1 /* $NetBSD: if_ti.c,v 1.20 2001/01/29 01:24:42 enami Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998, 1999 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp 35 */ 36 37 /* 38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD. 39 * Manuals, sample driver and firmware source kits are available 40 * from http://www.alteon.com/support/openkits. 41 * 42 * Written by Bill Paul <wpaul@ctr.columbia.edu> 43 * Electrical Engineering Department 44 * Columbia University, New York City 45 */ 46 47 /* 48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU, 49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs 50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The 51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast 52 * filtering and jumbo (9014 byte) frames. The hardware is largely 53 * controlled by firmware, which must be loaded into the NIC during 54 * initialization. 55 * 56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware 57 * revision, which supports new features such as extended commands, 58 * extended jumbo receive ring desciptors and a mini receive ring. 59 * 60 * Alteon Networks is to be commended for releasing such a vast amount 61 * of development material for the Tigon NIC without requiring an NDA 62 * (although they really should have done it a long time ago). With 63 * any luck, the other vendors will finally wise up and follow Alteon's 64 * stellar example. 65 * 66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into 67 * this driver by #including it as a C header file. This bloats the 68 * driver somewhat, but it's the easiest method considering that the 69 * driver code and firmware code need to be kept in sync. The source 70 * for the firmware is not provided with the FreeBSD distribution since 71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3. 72 * 73 * The following people deserve special thanks: 74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board 75 * for testing 76 * - Raymond Lee of Netgear, for providing a pair of Netgear 77 * GA620 Tigon 2 boards for testing 78 * - Ulf Zimmermann, for bringing the GA620 to my attention and 79 * convincing me to write this driver. 80 * - Andrew Gallatin for providing FreeBSD/Alpha support. 81 */ 82 83 #include "bpfilter.h" 84 #include "opt_inet.h" 85 #include "opt_ns.h" 86 87 #include <sys/param.h> 88 #include <sys/systm.h> 89 #include <sys/sockio.h> 90 #include <sys/mbuf.h> 91 #include <sys/malloc.h> 92 #include <sys/kernel.h> 93 #include <sys/socket.h> 94 #include <sys/queue.h> 95 #include <sys/device.h> 96 #include <sys/reboot.h> 97 98 #include <uvm/uvm_extern.h> 99 100 #include <net/if.h> 101 #include <net/if_arp.h> 102 #include <net/if_ether.h> 103 #include <net/if_dl.h> 104 #include <net/if_media.h> 105 106 #if NBPFILTER > 0 107 #include <net/bpf.h> 108 #endif 109 110 #ifdef INET 111 #include <netinet/in.h> 112 #include <netinet/if_inarp.h> 113 #endif 114 115 #ifdef NS 116 #include <netns/ns.h> 117 #include <netns/ns_if.h> 118 #endif 119 120 #include <machine/bus.h> 121 122 #include <dev/pci/pcireg.h> 123 #include <dev/pci/pcivar.h> 124 #include <dev/pci/pcidevs.h> 125 126 #include <dev/pci/if_tireg.h> 127 #include <dev/pci/ti_fw.h> 128 #include <dev/pci/ti_fw2.h> 129 130 #ifdef M_HWCKSUM 131 /*#define TI_CSUM_OFFLOAD*/ 132 #endif 133 134 /* 135 * Various supported device vendors/types and their names. 136 */ 137 138 static const struct ti_type ti_devs[] = { 139 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC, 140 "Alteon AceNIC 1000baseSX Gigabit Ethernet" }, 141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER, 142 "Alteon AceNIC 1000baseT Gigabit Ethernet" }, 143 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985, 144 "3Com 3c985-SX Gigabit Ethernet" }, 145 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620, 146 "Netgear GA620 1000baseSX Gigabit Ethernet" }, 147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T, 148 "Netgear GA620 1000baseT Gigabit Ethernet" }, 149 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON, 150 "Silicon Graphics Gigabit Ethernet" }, 151 { 0, 0, NULL } 152 }; 153 154 static const struct ti_type *ti_type_match __P((struct pci_attach_args *)); 155 static int ti_probe __P((struct device *, struct cfdata *, void *)); 156 static void ti_attach __P((struct device *, struct device *, void *)); 157 static void ti_shutdown __P((void *)); 158 static void ti_txeof __P((struct ti_softc *)); 159 static void ti_rxeof __P((struct ti_softc *)); 160 161 static void ti_stats_update __P((struct ti_softc *)); 162 static int ti_encap __P((struct ti_softc *, struct mbuf *, 163 u_int32_t *)); 164 165 static int ti_intr __P((void *)); 166 static void ti_start __P((struct ifnet *)); 167 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t)); 168 static void ti_init __P((void *)); 169 static void ti_init2 __P((struct ti_softc *)); 170 static void ti_stop __P((struct ti_softc *)); 171 static void ti_watchdog __P((struct ifnet *)); 172 static int ti_ifmedia_upd __P((struct ifnet *)); 173 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); 174 175 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int)); 176 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *, 177 int, u_int8_t *)); 178 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int)); 179 180 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *)); 181 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *)); 182 static void ti_setmulti __P((struct ti_softc *)); 183 184 static void ti_mem __P((struct ti_softc *, u_int32_t, 185 u_int32_t, caddr_t)); 186 static void ti_loadfw __P((struct ti_softc *)); 187 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *)); 188 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *, 189 caddr_t, int)); 190 static void ti_handle_events __P((struct ti_softc *)); 191 static int ti_alloc_jumbo_mem __P((struct ti_softc *)); 192 static void *ti_jalloc __P((struct ti_softc *)); 193 static void ti_jfree __P((caddr_t, u_int, void *)); 194 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t)); 195 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t)); 196 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *)); 197 static int ti_init_rx_ring_std __P((struct ti_softc *)); 198 static void ti_free_rx_ring_std __P((struct ti_softc *)); 199 static int ti_init_rx_ring_jumbo __P((struct ti_softc *)); 200 static void ti_free_rx_ring_jumbo __P((struct ti_softc *)); 201 static int ti_init_rx_ring_mini __P((struct ti_softc *)); 202 static void ti_free_rx_ring_mini __P((struct ti_softc *)); 203 static void ti_free_tx_ring __P((struct ti_softc *)); 204 static int ti_init_tx_ring __P((struct ti_softc *)); 205 206 static int ti_64bitslot_war __P((struct ti_softc *)); 207 static int ti_chipinit __P((struct ti_softc *)); 208 static int ti_gibinit __P((struct ti_softc *)); 209 210 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t)); 211 212 struct cfattach ti_ca = { 213 sizeof(struct ti_softc), ti_probe, ti_attach 214 }; 215 216 /* 217 * Send an instruction or address to the EEPROM, check for ACK. 218 */ 219 static u_int32_t ti_eeprom_putbyte(sc, byte) 220 struct ti_softc *sc; 221 int byte; 222 { 223 int i, ack = 0; 224 225 /* 226 * Make sure we're in TX mode. 227 */ 228 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 229 230 /* 231 * Feed in each bit and stobe the clock. 232 */ 233 for (i = 0x80; i; i >>= 1) { 234 if (byte & i) { 235 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); 236 } else { 237 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); 238 } 239 DELAY(1); 240 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 241 DELAY(1); 242 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 243 } 244 245 /* 246 * Turn off TX mode. 247 */ 248 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 249 250 /* 251 * Check for ack. 252 */ 253 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 254 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN; 255 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 256 257 return(ack); 258 } 259 260 /* 261 * Read a byte of data stored in the EEPROM at address 'addr.' 262 * We have to send two address bytes since the EEPROM can hold 263 * more than 256 bytes of data. 264 */ 265 static u_int8_t ti_eeprom_getbyte(sc, addr, dest) 266 struct ti_softc *sc; 267 int addr; 268 u_int8_t *dest; 269 { 270 int i; 271 u_int8_t byte = 0; 272 273 EEPROM_START; 274 275 /* 276 * Send write control code to EEPROM. 277 */ 278 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { 279 printf("%s: failed to send write command, status: %x\n", 280 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 281 return(1); 282 } 283 284 /* 285 * Send first byte of address of byte we want to read. 286 */ 287 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) { 288 printf("%s: failed to send address, status: %x\n", 289 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 290 return(1); 291 } 292 /* 293 * Send second byte address of byte we want to read. 294 */ 295 if (ti_eeprom_putbyte(sc, addr & 0xFF)) { 296 printf("%s: failed to send address, status: %x\n", 297 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 298 return(1); 299 } 300 301 EEPROM_STOP; 302 EEPROM_START; 303 /* 304 * Send read control code to EEPROM. 305 */ 306 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) { 307 printf("%s: failed to send read command, status: %x\n", 308 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 309 return(1); 310 } 311 312 /* 313 * Start reading bits from EEPROM. 314 */ 315 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 316 for (i = 0x80; i; i >>= 1) { 317 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 318 DELAY(1); 319 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN) 320 byte |= i; 321 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 322 DELAY(1); 323 } 324 325 EEPROM_STOP; 326 327 /* 328 * No ACK generated for read, so just return byte. 329 */ 330 331 *dest = byte; 332 333 return(0); 334 } 335 336 /* 337 * Read a sequence of bytes from the EEPROM. 