { 617 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF); 618 sc->ti_cdata.ti_jumbo_buf = NULL; 619 printf("%s: no memory for jumbo " 620 "buffer queue!\n", device_xname(sc->sc_dev)); 621 return (ENOBUFS); 622 } 623 entry->slot = i; 624 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, 625 jpool_entries); 626 } 627 628 return (0); 629 } 630 631 /* 632 * Allocate a jumbo buffer. 633 */ 634 static void * 635 ti_jalloc(struct ti_softc *sc) 636 { 637 struct ti_jpool_entry *entry; 638 639 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead); 640 641 if (entry == NULL) { 642 printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev)); 643 return (NULL); 644 } 645 646 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries); 647 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries); 648 649 return (sc->ti_cdata.ti_jslots[entry->slot]); 650 } 651 652 /* 653 * Release a jumbo buffer. 654 */ 655 static void 656 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg) 657 { 658 struct ti_softc *sc; 659 int i, s; 660 struct ti_jpool_entry *entry; 661 662 /* Extract the softc struct pointer. */ 663 sc = (struct ti_softc *)arg; 664 665 if (sc == NULL) 666 panic("ti_jfree: didn't get softc pointer!"); 667 668 /* calculate the slot this buffer belongs to */ 669 670 i = ((char *)tbuf 671 - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; 672 673 if ((i < 0) || (i >= TI_JSLOTS)) 674 panic("ti_jfree: asked to free buffer that we don't manage!"); 675 676 s = splvm(); 677 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead); 678 if (entry == NULL) 679 panic("ti_jfree: buffer not in use!"); 680 entry->slot = i; 681 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries); 682 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); 683 684 if (__predict_true(m != NULL)) 685 pool_cache_put(mb_cache, m); 686 splx(s); 687 } 688 689 690 /* 691 * Intialize a standard receive ring descriptor. 692 */ 693 static int 694 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap) 695 { 696 struct mbuf *m_new = NULL; 697 struct ti_rx_desc *r; 698 int error; 699 700 if (dmamap == NULL) { 701 /* if (m) panic() */ 702 703 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 704 MCLBYTES, 0, BUS_DMA_NOWAIT, 705 &dmamap)) != 0) { 706 aprint_error_dev(sc->sc_dev, "can't create recv map, error = %d\n", 707 error); 708 return (ENOMEM); 709 } 710 } 711 sc->std_dmamap[i] = dmamap; 712 713 if (m == NULL) { 714 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 715 if (m_new == NULL) { 716 aprint_error_dev(sc->sc_dev, "mbuf allocation failed " 717 "-- packet dropped!\n"); 718 return (ENOBUFS); 719 } 720 721 MCLGET(m_new, M_DONTWAIT); 722 if (!(m_new->m_flags & M_EXT)) { 723 aprint_error_dev(sc->sc_dev, "cluster allocation failed " 724 "-- packet dropped!\n"); 725 m_freem(m_new); 726 return (ENOBUFS); 727 } 728 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 729 m_adj(m_new, ETHER_ALIGN); 730 731 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap, 732 mtod(m_new, void *), m_new->m_len, NULL, 733 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) { 734 aprint_error_dev(sc->sc_dev, "can't load recv map, error = %d\n", 735 error); 736 return (ENOMEM); 737 } 738 } else { 739 m_new = m; 740 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 741 m_new->m_data = m_new->m_ext.ext_buf; 742 m_adj(m_new, ETHER_ALIGN); 743 744 /* reuse the dmamap */ 745 } 746 747 sc->ti_cdata.ti_rx_std_chain[i] = m_new; 748 r = &sc->ti_rdata->ti_rx_std_ring[i]; 749 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr; 750 r->ti_type = TI_BDTYPE_RECV_BD; 751 r->ti_flags = 0; 752 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx) 753 r->ti_flags |= TI_BDFLAG_IP_CKSUM; 754 if (sc->ethercom.ec_if.if_capenable & 755 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) 756 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM; 757 r->ti_len = m_new->m_len; /* == ds_len */ 758 r->ti_idx = i; 759 760 return (0); 761 } 762 763 /* 764 * Intialize a mini receive ring descriptor. This only applies to 765 * the Tigon 2. 766 */ 767 static int 768 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap) 769 { 770 struct mbuf *m_new = NULL; 771 struct ti_rx_desc *r; 772 int error; 773 774 if (dmamap == NULL) { 775 /* if (m) panic() */ 776 777 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1, 778 MHLEN, 0, BUS_DMA_NOWAIT, 779 &dmamap)) != 0) { 780 aprint_error_dev(sc->sc_dev, "can't create recv map, error = %d\n", 781 error); 782 return (ENOMEM); 783 } 784 } 785 sc->mini_dmamap[i] = dmamap; 786 787 if (m == NULL) { 788 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 789 if (m_new == NULL) { 790 aprint_error_dev(sc->sc_dev, "mbuf allocation failed " 791 "-- packet dropped!\n"); 792 return (ENOBUFS); 793 } 794 m_new->m_len = m_new->m_pkthdr.len = MHLEN; 795 m_adj(m_new, ETHER_ALIGN); 796 797 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap, 798 mtod(m_new, void *), m_new->m_len, NULL, 799 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) { 800 aprint_error_dev(sc->sc_dev, "can't load recv map, error = %d\n", 801 error); 802 return (ENOMEM); 803 } 804 } else { 805 m_new = m; 806 m_new->m_data = m_new->m_pktdat; 807 m_new->m_len = m_new->m_pkthdr.len = MHLEN; 808 m_adj(m_new, ETHER_ALIGN); 809 810 /* reuse the dmamap */ 811 } 812 813 r = &sc->ti_rdata->ti_rx_mini_ring[i]; 814 sc->ti_cdata.ti_rx_mini_chain[i] = m_new; 815 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr; 816 r->ti_type = TI_BDTYPE_RECV_BD; 817 r->ti_flags = TI_BDFLAG_MINI_RING; 818 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx) 819 r->ti_flags |= TI_BDFLAG_IP_CKSUM; 820 if (sc->ethercom.ec_if.if_capenable & 821 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) 822 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM; 823 r->ti_len = m_new->m_len; /* == ds_len */ 824 r->ti_idx = i; 825 826 return (0); 827 } 828 829 /* 830 * Initialize a jumbo receive ring descriptor. This allocates 831 * a jumbo buffer from the pool managed internally by the driver. 832 */ 833 static int 834 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m) 835 { 836 struct mbuf *m_new = NULL; 837 struct ti_rx_desc *r; 838 839 if (m == NULL) { 840 void * tbuf = NULL; 841 842 /* Allocate the mbuf. */ 843 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 844 if (m_new == NULL) { 845 aprint_error_dev(sc->sc_dev, "mbuf allocation failed " 846 "-- packet dropped!\n"); 847 return (ENOBUFS); 848 } 849 850 /* Allocate the jumbo buffer */ 851 tbuf = ti_jalloc(sc); 852 if (tbuf == NULL) { 853 m_freem(m_new); 854 aprint_error_dev(sc->sc_dev, "jumbo allocation failed " 855 "-- packet dropped!\n"); 856 return (ENOBUFS); 857 } 858 859 /* Attach the buffer to the mbuf. */ 860 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO, 861 M_DEVBUF, ti_jfree, sc); 862 m_new->m_flags |= M_EXT_RW; 863 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO; 864 } else { 865 m_new = m; 866 m_new->m_data = m_new->m_ext.ext_buf; 867 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO; 868 } 869 870 m_adj(m_new, ETHER_ALIGN); 871 /* Set up the descriptor. */ 872 r = &sc->ti_rdata->ti_rx_jumbo_ring[i]; 873 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new; 874 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr + 875 (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf); 876 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; 877 r->ti_flags = TI_BDFLAG_JUMBO_RING; 878 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx) 879 r->ti_flags |= TI_BDFLAG_IP_CKSUM; 880 if (sc->ethercom.ec_if.if_capenable & 881 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) 882 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM; 883 r->ti_len = m_new->m_len; 884 r->ti_idx = i; 885 886 return (0); 887 } 888 889 /* 890 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 891 * that's 1MB or memory, which is a lot. For now, we fill only the first 892 * 256 ring entries and hope that our CPU is fast enough to keep up with 893 * the NIC. 894 */ 895 static int 896 ti_init_rx_ring_std(struct ti_softc *sc) 897 { 898 int i; 899 struct ti_cmd_desc cmd; 900 901 for (i = 0; i < TI_SSLOTS; i++) { 902 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS) 903 return (ENOBUFS); 904 }; 905 906 TI_UPDATE_STDPROD(sc, i - 1); 907 sc->ti_std = i - 1; 908 909 return (0); 910 } 911 912 static void 913 ti_free_rx_ring_std(struct ti_softc *sc) 914 { 915 int i; 916 917 for (i = 0; i < TI_STD_RX_RING_CNT; i++) { 