xref: /netbsd-src/sys/dev/pci/if_ti.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /* $NetBSD: if_ti.c,v 1.40 2001/07/19 16:36:15 thorpej Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include "bpfilter.h"
84 #include "opt_inet.h"
85 #include "opt_ns.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/device.h>
96 #include <sys/reboot.h>
97 
98 #include <uvm/uvm_extern.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #ifdef INET
111 #include <netinet/in.h>
112 #include <netinet/if_inarp.h>
113 #include <netinet/in_systm.h>
114 #include <netinet/ip.h>
115 #endif
116 
117 #ifdef NS
118 #include <netns/ns.h>
119 #include <netns/ns_if.h>
120 #endif
121 
122 #include <machine/bus.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 #include <dev/pci/pcidevs.h>
127 
128 #include <dev/pci/if_tireg.h>
129 
130 #include <dev/microcode/tigon/ti_fw.h>
131 #include <dev/microcode/tigon/ti_fw2.h>
132 
133 /*
134  * Various supported device vendors/types and their names.
135  */
136 
137 static const struct ti_type ti_devs[] = {
138 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
139 		"Alteon AceNIC 1000BASE-SX Ethernet" },
140 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
141 		"Alteon AceNIC 1000BASE-T Ethernet" },
142 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
143 		"3Com 3c985-SX Gigabit Ethernet" },
144 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
145 		"Netgear GA620 1000BASE-SX Ethernet" },
146 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
147 		"Netgear GA620 1000BASE-T Ethernet" },
148 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
149 		"Silicon Graphics Gigabit Ethernet" },
150 	{ 0, 0, NULL }
151 };
152 
153 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
154 static int ti_probe	__P((struct device *, struct cfdata *, void *));
155 static void ti_attach	__P((struct device *, struct device *, void *));
156 static void ti_shutdown __P((void *));
157 static void ti_txeof_tigon1	__P((struct ti_softc *));
158 static void ti_txeof_tigon2	__P((struct ti_softc *));
159 static void ti_rxeof		__P((struct ti_softc *));
160 
161 static void ti_stats_update	__P((struct ti_softc *));
162 static int ti_encap_tigon1	__P((struct ti_softc *, struct mbuf *,
163 					u_int32_t *));
164 static int ti_encap_tigon2	__P((struct ti_softc *, struct mbuf *,
165 					u_int32_t *));
166 
167 static int ti_intr		__P((void *));
168 static void ti_start		__P((struct ifnet *));
169 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
170 static void ti_init		__P((void *));
171 static void ti_init2		__P((struct ti_softc *));
172 static void ti_stop		__P((struct ti_softc *));
173 static void ti_watchdog		__P((struct ifnet *));
174 static int ti_ifmedia_upd	__P((struct ifnet *));
175 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
176 
177 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
178 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
179 						int, u_int8_t *));
180 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
181 
182 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
183 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
184 static void ti_setmulti		__P((struct ti_softc *));
185 
186 static void ti_mem		__P((struct ti_softc *, u_int32_t,
187 					u_int32_t, caddr_t));
188 static void ti_loadfw		__P((struct ti_softc *));
189 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
190 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
191 					caddr_t, int));
192 static void ti_handle_events	__P((struct ti_softc *));
193 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
194 static void *ti_jalloc		__P((struct ti_softc *));
195 static void ti_jfree		__P((caddr_t, u_int, void *));
196 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
197 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
198 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
199 static int ti_init_rx_ring_std	__P((struct ti_softc *));
200 static void ti_free_rx_ring_std	__P((struct ti_softc *));
201 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
202 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
203 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
204 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
205 static void ti_free_tx_ring	__P((struct ti_softc *));
206 static int ti_init_tx_ring	__P((struct ti_softc *));
207 
208 static int ti_64bitslot_war	__P((struct ti_softc *));
209 static int ti_chipinit		__P((struct ti_softc *));
210 static int ti_gibinit		__P((struct ti_softc *));
211 
212 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
213 
214 struct cfattach ti_ca = {
215 	sizeof(struct ti_softc), ti_probe, ti_attach
216 };
217 
218 /*
219  * Send an instruction or address to the EEPROM, check for ACK.
220  */
221 static u_int32_t ti_eeprom_putbyte(sc, byte)
222 	struct ti_softc		*sc;
223 	int			byte;
224 {
225 	int		i, ack = 0;
226 
227 	/*
228 	 * Make sure we're in TX mode.
229 	 */
230 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
231 
232 	/*
233 	 * Feed in each bit and stobe the clock.
234 	 */
235 	for (i = 0x80; i; i >>= 1) {
236 		if (byte & i) {
237 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
238 		} else {
239 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 		}
241 		DELAY(1);
242 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
243 		DELAY(1);
244 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 	}
246 
247 	/*
248 	 * Turn off TX mode.