338 */ 339 static int ti_read_eeprom(sc, dest, off, cnt) 340 struct ti_softc *sc; 341 caddr_t dest; 342 int off; 343 int cnt; 344 { 345 int err = 0, i; 346 u_int8_t byte = 0; 347 348 for (i = 0; i < cnt; i++) { 349 err = ti_eeprom_getbyte(sc, off + i, &byte); 350 if (err) 351 break; 352 *(dest + i) = byte; 353 } 354 355 return(err ? 1 : 0); 356 } 357 358 /* 359 * NIC memory access function. Can be used to either clear a section 360 * of NIC local memory or (if buf is non-NULL) copy data into it. 361 */ 362 static void ti_mem(sc, addr, len, buf) 363 struct ti_softc *sc; 364 u_int32_t addr, len; 365 caddr_t buf; 366 { 367 int segptr, segsize, cnt; 368 caddr_t ptr; 369 370 segptr = addr; 371 cnt = len; 372 ptr = buf; 373 374 while(cnt) { 375 if (cnt < TI_WINLEN) 376 segsize = cnt; 377 else 378 segsize = TI_WINLEN - (segptr % TI_WINLEN); 379 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); 380 if (buf == NULL) { 381 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle, 382 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, 383 segsize / 4); 384 } else { 385 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, 386 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 387 (u_int32_t *)ptr, segsize / 4); 388 ptr += segsize; 389 } 390 segptr += segsize; 391 cnt -= segsize; 392 } 393 394 return; 395 } 396 397 /* 398 * Load firmware image into the NIC. Check that the firmware revision 399 * is acceptable and see if we want the firmware for the Tigon 1 or 400 * Tigon 2. 401 */ 402 static void ti_loadfw(sc) 403 struct ti_softc *sc; 404 { 405 switch(sc->ti_hwrev) { 406 case TI_HWREV_TIGON: 407 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR || 408 tigonFwReleaseMinor != TI_FIRMWARE_MINOR || 409 tigonFwReleaseFix != TI_FIRMWARE_FIX) { 410 printf("%s: firmware revision mismatch; want " 411 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname, 412 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, 413 TI_FIRMWARE_FIX, tigonFwReleaseMajor, 414 tigonFwReleaseMinor, tigonFwReleaseFix); 415 return; 416 } 417 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, 418 (caddr_t)tigonFwText); 419 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, 420 (caddr_t)tigonFwData); 421 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, 422 (caddr_t)tigonFwRodata); 423 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL); 424 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL); 425 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr); 426 break; 427 case TI_HWREV_TIGON_II: 428 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR || 429 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR || 430 tigon2FwReleaseFix != TI_FIRMWARE_FIX) { 431 printf("%s: firmware revision mismatch; want " 432 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname, 433 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, 434 TI_FIRMWARE_FIX, tigon2FwReleaseMajor, 435 tigon2FwReleaseMinor, tigon2FwReleaseFix); 436 return; 437 } 438 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, 439 (caddr_t)tigon2FwText); 440 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, 441 (caddr_t)tigon2FwData); 442 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen, 443 (caddr_t)tigon2FwRodata); 444 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL); 445 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL); 446 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr); 447 break; 448 default: 449 printf("%s: can't load firmware: unknown hardware rev\n", 450 sc->sc_dev.dv_xname); 451 break; 452 } 453 454 return; 455 } 456 457 /* 458 * Send the NIC a command via the command ring. 459 */ 460 static void ti_cmd(sc, cmd) 461 struct ti_softc *sc; 462 struct ti_cmd_desc *cmd; 463 { 464 u_int32_t index; 465 466 index = sc->ti_cmd_saved_prodidx; 467 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); 468 TI_INC(index, TI_CMD_RING_CNT); 469 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); 470 sc->ti_cmd_saved_prodidx = index; 471 472 return; 473 } 474 475 /* 476 * Send the NIC an extended command. The 'len' parameter specifies the 477 * number of command slots to include after the initial command. 478 */ 479 static void ti_cmd_ext(sc, cmd, arg, len) 480 struct ti_softc *sc; 481 struct ti_cmd_desc *cmd; 482 caddr_t arg; 483 int len; 484 { 485 u_int32_t index; 486 int i; 487 488 index = sc->ti_cmd_saved_prodidx; 489 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); 490 TI_INC(index, TI_CMD_RING_CNT); 491 for (i = 0; i < len; i++) { 492 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), 493 *(u_int32_t *)(&arg[i * 4])); 494 TI_INC(index, TI_CMD_RING_CNT); 495 } 496 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); 497 sc->ti_cmd_saved_prodidx = index; 498 499 return; 500 } 501 502 /* 503 * Handle events that have triggered interrupts. 504 */ 505 static void ti_handle_events(sc) 506 struct ti_softc *sc; 507 { 508 struct ti_event_desc *e; 509 510 if (sc->ti_rdata->ti_event_ring == NULL) 511 return; 512 513 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) { 514 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx]; 515 switch(e->ti_event) { 516 case TI_EV_LINKSTAT_CHANGED: 517 sc->ti_linkstat = e->ti_code; 518 if (e->ti_code == TI_EV_CODE_LINK_UP) 519 printf("%s: 10/100 link up\n", 520 sc->sc_dev.dv_xname); 521 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) 522 printf("%s: gigabit link up\n", 523 sc->sc_dev.dv_xname); 524 else if (e->ti_code == TI_EV_CODE_LINK_DOWN) 525 printf("%s: link down\n", 526 sc->sc_dev.dv_xname); 527 break; 528 case TI_EV_ERROR: 529 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) 530 printf("%s: invalid command\n", 531 sc->sc_dev.dv_xname); 532 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) 533 printf("%s: unknown command\n", 534 sc->sc_dev.dv_xname); 535 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) 536 printf("%s: bad config data\n", 537 sc->sc_dev.dv_xname); 538 break; 539 case TI_EV_FIRMWARE_UP: 540 ti_init2(sc); 541 break; 542 case TI_EV_STATS_UPDATED: 543 ti_stats_update(sc); 544 break; 545 case TI_EV_RESET_JUMBO_RING: 546 case TI_EV_MCAST_UPDATED: 547 /* Who cares. */ 548 break; 549 default: 550 printf("%s: unknown event: %d\n", 551 sc->sc_dev.dv_xname, e->ti_event); 552 break; 553 } 554 /* Advance the consumer index. */ 555 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT); 556 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx); 557 } 558 559 return; 560 } 561 562 /* 563 * Memory management for the jumbo receive ring is a pain in the 564 * butt. We need to allocate at least 9018 bytes of space per frame, 565 * _and_ it has to be contiguous (unless you use the extended 566 * jumbo descriptor format). Using malloc() all the time won't 567 * work: malloc() allocates memory in powers of two, which means we 568 * would end up wasting a considerable amount of space by allocating 569 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have 570 * to do our own memory management. 571 * 572 * The driver needs to allocate a contiguous chunk of memory at boot 573 * time. We then chop this up ourselves into 9K pieces and use them 574 * as external mbuf storage. 575 * 576 * One issue here is how much memory to allocate. The jumbo ring has 577 * 256 slots in it, but at 9K per slot than can consume over 2MB of 578 * RAM. This is a bit much, especially considering we also need 579 * RAM for the standard ring and mini ring (on the Tigon 2). To 580 * save space, we only actually allocate enough memory for 64 slots 581 * by default, which works out to between 500 and 600K. This can 582 * be tuned by changing a #define in if_tireg.h. 583 */ 584 585 static int ti_alloc_jumbo_mem(sc) 586 struct ti_softc *sc; 587 { 588 caddr_t ptr; 589 int i; 590 struct ti_jpool_entry *entry; 591 bus_dma_segment_t dmaseg; 592 int error, dmanseg; 593 594 /* Grab a big chunk o' storage. */ 595 if ((error = bus_dmamem_alloc(sc->sc_dmat, 596 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg, 597 BUS_DMA_NOWAIT)) != 0) { 598 printf("%s: can't allocate jumbo buffer, error = %d\n", 599 sc->sc_dev.dv_xname, error); 600 return (error); 601 } 602 603 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg, 604 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf, 605 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 606 printf("%s: can't map jumbo buffer, error = %d\n", 607 sc->sc_dev.dv_xname, error); 608 return (error); 609 } 610 611 if ((error = bus_dmamap_create(sc->sc_dmat, 612 TI_JMEM, 1, 613 TI_JMEM, 0, BUS_DMA_NOWAIT, 614 &sc->jumbo_dmamap)) != 0) { 615 printf("%s: can't create jumbo buffer DMA map, error = %d\n", 616 sc->sc_dev.dv_xname, error); 617 return (error); 618 } 619 620 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap, 621 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL, 622 BUS_DMA_NOWAIT)) != 0) { 623 printf("%s: can't load jumbo buffer DMA map, error = %d\n", 624 sc->sc_dev.dv_xname, error); 625 return (error); 626 } 627 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr; 628 629 SIMPLEQ_INIT(&sc->ti_jfree_listhead); 630 SIMPLEQ_INIT(&sc->ti_jinuse_listhead); 631 632 /* 633 * Now divide it up into 9K pieces and save the addresses 634 * in an array. 635 */ 636 ptr = sc->ti_cdata.ti_jumbo_buf; 637 for (i = 0; i < TI_JSLOTS; i++) { 638 sc->ti_cdata.ti_jslots[i] = ptr; 639 ptr += TI_JLEN; 640 entry = malloc(sizeof(struct ti_jpool_entry), 641 M_DEVBUF, M_NOWAIT); 642 if (entry == NULL) { 643 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF); 644 sc->ti_cdata.ti_jumbo_buf = NULL; 645 printf("%s: no memory for jumbo " 646 "buffer queue!\n", sc->sc_dev.dv_xname); 647 return(ENOBUFS); 648 } 649 entry->slot = i; 650 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, 651 jpool_entries); 652 } 653 654 return(0); 655 } 656 657 /* 658 * Allocate a jumbo buffer. 659 */ 660 static void *ti_jalloc(sc) 661 struct ti_softc *sc; 662 { 663 struct ti_jpool_entry *entry; 664 665 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead); 666 667 if (entry == NULL) { 668 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname); 669 return(NULL); 670 } 671 672 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); 673 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries); 674 return(sc->ti_cdata.ti_jslots[entry->slot]); 675 } 676 677 /* 678 * Release a jumbo buffer. 