918 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) { 919 m_freem(sc->ti_cdata.ti_rx_std_chain[i]); 920 sc->ti_cdata.ti_rx_std_chain[i] = NULL; 921 922 /* if (sc->std_dmamap[i] == 0) panic() */ 923 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]); 924 sc->std_dmamap[i] = 0; 925 } 926 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0, 927 sizeof(struct ti_rx_desc)); 928 } 929 930 return; 931 } 932 933 static int 934 ti_init_rx_ring_jumbo(struct ti_softc *sc) 935 { 936 int i; 937 struct ti_cmd_desc cmd; 938 939 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { 940 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 941 return (ENOBUFS); 942 }; 943 944 TI_UPDATE_JUMBOPROD(sc, i - 1); 945 sc->ti_jumbo = i - 1; 946 947 return (0); 948 } 949 950 static void 951 ti_free_rx_ring_jumbo(struct ti_softc *sc) 952 { 953 int i; 954 955 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { 956 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) { 957 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]); 958 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL; 959 } 960 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0, 961 sizeof(struct ti_rx_desc)); 962 } 963 964 return; 965 } 966 967 static int 968 ti_init_rx_ring_mini(struct ti_softc *sc) 969 { 970 int i; 971 972 for (i = 0; i < TI_MSLOTS; i++) { 973 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS) 974 return (ENOBUFS); 975 }; 976 977 TI_UPDATE_MINIPROD(sc, i - 1); 978 sc->ti_mini = i - 1; 979 980 return (0); 981 } 982 983 static void 984 ti_free_rx_ring_mini(struct ti_softc *sc) 985 { 986 int i; 987 988 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) { 989 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) { 990 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]); 991 sc->ti_cdata.ti_rx_mini_chain[i] = NULL; 992 993 /* if (sc->mini_dmamap[i] == 0) panic() */ 994 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]); 995 sc->mini_dmamap[i] = 0; 996 } 997 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0, 998 sizeof(struct ti_rx_desc)); 999 } 1000 1001 return; 1002 } 1003 1004 static void 1005 ti_free_tx_ring(struct ti_softc *sc) 1006 { 1007 int i; 1008 struct txdmamap_pool_entry *dma; 1009 1010 for (i = 0; i < TI_TX_RING_CNT; i++) { 1011 if (sc->ti_cdata.ti_tx_chain[i] != NULL) { 1012 m_freem(sc->ti_cdata.ti_tx_chain[i]); 1013 sc->ti_cdata.ti_tx_chain[i] = NULL; 1014 1015 /* if (sc->txdma[i] == 0) panic() */ 1016 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], 1017 link); 1018 sc->txdma[i] = 0; 1019 } 1020 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0, 1021 sizeof(struct ti_tx_desc)); 1022 } 1023 1024 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) { 1025 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link); 1026 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap); 1027 free(dma, M_DEVBUF); 1028 } 1029 1030 return; 1031 } 1032 1033 static int 1034 ti_init_tx_ring(struct ti_softc *sc) 1035 { 1036 int i, error; 1037 bus_dmamap_t dmamap; 1038 struct txdmamap_pool_entry *dma; 1039 1040 sc->ti_txcnt = 0; 1041 sc->ti_tx_saved_considx = 0; 1042 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0); 1043 1044 SIMPLEQ_INIT(&sc->txdma_list); 1045 for (i = 0; i < TI_RSLOTS; i++) { 1046 /* I've seen mbufs with 30 fragments. */ 1047 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO, 1048 40, ETHER_MAX_LEN_JUMBO, 0, 1049 BUS_DMA_NOWAIT, &dmamap)) != 0) { 1050 aprint_error_dev(sc->sc_dev, "can't create tx map, error = %d\n", 1051 error); 1052 return (ENOMEM); 1053 } 1054 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT); 1055 if (!dma) { 1056 aprint_error_dev(sc->sc_dev, "can't alloc txdmamap_pool_entry\n"); 1057 bus_dmamap_destroy(sc->sc_dmat, dmamap); 1058 return (ENOMEM); 1059 } 1060 dma->dmamap = dmamap; 1061 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link); 1062 } 1063 1064 return (0); 1065 } 1066 1067 /* 1068 * The Tigon 2 firmware has a new way to add/delete multicast addresses, 1069 * but we have to support the old way too so that Tigon 1 cards will 1070 * work. 1071 */ 1072 static void 1073 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr) 1074 { 1075 struct ti_cmd_desc cmd; 1076 u_int16_t *m; 1077 u_int32_t ext[2] = {0, 0}; 1078 1079 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */ 1080 1081 switch (sc->ti_hwrev) { 1082 case TI_HWREV_TIGON: 1083 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); 1084 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); 1085 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0); 1086 break; 1087 case TI_HWREV_TIGON_II: 1088 ext[0] = htons(m[0]); 1089 ext[1] = (htons(m[1]) << 16) | htons(m[2]); 1090 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2); 1091 break; 1092 default: 1093 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev)); 1094 break; 1095 } 1096 1097 return; 1098 } 1099 1100 static void 1101 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr) 1102 { 1103 struct ti_cmd_desc cmd; 1104 u_int16_t *m; 1105 u_int32_t ext[2] = {0, 0}; 1106 1107 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */ 1108 1109 switch (sc->ti_hwrev) { 1110 case TI_HWREV_TIGON: 1111 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); 1112 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); 1113 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0); 1114 break; 1115 case TI_HWREV_TIGON_II: 1116 ext[0] = htons(m[0]); 1117 ext[1] = (htons(m[1]) << 16) | htons(m[2]); 1118 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2); 1119 break; 1120 default: 1121 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev)); 1122 break; 1123 } 1124 1125 return; 1126 } 1127 1128 /* 1129 * Configure the Tigon's multicast address filter. 1130 * 1131 * The actual multicast table management is a bit of a pain, thanks to 1132 * slight brain damage on the part of both Alteon and us. With our 1133 * multicast code, we are only alerted when the multicast address table 1134 * changes and at that point we only have the current list of addresses: 1135 * we only know the current state, not the previous state, so we don't 1136 * actually know what addresses were removed or added. The firmware has 1137 * state, but we can't get our grubby mits on it, and there is no 'delete 1138 * all multicast addresses' command. Hence, we have to maintain our own 1139 * state so we know what addresses have been programmed into the NIC at 1140 * any given time. 1141 */ 1142 static void 1143 ti_setmulti(struct ti_softc *sc) 1144 { 1145 struct ifnet *ifp; 1146 struct ti_cmd_desc cmd; 1147 struct ti_mc_entry *mc; 1148 u_int32_t intrs; 1149 struct ether_multi *enm; 1150 struct ether_multistep step; 1151 1152 ifp = &sc->ethercom.ec_if; 1153 1154 /* Disable interrupts. */ 1155 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR); 1156 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 1157 1158 /* First, zot all the existing filters. */ 1159 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) { 1160 ti_del_mcast(sc, &mc->mc_addr); 1161 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); 1162 free(mc, M_DEVBUF); 1163 } 1164 1165 /* 1166 * Remember all multicast addresses so that we can delete them 1167 * later. Punt if there is a range of addresses or memory shortage. 1168 */ 1169 ETHER_FIRST_MULTI(step, &sc->ethercom, enm); 1170 while (enm != NULL) { 1171 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 1172 ETHER_ADDR_LEN) != 0) 1173 goto allmulti; 1174 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, 1175 M_NOWAIT)) == NULL) 1176 goto allmulti; 1177 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN); 1178 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries); 1179 ETHER_NEXT_MULTI(step, enm); 1180 } 1181 1182 /* Accept only programmed multicast addresses */ 1183 ifp->if_flags &= ~IFF_ALLMULTI; 1184 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0); 1185 1186 /* Now program new ones. */ 1187 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries) 1188 ti_add_mcast(sc, &mc->mc_addr); 1189 1190 /* Re-enable interrupts. */ 1191 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); 1192 1193 return; 1194 1195 allmulti: 1196 /* No need to keep individual multicast addresses */ 1197 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) { 1198 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); 1199 free(mc, M_DEVBUF); 1200 } 1201 1202 /* Accept all multicast addresses */ 1203 ifp->if_flags |= IFF_ALLMULTI; 1204 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0); 1205 1206 /* Re-enable interrupts. */ 1207 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); 1208 } 1209 1210 /* 1211 * Check to see if the BIOS has configured us for a 64 bit slot when 1212 * we aren't actually in one. If we detect this condition, we can work 1213 * around it on the Tigon 2 by setting a bit in the PCI state register, 1214 * but for the Tigon 1 we must give up and abort the interface attach. 