249 	 */
250 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
251 
252 	/*
253 	 * Check for ack.
254 	 */
255 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
257 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 
259 	return(ack);
260 }
261 
262 /*
263  * Read a byte of data stored in the EEPROM at address 'addr.'
264  * We have to send two address bytes since the EEPROM can hold
265  * more than 256 bytes of data.
266  */
267 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
268 	struct ti_softc		*sc;
269 	int			addr;
270 	u_int8_t		*dest;
271 {
272 	int		i;
273 	u_int8_t		byte = 0;
274 
275 	EEPROM_START;
276 
277 	/*
278 	 * Send write control code to EEPROM.
279 	 */
280 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
281 		printf("%s: failed to send write command, status: %x\n",
282 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
283 		return(1);
284 	}
285 
286 	/*
287 	 * Send first byte of address of byte we want to read.
288 	 */
289 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
290 		printf("%s: failed to send address, status: %x\n",
291 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
292 		return(1);
293 	}
294 	/*
295 	 * Send second byte address of byte we want to read.
296 	 */
297 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
298 		printf("%s: failed to send address, status: %x\n",
299 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
300 		return(1);
301 	}
302 
303 	EEPROM_STOP;
304 	EEPROM_START;
305 	/*
306 	 * Send read control code to EEPROM.
307 	 */
308 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
309 		printf("%s: failed to send read command, status: %x\n",
310 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
311 		return(1);
312 	}
313 
314 	/*
315 	 * Start reading bits from EEPROM.
316 	 */
317 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
318 	for (i = 0x80; i; i >>= 1) {
319 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
320 		DELAY(1);
321 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
322 			byte |= i;
323 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
324 		DELAY(1);
325 	}
326 
327 	EEPROM_STOP;
328 
329 	/*
330 	 * No ACK generated for read, so just return byte.
331 	 */
332 
333 	*dest = byte;
334 
335 	return(0);
336 }
337 
338 /*
339  * Read a sequence of bytes from the EEPROM.
340  */
341 static int ti_read_eeprom(sc, dest, off, cnt)
342 	struct ti_softc		*sc;
343 	caddr_t			dest;
344 	int			off;
345 	int			cnt;
346 {
347 	int			err = 0, i;
348 	u_int8_t		byte = 0;
349 
350 	for (i = 0; i < cnt; i++) {
351 		err = ti_eeprom_getbyte(sc, off + i, &byte);
352 		if (err)
353 			break;
354 		*(dest + i) = byte;
355 	}
356 
357 	return(err ? 1 : 0);
358 }
359 
360 /*
361  * NIC memory access function. Can be used to either clear a section
362  * of NIC local memory or (if buf is non-NULL) copy data into it.
363  */
364 static void ti_mem(sc, addr, len, buf)
365 	struct ti_softc		*sc;
366 	u_int32_t		addr, len;
367 	caddr_t			buf;
368 {
369 	int			segptr, segsize, cnt;
370 	caddr_t			ptr;
371 
372 	segptr = addr;
373 	cnt = len;
374 	ptr = buf;
375 
376 	while(cnt) {
377 		if (cnt < TI_WINLEN)
378 			segsize = cnt;
379 		else
380 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
381 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
382 		if (buf == NULL) {
383 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
384 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
385 			    segsize / 4);
386 		} else {
387 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
388 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
389 			    (u_int32_t *)ptr, segsize / 4);
390 			ptr += segsize;
391 		}
392 		segptr += segsize;
393 		cnt -= segsize;
394 	}
395 
396 	return;
397 }
398 
399 /*
400  * Load firmware image into the NIC. Check that the firmware revision
401  * is acceptable and see if we want the firmware for the Tigon 1 or
402  * Tigon 2.
403  */
404 static void ti_loadfw(sc)
405 	struct ti_softc		*sc;
406 {
407 	switch(sc->ti_hwrev) {
408 	case TI_HWREV_TIGON:
409 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
410 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
411 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
412 			printf("%s: firmware revision mismatch; want "
413 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
414 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
415 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
416 			    tigonFwReleaseMinor, tigonFwReleaseFix);
417 			return;
418 		}
419 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
420 		    (caddr_t)tigonFwText);
421 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
422 		    (caddr_t)tigonFwData);
423 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
424 		    (caddr_t)tigonFwRodata);
425 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
426 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
427 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
428 		break;
429 	case TI_HWREV_TIGON_II:
430 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
431 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
432 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
433 			printf("%s: firmware revision mismatch; want "
434 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
435 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
436 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
437 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
438 			return;
439 		}
440 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
441 		    (caddr_t)tigon2FwText);
442 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
443 		    (caddr_t)tigon2FwData);
444 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
445 		    (caddr_t)tigon2FwRodata);
446 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
447 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
448 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
449 		break;
450 	default:
451 		printf("%s: can't load firmware: unknown hardware rev\n",
452 		    sc->sc_dev.dv_xname);
453 		break;
454 	}
455 
456 	return;
457 }
458 
459 /*
460  * Send the NIC a command via the command ring.