679 */ 680 static void ti_jfree(buf, size, arg) 681 caddr_t buf; 682 u_int size; 683 void *arg; 684 { 685 struct ti_softc *sc; 686 int i; 687 struct ti_jpool_entry *entry; 688 689 /* Extract the softc struct pointer. */ 690 sc = (struct ti_softc *)arg; 691 692 if (sc == NULL) 693 panic("ti_jfree: didn't get softc pointer!"); 694 695 /* calculate the slot this buffer belongs to */ 696 697 i = ((caddr_t)buf 698 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; 699 700 if ((i < 0) || (i >= TI_JSLOTS)) 701 panic("ti_jfree: asked to free buffer that we don't manage!"); 702 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead); 703 if (entry == NULL) 704 panic("ti_jfree: buffer not in use!"); 705 entry->slot = i; 706 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, 707 entry, jpool_entries); 708 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, 709 entry, jpool_entries); 710 711 return; 712 } 713 714 715 /* 716 * Intialize a standard receive ring descriptor. 717 */ 718 static int ti_newbuf_std(sc, i, m, dmamap) 719 struct ti_softc *sc; 720 int i; 721 struct mbuf *m; 722 bus_dmamap_t dmamap; /* required if (m != NULL) */ 723 { 724 struct mbuf *m_new = NULL; 725 struct ti_rx_desc *r; 726 int error; 727 728 if (dmamap == NULL) { 729 /* if (m) panic() */ 730 731 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 732 MCLBYTES, 0, BUS_DMA_NOWAIT, 733 &dmamap)) != 0) { 734 printf("%s: can't create recv map, error = %d\n", 735 sc->sc_dev.dv_xname, error); 736 return(ENOMEM); 737 } 738 } 739 sc->std_dmamap[i] = dmamap; 740 741 if (m == NULL) { 742 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 743 if (m_new == NULL) { 744 printf("%s: mbuf allocation failed " 745 "-- packet dropped!\n", sc->sc_dev.dv_xname); 746 return(ENOBUFS); 747 } 748 749 MCLGET(m_new, M_DONTWAIT); 750 if (!(m_new->m_flags & M_EXT)) { 751 printf("%s: cluster allocation failed " 752 "-- packet dropped!\n", sc->sc_dev.dv_xname); 753 m_freem(m_new); 754 return(ENOBUFS); 755 } 756 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 757 m_adj(m_new, ETHER_ALIGN); 758 759 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap, 760 mtod(m_new, caddr_t), m_new->m_len, NULL, 761 BUS_DMA_NOWAIT)) != 0) { 762 printf("%s: can't load recv map, error = %d\n", 763 sc->sc_dev.dv_xname, error); 764 return (ENOMEM); 765 } 766 } else { 767 m_new = m; 768 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 769 m_new->m_data = m_new->m_ext.ext_buf; 770 m_adj(m_new, ETHER_ALIGN); 771 772 /* reuse the dmamap */ 773 } 774 775 sc->ti_cdata.ti_rx_std_chain[i] = m_new; 776 r = &sc->ti_rdata->ti_rx_std_ring[i]; 777 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr; 778 r->ti_type = TI_BDTYPE_RECV_BD; 779 #ifdef TI_CSUM_OFFLOAD 780 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; 781 #else 782 r->ti_flags = 0; 783 #endif 784 r->ti_len = m_new->m_len; /* == ds_len */ 785 r->ti_idx = i; 786 787 return(0); 788 } 789 790 /* 791 * Intialize a mini receive ring descriptor. This only applies to 792 * the Tigon 2. 793 */ 794 static int ti_newbuf_mini(sc, i, m, dmamap) 795 struct ti_softc *sc; 796 int i; 797 struct mbuf *m; 798 bus_dmamap_t dmamap; /* required if (m != NULL) */ 799 { 800 struct mbuf *m_new = NULL; 801 struct ti_rx_desc *r; 802 int error; 803 804 if (dmamap == NULL) { 805 /* if (m) panic() */ 806 807 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1, 808 MHLEN, 0, BUS_DMA_NOWAIT, 809 &dmamap)) != 0) { 810 printf("%s: can't create recv map, error = %d\n", 811 sc->sc_dev.dv_xname, error); 812 return(ENOMEM); 813 } 814 } 815 sc->mini_dmamap[i] = dmamap; 816 817 if (m == NULL) { 818 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 819 if (m_new == NULL) { 820 printf("%s: mbuf allocation failed " 821 "-- packet dropped!\n", sc->sc_dev.dv_xname); 822 return(ENOBUFS); 823 } 824 m_new->m_len = m_new->m_pkthdr.len = MHLEN; 825 m_adj(m_new, ETHER_ALIGN); 826 827 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap, 828 mtod(m_new, caddr_t), m_new->m_len, NULL, 829 BUS_DMA_NOWAIT)) != 0) { 830 printf("%s: can't load recv map, error = %d\n", 831 sc->sc_dev.dv_xname, error); 832 return (ENOMEM); 833 } 834 } else { 835 m_new = m; 836 m_new->m_data = m_new->m_pktdat; 837 m_new->m_len = m_new->m_pkthdr.len = MHLEN; 838 m_adj(m_new, ETHER_ALIGN); 839 840 /* reuse the dmamap */ 841 } 842 843 r = &sc->ti_rdata->ti_rx_mini_ring[i]; 844 sc->ti_cdata.ti_rx_mini_chain[i] = m_new; 845 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr; 846 r->ti_type = TI_BDTYPE_RECV_BD; 847 r->ti_flags = TI_BDFLAG_MINI_RING; 848 #ifdef TI_CSUM_OFFLOAD 849 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; 850 #endif 851 r->ti_len = m_new->m_len; /* == ds_len */ 852 r->ti_idx = i; 853 854 return(0); 855 } 856 857 /* 858 * Initialize a jumbo receive ring descriptor. This allocates 859 * a jumbo buffer from the pool managed internally by the driver. 860 */ 861 static int ti_newbuf_jumbo(sc, i, m) 862 struct ti_softc *sc; 863 int i; 864 struct mbuf *m; 865 { 866 struct mbuf *m_new = NULL; 867 struct ti_rx_desc *r; 868 869 if (m == NULL) { 870 caddr_t *buf = NULL; 871 872 /* Allocate the mbuf. */ 873 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 874 if (m_new == NULL) { 875 printf("%s: mbuf allocation failed " 876 "-- packet dropped!\n", sc->sc_dev.dv_xname); 877 return(ENOBUFS); 878 } 879 880 /* Allocate the jumbo buffer */ 881 buf = ti_jalloc(sc); 882 if (buf == NULL) { 883 m_freem(m_new); 884 printf("%s: jumbo allocation failed " 885 "-- packet dropped!\n", sc->sc_dev.dv_xname); 886 return(ENOBUFS); 887 } 888 889 /* Attach the buffer to the mbuf. */ 890 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf; 891 m_new->m_flags |= M_EXT; 892 m_new->m_len = m_new->m_pkthdr.len = 893 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN; 894 m_new->m_ext.ext_free = ti_jfree; 895 m_new->m_ext.ext_arg = sc; 896 MCLINITREFERENCE(m_new); 897 } else { 898 m_new = m; 899 m_new->m_data = m_new->m_ext.ext_buf; 900 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN; 901 } 902 903 m_adj(m_new, ETHER_ALIGN); 904 /* Set up the descriptor. */ 905 r = &sc->ti_rdata->ti_rx_jumbo_ring[i]; 906 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new; 907 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr + 908 ((caddr_t)mtod(m_new, caddr_t) 909 - (caddr_t)sc->ti_cdata.ti_jumbo_buf); 910 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; 911 r->ti_flags = TI_BDFLAG_JUMBO_RING; 912 #ifdef TI_CSUM_OFFLOAD 913 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; 914 #endif 915 r->ti_len = m_new->m_len; 916 r->ti_idx = i; 917 918 return(0); 919 } 920 921 /* 922 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 923 * that's 1MB or memory, which is a lot. For now, we fill only the first 924 * 256 ring entries and hope that our CPU is fast enough to keep up with 925 * the NIC. 926 */ 927 static int ti_init_rx_ring_std(sc) 928 struct ti_softc *sc; 929 { 930 int i; 931 struct ti_cmd_desc cmd; 932 933 for (i = 0; i < TI_SSLOTS; i++) { 934 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS) 935 return(ENOBUFS); 936 }; 937 938 TI_UPDATE_STDPROD(sc, i - 1); 939 sc->ti_std = i - 1; 940 941 return(0); 942 } 943 944 static void ti_free_rx_ring_std(sc) 945 struct ti_softc *sc; 946 { 947 int i; 948 949 for (i = 0; i < TI_STD_RX_RING_CNT; i++) { 950 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) { 951 m_freem(sc->ti_cdata.ti_rx_std_chain[i]); 952 sc->ti_cdata.ti_rx_std_chain[i] = NULL; 953 954 /* if (sc->std_dmamap[i] == 0) panic() */ 955 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]); 956 sc->std_dmamap[i] = 0; 957 } 958 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i], 959 sizeof(struct ti_rx_desc)); 960 } 961 962 return; 963 } 964 965 static int ti_init_rx_ring_jumbo(sc) 966 struct ti_softc *sc; 967 { 968 int i; 969 struct ti_cmd_desc cmd; 970 971 for (i = 0; i < (TI_JSLOTS - 20); i++) { 972 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 973 return(ENOBUFS); 974 }; 975 976 TI_UPDATE_JUMBOPROD(sc, i - 1); 977 sc->ti_jumbo = i - 1; 978 979 return(0); 980 } 981 982 static void ti_free_rx_ring_jumbo(sc) 983 struct ti_softc *sc; 984 { 985 int i; 986 987 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { 988 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) { 989 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]); 990 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL; 991 } 992 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 993 sizeof(struct ti_rx_desc)); 994 } 995 996 return; 997 } 998 999 static int ti_init_rx_ring_mini(sc) 1000 struct ti_softc *sc; 1001 { 1002 int i; 1003 1004 for (i = 0; i < TI_MSLOTS; i++) { 1005 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS) 1006 return(ENOBUFS); 1007 }; 1008 1009 TI_UPDATE_MINIPROD(sc, i - 1); 1010 sc->ti_mini = i - 1; 1011 1012 return(0); 1013 } 1014 1015 static void ti_free_rx_ring_mini(sc) 1016 struct ti_softc *sc; 1017 { 1018 int i; 1019 1020 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) { 1021 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) { 1022 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]); 1023 sc->ti_cdata.ti_rx_mini_chain[i] = NULL; 1024 1025 /* if (sc->mini_dmamap[i] == 0) panic() */ 1026 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]); 1027 sc->mini_dmamap[i] = 0; 1028 } 1029 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 1030 sizeof(struct ti_rx_desc)); 1031 } 1032 1033 return; 1034 } 1035 1036 static void ti_free_tx_ring(sc) 1037 struct ti_softc *sc; 1038 { 1039 int i; 1040 struct txdmamap_pool_entry *dma; 1041 1042 if (sc->ti_rdata->ti_tx_ring == NULL) 1043 return; 1044 1045 for (i = 0; i < TI_TX_RING_CNT; i++) { 1046 if (sc->ti_cdata.ti_tx_chain[i] != NULL) { 1047 m_freem(sc->ti_cdata.ti_tx_chain[i]); 1048 sc->ti_cdata.ti_tx_chain[i] = NULL; 1049 1050 /* if (sc->txdma[i] == 0) panic() */ 1051 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], 1052 link); 1053 sc->txdma[i] = 0; 1054 } 1055 