1215 */ 1216 static int 1217 ti_64bitslot_war(struct ti_softc *sc) 1218 { 1219 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) { 1220 CSR_WRITE_4(sc, 0x600, 0); 1221 CSR_WRITE_4(sc, 0x604, 0); 1222 CSR_WRITE_4(sc, 0x600, 0x5555AAAA); 1223 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) { 1224 if (sc->ti_hwrev == TI_HWREV_TIGON) 1225 return (EINVAL); 1226 else { 1227 TI_SETBIT(sc, TI_PCI_STATE, 1228 TI_PCISTATE_32BIT_BUS); 1229 return (0); 1230 } 1231 } 1232 } 1233 1234 return (0); 1235 } 1236 1237 /* 1238 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1239 * self-test results. 1240 */ 1241 static int 1242 ti_chipinit(struct ti_softc *sc) 1243 { 1244 u_int32_t cacheline; 1245 u_int32_t pci_writemax = 0; 1246 u_int32_t rev; 1247 1248 /* Initialize link to down state. */ 1249 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN; 1250 1251 /* Set endianness before we access any non-PCI registers. */ 1252 #if BYTE_ORDER == BIG_ENDIAN 1253 CSR_WRITE_4(sc, TI_MISC_HOST_CTL, 1254 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24)); 1255 #else 1256 CSR_WRITE_4(sc, TI_MISC_HOST_CTL, 1257 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24)); 1258 #endif 1259 1260 /* Check the ROM failed bit to see if self-tests passed. */ 1261 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) { 1262 printf("%s: board self-diagnostics failed!\n", 1263 device_xname(sc->sc_dev)); 1264 return (ENODEV); 1265 } 1266 1267 /* Halt the CPU. */ 1268 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT); 1269 1270 /* Figure out the hardware revision. */ 1271 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK; 1272 switch (rev) { 1273 case TI_REV_TIGON_I: 1274 sc->ti_hwrev = TI_HWREV_TIGON; 1275 break; 1276 case TI_REV_TIGON_II: 1277 sc->ti_hwrev = TI_HWREV_TIGON_II; 1278 break; 1279 default: 1280 printf("%s: unsupported chip revision 0x%x\n", 1281 device_xname(sc->sc_dev), rev); 1282 return (ENODEV); 1283 } 1284 1285 /* Do special setup for Tigon 2. */ 1286 if (sc->ti_hwrev == TI_HWREV_TIGON_II) { 1287 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT); 1288 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K); 1289 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS); 1290 } 1291 1292 /* Set up the PCI state register. */ 1293 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD); 1294 if (sc->ti_hwrev == TI_HWREV_TIGON_II) { 1295 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT); 1296 } 1297 1298 /* Clear the read/write max DMA parameters. */ 1299 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA| 1300 TI_PCISTATE_READ_MAXDMA)); 1301 1302 /* Get cache line size. */ 1303 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG)); 1304 1305 /* 1306 * If the system has set enabled the PCI memory write 1307 * and invalidate command in the command register, set 1308 * the write max parameter accordingly. This is necessary 1309 * to use MWI with the Tigon 2. 1310 */ 1311 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG) 1312 & PCI_COMMAND_INVALIDATE_ENABLE) { 1313 switch (cacheline) { 1314 case 1: 1315 case 4: 1316 case 8: 1317 case 16: 1318 case 32: 1319 case 64: 1320 break; 1321 default: 1322 /* Disable PCI memory write and invalidate. */ 1323 if (bootverbose) 1324 printf("%s: cache line size %d not " 1325 "supported; disabling PCI MWI\n", 1326 device_xname(sc->sc_dev), cacheline); 1327 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG, 1328 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG) 1329 & ~PCI_COMMAND_INVALIDATE_ENABLE); 1330 break; 1331 } 1332 } 1333 1334 #ifdef __brokenalpha__ 1335 /* 1336 * From the Alteon sample driver: 1337 * Must insure that we do not cross an 8K (bytes) boundary 1338 * for DMA reads. Our highest limit is 1K bytes. This is a 1339 * restriction on some ALPHA platforms with early revision 1340 * 21174 PCI chipsets, such as the AlphaPC 164lx 1341 */ 1342 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024); 1343 #else 1344 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax); 1345 #endif 1346 1347 /* This sets the min dma param all the way up (0xff). */ 1348 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA); 1349 1350 /* Configure DMA variables. */ 1351 #if BYTE_ORDER == BIG_ENDIAN 1352 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD | 1353 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | 1354 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB | 1355 TI_OPMODE_DONT_FRAG_JUMBO); 1356 #else 1357 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA| 1358 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO| 1359 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB); 1360 #endif 1361 1362 /* 1363 * Only allow 1 DMA channel to be active at a time. 1364 * I don't think this is a good idea, but without it 1365 * the firmware racks up lots of nicDmaReadRingFull 1366 * errors. 1367 * Incompatible with hardware assisted checksums. 1368 */ 1369 if ((sc->ethercom.ec_if.if_capenable & 1370 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1371 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 1372 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0) 1373 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE); 1374 1375 /* Recommended settings from Tigon manual. */ 1376 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W); 1377 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W); 1378 1379 if (ti_64bitslot_war(sc)) { 1380 printf("%s: bios thinks we're in a 64 bit slot, " 1381 "but we aren't", device_xname(sc->sc_dev)); 1382 return (EINVAL); 1383 } 1384 1385 return (0); 1386 } 1387 1388 /* 1389 * Initialize the general information block and firmware, and 1390 * start the CPU(s) running. 1391 */ 1392 static int 1393 ti_gibinit(struct ti_softc *sc) 1394 { 1395 struct ti_rcb *rcb; 1396 int i; 1397 struct ifnet *ifp; 1398 1399 ifp = &sc->ethercom.ec_if; 1400 1401 /* Disable interrupts for now. */ 1402 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 1403 1404 /* Tell the chip where to find the general information block. */ 1405 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0); 1406 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc)); 1407 1408 /* Load the firmware into SRAM. */ 1409 ti_loadfw(sc); 1410 1411 /* Set up the contents of the general info and ring control blocks. */ 1412 1413 /* Set up the event ring and producer pointer. */ 1414 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb; 1415 1416 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0); 1417 rcb->ti_flags = 0; 1418 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) = 1419 TI_CDEVPRODADDR(sc); 1420 1421 sc->ti_ev_prodidx.ti_idx = 0; 1422 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0); 1423 sc->ti_ev_saved_considx = 0; 1424 1425 /* Set up the command ring and producer mailbox. */ 1426 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb; 1427 1428 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING); 1429 rcb->ti_flags = 0; 1430 rcb->ti_max_len = 0; 1431 for (i = 0; i < TI_CMD_RING_CNT; i++) { 1432 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0); 1433 } 1434 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0); 1435 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0); 1436 sc->ti_cmd_saved_prodidx = 0; 1437 1438 /* 1439 * Assign the address of the stats refresh buffer. 1440 * We re-use the current stats buffer for this to 1441 * conserve memory. 