461  */
462 static void ti_cmd(sc, cmd)
463 	struct ti_softc		*sc;
464 	struct ti_cmd_desc	*cmd;
465 {
466 	u_int32_t		index;
467 
468 	index = sc->ti_cmd_saved_prodidx;
469 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
470 	TI_INC(index, TI_CMD_RING_CNT);
471 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
472 	sc->ti_cmd_saved_prodidx = index;
473 
474 	return;
475 }
476 
477 /*
478  * Send the NIC an extended command. The 'len' parameter specifies the
479  * number of command slots to include after the initial command.
480  */
481 static void ti_cmd_ext(sc, cmd, arg, len)
482 	struct ti_softc		*sc;
483 	struct ti_cmd_desc	*cmd;
484 	caddr_t			arg;
485 	int			len;
486 {
487 	u_int32_t		index;
488 	int		i;
489 
490 	index = sc->ti_cmd_saved_prodidx;
491 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
492 	TI_INC(index, TI_CMD_RING_CNT);
493 	for (i = 0; i < len; i++) {
494 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
495 		    *(u_int32_t *)(&arg[i * 4]));
496 		TI_INC(index, TI_CMD_RING_CNT);
497 	}
498 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
499 	sc->ti_cmd_saved_prodidx = index;
500 
501 	return;
502 }
503 
504 /*
505  * Handle events that have triggered interrupts.
506  */
507 static void ti_handle_events(sc)
508 	struct ti_softc		*sc;
509 {
510 	struct ti_event_desc	*e;
511 
512 	if (sc->ti_rdata->ti_event_ring == NULL)
513 		return;
514 
515 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
516 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
517 		switch(e->ti_event) {
518 		case TI_EV_LINKSTAT_CHANGED:
519 			sc->ti_linkstat = e->ti_code;
520 			if (e->ti_code == TI_EV_CODE_LINK_UP)
521 				printf("%s: 10/100 link up\n",
522 				       sc->sc_dev.dv_xname);
523 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
524 				printf("%s: gigabit link up\n",
525 				       sc->sc_dev.dv_xname);
526 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
527 				printf("%s: link down\n",
528 				       sc->sc_dev.dv_xname);
529 			break;
530 		case TI_EV_ERROR:
531 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
532 				printf("%s: invalid command\n",
533 				       sc->sc_dev.dv_xname);
534 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
535 				printf("%s: unknown command\n",
536 				       sc->sc_dev.dv_xname);
537 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
538 				printf("%s: bad config data\n",
539 				       sc->sc_dev.dv_xname);
540 			break;
541 		case TI_EV_FIRMWARE_UP:
542 			ti_init2(sc);
543 			break;
544 		case TI_EV_STATS_UPDATED:
545 			ti_stats_update(sc);
546 			break;
547 		case TI_EV_RESET_JUMBO_RING:
548 		case TI_EV_MCAST_UPDATED:
549 			/* Who cares. */
550 			break;
551 		default:
552 			printf("%s: unknown event: %d\n",
553 			    sc->sc_dev.dv_xname, e->ti_event);
554 			break;
555 		}
556 		/* Advance the consumer index. */
557 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
558 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
559 	}
560 
561 	return;
562 }
563 
564 /*
565  * Memory management for the jumbo receive ring is a pain in the
566  * butt. We need to allocate at least 9018 bytes of space per frame,
567  * _and_ it has to be contiguous (unless you use the extended
568  * jumbo descriptor format). Using malloc() all the time won't
569  * work: malloc() allocates memory in powers of two, which means we
570  * would end up wasting a considerable amount of space by allocating
571  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
572  * to do our own memory management.
573  *
574  * The driver needs to allocate a contiguous chunk of memory at boot
575  * time. We then chop this up ourselves into 9K pieces and use them
576  * as external mbuf storage.
577  *
578  * One issue here is how much memory to allocate. The jumbo ring has
579  * 256 slots in it, but at 9K per slot than can consume over 2MB of
580  * RAM. This is a bit much, especially considering we also need
581  * RAM for the standard ring and mini ring (on the Tigon 2). To
582  * save space, we only actually allocate enough memory for 64 slots
583  * by default, which works out to between 500 and 600K. This can
584  * be tuned by changing a #define in if_tireg.h.
