xref: /netbsd-src/sys/dev/pci/if_ti.c (revision 3cec974c61d7fac0a37c0377723a33214a458c8b)
1 /* $NetBSD: if_ti.c,v 1.20 2001/01/29 01:24:42 enami Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include "bpfilter.h"
84 #include "opt_inet.h"
85 #include "opt_ns.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/device.h>
96 #include <sys/reboot.h>
97 
98 #include <uvm/uvm_extern.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #ifdef INET
111 #include <netinet/in.h>
112 #include <netinet/if_inarp.h>
113 #endif
114 
115 #ifdef NS
116 #include <netns/ns.h>
117 #include <netns/ns_if.h>
118 #endif
119 
120 #include <machine/bus.h>
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_tireg.h>
127 #include <dev/pci/ti_fw.h>
128 #include <dev/pci/ti_fw2.h>
129 
130 #ifdef M_HWCKSUM
131 /*#define TI_CSUM_OFFLOAD*/
132 #endif
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 
138 static const struct ti_type ti_devs[] = {
139 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
140 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
141 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
142 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
143 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
144 		"3Com 3c985-SX Gigabit Ethernet" },
145 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
146 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
147 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
148 		"Netgear GA620 1000baseT Gigabit Ethernet" },
149 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
150 		"Silicon Graphics Gigabit Ethernet" },
151 	{ 0, 0, NULL }
152 };
153 
154 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
155 static int ti_probe	__P((struct device *, struct cfdata *, void *));
156 static void ti_attach	__P((struct device *, struct device *, void *));
157 static void ti_shutdown __P((void *));
158 static void ti_txeof		__P((struct ti_softc *));
159 static void ti_rxeof		__P((struct ti_softc *));
160 
161 static void ti_stats_update	__P((struct ti_softc *));
162 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
163 					u_int32_t *));
164 
165 static int ti_intr		__P((void *));
166 static void ti_start		__P((struct ifnet *));
167 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
168 static void ti_init		__P((void *));
169 static void ti_init2		__P((struct ti_softc *));
170 static void ti_stop		__P((struct ti_softc *));
171 static void ti_watchdog		__P((struct ifnet *));
172 static int ti_ifmedia_upd	__P((struct ifnet *));
173 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
174 
175 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
176 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
177 						int, u_int8_t *));
178 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
179 
180 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
181 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
182 static void ti_setmulti		__P((struct ti_softc *));
183 
184 static void ti_mem		__P((struct ti_softc *, u_int32_t,
185 					u_int32_t, caddr_t));
186 static void ti_loadfw		__P((struct ti_softc *));
187 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
188 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
189 					caddr_t, int));
190 static void ti_handle_events	__P((struct ti_softc *));
191 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
192 static void *ti_jalloc		__P((struct ti_softc *));
193 static void ti_jfree		__P((caddr_t, u_int, void *));
194 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
195 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
196 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
197 static int ti_init_rx_ring_std	__P((struct ti_softc *));
198 static void ti_free_rx_ring_std	__P((struct ti_softc *));
199 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
200 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
201 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
202 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
203 static void ti_free_tx_ring	__P((struct ti_softc *));
204 static int ti_init_tx_ring	__P((struct ti_softc *));
205 
206 static int ti_64bitslot_war	__P((struct ti_softc *));
207 static int ti_chipinit		__P((struct ti_softc *));
208 static int ti_gibinit		__P((struct ti_softc *));
209 
210 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
211 
212 struct cfattach ti_ca = {
213 	sizeof(struct ti_softc), ti_probe, ti_attach
214 };
215 
216 /*
217  * Send an instruction or address to the EEPROM, check for ACK.
218  */
219 static u_int32_t ti_eeprom_putbyte(sc, byte)
220 	struct ti_softc		*sc;
221 	int			byte;
222 {
223 	int		i, ack = 0;
224 
225 	/*
226 	 * Make sure we're in TX mode.
227 	 */
228 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
229 
230 	/*
231 	 * Feed in each bit and stobe the clock.
232 	 */
233 	for (i = 0x80; i; i >>= 1) {
234 		if (byte & i) {
235 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
236 		} else {
237 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
238 		}
239 		DELAY(1);
240 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
241 		DELAY(1);
242 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
243 	}
244 
245 	/*
246 	 * Turn off TX mode.
247 	 */
248 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
249 
250 	/*
251 	 * Check for ack.
252 	 */
253 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
255 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256 
257 	return(ack);
258 }
259 
260 /*
261  * Read a byte of data stored in the EEPROM at address 'addr.'
262  * We have to send two address bytes since the EEPROM can hold
263  * more than 256 bytes of data.
264  */
265 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
266 	struct ti_softc		*sc;
267 	int			addr;
268 	u_int8_t		*dest;
269 {
270 	int		i;
271 	u_int8_t		byte = 0;
272 
273 	EEPROM_START;
274 
275 	/*
276 	 * Send write control code to EEPROM.
277 	 */
278 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
279 		printf("%s: failed to send write command, status: %x\n",
280 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
281 		return(1);
282 	}
283 
284 	/*
285 	 * Send first byte of address of byte we want to read.
286 	 */
287 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
288 		printf("%s: failed to send address, status: %x\n",
289 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
290 		return(1);
291 	}
292 	/*
293 	 * Send second byte address of byte we want to read.
294 	 */
295 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
296 		printf("%s: failed to send address, status: %x\n",
297 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
298 		return(1);
299 	}
300 
301 	EEPROM_STOP;
302 	EEPROM_START;
303 	/*
304 	 * Send read control code to EEPROM.
305 	 */
306 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
307 		printf("%s: failed to send read command, status: %x\n",
308 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
309 		return(1);
310 	}
311 
312 	/*
313 	 * Start reading bits from EEPROM.
314 	 */
315 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
316 	for (i = 0x80; i; i >>= 1) {
317 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318 		DELAY(1);
319 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
320 			byte |= i;
321 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 		DELAY(1);
323 	}
324 
325 	EEPROM_STOP;
326 
327 	/*
328 	 * No ACK generated for read, so just return byte.
329 	 */
330 
331 	*dest = byte;
332 
333 	return(0);
334 }
335 
336 /*
337  * Read a sequence of bytes from the EEPROM.
338  */
339 static int ti_read_eeprom(sc, dest, off, cnt)
340 	struct ti_softc		*sc;
341 	caddr_t			dest;
342 	int			off;
343 	int			cnt;
344 {
345 	int			err = 0, i;
346 	u_int8_t		byte = 0;
347 
348 	for (i = 0; i < cnt; i++) {
349 		err = ti_eeprom_getbyte(sc, off + i, &byte);
350 		if (err)
351 			break;
352 		*(dest + i) = byte;
353 	}
354 
355 	return(err ? 1 : 0);
356 }
357 
358 /*
359  * NIC memory access function. Can be used to either clear a section
360  * of NIC local memory or (if buf is non-NULL) copy data into it.
361  */
362 static void ti_mem(sc, addr, len, buf)
363 	struct ti_softc		*sc;
364 	u_int32_t		addr, len;
365 	caddr_t			buf;
366 {
367 	int			segptr, segsize, cnt;
368 	caddr_t			ptr;
369 
370 	segptr = addr;
371 	cnt = len;
372 	ptr = buf;
373 
374 	while(cnt) {
375 		if (cnt < TI_WINLEN)
376 			segsize = cnt;
377 		else
378 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
379 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
380 		if (buf == NULL) {
381 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
382 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
383 			    segsize / 4);
384 		} else {
385 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
386 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
387 			    (u_int32_t *)ptr, segsize / 4);
388 			ptr += segsize;
389 		}
390 		segptr += segsize;
391 		cnt -= segsize;
392 	}
393 
394 	return;
395 }
396 
397 /*
398  * Load firmware image into the NIC. Check that the firmware revision
399  * is acceptable and see if we want the firmware for the Tigon 1 or
400  * Tigon 2.
401  */
402 static void ti_loadfw(sc)
403 	struct ti_softc		*sc;
404 {
405 	switch(sc->ti_hwrev) {
406 	case TI_HWREV_TIGON:
407 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
408 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
409 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
410 			printf("%s: firmware revision mismatch; want "
411 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
412 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
413 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
414 			    tigonFwReleaseMinor, tigonFwReleaseFix);
415 			return;
416 		}
417 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
418 		    (caddr_t)tigonFwText);
419 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
420 		    (caddr_t)tigonFwData);
421 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
422 		    (caddr_t)tigonFwRodata);
423 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
424 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
425 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
426 		break;
427 	case TI_HWREV_TIGON_II:
428 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
429 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
430 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
431 			printf("%s: firmware revision mismatch; want "
432 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
433 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
434 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
435 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
436 			return;
437 		}
438 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
439 		    (caddr_t)tigon2FwText);
440 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
441 		    (caddr_t)tigon2FwData);
442 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
443 		    (caddr_t)tigon2FwRodata);
444 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
445 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
446 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
447 		break;
448 	default:
449 		printf("%s: can't load firmware: unknown hardware rev\n",
450 		    sc->sc_dev.dv_xname);
451 		break;
452 	}
453 
454 	return;
455 }
456 
457 /*
458  * Send the NIC a command via the command ring.