1442 */ 1443 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) = 1444 TI_CDSTATSADDR(sc); 1445 1446 /* Set up the standard receive ring. */ 1447 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb; 1448 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0); 1449 rcb->ti_max_len = ETHER_MAX_LEN; 1450 rcb->ti_flags = 0; 1451 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 1452 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; 1453 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) 1454 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM; 1455 if (VLAN_ATTACHED(&sc->ethercom)) 1456 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1457 1458 /* Set up the jumbo receive ring. */ 1459 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb; 1460 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0); 1461 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO; 1462 rcb->ti_flags = 0; 1463 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 1464 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; 1465 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) 1466 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM; 1467 if (VLAN_ATTACHED(&sc->ethercom)) 1468 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1469 1470 /* 1471 * Set up the mini ring. Only activated on the 1472 * Tigon 2 but the slot in the config block is 1473 * still there on the Tigon 1. 1474 */ 1475 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb; 1476 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0); 1477 rcb->ti_max_len = MHLEN - ETHER_ALIGN; 1478 if (sc->ti_hwrev == TI_HWREV_TIGON) 1479 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED; 1480 else 1481 rcb->ti_flags = 0; 1482 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 1483 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; 1484 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) 1485 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM; 1486 if (VLAN_ATTACHED(&sc->ethercom)) 1487 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1488 1489 /* 1490 * Set up the receive return ring. 1491 */ 1492 rcb = &sc->ti_rdata->ti_info.ti_return_rcb; 1493 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0); 1494 rcb->ti_flags = 0; 1495 rcb->ti_max_len = TI_RETURN_RING_CNT; 1496 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) = 1497 TI_CDRTNPRODADDR(sc); 1498 1499 /* 1500 * Set up the tx ring. Note: for the Tigon 2, we have the option 1501 * of putting the transmit ring in the host's address space and 1502 * letting the chip DMA it instead of leaving the ring in the NIC's 1503 * memory and accessing it through the shared memory region. We 1504 * do this for the Tigon 2, but it doesn't work on the Tigon 1, 1505 * so we have to revert to the shared memory scheme if we detect 1506 * a Tigon 1 chip. 1507 */ 1508 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); 1509 if (sc->ti_hwrev == TI_HWREV_TIGON) { 1510 sc->ti_tx_ring_nic = 1511 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW); 1512 } 1513 memset((char *)sc->ti_rdata->ti_tx_ring, 0, 1514 TI_TX_RING_CNT * sizeof(struct ti_tx_desc)); 1515 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb; 1516 if (sc->ti_hwrev == TI_HWREV_TIGON) 1517 rcb->ti_flags = 0; 1518 else 1519 rcb->ti_flags = TI_RCB_FLAG_HOST_RING; 1520 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 1521 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; 1522 /* 1523 * When we get the packet, there is a pseudo-header seed already 1524 * in the th_sum or uh_sum field. Make sure the firmware doesn't 1525 * compute the pseudo-header checksum again! 1526 */ 1527 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx)) 1528 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM| 1529 TI_RCB_FLAG_NO_PHDR_CKSUM; 1530 if (VLAN_ATTACHED(&sc->ethercom)) 1531 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1532 rcb->ti_max_len = TI_TX_RING_CNT; 1533 if (sc->ti_hwrev == TI_HWREV_TIGON) 1534 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE; 1535 else 1536 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0); 1537 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) = 1538 TI_CDTXCONSADDR(sc); 1539 1540 /* 1541 * We're done frobbing the General Information Block. Sync 1542 * it. Note we take care of the first stats sync here, as 1543 * well. 1544 */ 1545 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1546 1547 /* Set up tuneables */ 1548 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) || 1549 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) 1550 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, 1551 (sc->ti_rx_coal_ticks / 10)); 1552 else 1553 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); 1554 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); 1555 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); 1556 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); 1557 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); 1558 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); 1559 1560 /* Turn interrupts on. */ 1561 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0); 1562 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 1563 1564 /* Start CPU. */ 1565 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP)); 1566 1567 return (0); 1568 } 1569 1570 /* 1571 * look for id in the device list, returning the first match 1572 */ 1573 static const struct ti_type * 1574 ti_type_match(struct pci_attach_args *pa) 1575 { 1576 const struct ti_type *t; 1577 1578 t = ti_devs; 1579 while (t->ti_name != NULL) { 1580 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) && 1581 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) { 1582 return (t); 1583 } 1584 t++; 1585 } 1586 1587 return (NULL); 1588 } 1589 1590 /* 1591 * Probe for a Tigon chip. Check the PCI vendor and device IDs 1592 * against our list and return its name if we find a match. 1593 */ 1594 static int 1595 ti_probe(device_t parent, cfdata_t match, void *aux) 1596 { 1597 struct pci_attach_args *pa = aux; 1598 const struct ti_type *t; 1599 1600 t = ti_type_match(pa); 1601 1602 return ((t == NULL) ? 0 : 1); 1603 } 1604 1605 static void 1606 ti_attach(device_t parent, device_t self, void *aux) 1607 { 1608 u_int32_t command; 1609 struct ifnet *ifp; 1610 struct ti_softc *sc; 1611 u_int8_t eaddr[ETHER_ADDR_LEN]; 1612 struct pci_attach_args *pa = aux; 1613 pci_chipset_tag_t pc = pa->pa_pc; 1614 pci_intr_handle_t ih; 1615 const char *intrstr = NULL; 1616 bus_dma_segment_t dmaseg; 1617 int error, dmanseg, nolinear; 1618 const struct ti_type *t; 1619 1620 t = ti_type_match(pa); 1621 if (t == NULL) { 1622 printf("ti_attach: were did the card go ?\n"); 1623 return; 1624 } 1625 1626 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class)); 1627 1628 sc = device_private(self); 1629 sc->sc_dev = self; 1630 1631 /* 1632 * Map control/status registers. 1633 */ 1634 nolinear = 0; 1635 if (pci_mapreg_map(pa, 0x10, 1636 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 1637 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle, 1638 NULL, NULL)) { 1639 nolinear = 1; 1640 if (pci_mapreg_map(pa, 0x10, 1641 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 1642 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) { 1643 printf(": can't map memory space\n"); 1644 return; 1645 } 1646 } 1647 if (nolinear == 0) 1648 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle); 1649 else 1650 sc->ti_vhandle = NULL; 1651 1652 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1653 command |= PCI_COMMAND_MASTER_ENABLE; 1654 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1655 1656 /* Allocate interrupt */ 1657 if (pci_intr_map(pa, &ih)) { 1658 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n"); 1659 return; 1660 } 1661 intrstr = pci_intr_string(pc, ih); 1662 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc); 1663 if (sc->sc_ih == NULL) { 1664 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt"); 1665 if (intrstr != NULL) 1666 aprint_error(" at %s", intrstr); 1667 aprint_error("\n"); 1668 return; 1669 } 1670 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 1671 1672 if (ti_chipinit(sc)) { 1673 aprint_error_dev(self, "chip initialization failed\n"); 1674 goto fail2; 1675 } 1676 1677 /* 1678 * Deal with some chip diffrences. 1679 */ 1680 switch (sc->ti_hwrev) { 1681 case TI_HWREV_TIGON: 1682 sc->sc_tx_encap = ti_encap_tigon1; 1683 sc->sc_tx_eof = ti_txeof_tigon1; 1684 if (nolinear == 1) 1685 aprint_error_dev(self, "memory space not mapped linear\n"); 1686 break; 1687 1688 case TI_HWREV_TIGON_II: 1689 sc->sc_tx_encap = ti_encap_tigon2; 1690 sc->sc_tx_eof = ti_txeof_tigon2; 1691 break; 1692 1693 default: 1694 printf("%s: Unknown chip version: %d\n", device_xname(self), 1695 sc->ti_hwrev); 1696 goto fail2; 1697 } 1698 1699 /* Zero out the NIC's on-board SRAM. */ 1700 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); 1701 1702 /* Init again -- zeroing memory may have clobbered some registers. */ 1703 if (ti_chipinit(sc)) { 1704 aprint_error_dev(self, "chip initialization failed\n"); 1705 goto fail2; 1706 } 1707 1708 /* 1709 * Get station address from the EEPROM. Note: the manual states 1710 * that the MAC address is at offset 0x8c, however the data is 1711 * stored as two longwords (since that's how it's loaded into 1712 * the NIC). This means the MAC address is actually preceded 1713 * by two zero bytes. We need to skip over those. 