bzero((char *)&sc->ti_rdata->ti_tx_ring[i], 1056 sizeof(struct ti_tx_desc)); 1057 } 1058 1059 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) { 1060 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link); 1061 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap); 1062 free(dma, M_DEVBUF); 1063 } 1064 1065 return; 1066 } 1067 1068 static int ti_init_tx_ring(sc) 1069 struct ti_softc *sc; 1070 { 1071 int i, error; 1072 bus_dmamap_t dmamap; 1073 struct txdmamap_pool_entry *dma; 1074 1075 sc->ti_txcnt = 0; 1076 sc->ti_tx_saved_considx = 0; 1077 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0); 1078 1079 SIMPLEQ_INIT(&sc->txdma_list); 1080 for (i = 0; i < TI_RSLOTS; i++) { 1081 /* I've seen mbufs with 30 fragments. */ 1082 if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN, 1083 40, TI_JUMBO_FRAMELEN, 0, 1084 BUS_DMA_NOWAIT, &dmamap)) != 0) { 1085 printf("%s: can't create tx map, error = %d\n", 1086 sc->sc_dev.dv_xname, error); 1087 return(ENOMEM); 1088 } 1089 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT); 1090 if (!dma) { 1091 printf("%s: can't alloc txdmamap_pool_entry\n", 1092 sc->sc_dev.dv_xname); 1093 bus_dmamap_destroy(sc->sc_dmat, dmamap); 1094 return (ENOMEM); 1095 } 1096 dma->dmamap = dmamap; 1097 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link); 1098 } 1099 1100 return(0); 1101 } 1102 1103 /* 1104 * The Tigon 2 firmware has a new way to add/delete multicast addresses, 1105 * but we have to support the old way too so that Tigon 1 cards will 1106 * work. 1107 */ 1108 void ti_add_mcast(sc, addr) 1109 struct ti_softc *sc; 1110 struct ether_addr *addr; 1111 { 1112 struct ti_cmd_desc cmd; 1113 u_int16_t *m; 1114 u_int32_t ext[2] = {0, 0}; 1115 1116 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */ 1117 1118 switch(sc->ti_hwrev) { 1119 case TI_HWREV_TIGON: 1120 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); 1121 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); 1122 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0); 1123 break; 1124 case TI_HWREV_TIGON_II: 1125 ext[0] = htons(m[0]); 1126 ext[1] = (htons(m[1]) << 16) | htons(m[2]); 1127 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2); 1128 break; 1129 default: 1130 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname); 1131 break; 1132 } 1133 1134 return; 1135 } 1136 1137 void ti_del_mcast(sc, addr) 1138 struct ti_softc *sc; 1139 struct ether_addr *addr; 1140 { 1141 struct ti_cmd_desc cmd; 1142 u_int16_t *m; 1143 u_int32_t ext[2] = {0, 0}; 1144 1145 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */ 1146 1147 switch(sc->ti_hwrev) { 1148 case TI_HWREV_TIGON: 1149 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); 1150 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); 1151 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0); 1152 break; 1153 case TI_HWREV_TIGON_II: 1154 ext[0] = htons(m[0]); 1155 ext[1] = (htons(m[1]) << 16) | htons(m[2]); 1156 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2); 1157 break; 1158 default: 1159 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname); 1160 break; 1161 } 1162 1163 return; 1164 } 1165 1166 /* 1167 * Configure the Tigon's multicast address filter. 1168 * 1169 * The actual multicast table management is a bit of a pain, thanks to 1170 * slight brain damage on the part of both Alteon and us. With our 1171 * multicast code, we are only alerted when the multicast address table 1172 * changes and at that point we only have the current list of addresses: 1173 * we only know the current state, not the previous state, so we don't 1174 * actually know what addresses were removed or added. The firmware has 1175 * state, but we can't get our grubby mits on it, and there is no 'delete 1176 * all multicast addresses' command. Hence, we have to maintain our own 1177 * state so we know what addresses have been programmed into the NIC at 1178 * any given time. 1179 */ 1180 static void ti_setmulti(sc) 1181 struct ti_softc *sc; 1182 { 1183 struct ifnet *ifp; 1184 struct ti_cmd_desc cmd; 1185 struct ti_mc_entry *mc; 1186 u_int32_t intrs; 1187 struct ether_multi *enm; 1188 struct ether_multistep step; 1189 1190 ifp = &sc->ethercom.ec_if; 1191 1192 /* Disable interrupts. */ 1193 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR); 1194 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 1195 1196 /* First, zot all the existing filters. */ 1197 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) { 1198 ti_del_mcast(sc, &mc->mc_addr); 1199 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries); 1200 free(mc, M_DEVBUF); 1201 } 1202 1203 /* 1204 * Remember all multicast addresses so that we can delete them 1205 * later. Punt if there is a range of addresses or memory shortage. 1206 */ 1207 ETHER_FIRST_MULTI(step, &sc->ethercom, enm); 1208 while (enm != NULL) { 1209 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 1210 ETHER_ADDR_LEN) != 0) 1211 goto allmulti; 1212 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, 1213 M_NOWAIT)) == NULL) 1214 goto allmulti; 1215 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN); 1216 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries); 1217 ETHER_NEXT_MULTI(step, enm); 1218 } 1219 1220 /* Accept only programmed multicast addresses */ 1221 ifp->if_flags &= ~IFF_ALLMULTI; 1222 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0); 1223 1224 /* Now program new ones. */ 1225 for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL; 1226 mc = SIMPLEQ_NEXT(mc, mc_entries)) 1227 ti_add_mcast(sc, &mc->mc_addr); 1228 1229 /* Re-enable interrupts. */ 1230 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); 1231 1232 return; 1233 1234 allmulti: 1235 /* No need to keep individual multicast addresses */ 1236 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) { 1237 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, 1238 mc_entries); 1239 free(mc, M_DEVBUF); 1240 } 1241 1242 /* Accept all multicast addresses */ 1243 ifp->if_flags |= IFF_ALLMULTI; 1244 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0); 1245 1246 /* Re-enable interrupts. */ 1247 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); 1248 } 1249 1250 /* 1251 * Check to see if the BIOS has configured us for a 64 bit slot when 1252 * we aren't actually in one. If we detect this condition, we can work 1253 * around it on the Tigon 2 by setting a bit in the PCI state register, 1254 * but for the Tigon 1 we must give up and abort the interface attach. 1255 */ 1256 static int ti_64bitslot_war(sc) 1257 struct ti_softc *sc; 1258 { 1259 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) { 1260 CSR_WRITE_4(sc, 0x600, 0); 1261 CSR_WRITE_4(sc, 0x604, 0); 1262 CSR_WRITE_4(sc, 0x600, 0x5555AAAA); 1263 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) { 1264 if (sc->ti_hwrev == TI_HWREV_TIGON) 1265 return(EINVAL); 1266 else { 1267 TI_SETBIT(sc, TI_PCI_STATE, 1268 TI_PCISTATE_32BIT_BUS); 1269 return(0); 1270 } 1271 } 1272 } 1273 1274 return(0); 1275 } 1276 1277 /* 1278 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1279 * self-test results. 1280 */ 1281 static int ti_chipinit(sc) 1282 struct ti_softc *sc; 1283 { 1284 u_int32_t cacheline; 1285 u_int32_t pci_writemax = 0; 1286 1287 /* Initialize link to down state. */ 1288 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN; 1289 1290 /* Set endianness before we access any non-PCI registers. */ 1291 #if BYTE_ORDER == BIG_ENDIAN 1292 CSR_WRITE_4(sc, TI_MISC_HOST_CTL, 1293 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24)); 1294 #else 1295 CSR_WRITE_4(sc, TI_MISC_HOST_CTL, 1296 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24)); 1297 #endif 1298 1299 /* Check the ROM failed bit to see if self-tests passed. */ 1300 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) { 1301 printf("%s: board self-diagnostics failed!\n", 1302 sc->sc_dev.dv_xname); 1303 return(ENODEV); 1304 } 1305 1306 /* Halt the CPU. */ 1307 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT); 1308 1309 /* Figure out the hardware revision. */ 1310 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) { 1311 case TI_REV_TIGON_I: 1312 sc->ti_hwrev = TI_HWREV_TIGON; 1313 break; 1314 case TI_REV_TIGON_II: 1315 sc->ti_hwrev = TI_HWREV_TIGON_II; 1316 break; 1317 default: 1318 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname); 1319 return(ENODEV); 1320 } 1321 1322 /* Do special setup for Tigon 2. */ 1323 if (sc->ti_hwrev == TI_HWREV_TIGON_II) { 1324 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT); 1325 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K); 1326 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS); 1327 } 1328 1329 /* Set up the PCI state register. */ 1330 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD); 1331 if (sc->ti_hwrev == TI_HWREV_TIGON_II) { 1332 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT); 1333 } 1334 1335 /* Clear the read/write max DMA parameters. */ 1336 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA| 1337 TI_PCISTATE_READ_MAXDMA)); 1338 1339 /* Get cache line size. */ 1340 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG)); 1341 1342 /* 1343 * If the system has set enabled the PCI memory write 1344 * and invalidate command in the command register, set 1345 * the write max parameter accordingly. This is necessary 1346 * to use MWI with the Tigon 2. 