459  */
460 static void ti_cmd(sc, cmd)
461 	struct ti_softc		*sc;
462 	struct ti_cmd_desc	*cmd;
463 {
464 	u_int32_t		index;
465 
466 	index = sc->ti_cmd_saved_prodidx;
467 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
468 	TI_INC(index, TI_CMD_RING_CNT);
469 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
470 	sc->ti_cmd_saved_prodidx = index;
471 
472 	return;
473 }
474 
475 /*
476  * Send the NIC an extended command. The 'len' parameter specifies the
477  * number of command slots to include after the initial command.
478  */
479 static void ti_cmd_ext(sc, cmd, arg, len)
480 	struct ti_softc		*sc;
481 	struct ti_cmd_desc	*cmd;
482 	caddr_t			arg;
483 	int			len;
484 {
485 	u_int32_t		index;
486 	int		i;
487 
488 	index = sc->ti_cmd_saved_prodidx;
489 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
490 	TI_INC(index, TI_CMD_RING_CNT);
491 	for (i = 0; i < len; i++) {
492 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
493 		    *(u_int32_t *)(&arg[i * 4]));
494 		TI_INC(index, TI_CMD_RING_CNT);
495 	}
496 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
497 	sc->ti_cmd_saved_prodidx = index;
498 
499 	return;
500 }
501 
502 /*
503  * Handle events that have triggered interrupts.
504  */
505 static void ti_handle_events(sc)
506 	struct ti_softc		*sc;
507 {
508 	struct ti_event_desc	*e;
509 
510 	if (sc->ti_rdata->ti_event_ring == NULL)
511 		return;
512 
513 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
514 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
515 		switch(e->ti_event) {
516 		case TI_EV_LINKSTAT_CHANGED:
517 			sc->ti_linkstat = e->ti_code;
518 			if (e->ti_code == TI_EV_CODE_LINK_UP)
519 				printf("%s: 10/100 link up\n",
520 				       sc->sc_dev.dv_xname);
521 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
522 				printf("%s: gigabit link up\n",
523 				       sc->sc_dev.dv_xname);
524 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
525 				printf("%s: link down\n",
526 				       sc->sc_dev.dv_xname);
527 			break;
528 		case TI_EV_ERROR:
529 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
530 				printf("%s: invalid command\n",
531 				       sc->sc_dev.dv_xname);
532 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
533 				printf("%s: unknown command\n",
534 				       sc->sc_dev.dv_xname);
535 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
536 				printf("%s: bad config data\n",
537 				       sc->sc_dev.dv_xname);
538 			break;
539 		case TI_EV_FIRMWARE_UP:
540 			ti_init2(sc);
541 			break;
542 		case TI_EV_STATS_UPDATED:
543 			ti_stats_update(sc);
544 			break;
545 		case TI_EV_RESET_JUMBO_RING:
546 		case TI_EV_MCAST_UPDATED:
547 			/* Who cares. */
548 			break;
549 		default:
550 			printf("%s: unknown event: %d\n",
551 			    sc->sc_dev.dv_xname, e->ti_event);
552 			break;
553 		}
554 		/* Advance the consumer index. */
555 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
556 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
557 	}
558 
559 	return;
560 }
561 
562 /*
563  * Memory management for the jumbo receive ring is a pain in the
564  * butt. We need to allocate at least 9018 bytes of space per frame,
565  * _and_ it has to be contiguous (unless you use the extended
566  * jumbo descriptor format). Using malloc() all the time won't
567  * work: malloc() allocates memory in powers of two, which means we
568  * would end up wasting a considerable amount of space by allocating
569  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
570  * to do our own memory management.
571  *
572  * The driver needs to allocate a contiguous chunk of memory at boot
573  * time. We then chop this up ourselves into 9K pieces and use them
574  * as external mbuf storage.
575  *
576  * One issue here is how much memory to allocate. The jumbo ring has
577  * 256 slots in it, but at 9K per slot than can consume over 2MB of
578  * RAM. This is a bit much, especially considering we also need
579  * RAM for the standard ring and mini ring (on the Tigon 2). To
580  * save space, we only actually allocate enough memory for 64 slots
581  * by default, which works out to between 500 and 600K. This can
582  * be tuned by changing a #define in if_tireg.h.
583  */
584 
585 static int ti_alloc_jumbo_mem(sc)
586 	struct ti_softc		*sc;
587 {
588 	caddr_t			ptr;
589 	int		i;
590 	struct ti_jpool_entry   *entry;
591 	bus_dma_segment_t dmaseg;
592 	int error, dmanseg;
593 
594 	/* Grab a big chunk o' storage. */
595 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
596 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
597 	    BUS_DMA_NOWAIT)) != 0) {
598 		printf("%s: can't allocate jumbo buffer, error = %d\n",
599 		       sc->sc_dev.dv_xname, error);
600 		return (error);
601 	}
602 
603 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
604 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
605 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
606 		printf("%s: can't map jumbo buffer, error = %d\n",
607 		       sc->sc_dev.dv_xname, error);
608 		return (error);
609 	}
610 
611 	if ((error = bus_dmamap_create(sc->sc_dmat,
612 	    TI_JMEM, 1,
613 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
614 	    &sc->jumbo_dmamap)) != 0) {
615 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
616 		       sc->sc_dev.dv_xname, error);
617 		return (error);
618 	}
619 
620 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
621 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
622 	    BUS_DMA_NOWAIT)) != 0) {
623 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
624 		       sc->sc_dev.dv_xname, error);
625 		return (error);
626 	}
627 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
628 
629 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
630 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
631 
632 	/*
633 	 * Now divide it up into 9K pieces and save the addresses
634 	 * in an array.
635 	 */
636 	ptr = sc->ti_cdata.ti_jumbo_buf;
637 	for (i = 0; i < TI_JSLOTS; i++) {
638 		sc->ti_cdata.ti_jslots[i] = ptr;
639 		ptr += TI_JLEN;
640 		entry = malloc(sizeof(struct ti_jpool_entry),
641 			       M_DEVBUF, M_NOWAIT);
642 		if (entry == NULL) {
643 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
644 			sc->ti_cdata.ti_jumbo_buf = NULL;
645 			printf("%s: no memory for jumbo "
646 			    "buffer queue!\n", sc->sc_dev.dv_xname);
647 			return(ENOBUFS);
648 		}
649 		entry->slot = i;
650 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
651 				    jpool_entries);
652 	}
653 
654 	return(0);
655 }
656 
657 /*
658  * Allocate a jumbo buffer.
659  */
660 static void *ti_jalloc(sc)
661 	struct ti_softc		*sc;
662 {
663 	struct ti_jpool_entry   *entry;
664 
665 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
666 
667 	if (entry == NULL) {
668 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
669 		return(NULL);
670 	}
671 
672 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
673 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
674 	return(sc->ti_cdata.ti_jslots[entry->slot]);
675 }
676 
677 /*
678  * Release a jumbo buffer.
679  */
680 static void ti_jfree(buf, size, arg)
681 	caddr_t			buf;
682 	u_int			size;
683 	void *arg;
684 {
685 	struct ti_softc		*sc;
686 	int		        i;
687 	struct ti_jpool_entry   *entry;
688 
689 	/* Extract the softc struct pointer. */
690 	sc = (struct ti_softc *)arg;
691 
692 	if (sc == NULL)
693 		panic("ti_jfree: didn't get softc pointer!");
694 
695 	/* calculate the slot this buffer belongs to */
696 
697 	i = ((caddr_t)buf
698 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
699 
700 	if ((i < 0) || (i >= TI_JSLOTS))
701 		panic("ti_jfree: asked to free buffer that we don't manage!");
702 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
703 	if (entry == NULL)
704 		panic("ti_jfree: buffer not in use!");
705 	entry->slot = i;
706 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
707 	    entry, jpool_entries);
708 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
709 	     entry, jpool_entries);
710 
711 	return;
712 }
713 
714 
715 /*
716  * Intialize a standard receive ring descriptor.
717  */
718 static int ti_newbuf_std(sc, i, m, dmamap)
719 	struct ti_softc		*sc;
720 	int			i;
721 	struct mbuf		*m;
722 	bus_dmamap_t dmamap; /* required if (m != NULL) */
723 {
724 	struct mbuf		*m_new = NULL;
725 	struct ti_rx_desc	*r;
726 	int error;
727 
728 	if (dmamap == NULL) {
729 		/* if (m) panic() */
730 
731 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
732 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
733 					       &dmamap)) != 0) {
734 			printf("%s: can't create recv map, error = %d\n",
735 			       sc->sc_dev.dv_xname, error);
736 			return(ENOMEM);
737 		}
738 	}
739 	sc->std_dmamap[i] = dmamap;
740 
741 	if (m == NULL) {
742 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 		if (m_new == NULL) {
744 			printf("%s: mbuf allocation failed "
745 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
746 			return(ENOBUFS);
747 		}
748 
749 		MCLGET(m_new, M_DONTWAIT);
750 		if (!(m_new->m_flags & M_EXT)) {
751 			printf("%s: cluster allocation failed "
752 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
753 			m_freem(m_new);
754 			return(ENOBUFS);
755 		}
756 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
757 		m_adj(m_new, ETHER_ALIGN);
758 
759 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
760 				mtod(m_new, caddr_t), m_new->m_len, NULL,
761 				BUS_DMA_NOWAIT)) != 0) {
762 			printf("%s: can't load recv map, error = %d\n",
763 			       sc->sc_dev.dv_xname, error);
764 			return (ENOMEM);
765 		}
766 	} else {
767 		m_new = m;
768 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
769 		m_new->m_data = m_new->m_ext.ext_buf;
770 		m_adj(m_new, ETHER_ALIGN);
771 
772 		/* reuse the dmamap */
773 	}
774 
775 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
776 	r = &sc->ti_rdata->ti_rx_std_ring[i];
777 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
778 	r->ti_type = TI_BDTYPE_RECV_BD;
779 #ifdef TI_CSUM_OFFLOAD
780 	r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
781 #else
782 	r->ti_flags = 0;
783 #endif
784 	r->ti_len = m_new->m_len; /* == ds_len */
785 	r->ti_idx = i;
786 
787 	return(0);
788 }
789 
790 /*
791  * Intialize a mini receive ring descriptor. This only applies to
792  * the Tigon 2.