1714 */ 1715 if (ti_read_eeprom(sc, (void *)&eaddr, 1716 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 1717 aprint_error_dev(self, "failed to read station address\n"); 1718 goto fail2; 1719 } 1720 1721 /* 1722 * A Tigon chip was detected. Inform the world. 1723 */ 1724 aprint_error_dev(self, "Ethernet address: %s\n", 1725 ether_sprintf(eaddr)); 1726 1727 sc->sc_dmat = pa->pa_dmat; 1728 1729 /* Allocate the general information block and ring buffers. */ 1730 if ((error = bus_dmamem_alloc(sc->sc_dmat, 1731 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg, 1732 BUS_DMA_NOWAIT)) != 0) { 1733 aprint_error_dev(sc->sc_dev, "can't allocate ring buffer, error = %d\n", 1734 error); 1735 goto fail2; 1736 } 1737 1738 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg, 1739 sizeof(struct ti_ring_data), (void **)&sc->ti_rdata, 1740 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 1741 aprint_error_dev(sc->sc_dev, "can't map ring buffer, error = %d\n", 1742 error); 1743 goto fail2; 1744 } 1745 1746 if ((error = bus_dmamap_create(sc->sc_dmat, 1747 sizeof(struct ti_ring_data), 1, 1748 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT, 1749 &sc->info_dmamap)) != 0) { 1750 aprint_error_dev(sc->sc_dev, "can't create ring buffer DMA map, error = %d\n", 1751 error); 1752 goto fail2; 1753 } 1754 1755 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap, 1756 sc->ti_rdata, sizeof(struct ti_ring_data), NULL, 1757 BUS_DMA_NOWAIT)) != 0) { 1758 aprint_error_dev(sc->sc_dev, "can't load ring buffer DMA map, error = %d\n", 1759 error); 1760 goto fail2; 1761 } 1762 1763 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr; 1764 1765 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data)); 1766 1767 /* Try to allocate memory for jumbo buffers. */ 1768 if (ti_alloc_jumbo_mem(sc)) { 1769 aprint_error_dev(self, "jumbo buffer allocation failed\n"); 1770 goto fail2; 1771 } 1772 1773 SIMPLEQ_INIT(&sc->ti_mc_listhead); 1774 1775 /* 1776 * We really need a better way to tell a 1000baseT card 1777 * from a 1000baseSX one, since in theory there could be 1778 * OEMed 1000baseT cards from lame vendors who aren't 1779 * clever enough to change the PCI ID. For the moment 1780 * though, the AceNIC is the only copper card available. 1781 */ 1782 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON && 1783 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) || 1784 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR && 1785 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T)) 1786 sc->ti_copper = 1; 1787 else 1788 sc->ti_copper = 0; 1789 1790 /* Set default tuneable values. */ 1791 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC; 1792 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000; 1793 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500; 1794 sc->ti_rx_max_coal_bds = 64; 1795 sc->ti_tx_max_coal_bds = 128; 1796 sc->ti_tx_buf_ratio = 21; 1797 1798 /* Set up ifnet structure */ 1799 ifp = &sc->ethercom.ec_if; 1800 ifp->if_softc = sc; 1801 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 1802 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1803 ifp->if_ioctl = ti_ioctl; 1804 ifp->if_start = ti_start; 1805 ifp->if_watchdog = ti_watchdog; 1806 IFQ_SET_READY(&ifp->if_snd); 1807 1808 #if 0 1809 /* 1810 * XXX This is not really correct -- we don't necessarily 1811 * XXX want to queue up as many as we can transmit at the 1812 * XXX upper layer like that. Someone with a board should 1813 * XXX check to see how this affects performance. 1814 */ 1815 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1; 1816 #endif 1817 1818 /* 1819 * We can support 802.1Q VLAN-sized frames. 1820 */ 1821 sc->ethercom.ec_capabilities |= 1822 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 1823 1824 /* 1825 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware. 1826 */ 1827 ifp->if_capabilities |= 1828 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1829 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1830 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 1831 1832 /* Set up ifmedia support. */ 1833 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts); 1834 if (sc->ti_copper) { 1835 /* 1836 * Copper cards allow manual 10/100 mode selection, 1837 * but not manual 1000baseT mode selection. Why? 1838 * Because currently there's no way to specify the 1839 * master/slave setting through the firmware interface, 1840 * so Alteon decided to just bag it and handle it 1841 * via autonegotiation. 1842 */ 1843 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); 1844 ifmedia_add(&sc->ifmedia, 1845 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 1846 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); 1847 ifmedia_add(&sc->ifmedia, 1848 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 1849 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL); 1850 ifmedia_add(&sc->ifmedia, 1851 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL); 1852 } else { 1853 /* Fiber cards don't support 10/100 modes. */ 1854 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 1855 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 1856 } 1857 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 1858 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO); 1859 1860 /* 1861 * Call MI attach routines. 1862 */ 1863 if_attach(ifp); 1864 ether_ifattach(ifp, eaddr); 1865 1866 /* 1867 * Add shutdown hook so that DMA is disabled prior to reboot. Not 1868 * doing do could allow DMA to corrupt kernel memory during the 1869 * reboot before the driver initializes. 1870 */ 1871 if (pmf_device_register1(self, NULL, NULL, ti_shutdown)) 1872 pmf_class_network_register(self, ifp); 1873 else 1874 aprint_error_dev(self, "couldn't establish power handler\n"); 1875 1876 return; 1877 fail2: 1878 pci_intr_disestablish(pc, sc->sc_ih); 1879 return; 1880 } 1881 1882 /* 1883 * Frame reception handling. This is called if there's a frame 1884 * on the receive return list. 1885 * 1886 * Note: we have to be able to handle three possibilities here: 1887 * 1) the frame is from the mini receive ring (can only happen) 1888 * on Tigon 2 boards) 1889 * 2) the frame is from the jumbo receive ring 1890 * 3) the frame is from the standard receive ring 1891 */ 1892 1893 static void 1894 ti_rxeof(struct ti_softc *sc) 1895 { 1896 struct ifnet *ifp; 1897 struct ti_cmd_desc cmd; 1898 1899 ifp = &sc->ethercom.ec_if; 1900 1901 while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) { 1902 struct ti_rx_desc *cur_rx; 1903 u_int32_t rxidx; 1904 struct mbuf *m = NULL; 1905 struct ether_header *eh; 1906 bus_dmamap_t dmamap; 1907 1908 cur_rx = 1909 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx]; 1910 rxidx = cur_rx->ti_idx; 1911 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT); 1912 1913 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) { 1914 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT); 1915 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx]; 1916 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL; 1917 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 1918 ifp->if_ierrors++; 1919 ti_newbuf_jumbo(sc, sc->ti_jumbo, m); 1920 continue; 1921 } 1922 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) 1923 == ENOBUFS) { 1924 ifp->if_ierrors++; 1925 ti_newbuf_jumbo(sc, sc->ti_jumbo, m); 1926 continue; 1927 } 1928 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) { 1929 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT); 1930 m = sc->ti_cdata.ti_rx_mini_chain[rxidx]; 1931 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL; 1932 dmamap = sc->mini_dmamap[rxidx]; 1933 sc->mini_dmamap[rxidx] = 0; 1934 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 1935 ifp->if_ierrors++; 1936 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap); 1937 continue; 1938 } 1939 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap) 1940 == ENOBUFS) { 1941 ifp->if_ierrors++; 1942 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap); 1943 continue; 1944 } 1945 } else { 1946 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT); 