1347 */ 1348 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG) 1349 & PCI_COMMAND_INVALIDATE_ENABLE) { 1350 switch(cacheline) { 1351 case 1: 1352 case 4: 1353 case 8: 1354 case 16: 1355 case 32: 1356 case 64: 1357 break; 1358 default: 1359 /* Disable PCI memory write and invalidate. */ 1360 if (bootverbose) 1361 printf("%s: cache line size %d not " 1362 "supported; disabling PCI MWI\n", 1363 sc->sc_dev.dv_xname, cacheline); 1364 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG, 1365 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG) 1366 & ~PCI_COMMAND_INVALIDATE_ENABLE); 1367 break; 1368 } 1369 } 1370 1371 #ifdef __brokenalpha__ 1372 /* 1373 * From the Alteon sample driver: 1374 * Must insure that we do not cross an 8K (bytes) boundary 1375 * for DMA reads. Our highest limit is 1K bytes. This is a 1376 * restriction on some ALPHA platforms with early revision 1377 * 21174 PCI chipsets, such as the AlphaPC 164lx 1378 */ 1379 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024); 1380 #else 1381 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax); 1382 #endif 1383 1384 /* This sets the min dma param all the way up (0xff). */ 1385 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA); 1386 1387 /* Configure DMA variables. */ 1388 #if BYTE_ORDER == BIG_ENDIAN 1389 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD | 1390 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | 1391 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB | 1392 TI_OPMODE_DONT_FRAG_JUMBO); 1393 #else 1394 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA| 1395 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO| 1396 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB); 1397 #endif 1398 1399 /* 1400 * Only allow 1 DMA channel to be active at a time. 1401 * I don't think this is a good idea, but without it 1402 * the firmware racks up lots of nicDmaReadRingFull 1403 * errors. 1404 */ 1405 #ifndef TI_CSUM_OFFLOAD 1406 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE); 1407 #endif 1408 1409 /* Recommended settings from Tigon manual. */ 1410 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W); 1411 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W); 1412 1413 if (ti_64bitslot_war(sc)) { 1414 printf("%s: bios thinks we're in a 64 bit slot, " 1415 "but we aren't", sc->sc_dev.dv_xname); 1416 return(EINVAL); 1417 } 1418 1419 return(0); 1420 } 1421 1422 /* 1423 * Initialize the general information block and firmware, and 1424 * start the CPU(s) running. 1425 */ 1426 static int ti_gibinit(sc) 1427 struct ti_softc *sc; 1428 { 1429 struct ti_rcb *rcb; 1430 int i; 1431 struct ifnet *ifp; 1432 1433 ifp = &sc->ethercom.ec_if; 1434 1435 /* Disable interrupts for now. */ 1436 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 1437 1438 /* Tell the chip where to find the general information block. */ 1439 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0); 1440 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr + 1441 ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata)); 1442 1443 /* Load the firmware into SRAM. */ 1444 ti_loadfw(sc); 1445 1446 /* Set up the contents of the general info and ring control blocks. */ 1447 1448 /* Set up the event ring and producer pointer. */ 1449 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb; 1450 1451 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr + 1452 ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata); 1453 rcb->ti_flags = 0; 1454 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) = 1455 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r 1456 - (caddr_t)sc->ti_rdata); 1457 sc->ti_ev_prodidx.ti_idx = 0; 1458 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0); 1459 sc->ti_ev_saved_considx = 0; 1460 1461 /* Set up the command ring and producer mailbox. */ 1462 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb; 1463 1464 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING); 1465 rcb->ti_flags = 0; 1466 rcb->ti_max_len = 0; 1467 for (i = 0; i < TI_CMD_RING_CNT; i++) { 1468 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0); 1469 } 1470 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0); 1471 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0); 1472 sc->ti_cmd_saved_prodidx = 0; 1473 1474 /* 1475 * Assign the address of the stats refresh buffer. 1476 * We re-use the current stats buffer for this to 1477 * conserve memory. 1478 */ 1479 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) = 1480 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats 1481 - (caddr_t)sc->ti_rdata); 1482 1483 /* Set up the standard receive ring. */ 1484 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb; 1485 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr + 1486 ((caddr_t)&sc->ti_rdata->ti_rx_std_ring 1487 - (caddr_t)sc->ti_rdata); 1488 rcb->ti_max_len = TI_FRAMELEN; 1489 rcb->ti_flags = 0; 1490 #ifdef TI_CSUM_OFFLOAD 1491 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM; 1492 #endif 1493 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1494 1495 /* Set up the jumbo receive ring. */ 1496 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb; 1497 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr + 1498 ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata); 1499 rcb->ti_max_len = TI_JUMBO_FRAMELEN; 1500 rcb->ti_flags = 0; 1501 #ifdef TI_CSUM_OFFLOAD 1502 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM; 1503 #endif 1504 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1505 1506 /* 1507 * Set up the mini ring. Only activated on the 1508 * Tigon 2 but the slot in the config block is 1509 * still there on the Tigon 1. 1510 */ 1511 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb; 1512 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr + 1513 ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata); 1514 rcb->ti_max_len = MHLEN - ETHER_ALIGN; 1515 if (sc->ti_hwrev == TI_HWREV_TIGON) 1516 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED; 1517 else 1518 rcb->ti_flags = 0; 1519 #ifdef TI_CSUM_OFFLOAD 1520 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM; 1521 #endif 1522 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1523 1524 /* 1525 * Set up the receive return ring. 1526 */ 1527 rcb = &sc->ti_rdata->ti_info.ti_return_rcb; 1528 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr + 1529 ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata); 1530 rcb->ti_flags = 0; 1531 rcb->ti_max_len = TI_RETURN_RING_CNT; 1532 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) = 1533 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r 1534 - (caddr_t)sc->ti_rdata); 1535 1536 /* 1537 * Set up the tx ring. Note: for the Tigon 2, we have the option 1538 * of putting the transmit ring in the host's address space and 1539 * letting the chip DMA it instead of leaving the ring in the NIC's 1540 * memory and accessing it through the shared memory region. We 1541 * do this for the Tigon 2, but it doesn't work on the Tigon 1, 1542 * so we have to revert to the shared memory scheme if we detect 1543 * a Tigon 1 chip. 1544 */ 1545 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); 1546 if (sc->ti_hwrev == TI_HWREV_TIGON) { 1547 sc->ti_rdata->ti_tx_ring_nic = 1548 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW); 1549 } 1550 bzero((char *)sc->ti_rdata->ti_tx_ring, 1551 TI_TX_RING_CNT * sizeof(struct ti_tx_desc)); 1552 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb; 1553 if (sc->ti_hwrev == TI_HWREV_TIGON) 1554 rcb->ti_flags = 0; 1555 else 1556 rcb->ti_flags = TI_RCB_FLAG_HOST_RING; 1557 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1558 rcb->ti_max_len = TI_TX_RING_CNT; 1559 if (sc->ti_hwrev == TI_HWREV_TIGON) 1560 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE; 1561 else 1562 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr + 1563 ((caddr_t)&sc->ti_rdata->ti_tx_ring 1564 - (caddr_t)sc->ti_rdata); 1565 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) = 1566 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r 1567 - (caddr_t)sc->ti_rdata); 1568 1569 /* Set up tuneables */ 1570 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) || 1571 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) 1572 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, 1573 (sc->ti_rx_coal_ticks / 10)); 1574 else 1575 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); 1576 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); 1577 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); 1578 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); 1579 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); 1580 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); 1581 1582 /* Turn interrupts on. */ 1583 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0); 1584 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 1585 1586 /* Start CPU. */ 1587 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP)); 1588 1589 return(0); 1590 } 1591 1592 /* 1593 * look for id in the device list, returning the first match 1594 */ 1595 static const struct ti_type * 1596 ti_type_match(pa) 1597 struct pci_attach_args *pa; 1598 { 1599 const struct ti_type *t; 1600 1601 t = ti_devs; 1602 while(t->ti_name != NULL) { 1603 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) && 1604 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) { 1605 return (t); 1606 } 1607 t++; 1608 } 1609 1610 return(NULL); 1611 } 1612 1613 /* 1614 * Probe for a Tigon chip. Check the PCI vendor and device IDs 1615 * against our list and return its name if we find a match. 1616 */ 1617 static int ti_probe(parent, match, aux) 1618 struct device *parent; 1619 struct cfdata *match; 1620 void *aux; 1621 { 1622 struct pci_attach_args *pa = aux; 1623 const struct ti_type *t; 1624 1625 t = ti_type_match(pa); 1626 1627 return((t == NULL) ? 0 : 1); 1628 } 1629 1630 static void ti_attach(parent, self, aux) 1631 struct device *parent, *self; 1632 void *aux; 1633 { 1634 u_int32_t command; 1635 struct ifnet *ifp; 1636 struct ti_softc *sc; 1637 u_char eaddr[ETHER_ADDR_LEN]; 1638 struct pci_attach_args *pa = aux; 1639 pci_chipset_tag_t pc = pa->pa_pc; 1640 pci_intr_handle_t ih; 1641 const char *intrstr = NULL; 1642 bus_dma_segment_t dmaseg; 1643 int error, dmanseg, nolinear; 1644 const struct ti_type *t; 1645 1646 t = ti_type_match(pa); 1647 if (t == NULL) { 1648 printf("ti_attach: were did the card go ?\n"); 1649 return; 1650 } 1651 1652 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class)); 1653 1654 sc = (struct ti_softc *)self; 1655 1656 /* 1657 * Map control/status registers. 