793  */
794 static int ti_newbuf_mini(sc, i, m, dmamap)
795 	struct ti_softc		*sc;
796 	int			i;
797 	struct mbuf		*m;
798 	bus_dmamap_t dmamap; /* required if (m != NULL) */
799 {
800 	struct mbuf		*m_new = NULL;
801 	struct ti_rx_desc	*r;
802 	int error;
803 
804 	if (dmamap == NULL) {
805 		/* if (m) panic() */
806 
807 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
808 					       MHLEN, 0, BUS_DMA_NOWAIT,
809 					       &dmamap)) != 0) {
810 			printf("%s: can't create recv map, error = %d\n",
811 			       sc->sc_dev.dv_xname, error);
812 			return(ENOMEM);
813 		}
814 	}
815 	sc->mini_dmamap[i] = dmamap;
816 
817 	if (m == NULL) {
818 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
819 		if (m_new == NULL) {
820 			printf("%s: mbuf allocation failed "
821 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
822 			return(ENOBUFS);
823 		}
824 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
825 		m_adj(m_new, ETHER_ALIGN);
826 
827 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
828 				mtod(m_new, caddr_t), m_new->m_len, NULL,
829 				BUS_DMA_NOWAIT)) != 0) {
830 			printf("%s: can't load recv map, error = %d\n",
831 			       sc->sc_dev.dv_xname, error);
832 			return (ENOMEM);
833 		}
834 	} else {
835 		m_new = m;
836 		m_new->m_data = m_new->m_pktdat;
837 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
838 		m_adj(m_new, ETHER_ALIGN);
839 
840 		/* reuse the dmamap */
841 	}
842 
843 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
844 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
845 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
846 	r->ti_type = TI_BDTYPE_RECV_BD;
847 	r->ti_flags = TI_BDFLAG_MINI_RING;
848 #ifdef TI_CSUM_OFFLOAD
849 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
850 #endif
851 	r->ti_len = m_new->m_len; /* == ds_len */
852 	r->ti_idx = i;
853 
854 	return(0);
855 }
856 
857 /*
858  * Initialize a jumbo receive ring descriptor. This allocates
859  * a jumbo buffer from the pool managed internally by the driver.
860  */
861 static int ti_newbuf_jumbo(sc, i, m)
862 	struct ti_softc		*sc;
863 	int			i;
864 	struct mbuf		*m;
865 {
866 	struct mbuf		*m_new = NULL;
867 	struct ti_rx_desc	*r;
868 
869 	if (m == NULL) {
870 		caddr_t			*buf = NULL;
871 
872 		/* Allocate the mbuf. */
873 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
874 		if (m_new == NULL) {
875 			printf("%s: mbuf allocation failed "
876 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
877 			return(ENOBUFS);
878 		}
879 
880 		/* Allocate the jumbo buffer */
881 		buf = ti_jalloc(sc);
882 		if (buf == NULL) {
883 			m_freem(m_new);
884 			printf("%s: jumbo allocation failed "
885 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
886 			return(ENOBUFS);
887 		}
888 
889 		/* Attach the buffer to the mbuf. */
890 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
891 		m_new->m_flags |= M_EXT;
892 		m_new->m_len = m_new->m_pkthdr.len =
893 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
894 		m_new->m_ext.ext_free = ti_jfree;
895 		m_new->m_ext.ext_arg = sc;
896 		MCLINITREFERENCE(m_new);
897 	} else {
898 		m_new = m;
899 		m_new->m_data = m_new->m_ext.ext_buf;
900 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
901 	}
902 
903 	m_adj(m_new, ETHER_ALIGN);
904 	/* Set up the descriptor. */
905 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
906 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
907 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
908 		((caddr_t)mtod(m_new, caddr_t)
909 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
910 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
911 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
912 #ifdef TI_CSUM_OFFLOAD
913 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
914 #endif
915 	r->ti_len = m_new->m_len;
916 	r->ti_idx = i;
917 
918 	return(0);
919 }
920 
921 /*
922  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
923  * that's 1MB or memory, which is a lot. For now, we fill only the first
924  * 256 ring entries and hope that our CPU is fast enough to keep up with
925  * the NIC.
926  */
927 static int ti_init_rx_ring_std(sc)
928 	struct ti_softc		*sc;
929 {
930 	int		i;
931 	struct ti_cmd_desc	cmd;
932 
933 	for (i = 0; i < TI_SSLOTS; i++) {
934 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
935 			return(ENOBUFS);
936 	};
937 
938 	TI_UPDATE_STDPROD(sc, i - 1);
939 	sc->ti_std = i - 1;
940 
941 	return(0);
942 }
943 
944 static void ti_free_rx_ring_std(sc)
945 	struct ti_softc		*sc;
946 {
947 	int		i;
948 
949 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
950 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
951 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
952 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
953 
954 			/* if (sc->std_dmamap[i] == 0) panic() */
955 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
956 			sc->std_dmamap[i] = 0;
957 		}
958 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
959 		    sizeof(struct ti_rx_desc));
960 	}
961 
962 	return;
963 }
964 
965 static int ti_init_rx_ring_jumbo(sc)
966 	struct ti_softc		*sc;
967 {
968 	int		i;
969 	struct ti_cmd_desc	cmd;
970 
971 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
972 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
973 			return(ENOBUFS);
974 	};
975 
976 	TI_UPDATE_JUMBOPROD(sc, i - 1);
977 	sc->ti_jumbo = i - 1;
978 
979 	return(0);
980 }
981 
982 static void ti_free_rx_ring_jumbo(sc)
983 	struct ti_softc		*sc;
984 {
985 	int		i;
986 
987 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
988 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
989 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
990 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
991 		}
992 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
993 		    sizeof(struct ti_rx_desc));
994 	}
995 
996 	return;
997 }
998 
999 static int ti_init_rx_ring_mini(sc)
1000 	struct ti_softc		*sc;
1001 {
1002 	int		i;
1003 
1004 	for (i = 0; i < TI_MSLOTS; i++) {
1005 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1006 			return(ENOBUFS);
1007 	};
1008 
1009 	TI_UPDATE_MINIPROD(sc, i - 1);
1010 	sc->ti_mini = i - 1;
1011 
1012 	return(0);
1013 }
1014 
1015 static void ti_free_rx_ring_mini(sc)
1016 	struct ti_softc		*sc;
1017 {
1018 	int		i;
1019 
1020 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1022 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1023 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1024 
1025 			/* if (sc->mini_dmamap[i] == 0) panic() */
1026 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1027 			sc->mini_dmamap[i] = 0;
1028 		}
1029 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1030 		    sizeof(struct ti_rx_desc));
1031 	}
1032 
1033 	return;
1034 }
1035 
1036 static void ti_free_tx_ring(sc)
1037 	struct ti_softc		*sc;
1038 {
1039 	int		i;
1040 	struct txdmamap_pool_entry *dma;
1041 
1042 	if (sc->ti_rdata->ti_tx_ring == NULL)
1043 		return;
1044 
1045 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1046 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1047 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1048 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1049 
1050 			/* if (sc->txdma[i] == 0) panic() */
1051 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1052 					    link);
1053 			sc->txdma[i] = 0;
1054 		}
1055 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1056 		    sizeof(struct ti_tx_desc));
1057 	}
1058 
1059 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1060 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1061 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1062 		free(dma, M_DEVBUF);
1063 	}
1064 
1065 	return;
1066 }
1067 
1068 static int ti_init_tx_ring(sc)
1069 	struct ti_softc		*sc;
1070 {
1071 	int i, error;
1072 	bus_dmamap_t dmamap;
1073 	struct txdmamap_pool_entry *dma;
1074 
1075 	sc->ti_txcnt = 0;
1076 	sc->ti_tx_saved_considx = 0;
1077 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1078 
1079 	SIMPLEQ_INIT(&sc->txdma_list);
1080 	for (i = 0; i < TI_RSLOTS; i++) {
1081 		/* I've seen mbufs with 30 fragments. */
1082 		if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1083 					       40, TI_JUMBO_FRAMELEN, 0,
1084 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1085 			printf("%s: can't create tx map, error = %d\n",
1086 			       sc->sc_dev.dv_xname, error);
1087 			return(ENOMEM);
1088 		}
1089 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1090 		if (!dma) {
1091 			printf("%s: can't alloc txdmamap_pool_entry\n",
1092 			       sc->sc_dev.dv_xname);
1093 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1094 			return (ENOMEM);
1095 		}
1096 		dma->dmamap = dmamap;
1097 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1098 	}
1099 
1100 	return(0);
1101 }
1102 
1103 /*
1104  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1105  * but we have to support the old way too so that Tigon 1 cards will
1106  * work.