1947 m = sc->ti_cdata.ti_rx_std_chain[rxidx]; 1948 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL; 1949 dmamap = sc->std_dmamap[rxidx]; 1950 sc->std_dmamap[rxidx] = 0; 1951 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 1952 ifp->if_ierrors++; 1953 ti_newbuf_std(sc, sc->ti_std, m, dmamap); 1954 continue; 1955 } 1956 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap) 1957 == ENOBUFS) { 1958 ifp->if_ierrors++; 1959 ti_newbuf_std(sc, sc->ti_std, m, dmamap); 1960 continue; 1961 } 1962 } 1963 1964 m->m_pkthdr.len = m->m_len = cur_rx->ti_len; 1965 ifp->if_ipackets++; 1966 m->m_pkthdr.rcvif = ifp; 1967 1968 /* 1969 * Handle BPF listeners. Let the BPF user see the packet, but 1970 * don't pass it up to the ether_input() layer unless it's 1971 * a broadcast packet, multicast packet, matches our ethernet 1972 * address or the interface is in promiscuous mode. 1973 */ 1974 bpf_mtap(ifp, m); 1975 1976 eh = mtod(m, struct ether_header *); 1977 switch (ntohs(eh->ether_type)) { 1978 #ifdef INET 1979 case ETHERTYPE_IP: 1980 { 1981 struct ip *ip = (struct ip *) (eh + 1); 1982 1983 /* 1984 * Note the Tigon firmware does not invert 1985 * the checksum for us, hence the XOR. 1986 */ 1987 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1988 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0) 1989 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1990 /* 1991 * ntohs() the constant so the compiler can 1992 * optimize... 1993 * 1994 * XXX Figure out a sane way to deal with 1995 * fragmented packets. 1996 */ 1997 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) { 1998 switch (ip->ip_p) { 1999 case IPPROTO_TCP: 2000 m->m_pkthdr.csum_data = 2001 cur_rx->ti_tcp_udp_cksum; 2002 m->m_pkthdr.csum_flags |= 2003 M_CSUM_TCPv4|M_CSUM_DATA; 2004 break; 2005 case IPPROTO_UDP: 2006 m->m_pkthdr.csum_data = 2007 cur_rx->ti_tcp_udp_cksum; 2008 m->m_pkthdr.csum_flags |= 2009 M_CSUM_UDPv4|M_CSUM_DATA; 2010 break; 2011 default: 2012 /* Nothing */; 2013 } 2014 } 2015 break; 2016 } 2017 #endif 2018 default: 2019 /* Nothing. */ 2020 break; 2021 } 2022 2023 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) { 2024 VLAN_INPUT_TAG(ifp, m, 2025 /* ti_vlan_tag also has the priority, trim it */ 2026 cur_rx->ti_vlan_tag & 4095, 2027 continue); 2028 } 2029 2030 (*ifp->if_input)(ifp, m); 2031 } 2032 2033 /* Only necessary on the Tigon 1. */ 2034 if (sc->ti_hwrev == TI_HWREV_TIGON) 2035 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 2036 sc->ti_rx_saved_considx); 2037 2038 TI_UPDATE_STDPROD(sc, sc->ti_std); 2039 TI_UPDATE_MINIPROD(sc, sc->ti_mini); 2040 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo); 2041 } 2042 2043 static void 2044 ti_txeof_tigon1(struct ti_softc *sc) 2045 { 2046 struct ti_tx_desc *cur_tx = NULL; 2047 struct ifnet *ifp; 2048 struct txdmamap_pool_entry *dma; 2049 2050 ifp = &sc->ethercom.ec_if; 2051 2052 /* 2053 * Go through our tx ring and free mbufs for those 2054 * frames that have been sent. 2055 */ 2056 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { 2057 u_int32_t idx = 0; 2058 2059 idx = sc->ti_tx_saved_considx; 2060 if (idx > 383) 2061 CSR_WRITE_4(sc, TI_WINBASE, 2062 TI_TX_RING_BASE + 6144); 2063 else if (idx > 255) 2064 CSR_WRITE_4(sc, TI_WINBASE, 2065 TI_TX_RING_BASE + 4096); 2066 else if (idx > 127) 2067 CSR_WRITE_4(sc, TI_WINBASE, 2068 TI_TX_RING_BASE + 2048); 2069 else 2070 CSR_WRITE_4(sc, TI_WINBASE, 2071 TI_TX_RING_BASE); 2072 cur_tx = &sc->ti_tx_ring_nic[idx % 128]; 2073 if (cur_tx->ti_flags & TI_BDFLAG_END) 2074 ifp->if_opackets++; 2075 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { 2076 m_freem(sc->ti_cdata.ti_tx_chain[idx]); 2077 sc->ti_cdata.ti_tx_chain[idx] = NULL; 2078 2079 dma = sc->txdma[idx]; 2080 KDASSERT(dma != NULL); 2081 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0, 2082 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2083 bus_dmamap_unload(sc->sc_dmat, dma->dmamap); 2084 2085 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link); 2086 sc->txdma[idx] = NULL; 2087 } 2088 sc->ti_txcnt--; 2089 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); 2090 ifp->if_timer = 0; 2091 } 2092 2093 if (cur_tx != NULL) 2094 ifp->if_flags &= ~IFF_OACTIVE; 2095 } 2096 2097 static void 2098 ti_txeof_tigon2(struct ti_softc *sc) 2099 { 2100 struct ti_tx_desc *cur_tx = NULL; 2101 struct ifnet *ifp; 2102 struct txdmamap_pool_entry *dma; 2103 int firstidx, cnt; 2104 2105 ifp = &sc->ethercom.ec_if; 2106 2107 /* 2108 * Go through our tx ring and free mbufs for those 2109 * frames that have been sent. 2110 */ 2111 firstidx = sc->ti_tx_saved_considx; 2112 cnt = 0; 2113 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { 2114 u_int32_t idx = 0; 2115 2116 idx = sc->ti_tx_saved_considx; 2117 cur_tx = &sc->ti_rdata->ti_tx_ring[idx]; 2118 if (cur_tx->ti_flags & TI_BDFLAG_END) 2119 ifp->if_opackets++; 2120 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { 2121 m_freem(sc->ti_cdata.ti_tx_chain[idx]); 2122 sc->ti_cdata.ti_tx_chain[idx] = NULL; 2123 2124 dma = sc->txdma[idx]; 2125 KDASSERT(dma != NULL); 2126 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0, 2127 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2128 bus_dmamap_unload(sc->sc_dmat, dma->dmamap); 2129 2130 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link); 2131 sc->txdma[idx] = NULL; 2132 } 2133 cnt++; 2134 sc->ti_txcnt--; 2135 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); 2136 ifp->if_timer = 0; 2137 } 2138 2139 if (cnt != 0) 2140 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE); 2141 2142 if (cur_tx != NULL) 2143 ifp->if_flags &= ~IFF_OACTIVE; 2144 } 2145 2146 static int 2147 ti_intr(void *xsc) 2148 { 2149 struct ti_softc *sc; 2150 struct ifnet *ifp; 2151 2152 sc = xsc; 2153 ifp = &sc->ethercom.ec_if; 2154 2155 #ifdef notdef 2156 /* Avoid this for now -- checking this register is expensive. */ 2157 /* Make sure this is really our interrupt. */ 2158 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) 2159 return (0); 2160 #endif 2161 2162 /* Ack interrupt and stop others from occuring. */ 2163 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 2164 2165 if (ifp->if_flags & IFF_RUNNING) { 2166 /* Check RX return ring producer/consumer */ 2167 ti_rxeof(sc); 2168 2169 /* Check TX ring producer/consumer */ 2170 (*sc->sc_tx_eof)(sc); 2171 } 2172 2173 ti_handle_events(sc); 2174 2175 /* Re-enable interrupts. */ 2176 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 2177 2178 if ((ifp->if_flags & IFF_RUNNING) != 0 && 2179 IFQ_IS_EMPTY(&ifp->if_snd) == 0) 2180 ti_start(ifp); 2181 2182 return (1); 2183 } 2184 2185 static void 2186 ti_stats_update(struct ti_softc *sc) 2187 { 2188 struct ifnet *ifp; 2189 2190 ifp = &sc->ethercom.ec_if; 2191 2192 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD); 2193 2194 ifp->if_collisions += 2195 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames + 2196 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames + 2197 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions + 2198 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) - 2199 ifp->if_collisions; 2200 2201 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD); 2202 } 2203 2204 /* 2205 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 2206 * pointers to descriptors. 2207 */ 2208 static int 2209 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx) 2210 { 2211 struct ti_tx_desc *f = NULL; 2212 u_int32_t frag, cur, cnt = 0; 2213 struct txdmamap_pool_entry *dma; 2214 bus_dmamap_t dmamap; 2215 int error, i; 2216 struct m_tag *mtag; 2217 u_int16_t csum_flags = 0; 2218 2219 dma = SIMPLEQ_FIRST(&sc->txdma_list); 2220 if (dma == NULL) { 2221 return ENOMEM; 2222 } 2223 dmamap = dma->dmamap; 2224 2225 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 2226 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 2227 if (error) { 2228 struct mbuf *m; 2229 int j = 0; 2230 for (m = m_head; m; m = m->m_next) 2231 j++; 2232 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) " 2233 "error %d\n", m_head->m_pkthdr.len, j, error); 2234 return (ENOMEM); 2235 } 2236 2237 cur = frag = *txidx; 2238 2239 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) { 2240 /* IP header checksum field must be 0! */ 2241 csum_flags |= TI_BDFLAG_IP_CKSUM; 2242 } 2243 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) 2244 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM; 2245 2246 /* XXX fragmented packet checksum capability? */ 2247 2248 /* 2249 * Start packing the mbufs in this chain into 2250 * the fragment pointers. Stop when we run out 2251 * of fragments or hit the end of the mbuf chain. 