1658 */ 1659 nolinear = 0; 1660 if (pci_mapreg_map(pa, 0x10, 1661 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 1662 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle, 1663 NULL, NULL)) { 1664 nolinear = 1; 1665 if (pci_mapreg_map(pa, 0x10, 1666 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 1667 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) { 1668 printf(": can't map memory space\n"); 1669 return; 1670 } 1671 } 1672 if (nolinear == 0) 1673 sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */ 1674 else 1675 sc->ti_vhandle = NULL; 1676 1677 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1678 command |= PCI_COMMAND_MASTER_ENABLE; 1679 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1680 1681 /* Allocate interrupt */ 1682 if (pci_intr_map(pa, &ih)) { 1683 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 1684 return;; 1685 } 1686 intrstr = pci_intr_string(pc, ih); 1687 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc); 1688 if (sc->sc_ih == NULL) { 1689 printf("%s: couldn't establish interrupt", 1690 sc->sc_dev.dv_xname); 1691 if (intrstr != NULL) 1692 printf(" at %s", intrstr); 1693 printf("\n"); 1694 return;; 1695 } 1696 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 1697 /* 1698 * Add shutdown hook so that DMA is disabled prior to reboot. Not 1699 * doing do could allow DMA to corrupt kernel memory during the 1700 * reboot before the driver initializes. 1701 */ 1702 (void) shutdownhook_establish(ti_shutdown, sc); 1703 1704 if (ti_chipinit(sc)) { 1705 printf("%s: chip initialization failed\n", self->dv_xname); 1706 goto fail2; 1707 } 1708 if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) { 1709 printf("%s: memory space not mapped linear\n", self->dv_xname); 1710 } 1711 1712 /* Zero out the NIC's on-board SRAM. */ 1713 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); 1714 1715 /* Init again -- zeroing memory may have clobbered some registers. */ 1716 if (ti_chipinit(sc)) { 1717 printf("%s: chip initialization failed\n", self->dv_xname); 1718 goto fail2; 1719 } 1720 1721 /* 1722 * Get station address from the EEPROM. Note: the manual states 1723 * that the MAC address is at offset 0x8c, however the data is 1724 * stored as two longwords (since that's how it's loaded into 1725 * the NIC). This means the MAC address is actually preceeded 1726 * by two zero bytes. We need to skip over those. 1727 */ 1728 if (ti_read_eeprom(sc, (caddr_t)&eaddr, 1729 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 1730 printf("%s: failed to read station address\n", self->dv_xname); 1731 goto fail2; 1732 } 1733 1734 /* 1735 * A Tigon chip was detected. Inform the world. 1736 */ 1737 printf("%s: Ethernet address: %s\n", self->dv_xname, 1738 ether_sprintf(eaddr)); 1739 1740 sc->sc_dmat = pa->pa_dmat; 1741 1742 /* Allocate the general information block and ring buffers. */ 1743 if ((error = bus_dmamem_alloc(sc->sc_dmat, 1744 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg, 1745 BUS_DMA_NOWAIT)) != 0) { 1746 printf("%s: can't allocate ring buffer, error = %d\n", 1747 sc->sc_dev.dv_xname, error); 1748 goto fail2; 1749 } 1750 1751 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg, 1752 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata, 1753 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 1754 printf("%s: can't map ring buffer, error = %d\n", 1755 sc->sc_dev.dv_xname, error); 1756 goto fail2; 1757 } 1758 1759 if ((error = bus_dmamap_create(sc->sc_dmat, 1760 sizeof(struct ti_ring_data), 1, 1761 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT, 1762 &sc->info_dmamap)) != 0) { 1763 printf("%s: can't create ring buffer DMA map, error = %d\n", 1764 sc->sc_dev.dv_xname, error); 1765 goto fail2; 1766 } 1767 1768 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap, 1769 sc->ti_rdata, sizeof(struct ti_ring_data), NULL, 1770 BUS_DMA_NOWAIT)) != 0) { 1771 printf("%s: can't load ring buffer DMA map, error = %d\n", 1772 sc->sc_dev.dv_xname, error); 1773 goto fail2; 1774 } 1775 1776 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr; 1777 1778 bzero(sc->ti_rdata, sizeof(struct ti_ring_data)); 1779 1780 /* Try to allocate memory for jumbo buffers. */ 1781 if (ti_alloc_jumbo_mem(sc)) { 1782 printf("%s: jumbo buffer allocation failed\n", self->dv_xname); 1783 goto fail2; 1784 } 1785 1786 SIMPLEQ_INIT(&sc->ti_mc_listhead); 1787 1788 /* 1789 * We really need a better way to tell a 1000baseTX card 1790 * from a 1000baseSX one, since in theory there could be 1791 * OEMed 1000baseTX cards from lame vendors who aren't 1792 * clever enough to change the PCI ID. For the moment 1793 * though, the AceNIC is the only copper card available. 1794 */ 1795 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON && 1796 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) || 1797 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR && 1798 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T)) 1799 sc->ti_copper = 1; 1800 else 1801 sc->ti_copper = 0; 1802 1803 /* Set default tuneable values. */ 1804 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC; 1805 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000; 1806 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500; 1807 sc->ti_rx_max_coal_bds = 64; 1808 sc->ti_tx_max_coal_bds = 128; 1809 sc->ti_tx_buf_ratio = 21; 1810 1811 /* Set up ifnet structure */ 1812 ifp = &sc->ethercom.ec_if; 1813 ifp->if_softc = sc; 1814 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 1815 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1816 ifp->if_ioctl = ti_ioctl; 1817 ifp->if_start = ti_start; 1818 ifp->if_watchdog = ti_watchdog; 1819 IFQ_SET_READY(&ifp->if_snd); 1820 1821 #if 0 1822 /* 1823 * XXX This is not really correct -- we don't necessarily 1824 * XXX want to queue up as many as we can transmit at the 1825 * XXX upper layer like that. Someone with a board should 1826 * XXX check to see how this affects performance. 1827 */ 1828 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1; 1829 #endif 1830 1831 /* 1832 * We can support 802.1Q VLAN-sized frames. 1833 */ 1834 sc->ethercom.ec_capabilities |= 1835 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 1836 1837 /* Set up ifmedia support. */ 1838 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts); 1839 if (sc->ti_copper) { 1840 /* 1841 * Copper cards allow manual 10/100 mode selection, 1842 * but not manual 1000baseTX mode selection. Why? 1843 * Becuase currently there's no way to specify the 1844 * master/slave setting through the firmware interface, 1845 * so Alteon decided to just bag it and handle it 1846 * via autonegotiation. 1847 */ 1848 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); 1849 ifmedia_add(&sc->ifmedia, 1850 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 1851 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); 1852 ifmedia_add(&sc->ifmedia, 1853 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 1854 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL); 1855 ifmedia_add(&sc->ifmedia, 1856 IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL); 1857 } else { 1858 /* Fiber cards don't support 10/100 modes. */ 1859 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 1860 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 1861 } 1862 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 1863 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO); 1864 1865 /* 1866 * Call MI attach routines. 1867 */ 1868 if_attach(ifp); 1869 ether_ifattach(ifp, eaddr); 1870 1871 return; 1872 fail2: 1873 pci_intr_disestablish(pc, sc->sc_ih); 1874 return; 1875 } 1876 1877 /* 1878 * Frame reception handling. This is called if there's a frame 1879 * on the receive return list. 1880 * 1881 * Note: we have to be able to handle three possibilities here: 1882 * 1) the frame is from the mini receive ring (can only happen) 1883 * on Tigon 2 boards) 1884 * 2) the frame is from the jumbo recieve ring 1885 * 3) the frame is from the standard receive ring 1886 */ 1887 1888 static void ti_rxeof(sc) 1889 struct ti_softc *sc; 1890 { 1891 struct ifnet *ifp; 1892 struct ti_cmd_desc cmd; 1893 1894 ifp = &sc->ethercom.ec_if; 1895 1896 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) { 1897 struct ti_rx_desc *cur_rx; 1898 u_int32_t rxidx; 1899 struct mbuf *m = NULL; 1900 u_int16_t vlan_tag = 0; 1901 int have_tag = 0; 1902 #ifdef TI_CSUM_OFFLOAD 1903 struct ip *ip; 1904 #endif 1905 bus_dmamap_t dmamap; 1906 1907 cur_rx = 1908 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx]; 1909 rxidx = cur_rx->ti_idx; 1910 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT); 1911 1912 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) { 1913 have_tag = 1; 1914 vlan_tag = cur_rx->ti_vlan_tag; 1915 } 1916 1917 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) { 1918 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT); 1919 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx]; 1920 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL; 1921 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 1922 ifp->if_ierrors++; 1923 ti_newbuf_jumbo(sc, sc->ti_jumbo, m); 1924 continue; 1925 } 1926 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) 1927 == ENOBUFS) { 1928 ifp->if_ierrors++; 1929 ti_newbuf_jumbo(sc, sc->ti_jumbo, m); 1930 continue; 1931 } 1932 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) { 1933 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT); 1934 m = sc->ti_cdata.ti_rx_mini_chain[rxidx]; 1935 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL; 1936 dmamap = sc->mini_dmamap[rxidx]; 1937 sc->mini_dmamap[rxidx] = 0; 1938 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 1939 ifp->if_ierrors++; 1940 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap); 1941 continue; 1942 } 1943 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap) 1944 == ENOBUFS) { 1945 ifp->if_ierrors++; 1946 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap); 1947 continue; 1948 } 1949 } else { 1950 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT); 1951 m = sc->ti_cdata.ti_rx_std_chain[rxidx]; 1952 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL; 1953 dmamap = sc->std_dmamap[rxidx]; 1954 sc->std_dmamap[rxidx] = 0; 1955 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 1956 ifp->if_ierrors++; 1957 ti_newbuf_std(sc, sc->ti_std, m, dmamap); 1958 continue; 1959 } 1960 