1107  */
1108 void ti_add_mcast(sc, addr)
1109 	struct ti_softc		*sc;
1110 	struct ether_addr	*addr;
1111 {
1112 	struct ti_cmd_desc	cmd;
1113 	u_int16_t		*m;
1114 	u_int32_t		ext[2] = {0, 0};
1115 
1116 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1117 
1118 	switch(sc->ti_hwrev) {
1119 	case TI_HWREV_TIGON:
1120 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1121 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1122 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1123 		break;
1124 	case TI_HWREV_TIGON_II:
1125 		ext[0] = htons(m[0]);
1126 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1127 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1128 		break;
1129 	default:
1130 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1131 		break;
1132 	}
1133 
1134 	return;
1135 }
1136 
1137 void ti_del_mcast(sc, addr)
1138 	struct ti_softc		*sc;
1139 	struct ether_addr	*addr;
1140 {
1141 	struct ti_cmd_desc	cmd;
1142 	u_int16_t		*m;
1143 	u_int32_t		ext[2] = {0, 0};
1144 
1145 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1146 
1147 	switch(sc->ti_hwrev) {
1148 	case TI_HWREV_TIGON:
1149 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1150 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1151 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1152 		break;
1153 	case TI_HWREV_TIGON_II:
1154 		ext[0] = htons(m[0]);
1155 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1156 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1157 		break;
1158 	default:
1159 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1160 		break;
1161 	}
1162 
1163 	return;
1164 }
1165 
1166 /*
1167  * Configure the Tigon's multicast address filter.
1168  *
1169  * The actual multicast table management is a bit of a pain, thanks to
1170  * slight brain damage on the part of both Alteon and us. With our
1171  * multicast code, we are only alerted when the multicast address table
1172  * changes and at that point we only have the current list of addresses:
1173  * we only know the current state, not the previous state, so we don't
1174  * actually know what addresses were removed or added. The firmware has
1175  * state, but we can't get our grubby mits on it, and there is no 'delete
1176  * all multicast addresses' command. Hence, we have to maintain our own
1177  * state so we know what addresses have been programmed into the NIC at
1178  * any given time.
1179  */
1180 static void ti_setmulti(sc)
1181 	struct ti_softc		*sc;
1182 {
1183 	struct ifnet		*ifp;
1184 	struct ti_cmd_desc	cmd;
1185 	struct ti_mc_entry	*mc;
1186 	u_int32_t		intrs;
1187 	struct ether_multi *enm;
1188 	struct ether_multistep step;
1189 
1190 	ifp = &sc->ethercom.ec_if;
1191 
1192 	/* Disable interrupts. */
1193 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1194 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1195 
1196 	/* First, zot all the existing filters. */
1197 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1198 		ti_del_mcast(sc, &mc->mc_addr);
1199 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1200 		free(mc, M_DEVBUF);
1201 	}
1202 
1203 	/*
1204 	 * Remember all multicast addresses so that we can delete them
1205 	 * later.  Punt if there is a range of addresses or memory shortage.
1206 	 */
1207 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1208 	while (enm != NULL) {
1209 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1210 		    ETHER_ADDR_LEN) != 0)
1211 			goto allmulti;
1212 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1213 		    M_NOWAIT)) == NULL)
1214 			goto allmulti;
1215 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1216 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1217 		ETHER_NEXT_MULTI(step, enm);
1218 	}
1219 
1220 	/* Accept only programmed multicast addresses */
1221 	ifp->if_flags &= ~IFF_ALLMULTI;
1222 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1223 
1224 	/* Now program new ones. */
1225 	for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL;
1226 	    mc = SIMPLEQ_NEXT(mc, mc_entries))
1227 		ti_add_mcast(sc, &mc->mc_addr);
1228 
1229 	/* Re-enable interrupts. */
1230 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1231 
1232 	return;
1233 
1234 allmulti:
1235 	/* No need to keep individual multicast addresses */
1236 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1237 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc,
1238 		    mc_entries);
1239 		free(mc, M_DEVBUF);
1240 	}
1241 
1242 	/* Accept all multicast addresses */
1243 	ifp->if_flags |= IFF_ALLMULTI;
1244 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1245 
1246 	/* Re-enable interrupts. */
1247 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1248 }
1249 
1250 /*
1251  * Check to see if the BIOS has configured us for a 64 bit slot when
1252  * we aren't actually in one. If we detect this condition, we can work
1253  * around it on the Tigon 2 by setting a bit in the PCI state register,
1254  * but for the Tigon 1 we must give up and abort the interface attach.
1255  */
1256 static int ti_64bitslot_war(sc)
1257 	struct ti_softc		*sc;
1258 {
1259 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1260 		CSR_WRITE_4(sc, 0x600, 0);
1261 		CSR_WRITE_4(sc, 0x604, 0);
1262 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1263 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1264 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1265 				return(EINVAL);
1266 			else {
1267 				TI_SETBIT(sc, TI_PCI_STATE,
1268 				    TI_PCISTATE_32BIT_BUS);
1269 				return(0);
1270 			}
1271 		}
1272 	}
1273 
1274 	return(0);
1275 }
1276 
1277 /*
1278  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1279  * self-test results.
1280  */
1281 static int ti_chipinit(sc)
1282 	struct ti_softc		*sc;
1283 {
1284 	u_int32_t		cacheline;
1285 	u_int32_t		pci_writemax = 0;
1286 
1287 	/* Initialize link to down state. */
1288 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1289 
1290 	/* Set endianness before we access any non-PCI registers. */
1291 #if BYTE_ORDER == BIG_ENDIAN
1292 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1293 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1294 #else
1295 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1296 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1297 #endif
1298 
1299 	/* Check the ROM failed bit to see if self-tests passed. */
1300 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1301 		printf("%s: board self-diagnostics failed!\n",
1302 		       sc->sc_dev.dv_xname);
1303 		return(ENODEV);
1304 	}
1305 
1306 	/* Halt the CPU. */
1307 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1308 
1309 	/* Figure out the hardware revision. */
1310 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1311 	case TI_REV_TIGON_I:
1312 		sc->ti_hwrev = TI_HWREV_TIGON;
1313 		break;
1314 	case TI_REV_TIGON_II:
1315 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1316 		break;
1317 	default:
1318 		printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1319 		return(ENODEV);
1320 	}
1321 
1322 	/* Do special setup for Tigon 2. */
1323 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1324 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1325 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1326 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1327 	}
1328 
1329 	/* Set up the PCI state register. */
1330 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1331 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1332 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1333 	}
1334 
1335 	/* Clear the read/write max DMA parameters. */
1336 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1337 	    TI_PCISTATE_READ_MAXDMA));
1338 
1339 	/* Get cache line size. */
1340 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1341 
1342 	/*
1343 	 * If the system has set enabled the PCI memory write
1344 	 * and invalidate command in the command register, set
1345 	 * the write max parameter accordingly. This is necessary
1346 	 * to use MWI with the Tigon 2.
1347 	 */
1348 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1349 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1350 		switch(cacheline) {
1351 		case 1:
1352 		case 4:
1353 		case 8:
1354 		case 16:
1355 		case 32:
1356 		case 64:
1357 			break;
1358 		default:
1359 		/* Disable PCI memory write and invalidate. */
1360 			if (bootverbose)
1361 				printf("%s: cache line size %d not "
1362 				    "supported; disabling PCI MWI\n",
1363 				    sc->sc_dev.dv_xname, cacheline);
1364 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1365 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1366 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1367 			break;
1368 		}
1369 	}
1370 
1371 #ifdef __brokenalpha__
1372 	/*
1373 	 * From the Alteon sample driver:
1374 	 * Must insure that we do not cross an 8K (bytes) boundary
1375 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1376 	 * restriction on some ALPHA platforms with early revision
1377 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1378 	 */
1379 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1380 #else
1381 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1382 #endif
1383 
1384 	/* This sets the min dma param all the way up (0xff). */
1385 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1386 
1387 	/* Configure DMA variables. */
1388 #if BYTE_ORDER == BIG_ENDIAN
1389 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1390 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1391 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1392 	    TI_OPMODE_DONT_FRAG_JUMBO);
1393 #else
1394 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1395 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1396 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1397 #endif
1398 
1399 	/*
1400 	 * Only allow 1 DMA channel to be active at a time.
1401 	 * I don't think this is a good idea, but without it
1402 	 * the firmware racks up lots of nicDmaReadRingFull
1403 	 * errors.
1404 	 */
1405 #ifndef TI_CSUM_OFFLOAD
1406 	TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1407 #endif
1408 
1409 	/* Recommended settings from Tigon manual. */
1410 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1411 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1412 
1413 	if (ti_64bitslot_war(sc)) {
1414 		printf("%s: bios thinks we're in a 64 bit slot, "
1415 		    "but we aren't", sc->sc_dev.dv_xname);
1416 		return(EINVAL);
1417 	}
1418 
1419 	return(0);
1420 }
1421 
1422 /*
1423  * Initialize the general information block and firmware, and
1424  * start the CPU(s) running.