2252 */ 2253 for (i = 0; i < dmamap->dm_nsegs; i++) { 2254 if (frag > 383) 2255 CSR_WRITE_4(sc, TI_WINBASE, 2256 TI_TX_RING_BASE + 6144); 2257 else if (frag > 255) 2258 CSR_WRITE_4(sc, TI_WINBASE, 2259 TI_TX_RING_BASE + 4096); 2260 else if (frag > 127) 2261 CSR_WRITE_4(sc, TI_WINBASE, 2262 TI_TX_RING_BASE + 2048); 2263 else 2264 CSR_WRITE_4(sc, TI_WINBASE, 2265 TI_TX_RING_BASE); 2266 f = &sc->ti_tx_ring_nic[frag % 128]; 2267 if (sc->ti_cdata.ti_tx_chain[frag] != NULL) 2268 break; 2269 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr; 2270 f->ti_len = dmamap->dm_segs[i].ds_len; 2271 f->ti_flags = csum_flags; 2272 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) { 2273 f->ti_flags |= TI_BDFLAG_VLAN_TAG; 2274 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag); 2275 } else { 2276 f->ti_vlan_tag = 0; 2277 } 2278 /* 2279 * Sanity check: avoid coming within 16 descriptors 2280 * of the end of the ring. 2281 */ 2282 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) 2283 return (ENOBUFS); 2284 cur = frag; 2285 TI_INC(frag, TI_TX_RING_CNT); 2286 cnt++; 2287 } 2288 2289 if (i < dmamap->dm_nsegs) 2290 return (ENOBUFS); 2291 2292 if (frag == sc->ti_tx_saved_considx) 2293 return (ENOBUFS); 2294 2295 sc->ti_tx_ring_nic[cur % 128].ti_flags |= 2296 TI_BDFLAG_END; 2297 2298 /* Sync the packet's DMA map. */ 2299 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 2300 BUS_DMASYNC_PREWRITE); 2301 2302 sc->ti_cdata.ti_tx_chain[cur] = m_head; 2303 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link); 2304 sc->txdma[cur] = dma; 2305 sc->ti_txcnt += cnt; 2306 2307 *txidx = frag; 2308 2309 return (0); 2310 } 2311 2312 static int 2313 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx) 2314 { 2315 struct ti_tx_desc *f = NULL; 2316 u_int32_t frag, firstfrag, cur, cnt = 0; 2317 struct txdmamap_pool_entry *dma; 2318 bus_dmamap_t dmamap; 2319 int error, i; 2320 struct m_tag *mtag; 2321 u_int16_t csum_flags = 0; 2322 2323 dma = SIMPLEQ_FIRST(&sc->txdma_list); 2324 if (dma == NULL) { 2325 return ENOMEM; 2326 } 2327 dmamap = dma->dmamap; 2328 2329 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 2330 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 2331 if (error) { 2332 struct mbuf *m; 2333 int j = 0; 2334 for (m = m_head; m; m = m->m_next) 2335 j++; 2336 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) " 2337 "error %d\n", m_head->m_pkthdr.len, j, error); 2338 return (ENOMEM); 2339 } 2340 2341 cur = firstfrag = frag = *txidx; 2342 2343 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) { 2344 /* IP header checksum field must be 0! */ 2345 csum_flags |= TI_BDFLAG_IP_CKSUM; 2346 } 2347 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) 2348 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM; 2349 2350 /* XXX fragmented packet checksum capability? */ 2351 2352 /* 2353 * Start packing the mbufs in this chain into 2354 * the fragment pointers. Stop when we run out 2355 * of fragments or hit the end of the mbuf chain. 2356 */ 2357 for (i = 0; i < dmamap->dm_nsegs; i++) { 2358 f = &sc->ti_rdata->ti_tx_ring[frag]; 2359 if (sc->ti_cdata.ti_tx_chain[frag] != NULL) 2360 break; 2361 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr; 2362 f->ti_len = dmamap->dm_segs[i].ds_len; 2363 f->ti_flags = csum_flags; 2364 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) { 2365 f->ti_flags |= TI_BDFLAG_VLAN_TAG; 2366 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag); 2367 } else { 2368 f->ti_vlan_tag = 0; 2369 } 2370 /* 2371 * Sanity check: avoid coming within 16 descriptors 2372 * of the end of the ring. 2373 */ 2374 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) 2375 return (ENOBUFS); 2376 cur = frag; 2377 TI_INC(frag, TI_TX_RING_CNT); 2378 cnt++; 2379 } 2380 2381 if (i < dmamap->dm_nsegs) 2382 return (ENOBUFS); 2383 2384 if (frag == sc->ti_tx_saved_considx) 2385 return (ENOBUFS); 2386 2387 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END; 2388 2389 /* Sync the packet's DMA map. */ 2390 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 2391 BUS_DMASYNC_PREWRITE); 2392 2393 /* Sync the descriptors we are using. */ 2394 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE); 2395 2396 sc->ti_cdata.ti_tx_chain[cur] = m_head; 2397 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link); 2398 sc->txdma[cur] = dma; 2399 sc->ti_txcnt += cnt; 2400 2401 *txidx = frag; 2402 2403 return (0); 2404 } 2405 2406 /* 2407 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 2408 * to the mbuf data regions directly in the transmit descriptors. 2409 */ 2410 static void 2411 ti_start(struct ifnet *ifp) 2412 { 2413 struct ti_softc *sc; 2414 struct mbuf *m_head = NULL; 2415 u_int32_t prodidx = 0; 2416 2417 sc = ifp->if_softc; 2418 2419 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX); 2420 2421 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) { 2422 IFQ_POLL(&ifp->if_snd, m_head); 2423 if (m_head == NULL) 2424 break; 2425 2426 /* 2427 * Pack the data into the transmit ring. If we 2428 * don't have room, set the OACTIVE flag and wait 2429 * for the NIC to drain the ring. 2430 */ 2431 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) { 2432 ifp->if_flags |= IFF_OACTIVE; 2433 break; 2434 } 2435 2436 IFQ_DEQUEUE(&ifp->if_snd, m_head); 2437 2438 /* 2439 * If there's a BPF listener, bounce a copy of this frame 2440 * to him. 2441 */ 2442 bpf_mtap(ifp, m_head); 2443 } 2444 2445 /* Transmit */ 2446 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx); 2447 2448 /* 2449 * Set a timeout in case the chip goes out to lunch. 2450 */ 2451 ifp->if_timer = 5; 2452 } 2453 2454 static void 2455 ti_init(void *xsc) 2456 { 2457 struct ti_softc *sc = xsc; 2458 int s; 2459 2460 s = splnet(); 2461 2462 /* Cancel pending I/O and flush buffers. */ 2463 ti_stop(sc); 2464 2465 /* Init the gen info block, ring control blocks and firmware. */ 2466 if (ti_gibinit(sc)) { 2467 aprint_error_dev(sc->sc_dev, "initialization failure\n"); 2468 splx(s); 2469 return; 2470 } 2471 2472 splx(s); 2473 } 2474 2475 static void 2476 ti_init2(struct ti_softc *sc) 2477 { 2478 struct ti_cmd_desc cmd; 2479 struct ifnet *ifp; 2480 const u_int8_t *m; 2481 struct ifmedia *ifm; 2482 int tmp; 2483 2484 ifp = &sc->ethercom.ec_if; 2485 2486 /* Specify MTU and interface index. */ 2487 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */ 2488 2489 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 2490 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) 2491 tmp += ETHER_VLAN_ENCAP_LEN; 2492 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp); 2493 2494 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0); 2495 2496 /* Load our MAC address. */ 2497 m = (const u_int8_t *)CLLADDR(ifp->if_sadl); 2498 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]); 2499 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16) 2500 | (m[4] << 8) | m[5]); 2501 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0); 2502 2503 /* Enable or disable promiscuous mode as needed. */ 2504 if (ifp->if_flags & IFF_PROMISC) { 2505 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); 2506 } else { 2507 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); 2508 } 2509 2510 /* Program multicast filter. */ 2511 ti_setmulti(sc); 2512 2513 /* 2514 * If this is a Tigon 1, we should tell the 2515 * firmware to use software packet filtering. 2516 */ 2517 if (sc->ti_hwrev == TI_HWREV_TIGON) { 2518 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0); 2519 } 2520 2521 /* Init RX ring. */ 2522 ti_init_rx_ring_std(sc); 2523 2524 /* Init jumbo RX ring. */ 2525 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) 2526 ti_init_rx_ring_jumbo(sc); 2527 2528 /* 2529 * If this is a Tigon 2, we can also configure the 2530 * mini ring. 2531 */ 2532 if (sc->ti_hwrev == TI_HWREV_TIGON_II) 2533 ti_init_rx_ring_mini(sc); 2534 2535 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0); 2536 sc->ti_rx_saved_considx = 0; 2537 2538 /* Init TX ring. */ 2539 ti_init_tx_ring(sc); 2540 2541 /* Tell firmware we're alive. */ 2542 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0); 2543 2544 /* Enable host interrupts. */ 2545 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 2546 2547 ifp->if_flags |= IFF_RUNNING; 2548 ifp->if_flags &= ~IFF_OACTIVE; 2549 2550 /* 2551 * Make sure to set media properly. We have to do this 2552 * here since we have to issue commands in order to set 2553 * the link negotiation and we can't issue commands until 2554 * the firmware is running. 