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap) 1961 == ENOBUFS) { 1962 ifp->if_ierrors++; 1963 ti_newbuf_std(sc, sc->ti_std, m, dmamap); 1964 continue; 1965 } 1966 } 1967 1968 m->m_pkthdr.len = m->m_len = cur_rx->ti_len; 1969 ifp->if_ipackets++; 1970 m->m_pkthdr.rcvif = ifp; 1971 1972 #if NBPFILTER > 0 1973 /* 1974 * Handle BPF listeners. Let the BPF user see the packet, but 1975 * don't pass it up to the ether_input() layer unless it's 1976 * a broadcast packet, multicast packet, matches our ethernet 1977 * address or the interface is in promiscuous mode. 1978 */ 1979 if (ifp->if_bpf) 1980 bpf_mtap(ifp->if_bpf, m); 1981 #endif 1982 1983 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */ 1984 ip = mtod(m, struct ip *); 1985 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) && 1986 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF))) 1987 m->m_flags |= M_HWCKSUM; 1988 #endif 1989 1990 if (have_tag) { 1991 struct mbuf *n; 1992 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN); 1993 if (n) { 1994 *mtod(n, int *) = vlan_tag; 1995 n->m_len = sizeof(int); 1996 } else { 1997 printf("%s: no mbuf for tag\n", ifp->if_xname); 1998 m_freem(m); 1999 continue; 2000 } 2001 have_tag = vlan_tag = 0; 2002 } 2003 (*ifp->if_input)(ifp, m); 2004 } 2005 2006 /* Only necessary on the Tigon 1. */ 2007 if (sc->ti_hwrev == TI_HWREV_TIGON) 2008 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 2009 sc->ti_rx_saved_considx); 2010 2011 TI_UPDATE_STDPROD(sc, sc->ti_std); 2012 TI_UPDATE_MINIPROD(sc, sc->ti_mini); 2013 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo); 2014 2015 return; 2016 } 2017 2018 static void ti_txeof(sc) 2019 struct ti_softc *sc; 2020 { 2021 struct ti_tx_desc *cur_tx = NULL; 2022 struct ifnet *ifp; 2023 2024 ifp = &sc->ethercom.ec_if; 2025 2026 /* 2027 * Go through our tx ring and free mbufs for those 2028 * frames that have been sent. 2029 */ 2030 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { 2031 u_int32_t idx = 0; 2032 2033 idx = sc->ti_tx_saved_considx; 2034 if (sc->ti_hwrev == TI_HWREV_TIGON) { 2035 if (idx > 383) 2036 CSR_WRITE_4(sc, TI_WINBASE, 2037 TI_TX_RING_BASE + 6144); 2038 else if (idx > 255) 2039 CSR_WRITE_4(sc, TI_WINBASE, 2040 TI_TX_RING_BASE + 4096); 2041 else if (idx > 127) 2042 CSR_WRITE_4(sc, TI_WINBASE, 2043 TI_TX_RING_BASE + 2048); 2044 else 2045 CSR_WRITE_4(sc, TI_WINBASE, 2046 TI_TX_RING_BASE); 2047 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128]; 2048 } else 2049 cur_tx = &sc->ti_rdata->ti_tx_ring[idx]; 2050 if (cur_tx->ti_flags & TI_BDFLAG_END) 2051 ifp->if_opackets++; 2052 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { 2053 m_freem(sc->ti_cdata.ti_tx_chain[idx]); 2054 sc->ti_cdata.ti_tx_chain[idx] = NULL; 2055 2056 /* if (sc->txdma[idx] == 0) panic() */ 2057 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx], 2058 link); 2059 sc->txdma[idx] = 0; 2060 } 2061 sc->ti_txcnt--; 2062 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); 2063 ifp->if_timer = 0; 2064 } 2065 2066 if (cur_tx != NULL) 2067 ifp->if_flags &= ~IFF_OACTIVE; 2068 2069 return; 2070 } 2071 2072 static int ti_intr(xsc) 2073 void *xsc; 2074 { 2075 struct ti_softc *sc; 2076 struct ifnet *ifp; 2077 2078 sc = xsc; 2079 ifp = &sc->ethercom.ec_if; 2080 2081 #ifdef notdef 2082 /* Avoid this for now -- checking this register is expensive. */ 2083 /* Make sure this is really our interrupt. */ 2084 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) 2085 return (0); 2086 #endif 2087 2088 /* Ack interrupt and stop others from occuring. */ 2089 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 2090 2091 if (ifp->if_flags & IFF_RUNNING) { 2092 /* Check RX return ring producer/consumer */ 2093 ti_rxeof(sc); 2094 2095 /* Check TX ring producer/consumer */ 2096 ti_txeof(sc); 2097 } 2098 2099 ti_handle_events(sc); 2100 2101 /* Re-enable interrupts. */ 2102 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 2103 2104 if ((ifp->if_flags & IFF_RUNNING) != 0 && 2105 IFQ_IS_EMPTY(&ifp->if_snd) == 0) 2106 ti_start(ifp); 2107 2108 return (1); 2109 } 2110 2111 static void ti_stats_update(sc) 2112 struct ti_softc *sc; 2113 { 2114 struct ifnet *ifp; 2115 2116 ifp = &sc->ethercom.ec_if; 2117 2118 ifp->if_collisions += 2119 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames + 2120 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames + 2121 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions + 2122 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) - 2123 ifp->if_collisions; 2124 2125 return; 2126 } 2127 2128 /* 2129 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 2130 * pointers to descriptors. 2131 */ 2132 static int ti_encap(sc, m_head, txidx) 2133 struct ti_softc *sc; 2134 struct mbuf *m_head; 2135 u_int32_t *txidx; 2136 { 2137 struct ti_tx_desc *f = NULL; 2138 u_int32_t frag, cur, cnt = 0; 2139 struct txdmamap_pool_entry *dma; 2140 bus_dmamap_t dmamap; 2141 int error, i; 2142 struct mbuf *n; 2143 2144 dma = SIMPLEQ_FIRST(&sc->txdma_list); 2145 if (dma == NULL) { 2146 return ENOMEM; 2147 } 2148 dmamap = dma->dmamap; 2149 2150 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0); 2151 if (error) { 2152 struct mbuf *m; 2153 int i = 0; 2154 for (m = m_head; m; m = m->m_next) 2155 i++; 2156 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) " 2157 "error %d\n", m_head->m_pkthdr.len, i, error); 2158 return (ENOMEM); 2159 } 2160 2161 cur = frag = *txidx; 2162 2163 /* 2164 * Start packing the mbufs in this chain into 2165 * the fragment pointers. Stop when we run out 2166 * of fragments or hit the end of the mbuf chain. 2167 */ 2168 for (i = 0; i < dmamap->dm_nsegs; i++) { 2169 if (sc->ti_hwrev == TI_HWREV_TIGON) { 2170 if (frag > 383) 2171 CSR_WRITE_4(sc, TI_WINBASE, 2172 TI_TX_RING_BASE + 6144); 2173 else if (frag > 255) 2174 CSR_WRITE_4(sc, TI_WINBASE, 2175 TI_TX_RING_BASE + 4096); 2176 else if (frag > 127) 2177 CSR_WRITE_4(sc, TI_WINBASE, 2178 TI_TX_RING_BASE + 2048); 2179 else 2180 CSR_WRITE_4(sc, TI_WINBASE, 2181 TI_TX_RING_BASE); 2182 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128]; 2183 } else 2184 f = &sc->ti_rdata->ti_tx_ring[frag]; 2185 if (sc->ti_cdata.ti_tx_chain[frag] != NULL) 2186 break; 2187 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr; 2188 f->ti_len = dmamap->dm_segs[i].ds_len; 2189 f->ti_flags = 0; 2190 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN); 2191 if (n) { 2192 f->ti_flags |= TI_BDFLAG_VLAN_TAG; 2193 f->ti_vlan_tag = *mtod(n, int *); 2194 } else { 2195 f->ti_vlan_tag = 0; 2196 } 2197 /* 2198 * Sanity check: avoid coming within 16 descriptors 2199 * of the end of the ring. 2200 */ 2201 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) 2202 return(ENOBUFS); 2203 cur = frag; 2204 TI_INC(frag, TI_TX_RING_CNT); 2205 cnt++; 2206 } 2207 2208 if (i < dmamap->dm_nsegs) 2209 return(ENOBUFS); 2210 2211 if (frag == sc->ti_tx_saved_considx) 2212 return(ENOBUFS); 2213 2214 if (sc->ti_hwrev == TI_HWREV_TIGON) 2215 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |= 2216 TI_BDFLAG_END; 2217 else 2218 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END; 2219 sc->ti_cdata.ti_tx_chain[cur] = m_head; 2220 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link); 2221 sc->txdma[cur] = dma; 2222 sc->ti_txcnt += cnt; 2223 2224 *txidx = frag; 2225 2226 return(0); 2227 } 2228 2229 /* 2230 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 2231 * to the mbuf data regions directly in the transmit descriptors. 2232 */ 2233 static void ti_start(ifp) 2234 struct ifnet *ifp; 2235 { 2236 struct ti_softc *sc; 2237 struct mbuf *m_head = NULL; 2238 u_int32_t prodidx = 0; 2239 2240 sc = ifp->if_softc; 2241 2242 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX); 2243 2244 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) { 2245 IFQ_POLL(&ifp->if_snd, m_head); 2246 if (m_head == NULL) 2247 break; 2248 2249 /* 2250 * Pack the data into the transmit ring. If we 2251 * don't have room, set the OACTIVE flag and wait 2252 * for the NIC to drain the ring. 2253 */ 2254 if (ti_encap(sc, m_head, &prodidx)) { 2255 ifp->if_flags |= IFF_OACTIVE; 2256 break; 2257 } 2258 2259 IFQ_DEQUEUE(&ifp->if_snd, m_head); 2260 2261 /* 2262 * If there's a BPF listener, bounce a copy of this frame 2263 * to him. 2264 */ 2265 #if NBPFILTER > 0 2266 if (ifp->if_bpf) 2267 bpf_mtap(ifp->if_bpf, m_head); 2268 #endif 2269 } 2270 2271 /* Transmit */ 2272 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx); 2273 2274 /* 2275 * Set a timeout in case the chip goes out to lunch. 2276 */ 2277 ifp->if_timer = 5; 2278 2279 return; 2280 } 2281 2282 static void ti_init(xsc) 2283 void *xsc; 2284 { 2285 struct ti_softc *sc = xsc; 2286 int s; 2287 2288 s = splnet(); 2289 2290 /* Cancel pending I/O and flush buffers. */ 2291 ti_stop(sc); 2292 2293 /* Init the gen info block, ring control blocks and firmware. */ 2294 if (ti_gibinit(sc)) { 2295 printf("%s: initialization failure\n", sc->sc_dev.dv_xname); 2296 splx(s); 2297 return; 2298 } 2299 2300 splx(s); 2301 2302 return; 2303 } 2304 2305 static void ti_init2(sc) 2306 struct ti_softc *sc; 2307 { 2308 struct ti_cmd_desc cmd; 2309 struct ifnet *ifp; 2310 u_int8_t *m; 2311 struct ifmedia *ifm; 2312 int tmp; 2313 2314 ifp = &sc->ethercom.ec_if; 2315 2316 /* Specify MTU and interface index. */ 2317 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */ 2318 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) && 2319 ifp->if_mtu < ETHERMTU + ETHER_VLAN_ENCAP_LEN) 2320 CSR_WRITE_4(sc, TI_GCR_IFMTU, ETHER_MAX_LEN + 2321 ETHER_VLAN_ENCAP_LEN); 2322 else 2323 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu + 2324 ETHER_HDR_LEN + ETHER_CRC_LEN); 2325 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0); 2326 2327 /* Load our MAC address. */ 2328 m = (u_int8_t *)LLADDR(ifp->if_sadl); 2329 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]); 2330 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16) 2331 | (m[4] << 8) | m[5]); 2332 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0); 2333 2334 /* Enable or disable promiscuous mode as needed. */ 2335 if (ifp->if_flags & IFF_PROMISC) { 2336 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); 2337 } else { 2338 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); 2339 } 2340 2341 /* Program multicast filter. */ 2342 ti_setmulti(sc); 2343 2344 /* 2345 * If this is a Tigon 1, we should tell the 2346 * firmware to use software packet filtering. 