1425  */
1426 static int ti_gibinit(sc)
1427 	struct ti_softc		*sc;
1428 {
1429 	struct ti_rcb		*rcb;
1430 	int			i;
1431 	struct ifnet		*ifp;
1432 
1433 	ifp = &sc->ethercom.ec_if;
1434 
1435 	/* Disable interrupts for now. */
1436 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1437 
1438 	/* Tell the chip where to find the general information block. */
1439 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1440 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1441 		    ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1442 
1443 	/* Load the firmware into SRAM. */
1444 	ti_loadfw(sc);
1445 
1446 	/* Set up the contents of the general info and ring control blocks. */
1447 
1448 	/* Set up the event ring and producer pointer. */
1449 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1450 
1451 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1452 		((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1453 	rcb->ti_flags = 0;
1454 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1455 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1456 				- (caddr_t)sc->ti_rdata);
1457 	sc->ti_ev_prodidx.ti_idx = 0;
1458 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1459 	sc->ti_ev_saved_considx = 0;
1460 
1461 	/* Set up the command ring and producer mailbox. */
1462 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1463 
1464 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1465 	rcb->ti_flags = 0;
1466 	rcb->ti_max_len = 0;
1467 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1468 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1469 	}
1470 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1471 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1472 	sc->ti_cmd_saved_prodidx = 0;
1473 
1474 	/*
1475 	 * Assign the address of the stats refresh buffer.
1476 	 * We re-use the current stats buffer for this to
1477 	 * conserve memory.
1478 	 */
1479 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1480 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1481 		    - (caddr_t)sc->ti_rdata);
1482 
1483 	/* Set up the standard receive ring. */
1484 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1485 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1486 		((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1487 		 - (caddr_t)sc->ti_rdata);
1488 	rcb->ti_max_len = TI_FRAMELEN;
1489 	rcb->ti_flags = 0;
1490 #ifdef TI_CSUM_OFFLOAD
1491 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1492 #endif
1493 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1494 
1495 	/* Set up the jumbo receive ring. */
1496 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1497 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1498 	    ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1499 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1500 	rcb->ti_flags = 0;
1501 #ifdef TI_CSUM_OFFLOAD
1502 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1503 #endif
1504 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1505 
1506 	/*
1507 	 * Set up the mini ring. Only activated on the
1508 	 * Tigon 2 but the slot in the config block is
1509 	 * still there on the Tigon 1.
1510 	 */
1511 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1512 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1513 	    ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1514 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1515 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1516 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1517 	else
1518 		rcb->ti_flags = 0;
1519 #ifdef TI_CSUM_OFFLOAD
1520 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1521 #endif
1522 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1523 
1524 	/*
1525 	 * Set up the receive return ring.
1526 	 */
1527 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1528 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1529 	    ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1530 	rcb->ti_flags = 0;
1531 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1532 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1533 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1534 		    - (caddr_t)sc->ti_rdata);
1535 
1536 	/*
1537 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1538 	 * of putting the transmit ring in the host's address space and
1539 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1540 	 * memory and accessing it through the shared memory region. We
1541 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1542 	 * so we have to revert to the shared memory scheme if we detect
1543 	 * a Tigon 1 chip.
1544 	 */
1545 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1546 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1547 		sc->ti_rdata->ti_tx_ring_nic =
1548 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1549 	}
1550 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1551 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1552 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1553 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1554 		rcb->ti_flags = 0;
1555 	else
1556 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1557 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1558 	rcb->ti_max_len = TI_TX_RING_CNT;
1559 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1560 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1561 	else
1562 		TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1563 		    ((caddr_t)&sc->ti_rdata->ti_tx_ring
1564 		     - (caddr_t)sc->ti_rdata);
1565 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1566 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1567 		    - (caddr_t)sc->ti_rdata);
1568 
1569 	/* Set up tuneables */
1570 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1571 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1572 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1573 		    (sc->ti_rx_coal_ticks / 10));
1574 	else
1575 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1576 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1577 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1578 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1579 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1580 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1581 
1582 	/* Turn interrupts on. */
1583 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1584 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1585 
1586 	/* Start CPU. */
1587 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1588 
1589 	return(0);
1590 }
1591 
1592 /*
1593  * look for id in the device list, returning the first match
1594  */
1595 static const struct ti_type *
1596 ti_type_match(pa)
1597 	struct pci_attach_args *pa;
1598 {
1599 	const struct ti_type          *t;
1600 
1601 	t = ti_devs;
1602 	while(t->ti_name != NULL) {
1603 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1604 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1605 			return (t);
1606 		}
1607 		t++;
1608 	}
1609 
1610 	return(NULL);
1611 }
1612 
1613 /*
1614  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1615  * against our list and return its name if we find a match.
1616  */
1617 static int ti_probe(parent, match, aux)
1618 	struct device *parent;
1619 	struct cfdata *match;
1620 	void *aux;
1621 {
1622 	struct pci_attach_args *pa = aux;
1623 	const struct ti_type		*t;
1624 
1625 	t = ti_type_match(pa);
1626 
1627 	return((t == NULL) ? 0 : 1);
1628 }
1629 
1630 static void ti_attach(parent, self, aux)
1631 	struct device *parent, *self;
1632 	void *aux;
1633 {
1634 	u_int32_t		command;
1635 	struct ifnet		*ifp;
1636 	struct ti_softc		*sc;
1637 	u_char eaddr[ETHER_ADDR_LEN];
1638 	struct pci_attach_args *pa = aux;
1639 	pci_chipset_tag_t pc = pa->pa_pc;
1640 	pci_intr_handle_t ih;
1641 	const char *intrstr = NULL;
1642 	bus_dma_segment_t dmaseg;
1643 	int error, dmanseg, nolinear;
1644 	const struct ti_type		*t;
1645 
1646 	t = ti_type_match(pa);
1647 	if (t == NULL) {
1648 		printf("ti_attach: were did the card go ?\n");
1649 		return;
1650 	}
1651 
1652 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1653 
1654 	sc = (struct ti_softc *)self;
1655 
1656 	/*
1657 	 * Map control/status registers.
1658 	 */
1659 	nolinear = 0;
1660 	if (pci_mapreg_map(pa, 0x10,
1661 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1662 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1663 	    NULL, NULL)) {
1664 		nolinear = 1;
1665 		if (pci_mapreg_map(pa, 0x10,
1666 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1667 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1668 			printf(": can't map memory space\n");
1669 			return;
1670 		}
1671 	}
1672 	if (nolinear == 0)
1673 		sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1674 	else
1675 		sc->ti_vhandle = NULL;
1676 
1677 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1678 	command |= PCI_COMMAND_MASTER_ENABLE;
1679 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1680 
1681 	/* Allocate interrupt */
1682 	if (pci_intr_map(pa, &ih)) {
1683 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1684 		return;;
1685 	}
1686 	intrstr = pci_intr_string(pc, ih);
1687 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1688 	if (sc->sc_ih == NULL) {
1689 		printf("%s: couldn't establish interrupt",
1690 		    sc->sc_dev.dv_xname);
1691 		if (intrstr != NULL)
1692 			printf(" at %s", intrstr);
1693 		printf("\n");
1694 		return;;
1695 	}
1696 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1697 	/*
1698 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1699 	 * doing do could allow DMA to corrupt kernel memory during the
1700 	 * reboot before the driver initializes.
1701 	 */
1702 	(void) shutdownhook_establish(ti_shutdown, sc);
1703 
1704 	if (ti_chipinit(sc)) {
1705 		printf("%s: chip initialization failed\n", self->dv_xname);
1706 		goto fail2;
1707 	}
1708 	if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
1709 		printf("%s: memory space not mapped linear\n", self->dv_xname);
1710 	}
1711 
1712 	/* Zero out the NIC's on-board SRAM. */
1713 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1714 
1715 	/* Init again -- zeroing memory may have clobbered some registers. */
1716 	if (ti_chipinit(sc)) {
1717 		printf("%s: chip initialization failed\n", self->dv_xname);
1718 		goto fail2;
1719 	}
1720 
1721 	/*
1722 	 * Get station address from the EEPROM. Note: the manual states
1723 	 * that the MAC address is at offset 0x8c, however the data is
1724 	 * stored as two longwords (since that's how it's loaded into
1725 	 * the NIC). This means the MAC address is actually preceeded
1726 	 * by two zero bytes. We need to skip over those.
1727 	 */
1728 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1729 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1730 		printf("%s: failed to read station address\n", self->dv_xname);
1731 		goto fail2;
1732 	}
1733 
1734 	/*
1735 	 * A Tigon chip was detected. Inform the world.
1736 	 */
1737 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1738 				ether_sprintf(eaddr));
1739 
1740 	sc->sc_dmat = pa->pa_dmat;
1741 
1742 	/* Allocate the general information block and ring buffers. */
1743 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1744 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1745 	    BUS_DMA_NOWAIT)) != 0) {
1746 		printf("%s: can't allocate ring buffer, error = %d\n",
1747 		       sc->sc_dev.dv_xname, error);
1748 		goto fail2;
1749 	}
1750 
1751 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1752 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1753 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1754 		printf("%s: can't map ring buffer, error = %d\n",
1755 		       sc->sc_dev.dv_xname, error);
1756 		goto fail2;
1757 	}
1758 
1759 	if ((error = bus_dmamap_create(sc->sc_dmat,
1760 	    sizeof(struct ti_ring_data), 1,
1761 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1762 	    &sc->info_dmamap)) != 0) {
1763 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1764 		       sc->sc_dev.dv_xname, error);
1765 		goto fail2;
1766 	}
1767 
1768 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1769 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1770 	    BUS_DMA_NOWAIT)) != 0) {
1771 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1772 		       sc->sc_dev.dv_xname, error);
1773 		goto fail2;
1774 	}
1775 
1776 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1777 
1778 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1779 
1780 	/* Try to allocate memory for jumbo buffers. */
1781 	if (ti_alloc_jumbo_mem(sc)) {
1782 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1783 		goto fail2;
1784 	}
1785 
1786 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1787 
1788 	/*
1789 	 * We really need a better way to tell a 1000baseTX card
1790 	 * from a 1000baseSX one, since in theory there could be
1791 	 * OEMed 1000baseTX cards from lame vendors who aren't
1792 	 * clever enough to change the PCI ID. For the moment
1793 	 * though, the AceNIC is the only copper card available.