2555 */ 2556 ifm = &sc->ifmedia; 2557 tmp = ifm->ifm_media; 2558 ifm->ifm_media = ifm->ifm_cur->ifm_media; 2559 ti_ifmedia_upd(ifp); 2560 ifm->ifm_media = tmp; 2561 } 2562 2563 /* 2564 * Set media options. 2565 */ 2566 static int 2567 ti_ifmedia_upd(struct ifnet *ifp) 2568 { 2569 struct ti_softc *sc; 2570 struct ifmedia *ifm; 2571 struct ti_cmd_desc cmd; 2572 2573 sc = ifp->if_softc; 2574 ifm = &sc->ifmedia; 2575 2576 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 2577 return (EINVAL); 2578 2579 switch (IFM_SUBTYPE(ifm->ifm_media)) { 2580 case IFM_AUTO: 2581 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| 2582 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y| 2583 TI_GLNK_AUTONEGENB|TI_GLNK_ENB); 2584 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB| 2585 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| 2586 TI_LNK_AUTONEGENB|TI_LNK_ENB); 2587 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 2588 TI_CMD_CODE_NEGOTIATE_BOTH, 0); 2589 break; 2590 case IFM_1000_SX: 2591 case IFM_1000_T: 2592 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 2593 CSR_WRITE_4(sc, TI_GCR_GLINK, 2594 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX| 2595 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB); 2596 } else { 2597 CSR_WRITE_4(sc, TI_GCR_GLINK, 2598 TI_GLNK_PREF|TI_GLNK_1000MB| 2599 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB); 2600 } 2601 CSR_WRITE_4(sc, TI_GCR_LINK, 0); 2602 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 2603 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0); 2604 break; 2605 case IFM_100_FX: 2606 case IFM_10_FL: 2607 case IFM_100_TX: 2608 case IFM_10_T: 2609 CSR_WRITE_4(sc, TI_GCR_GLINK, 0); 2610 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF); 2611 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX || 2612 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) { 2613 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB); 2614 } else { 2615 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB); 2616 } 2617 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 2618 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX); 2619 } else { 2620 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX); 2621 } 2622 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 2623 TI_CMD_CODE_NEGOTIATE_10_100, 0); 2624 break; 2625 } 2626 2627 sc->ethercom.ec_if.if_baudrate = 2628 ifmedia_baudrate(ifm->ifm_media); 2629 2630 return (0); 2631 } 2632 2633 /* 2634 * Report current media status. 2635 */ 2636 static void 2637 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2638 { 2639 struct ti_softc *sc; 2640 u_int32_t media = 0; 2641 2642 sc = ifp->if_softc; 2643 2644 ifmr->ifm_status = IFM_AVALID; 2645 ifmr->ifm_active = IFM_ETHER; 2646 2647 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) 2648 return; 2649 2650 ifmr->ifm_status |= IFM_ACTIVE; 2651 2652 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) { 2653 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT); 2654 if (sc->ti_copper) 2655 ifmr->ifm_active |= IFM_1000_T; 2656 else 2657 ifmr->ifm_active |= IFM_1000_SX; 2658 if (media & TI_GLNK_FULL_DUPLEX) 2659 ifmr->ifm_active |= IFM_FDX; 2660 else 2661 ifmr->ifm_active |= IFM_HDX; 2662 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) { 2663 media = CSR_READ_4(sc, TI_GCR_LINK_STAT); 2664 if (sc->ti_copper) { 2665 if (media & TI_LNK_100MB) 2666 ifmr->ifm_active |= IFM_100_TX; 2667 if (media & TI_LNK_10MB) 2668 ifmr->ifm_active |= IFM_10_T; 2669 } else { 2670 if (media & TI_LNK_100MB) 2671 ifmr->ifm_active |= IFM_100_FX; 2672 if (media & TI_LNK_10MB) 2673 ifmr->ifm_active |= IFM_10_FL; 2674 } 2675 if (media & TI_LNK_FULL_DUPLEX) 2676 ifmr->ifm_active |= IFM_FDX; 2677 if (media & TI_LNK_HALF_DUPLEX) 2678 ifmr->ifm_active |= IFM_HDX; 2679 } 2680 2681 sc->ethercom.ec_if.if_baudrate = 2682 ifmedia_baudrate(sc->ifmedia.ifm_media); 2683 } 2684 2685 static int 2686 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2687 { 2688 struct ifaddr *ifa = (struct ifaddr *) data; 2689 struct ti_softc *sc = ifp->if_softc; 2690 2691 if ((ifp->if_flags & IFF_UP) == 0) { 2692 ifp->if_flags |= IFF_UP; 2693 ti_init(sc); 2694 } 2695 2696 switch (cmd) { 2697 case SIOCINITIFADDR: 2698 2699 switch (ifa->ifa_addr->sa_family) { 2700 #ifdef INET 2701 case AF_INET: 2702 arp_ifinit(ifp, ifa); 2703 break; 2704 #endif 2705 default: 2706 break; 2707 } 2708 break; 2709 2710 default: 2711 return (EINVAL); 2712 } 2713 2714 return (0); 2715 } 2716 2717 static int 2718 ti_ioctl(struct ifnet *ifp, u_long command, void *data) 2719 { 2720 struct ti_softc *sc = ifp->if_softc; 2721 struct ifreq *ifr = (struct ifreq *) data; 2722 int s, error = 0; 2723 struct ti_cmd_desc cmd; 2724 2725 s = splnet(); 2726 2727 switch (command) { 2728 case SIOCINITIFADDR: 2729 error = ti_ether_ioctl(ifp, command, data); 2730 break; 2731 case SIOCSIFMTU: 2732 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO) 2733 error = EINVAL; 2734 else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET){ 2735 ti_init(sc); 2736 error = 0; 2737 } 2738 break; 2739 case SIOCSIFFLAGS: 2740 if ((error = ifioctl_common(ifp, command, data)) != 0) 2741 break; 2742 if (ifp->if_flags & IFF_UP) { 2743 /* 2744 * If only the state of the PROMISC flag changed, 2745 * then just use the 'set promisc mode' command 2746 * instead of reinitializing the entire NIC. Doing 2747 * a full re-init means reloading the firmware and 2748 * waiting for it to start up, which may take a 2749 * second or two. 2750 */ 2751 if (ifp->if_flags & IFF_RUNNING && 2752 ifp->if_flags & IFF_PROMISC && 2753 !(sc->ti_if_flags & IFF_PROMISC)) { 2754 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, 2755 TI_CMD_CODE_PROMISC_ENB, 0); 2756 } else if (ifp->if_flags & IFF_RUNNING && 2757 !(ifp->if_flags & IFF_PROMISC) && 2758 sc->ti_if_flags & IFF_PROMISC) { 2759 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, 2760 TI_CMD_CODE_PROMISC_DIS, 0); 2761 } else 2762 ti_init(sc); 2763 } else { 2764 if (ifp->if_flags & IFF_RUNNING) { 2765 ti_stop(sc); 2766 } 2767 } 2768 sc->ti_if_flags = ifp->if_flags; 2769 error = 0; 2770 break; 2771 case SIOCSIFMEDIA: 2772 case SIOCGIFMEDIA: 2773 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 2774 break; 2775 default: 2776 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 2777 break; 2778 2779 error = 0; 2780 2781 if (command == SIOCSIFCAP) 2782 ti_init(sc); 2783 else if (command != SIOCADDMULTI && command != SIOCDELMULTI) 2784 ; 2785 else if (ifp->if_flags & IFF_RUNNING) 2786 ti_setmulti(sc); 2787 break; 2788 } 2789 2790 (void)splx(s); 2791 2792 return (error); 2793 } 2794 2795 static void 2796 ti_watchdog(struct ifnet *ifp) 2797 { 2798 struct ti_softc *sc; 2799 2800 sc = ifp->if_softc; 2801 2802 aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n"); 2803 ti_stop(sc); 2804 ti_init(sc); 2805 2806 ifp->if_oerrors++; 2807 } 2808 2809 /* 2810 * Stop the adapter and free any mbufs allocated to the 2811 * RX and TX lists. 2812 */ 2813 static void 2814 ti_stop(struct ti_softc *sc) 2815 { 2816 struct ifnet *ifp; 2817 struct ti_cmd_desc cmd; 2818 2819 ifp = &sc->ethercom.ec_if; 2820 2821 /* Disable host interrupts. */ 2822 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 2823 /* 2824 * Tell firmware we're shutting down. 2825 */ 2826 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0); 2827 2828 /* Halt and reinitialize. */ 2829 ti_chipinit(sc); 2830 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); 2831 ti_chipinit(sc); 2832 2833 /* Free the RX lists. */ 2834 ti_free_rx_ring_std(sc); 2835 2836 /* Free jumbo RX list. */ 2837 ti_free_rx_ring_jumbo(sc); 2838 2839 /* Free mini RX list. */ 2840 ti_free_rx_ring_mini(sc); 2841 2842 /* Free TX buffers. */ 2843 ti_free_tx_ring(sc); 2844 2845 sc->ti_ev_prodidx.ti_idx = 0; 2846 sc->ti_return_prodidx.ti_idx = 0; 2847 sc->ti_tx_considx.ti_idx = 0; 2848 sc->ti_tx_saved_considx = TI_TXCONS_UNSET; 2849 2850 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2851 } 2852 2853 /* 2854 * Stop all chip I/O so that the kernel's probe routines don't 2855 * get confused by errant DMAs when rebooting. 2856 */ 2857 static bool 2858 ti_shutdown(device_t self, int howto) 2859 { 2860 struct ti_softc *sc; 2861 2862 sc = device_private(self); 2863 ti_chipinit(sc); 2864 2865 return true; 2866 } 2867