2347 */ 2348 if (sc->ti_hwrev == TI_HWREV_TIGON) { 2349 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0); 2350 } 2351 2352 /* Init RX ring. */ 2353 ti_init_rx_ring_std(sc); 2354 2355 /* Init jumbo RX ring. */ 2356 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) 2357 ti_init_rx_ring_jumbo(sc); 2358 2359 /* 2360 * If this is a Tigon 2, we can also configure the 2361 * mini ring. 2362 */ 2363 if (sc->ti_hwrev == TI_HWREV_TIGON_II) 2364 ti_init_rx_ring_mini(sc); 2365 2366 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0); 2367 sc->ti_rx_saved_considx = 0; 2368 2369 /* Init TX ring. */ 2370 ti_init_tx_ring(sc); 2371 2372 /* Tell firmware we're alive. */ 2373 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0); 2374 2375 /* Enable host interrupts. */ 2376 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 2377 2378 ifp->if_flags |= IFF_RUNNING; 2379 ifp->if_flags &= ~IFF_OACTIVE; 2380 2381 /* 2382 * Make sure to set media properly. We have to do this 2383 * here since we have to issue commands in order to set 2384 * the link negotiation and we can't issue commands until 2385 * the firmware is running. 2386 */ 2387 ifm = &sc->ifmedia; 2388 tmp = ifm->ifm_media; 2389 ifm->ifm_media = ifm->ifm_cur->ifm_media; 2390 ti_ifmedia_upd(ifp); 2391 ifm->ifm_media = tmp; 2392 2393 return; 2394 } 2395 2396 /* 2397 * Set media options. 2398 */ 2399 static int ti_ifmedia_upd(ifp) 2400 struct ifnet *ifp; 2401 { 2402 struct ti_softc *sc; 2403 struct ifmedia *ifm; 2404 struct ti_cmd_desc cmd; 2405 2406 sc = ifp->if_softc; 2407 ifm = &sc->ifmedia; 2408 2409 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 2410 return(EINVAL); 2411 2412 switch(IFM_SUBTYPE(ifm->ifm_media)) { 2413 case IFM_AUTO: 2414 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| 2415 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y| 2416 TI_GLNK_AUTONEGENB|TI_GLNK_ENB); 2417 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB| 2418 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| 2419 TI_LNK_AUTONEGENB|TI_LNK_ENB); 2420 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 2421 TI_CMD_CODE_NEGOTIATE_BOTH, 0); 2422 break; 2423 case IFM_1000_SX: 2424 case IFM_1000_TX: 2425 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 2426 CSR_WRITE_4(sc, TI_GCR_GLINK, 2427 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX| 2428 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB); 2429 } else { 2430 CSR_WRITE_4(sc, TI_GCR_GLINK, 2431 TI_GLNK_PREF|TI_GLNK_1000MB| 2432 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB); 2433 } 2434 CSR_WRITE_4(sc, TI_GCR_LINK, 0); 2435 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 2436 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0); 2437 break; 2438 case IFM_100_FX: 2439 case IFM_10_FL: 2440 case IFM_100_TX: 2441 case IFM_10_T: 2442 CSR_WRITE_4(sc, TI_GCR_GLINK, 0); 2443 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF); 2444 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX || 2445 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) { 2446 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB); 2447 } else { 2448 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB); 2449 } 2450 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 2451 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX); 2452 } else { 2453 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX); 2454 } 2455 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 2456 TI_CMD_CODE_NEGOTIATE_10_100, 0); 2457 break; 2458 } 2459 2460 sc->ethercom.ec_if.if_baudrate = 2461 ifmedia_baudrate(ifm->ifm_media); 2462 2463 return(0); 2464 } 2465 2466 /* 2467 * Report current media status. 2468 */ 2469 static void ti_ifmedia_sts(ifp, ifmr) 2470 struct ifnet *ifp; 2471 struct ifmediareq *ifmr; 2472 { 2473 struct ti_softc *sc; 2474 u_int32_t media = 0; 2475 2476 sc = ifp->if_softc; 2477 2478 ifmr->ifm_status = IFM_AVALID; 2479 ifmr->ifm_active = IFM_ETHER; 2480 2481 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) 2482 return; 2483 2484 ifmr->ifm_status |= IFM_ACTIVE; 2485 2486 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) { 2487 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT); 2488 if (sc->ti_copper) 2489 ifmr->ifm_active |= IFM_1000_TX; 2490 else 2491 ifmr->ifm_active |= IFM_1000_SX; 2492 if (media & TI_GLNK_FULL_DUPLEX) 2493 ifmr->ifm_active |= IFM_FDX; 2494 else 2495 ifmr->ifm_active |= IFM_HDX; 2496 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) { 2497 media = CSR_READ_4(sc, TI_GCR_LINK_STAT); 2498 if (sc->ti_copper) { 2499 if (media & TI_LNK_100MB) 2500 ifmr->ifm_active |= IFM_100_TX; 2501 if (media & TI_LNK_10MB) 2502 ifmr->ifm_active |= IFM_10_T; 2503 } else { 2504 if (media & TI_LNK_100MB) 2505 ifmr->ifm_active |= IFM_100_FX; 2506 if (media & TI_LNK_10MB) 2507 ifmr->ifm_active |= IFM_10_FL; 2508 } 2509 if (media & TI_LNK_FULL_DUPLEX) 2510 ifmr->ifm_active |= IFM_FDX; 2511 if (media & TI_LNK_HALF_DUPLEX) 2512 ifmr->ifm_active |= IFM_HDX; 2513 } 2514 2515 sc->ethercom.ec_if.if_baudrate = 2516 ifmedia_baudrate(sc->ifmedia.ifm_media); 2517 2518 return; 2519 } 2520 2521 static int 2522 ti_ether_ioctl(ifp, cmd, data) 2523 struct ifnet *ifp; 2524 u_long cmd; 2525 caddr_t data; 2526 { 2527 struct ifaddr *ifa = (struct ifaddr *) data; 2528 struct ti_softc *sc = ifp->if_softc; 2529 2530 switch (cmd) { 2531 case SIOCSIFADDR: 2532 ifp->if_flags |= IFF_UP; 2533 2534 switch (ifa->ifa_addr->sa_family) { 2535 #ifdef INET 2536 case AF_INET: 2537 ti_init(sc); 2538 arp_ifinit(ifp, ifa); 2539 break; 2540 #endif 2541 #ifdef NS 2542 case AF_NS: 2543 { 2544 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; 2545 2546 if (ns_nullhost(*ina)) 2547 ina->x_host = *(union ns_host *) 2548 LLADDR(ifp->if_sadl); 2549 else 2550 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl), 2551 ifp->if_addrlen); 2552 /* Set new address. */ 2553 ti_init(sc); 2554 break; 2555 } 2556 #endif 2557 default: 2558 ti_init(sc); 2559 break; 2560 } 2561 break; 2562 2563 default: 2564 return (EINVAL); 2565 } 2566 2567 return (0); 2568 } 2569 2570 static int ti_ioctl(ifp, command, data) 2571 struct ifnet *ifp; 2572 u_long command; 2573 caddr_t data; 2574 { 2575 struct ti_softc *sc = ifp->if_softc; 2576 struct ifreq *ifr = (struct ifreq *) data; 2577 int s, error = 0; 2578 struct ti_cmd_desc cmd; 2579 2580 s = splnet(); 2581 2582 switch(command) { 2583 case SIOCSIFADDR: 2584 case SIOCGIFADDR: 2585 error = ti_ether_ioctl(ifp, command, data); 2586 break; 2587 case SIOCSIFMTU: 2588 if (ifr->ifr_mtu > TI_JUMBO_MTU) 2589 error = EINVAL; 2590 else { 2591 ifp->if_mtu = ifr->ifr_mtu; 2592 ti_init(sc); 2593 } 2594 break; 2595 case SIOCSIFFLAGS: 2596 if (ifp->if_flags & IFF_UP) { 2597 /* 2598 * If only the state of the PROMISC flag changed, 2599 * then just use the 'set promisc mode' command 2600 * instead of reinitializing the entire NIC. Doing 2601 * a full re-init means reloading the firmware and 2602 * waiting for it to start up, which may take a 2603 * second or two. 2604 */ 2605 if (ifp->if_flags & IFF_RUNNING && 2606 ifp->if_flags & IFF_PROMISC && 2607 !(sc->ti_if_flags & IFF_PROMISC)) { 2608 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, 2609 TI_CMD_CODE_PROMISC_ENB, 0); 2610 } else if (ifp->if_flags & IFF_RUNNING && 2611 !(ifp->if_flags & IFF_PROMISC) && 2612 sc->ti_if_flags & IFF_PROMISC) { 2613 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, 2614 TI_CMD_CODE_PROMISC_DIS, 0); 2615 } else 2616 ti_init(sc); 2617 } else { 2618 if (ifp->if_flags & IFF_RUNNING) { 2619 ti_stop(sc); 2620 } 2621 } 2622 sc->ti_if_flags = ifp->if_flags; 2623 error = 0; 2624 break; 2625 case SIOCADDMULTI: 2626 case SIOCDELMULTI: 2627 error = (command == SIOCADDMULTI) ? 2628 ether_addmulti(ifr, &sc->ethercom) : 2629 ether_delmulti(ifr, &sc->ethercom); 2630 if (error == ENETRESET) { 2631 if (ifp->if_flags & IFF_RUNNING) 2632 ti_setmulti(sc); 2633 error = 0; 2634 } 2635 break; 2636 case SIOCSIFMEDIA: 2637 case SIOCGIFMEDIA: 2638 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 2639 break; 2640 default: 2641 error = EINVAL; 2642 break; 2643 } 2644 2645 (void)splx(s); 2646 2647 return(error); 2648 } 2649 2650 static void ti_watchdog(ifp) 2651 struct ifnet *ifp; 2652 { 2653 struct ti_softc *sc; 2654 2655 sc = ifp->if_softc; 2656 2657 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname); 2658 ti_stop(sc); 2659 ti_init(sc); 2660 2661 ifp->if_oerrors++; 2662 2663 return; 2664 } 2665 2666 /* 2667 * Stop the adapter and free any mbufs allocated to the 2668 * RX and TX lists. 2669 */ 2670 static void ti_stop(sc) 2671 struct ti_softc *sc; 2672 { 2673 struct ifnet *ifp; 2674 struct ti_cmd_desc cmd; 2675 2676 ifp = &sc->ethercom.ec_if; 2677 2678 /* Disable host interrupts. */ 2679 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 2680 /* 2681 * Tell firmware we're shutting down. 2682 */ 2683 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0); 2684 2685 /* Halt and reinitialize. */ 2686 ti_chipinit(sc); 2687 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); 2688 ti_chipinit(sc); 2689 2690 /* Free the RX lists. */ 2691 ti_free_rx_ring_std(sc); 2692 2693 /* Free jumbo RX list. */ 2694 ti_free_rx_ring_jumbo(sc); 2695 2696 /* Free mini RX list. */ 2697 ti_free_rx_ring_mini(sc); 2698 2699 /* Free TX buffers. */ 2700 ti_free_tx_ring(sc); 2701 2702 sc->ti_ev_prodidx.ti_idx = 0; 2703 sc->ti_return_prodidx.ti_idx = 0; 2704 sc->ti_tx_considx.ti_idx = 0; 2705 sc->ti_tx_saved_considx = TI_TXCONS_UNSET; 2706 2707 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2708 2709 return; 2710 } 2711 2712 /* 2713 * Stop all chip I/O so that the kernel's probe routines don't 2714 * get confused by errant DMAs when rebooting. 2715 */ 2716 static void ti_shutdown(v) 2717 void *v; 2718 { 2719 struct ti_softc *sc = v; 2720 2721 ti_chipinit(sc); 2722 2723 return; 2724 } 2725