1794 	 */
1795 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1796 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1797 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1798 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1799 		sc->ti_copper = 1;
1800 	else
1801 		sc->ti_copper = 0;
1802 
1803 	/* Set default tuneable values. */
1804 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1805 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1806 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1807 	sc->ti_rx_max_coal_bds = 64;
1808 	sc->ti_tx_max_coal_bds = 128;
1809 	sc->ti_tx_buf_ratio = 21;
1810 
1811 	/* Set up ifnet structure */
1812 	ifp = &sc->ethercom.ec_if;
1813 	ifp->if_softc = sc;
1814 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1815 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1816 	ifp->if_ioctl = ti_ioctl;
1817 	ifp->if_start = ti_start;
1818 	ifp->if_watchdog = ti_watchdog;
1819 	IFQ_SET_READY(&ifp->if_snd);
1820 
1821 #if 0
1822 	/*
1823 	 * XXX This is not really correct -- we don't necessarily
1824 	 * XXX want to queue up as many as we can transmit at the
1825 	 * XXX upper layer like that.  Someone with a board should
1826 	 * XXX check to see how this affects performance.
1827 	 */
1828 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1829 #endif
1830 
1831 	/*
1832 	 * We can support 802.1Q VLAN-sized frames.
1833 	 */
1834 	sc->ethercom.ec_capabilities |=
1835 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1836 
1837 	/* Set up ifmedia support. */
1838 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1839 	if (sc->ti_copper) {
1840                 /*
1841                  * Copper cards allow manual 10/100 mode selection,
1842                  * but not manual 1000baseTX mode selection. Why?
1843                  * Becuase currently there's no way to specify the
1844                  * master/slave setting through the firmware interface,
1845                  * so Alteon decided to just bag it and handle it
1846                  * via autonegotiation.
1847                  */
1848                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1849                 ifmedia_add(&sc->ifmedia,
1850                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1851                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1852                 ifmedia_add(&sc->ifmedia,
1853                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1854                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1855                 ifmedia_add(&sc->ifmedia,
1856                     IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1857 	} else {
1858 		/* Fiber cards don't support 10/100 modes. */
1859 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1860 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1861 	}
1862 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1863 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1864 
1865 	/*
1866 	 * Call MI attach routines.
1867 	 */
1868 	if_attach(ifp);
1869 	ether_ifattach(ifp, eaddr);
1870 
1871 	return;
1872 fail2:
1873 	pci_intr_disestablish(pc, sc->sc_ih);
1874 	return;
1875 }
1876 
1877 /*
1878  * Frame reception handling. This is called if there's a frame
1879  * on the receive return list.
1880  *
1881  * Note: we have to be able to handle three possibilities here:
1882  * 1) the frame is from the mini receive ring (can only happen)
1883  *    on Tigon 2 boards)
1884  * 2) the frame is from the jumbo recieve ring
1885  * 3) the frame is from the standard receive ring
1886  */
1887 
1888 static void ti_rxeof(sc)
1889 	struct ti_softc		*sc;
1890 {
1891 	struct ifnet		*ifp;
1892 	struct ti_cmd_desc	cmd;
1893 
1894 	ifp = &sc->ethercom.ec_if;
1895 
1896 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1897 		struct ti_rx_desc	*cur_rx;
1898 		u_int32_t		rxidx;
1899 		struct mbuf		*m = NULL;
1900 		u_int16_t		vlan_tag = 0;
1901 		int			have_tag = 0;
1902 #ifdef TI_CSUM_OFFLOAD
1903 		struct ip		*ip;
1904 #endif
1905 		bus_dmamap_t dmamap;
1906 
1907 		cur_rx =
1908 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1909 		rxidx = cur_rx->ti_idx;
1910 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1911 
1912 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1913 			have_tag = 1;
1914 			vlan_tag = cur_rx->ti_vlan_tag;
1915 		}
1916 
1917 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1918 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1919 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1920 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1921 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1922 				ifp->if_ierrors++;
1923 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1924 				continue;
1925 			}
1926 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1927 			    == ENOBUFS) {
1928 				ifp->if_ierrors++;
1929 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1930 				continue;
1931 			}
1932 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1933 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1934 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1935 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1936 			dmamap = sc->mini_dmamap[rxidx];
1937 			sc->mini_dmamap[rxidx] = 0;
1938 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1939 				ifp->if_ierrors++;
1940 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1941 				continue;
1942 			}
1943 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1944 			    == ENOBUFS) {
1945 				ifp->if_ierrors++;
1946 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1947 				continue;
1948 			}
1949 		} else {
1950 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1951 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1952 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1953 			dmamap = sc->std_dmamap[rxidx];
1954 			sc->std_dmamap[rxidx] = 0;
1955 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1956 				ifp->if_ierrors++;
1957 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1958 				continue;
1959 			}
1960 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1961 			    == ENOBUFS) {
1962 				ifp->if_ierrors++;
1963 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1964 				continue;
1965 			}
1966 		}
1967 
1968 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1969 		ifp->if_ipackets++;
1970 		m->m_pkthdr.rcvif = ifp;
1971 
1972 #if NBPFILTER > 0
1973 		/*
1974 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1975 	 	 * don't pass it up to the ether_input() layer unless it's
1976 	 	 * a broadcast packet, multicast packet, matches our ethernet
1977 	 	 * address or the interface is in promiscuous mode.
1978 	 	 */
1979 		if (ifp->if_bpf)
1980 			bpf_mtap(ifp->if_bpf, m);
1981 #endif
1982 
1983 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
1984 		ip = mtod(m, struct ip *);
1985 		if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1986 		    !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1987 			m->m_flags |= M_HWCKSUM;
1988 #endif
1989 
1990 		if (have_tag) {
1991 			struct mbuf *n;
1992 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1993 			if (n) {
1994 				*mtod(n, int *) = vlan_tag;
1995 				n->m_len = sizeof(int);
1996 			} else {
1997 				printf("%s: no mbuf for tag\n", ifp->if_xname);
1998 				m_freem(m);
1999 				continue;
2000 			}
2001 			have_tag = vlan_tag = 0;
2002 		}
2003 		(*ifp->if_input)(ifp, m);
2004 	}
2005 
2006 	/* Only necessary on the Tigon 1. */
2007 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2008 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2009 		    sc->ti_rx_saved_considx);
2010 
2011 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2012 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2013 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2014 
2015 	return;
2016 }
2017 
2018 static void ti_txeof(sc)
2019 	struct ti_softc		*sc;
2020 {
2021 	struct ti_tx_desc	*cur_tx = NULL;
2022 	struct ifnet		*ifp;
2023 
2024 	ifp = &sc->ethercom.ec_if;
2025 
2026 	/*
2027 	 * Go through our tx ring and free mbufs for those
2028 	 * frames that have been sent.
2029 	 */
2030 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2031 		u_int32_t		idx = 0;
2032 
2033 		idx = sc->ti_tx_saved_considx;
2034 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2035 			if (idx > 383)
2036 				CSR_WRITE_4(sc, TI_WINBASE,
2037 				    TI_TX_RING_BASE + 6144);
2038 			else if (idx > 255)
2039 				CSR_WRITE_4(sc, TI_WINBASE,
2040 				    TI_TX_RING_BASE + 4096);
2041 			else if (idx > 127)
2042 				CSR_WRITE_4(sc, TI_WINBASE,
2043 				    TI_TX_RING_BASE + 2048);
2044 			else
2045 				CSR_WRITE_4(sc, TI_WINBASE,
2046 				    TI_TX_RING_BASE);
2047 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2048 		} else
2049 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2050 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2051 			ifp->if_opackets++;
2052 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2053 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2054 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2055 
2056 			/* if (sc->txdma[idx] == 0) panic() */
2057 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2058 					    link);
2059 			sc->txdma[idx] = 0;
2060 		}
2061 		sc->ti_txcnt--;
2062 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2063 		ifp->if_timer = 0;
2064 	}
2065 
2066 	if (cur_tx != NULL)
2067 		ifp->if_flags &= ~IFF_OACTIVE;
2068 
2069 	return;
2070 }
2071 
2072 static int ti_intr(xsc)
2073 	void			*xsc;
2074 {
2075 	struct ti_softc		*sc;
2076 	struct ifnet		*ifp;
2077 
2078 	sc = xsc;
2079 	ifp = &sc->ethercom.ec_if;
2080 
2081 #ifdef notdef
2082 	/* Avoid this for now -- checking this register is expensive. */
2083 	/* Make sure this is really our interrupt. */
2084 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2085 		return (0);
2086 #endif
2087 
2088 	/* Ack interrupt and stop others from occuring. */
2089 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2090 
2091 	if (ifp->if_flags & IFF_RUNNING) {
2092 		/* Check RX return ring producer/consumer */
2093 		ti_rxeof(sc);
2094 
2095 		/* Check TX ring producer/consumer */
2096 		ti_txeof(sc);
2097 	}
2098 
2099 	ti_handle_events(sc);
2100 
2101 	/* Re-enable interrupts. */
2102 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2103 
2104 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2105 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2106 		ti_start(ifp);
2107 
2108 	return (1);
2109 }
2110 
2111 static void ti_stats_update(sc)
2112 	struct ti_softc		*sc;
2113 {
2114 	struct ifnet		*ifp;
2115 
2116 	ifp = &sc->ethercom.ec_if;
2117 
2118 	ifp->if_collisions +=
2119 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2120 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2121 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2122 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2123 	   ifp->if_collisions;
2124 
2125 	return;
2126 }
2127 
2128 /*
2129  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2130  * pointers to descriptors.
2131  */
2132 static int ti_encap(sc, m_head, txidx)
2133 	struct ti_softc		*sc;
2134 	struct mbuf		*m_head;
2135 	u_int32_t		*txidx;
2136 {
2137 	struct ti_tx_desc	*f = NULL;
2138 	u_int32_t		frag, cur, cnt = 0;
2139 	struct txdmamap_pool_entry *dma;
2140 	bus_dmamap_t dmamap;
2141 	int error, i;
2142 	struct mbuf *n;
2143 
2144 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2145 	if (dma == NULL) {
2146 		return ENOMEM;
2147 	}
2148 	dmamap = dma->dmamap;
2149 
2150 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2151 	if (error) {
2152 		struct mbuf *m;
2153 		int i = 0;
2154 		for (m = m_head; m; m = m->m_next)
2155 			i++;
2156 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2157 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2158 		return (ENOMEM);
2159 	}
2160 
2161 	cur = frag = *txidx;
2162 
2163 	/*
2164  	 * Start packing the mbufs in this chain into
2165 	 * the fragment pointers. Stop when we run out
2166  	 * of fragments or hit the end of the mbuf chain.
2167 	 */
2168 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2169 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2170 				if (frag > 383)
2171 					CSR_WRITE_4(sc, TI_WINBASE,
2172 					    TI_TX_RING_BASE + 6144);
2173 				else if (frag > 255)
2174 					CSR_WRITE_4(sc, TI_WINBASE,
2175 					    TI_TX_RING_BASE + 4096);
2176 				else if (frag > 127)
2177 					CSR_WRITE_4(sc, TI_WINBASE,
2178 					    TI_TX_RING_BASE + 2048);
2179 				else
2180 					CSR_WRITE_4(sc, TI_WINBASE,
2181 					    TI_TX_RING_BASE);
2182 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2183 			} else
2184 				f = &sc->ti_rdata->ti_tx_ring[frag];
2185 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2186 				break;
2187 			TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2188 			f->ti_len = dmamap->dm_segs[i].ds_len;
2189 			f->ti_flags = 0;
2190 			n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2191 			if (n) {
2192 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2193 				f->ti_vlan_tag = *mtod(n, int *);
2194 			} else {
2195 				f->ti_vlan_tag = 0;
2196 			}
2197 			/*
2198 			 * Sanity check: avoid coming within 16 descriptors
2199 			 * of the end of the ring.
2200 			 */
2201 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2202 				return(ENOBUFS);
2203 			cur = frag;
2204 			TI_INC(frag, TI_TX_RING_CNT);
2205 			cnt++;
2206 	}
2207 
2208 	if (i < dmamap->dm_nsegs)
2209 		return(ENOBUFS);
2210 
2211 	if (frag == sc->ti_tx_saved_considx)
2212 		return(ENOBUFS);
2213 
2214 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2215 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2216 		    TI_BDFLAG_END;
2217 	else
2218 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2219 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2220 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2221 	sc->txdma[cur] = dma;
2222 	sc->ti_txcnt += cnt;
2223 
2224 	*txidx = frag;
2225 
2226 	return(0);
2227 }
2228 
2229 /*
2230  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2231  * to the mbuf data regions directly in the transmit descriptors.
2232  */
2233 static void ti_start(ifp)
2234 	struct ifnet		*ifp;
2235 {
2236 	struct ti_softc		*sc;
2237 	struct mbuf		*m_head = NULL;
2238 	u_int32_t		prodidx = 0;
2239 
2240 	sc = ifp->if_softc;
2241 
2242 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2243 
2244 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2245 		IFQ_POLL(&ifp->if_snd, m_head);
2246 		if (m_head == NULL)
2247 			break;
2248 
2249 		/*
2250 		 * Pack the data into the transmit ring. If we
2251 		 * don't have room, set the OACTIVE flag and wait
2252 		 * for the NIC to drain the ring.
2253 		 */
2254 		if (ti_encap(sc, m_head, &prodidx)) {
2255 			ifp->if_flags |= IFF_OACTIVE;
2256 			break;
2257 		}
2258 
2259 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2260 
2261 		/*
2262 		 * If there's a BPF listener, bounce a copy of this frame
2263 		 * to him.
2264 		 */
2265 #if NBPFILTER > 0
2266 		if (ifp->if_bpf)
2267 			bpf_mtap(ifp->if_bpf, m_head);
2268 #endif
2269 	}
2270 
2271 	/* Transmit */
2272 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2273 
2274 	/*
2275 	 * Set a timeout in case the chip goes out to lunch.
2276 	 */
2277 	ifp->if_timer = 5;
2278 
2279 	return;
2280 }
2281 
2282 static void ti_init(xsc)
2283 	void			*xsc;
2284 {
2285 	struct ti_softc		*sc = xsc;
2286         int			s;
2287 
2288 	s = splnet();
2289 
2290 	/* Cancel pending I/O and flush buffers. */
2291 	ti_stop(sc);
2292 
2293 	/* Init the gen info block, ring control blocks and firmware. */
2294 	if (ti_gibinit(sc)) {
2295 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2296 		splx(s);
2297 		return;
2298 	}
2299 
2300 	splx(s);
2301 
2302 	return;
2303 }
2304 
2305 static void ti_init2(sc)
2306 	struct ti_softc		*sc;
2307 {
2308 	struct ti_cmd_desc	cmd;
2309 	struct ifnet		*ifp;
2310 	u_int8_t		*m;
2311 	struct ifmedia		*ifm;
2312 	int			tmp;
2313 
2314 	ifp = &sc->ethercom.ec_if;
2315 
2316 	/* Specify MTU and interface index. */
2317 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2318 	if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) &&
2319 	    ifp->if_mtu < ETHERMTU + ETHER_VLAN_ENCAP_LEN)
2320 		CSR_WRITE_4(sc, TI_GCR_IFMTU, ETHER_MAX_LEN +
2321 		    ETHER_VLAN_ENCAP_LEN);
2322 	else
2323 		CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2324 		    ETHER_HDR_LEN + ETHER_CRC_LEN);
2325 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2326 
2327 	/* Load our MAC address. */
2328 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2329 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2330 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2331 		    | (m[4] << 8) | m[5]);
2332 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2333 
2334 	/* Enable or disable promiscuous mode as needed. */
2335 	if (ifp->if_flags & IFF_PROMISC) {
2336 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2337 	} else {
2338 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2339 	}
2340 
2341 	/* Program multicast filter. */
2342 	ti_setmulti(sc);
2343 
2344 	/*
2345 	 * If this is a Tigon 1, we should tell the
2346 	 * firmware to use software packet filtering.
2347 	 */
2348 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2349 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2350 	}
2351 
2352 	/* Init RX ring. */
2353 	ti_init_rx_ring_std(sc);
2354 
2355 	/* Init jumbo RX ring. */
2356 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2357 		ti_init_rx_ring_jumbo(sc);
2358 
2359 	/*
2360 	 * If this is a Tigon 2, we can also configure the
2361 	 * mini ring.
2362 	 */
2363 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2364 		ti_init_rx_ring_mini(sc);
2365 
2366 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2367 	sc->ti_rx_saved_considx = 0;
2368 
2369 	/* Init TX ring. */
2370 	ti_init_tx_ring(sc);
2371 
2372 	/* Tell firmware we're alive. */
2373 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2374 
2375 	/* Enable host interrupts. */
2376 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2377 
2378 	ifp->if_flags |= IFF_RUNNING;
2379 	ifp->if_flags &= ~IFF_OACTIVE;
2380 
2381 	/*
2382 	 * Make sure to set media properly. We have to do this
2383 	 * here since we have to issue commands in order to set
2384 	 * the link negotiation and we can't issue commands until
2385 	 * the firmware is running.
2386 	 */
2387 	ifm = &sc->ifmedia;
2388 	tmp = ifm->ifm_media;
2389 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2390 	ti_ifmedia_upd(ifp);
2391 	ifm->ifm_media = tmp;
2392 
2393 	return;
2394 }
2395 
2396 /*
2397  * Set media options.
2398  */
2399 static int ti_ifmedia_upd(ifp)
2400 	struct ifnet		*ifp;
2401 {
2402 	struct ti_softc		*sc;
2403 	struct ifmedia		*ifm;
2404 	struct ti_cmd_desc	cmd;
2405 
2406 	sc = ifp->if_softc;
2407 	ifm = &sc->ifmedia;
2408 
2409 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2410 		return(EINVAL);
2411 
2412 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2413 	case IFM_AUTO:
2414 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2415 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2416 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2417 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2418 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2419 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2420 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2421 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2422 		break;
2423 	case IFM_1000_SX:
2424 	case IFM_1000_TX:
2425 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2426 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2427 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2428 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2429 		} else {
2430 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2431 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2432 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2433 		}
2434 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2435 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2436 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2437 		break;
2438 	case IFM_100_FX:
2439 	case IFM_10_FL:
2440 	case IFM_100_TX:
2441 	case IFM_10_T:
2442 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2443 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2444 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2445 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2446 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2447 		} else {
2448 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2449 		}
2450 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2451 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2452 		} else {
2453 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2454 		}
2455 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2456 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2457 		break;
2458 	}
2459 
2460 	sc->ethercom.ec_if.if_baudrate =
2461 	    ifmedia_baudrate(ifm->ifm_media);
2462 
2463 	return(0);
2464 }
2465 
2466 /*
2467  * Report current media status.
2468  */
2469 static void ti_ifmedia_sts(ifp, ifmr)
2470 	struct ifnet		*ifp;
2471 	struct ifmediareq	*ifmr;
2472 {
2473 	struct ti_softc		*sc;
2474 	u_int32_t               media = 0;
2475 
2476 	sc = ifp->if_softc;
2477 
2478 	ifmr->ifm_status = IFM_AVALID;
2479 	ifmr->ifm_active = IFM_ETHER;
2480 
2481 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2482 		return;
2483 
2484 	ifmr->ifm_status |= IFM_ACTIVE;
2485 
2486 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2487 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2488 		if (sc->ti_copper)
2489 			ifmr->ifm_active |= IFM_1000_TX;
2490 		else
2491 			ifmr->ifm_active |= IFM_1000_SX;
2492 		if (media & TI_GLNK_FULL_DUPLEX)
2493 			ifmr->ifm_active |= IFM_FDX;
2494 		else
2495 			ifmr->ifm_active |= IFM_HDX;
2496 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2497 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2498 		if (sc->ti_copper) {
2499 			if (media & TI_LNK_100MB)
2500 				ifmr->ifm_active |= IFM_100_TX;
2501 			if (media & TI_LNK_10MB)
2502 				ifmr->ifm_active |= IFM_10_T;
2503 		} else {
2504 			if (media & TI_LNK_100MB)
2505 				ifmr->ifm_active |= IFM_100_FX;
2506 			if (media & TI_LNK_10MB)
2507 				ifmr->ifm_active |= IFM_10_FL;
2508 		}
2509 		if (media & TI_LNK_FULL_DUPLEX)
2510 			ifmr->ifm_active |= IFM_FDX;
2511 		if (media & TI_LNK_HALF_DUPLEX)
2512 			ifmr->ifm_active |= IFM_HDX;
2513 	}
2514 
2515 	sc->ethercom.ec_if.if_baudrate =
2516 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2517 
2518 	return;
2519 }
2520 
2521 static int
2522 ti_ether_ioctl(ifp, cmd, data)
2523 	struct ifnet *ifp;
2524 	u_long cmd;
2525 	caddr_t data;
2526 {
2527 	struct ifaddr *ifa = (struct ifaddr *) data;
2528 	struct ti_softc *sc = ifp->if_softc;
2529 
2530 	switch (cmd) {
2531 	case SIOCSIFADDR:
2532 		ifp->if_flags |= IFF_UP;
2533 
2534 		switch (ifa->ifa_addr->sa_family) {
2535 #ifdef INET
2536 		case AF_INET:
2537 			ti_init(sc);
2538 			arp_ifinit(ifp, ifa);
2539 			break;
2540 #endif
2541 #ifdef NS
2542 		case AF_NS:
2543 		    {
2544 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2545 
2546 			 if (ns_nullhost(*ina))
2547 				ina->x_host = *(union ns_host *)
2548 				    LLADDR(ifp->if_sadl);
2549 			 else
2550 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2551 				    ifp->if_addrlen);
2552 			 /* Set new address. */
2553 			 ti_init(sc);
2554 			 break;
2555 		    }
2556 #endif
2557 		default:
2558 			ti_init(sc);
2559 			break;
2560 		}
2561 		break;
2562 
2563 	default:
2564 		return (EINVAL);
2565 	}
2566 
2567 	return (0);
2568 }
2569 
2570 static int ti_ioctl(ifp, command, data)
2571 	struct ifnet		*ifp;
2572 	u_long			command;
2573 	caddr_t			data;
2574 {
2575 	struct ti_softc		*sc = ifp->if_softc;
2576 	struct ifreq		*ifr = (struct ifreq *) data;
2577 	int			s, error = 0;
2578 	struct ti_cmd_desc	cmd;
2579 
2580 	s = splnet();
2581 
2582 	switch(command) {
2583 	case SIOCSIFADDR:
2584 	case SIOCGIFADDR:
2585 		error = ti_ether_ioctl(ifp, command, data);
2586 		break;
2587 	case SIOCSIFMTU:
2588 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2589 			error = EINVAL;
2590 		else {
2591 			ifp->if_mtu = ifr->ifr_mtu;
2592 			ti_init(sc);
2593 		}
2594 		break;
2595 	case SIOCSIFFLAGS:
2596 		if (ifp->if_flags & IFF_UP) {
2597 			/*
2598 			 * If only the state of the PROMISC flag changed,
2599 			 * then just use the 'set promisc mode' command
2600 			 * instead of reinitializing the entire NIC. Doing
2601 			 * a full re-init means reloading the firmware and
2602 			 * waiting for it to start up, which may take a
2603 			 * second or two.
2604 			 */
2605 			if (ifp->if_flags & IFF_RUNNING &&
2606 			    ifp->if_flags & IFF_PROMISC &&
2607 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2608 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2609 				    TI_CMD_CODE_PROMISC_ENB, 0);
2610 			} else if (ifp->if_flags & IFF_RUNNING &&
2611 			    !(ifp->if_flags & IFF_PROMISC) &&
2612 			    sc->ti_if_flags & IFF_PROMISC) {
2613 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2614 				    TI_CMD_CODE_PROMISC_DIS, 0);
2615 			} else
2616 				ti_init(sc);
2617 		} else {
2618 			if (ifp->if_flags & IFF_RUNNING) {
2619 				ti_stop(sc);
2620 			}
2621 		}
2622 		sc->ti_if_flags = ifp->if_flags;
2623 		error = 0;
2624 		break;
2625 	case SIOCADDMULTI:
2626 	case SIOCDELMULTI:
2627 		error = (command == SIOCADDMULTI) ?
2628 		    ether_addmulti(ifr, &sc->ethercom) :
2629 		    ether_delmulti(ifr, &sc->ethercom);
2630 		if (error == ENETRESET) {
2631 			if (ifp->if_flags & IFF_RUNNING)
2632 				ti_setmulti(sc);
2633 			error = 0;
2634 		}
2635 		break;
2636 	case SIOCSIFMEDIA:
2637 	case SIOCGIFMEDIA:
2638 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2639 		break;
2640 	default:
2641 		error = EINVAL;
2642 		break;
2643 	}
2644 
2645 	(void)splx(s);
2646 
2647 	return(error);
2648 }
2649 
2650 static void ti_watchdog(ifp)
2651 	struct ifnet		*ifp;
2652 {
2653 	struct ti_softc		*sc;
2654 
2655 	sc = ifp->if_softc;
2656 
2657 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2658 	ti_stop(sc);
2659 	ti_init(sc);
2660 
2661 	ifp->if_oerrors++;
2662 
2663 	return;
2664 }
2665 
2666 /*
2667  * Stop the adapter and free any mbufs allocated to the
2668  * RX and TX lists.
2669  */
2670 static void ti_stop(sc)
2671 	struct ti_softc		*sc;
2672 {
2673 	struct ifnet		*ifp;
2674 	struct ti_cmd_desc	cmd;
2675 
2676 	ifp = &sc->ethercom.ec_if;
2677 
2678 	/* Disable host interrupts. */
2679 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2680 	/*
2681 	 * Tell firmware we're shutting down.
2682 	 */
2683 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2684 
2685 	/* Halt and reinitialize. */
2686 	ti_chipinit(sc);
2687 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2688 	ti_chipinit(sc);
2689 
2690 	/* Free the RX lists. */
2691 	ti_free_rx_ring_std(sc);
2692 
2693 	/* Free jumbo RX list. */
2694 	ti_free_rx_ring_jumbo(sc);
2695 
2696 	/* Free mini RX list. */
2697 	ti_free_rx_ring_mini(sc);
2698 
2699 	/* Free TX buffers. */
2700 	ti_free_tx_ring(sc);
2701 
2702 	sc->ti_ev_prodidx.ti_idx = 0;
2703 	sc->ti_return_prodidx.ti_idx = 0;
2704 	sc->ti_tx_considx.ti_idx = 0;
2705 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2706 
2707 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2708 
2709 	return;
2710 }
2711 
2712 /*
2713  * Stop all chip I/O so that the kernel's probe routines don't
2714  * get confused by errant DMAs when rebooting.
2715  */
2716 static void ti_shutdown(v)
2717 	void *v;
2718 {
2719 	struct ti_softc		*sc = v;
2720 
2721 	ti_chipinit(sc);
2722 
2723 	return;
2724 }
2725