585  */
586 
587 static int ti_alloc_jumbo_mem(sc)
588 	struct ti_softc		*sc;
589 {
590 	caddr_t			ptr;
591 	int		i;
592 	struct ti_jpool_entry   *entry;
593 	bus_dma_segment_t dmaseg;
594 	int error, dmanseg;
595 
596 	/* Grab a big chunk o' storage. */
597 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
598 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
599 	    BUS_DMA_NOWAIT)) != 0) {
600 		printf("%s: can't allocate jumbo buffer, error = %d\n",
601 		       sc->sc_dev.dv_xname, error);
602 		return (error);
603 	}
604 
605 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
606 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
607 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
608 		printf("%s: can't map jumbo buffer, error = %d\n",
609 		       sc->sc_dev.dv_xname, error);
610 		return (error);
611 	}
612 
613 	if ((error = bus_dmamap_create(sc->sc_dmat,
614 	    TI_JMEM, 1,
615 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
616 	    &sc->jumbo_dmamap)) != 0) {
617 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
618 		       sc->sc_dev.dv_xname, error);
619 		return (error);
620 	}
621 
622 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
623 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
624 	    BUS_DMA_NOWAIT)) != 0) {
625 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
626 		       sc->sc_dev.dv_xname, error);
627 		return (error);
628 	}
629 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
630 
631 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
632 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
633 
634 	/*
635 	 * Now divide it up into 9K pieces and save the addresses
636 	 * in an array.
637 	 */
638 	ptr = sc->ti_cdata.ti_jumbo_buf;
639 	for (i = 0; i < TI_JSLOTS; i++) {
640 		sc->ti_cdata.ti_jslots[i] = ptr;
641 		ptr += TI_JLEN;
642 		entry = malloc(sizeof(struct ti_jpool_entry),
643 			       M_DEVBUF, M_NOWAIT);
644 		if (entry == NULL) {
645 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
646 			sc->ti_cdata.ti_jumbo_buf = NULL;
647 			printf("%s: no memory for jumbo "
648 			    "buffer queue!\n", sc->sc_dev.dv_xname);
649 			return(ENOBUFS);
650 		}
651 		entry->slot = i;
652 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
653 				    jpool_entries);
654 	}
655 
656 	return(0);
657 }
658 
659 /*
660  * Allocate a jumbo buffer.
661  */
662 static void *ti_jalloc(sc)
663 	struct ti_softc		*sc;
664 {
665 	struct ti_jpool_entry   *entry;
666 
667 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
668 
669 	if (entry == NULL) {
670 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
671 		return(NULL);
672 	}
673 
674 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
675 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
676 	return(sc->ti_cdata.ti_jslots[entry->slot]);
677 }
678 
679 /*
680  * Release a jumbo buffer.
681  */
682 static void ti_jfree(buf, size, arg)
683 	caddr_t			buf;
684 	u_int			size;
685 	void *arg;
686 {
687 	struct ti_softc		*sc;
688 	int		        i;
689 	struct ti_jpool_entry   *entry;
690 
691 	/* Extract the softc struct pointer. */
692 	sc = (struct ti_softc *)arg;
693 
694 	if (sc == NULL)
695 		panic("ti_jfree: didn't get softc pointer!");
696 
697 	/* calculate the slot this buffer belongs to */
698 
699 	i = ((caddr_t)buf
700 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
701 
702 	if ((i < 0) || (i >= TI_JSLOTS))
703 		panic("ti_jfree: asked to free buffer that we don't manage!");
704 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
705 	if (entry == NULL)
706 		panic("ti_jfree: buffer not in use!");
707 	entry->slot = i;
708 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
709 	    entry, jpool_entries);
710 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
711 	     entry, jpool_entries);
712 
713 	return;
714 }
715 
716 
717 /*
718  * Intialize a standard receive ring descriptor.
719  */
720 static int ti_newbuf_std(sc, i, m, dmamap)
721 	struct ti_softc		*sc;
722 	int			i;
723 	struct mbuf		*m;
724 	bus_dmamap_t dmamap; /* required if (m != NULL) */
725 {
726 	struct mbuf		*m_new = NULL;
727 	struct ti_rx_desc	*r;
728 	int error;
729 
730 	if (dmamap == NULL) {
731 		/* if (m) panic() */
732 
733 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
734 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
735 					       &dmamap)) != 0) {
736 			printf("%s: can't create recv map, error = %d\n",
737 			       sc->sc_dev.dv_xname, error);
738 			return(ENOMEM);
739 		}
740 	}
741 	sc->std_dmamap[i] = dmamap;
742 
743 	if (m == NULL) {
744 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
745 		if (m_new == NULL) {
746 			printf("%s: mbuf allocation failed "
747 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
748 			return(ENOBUFS);
749 		}
750 
751 		MCLGET(m_new, M_DONTWAIT);
752 		if (!(m_new->m_flags & M_EXT)) {
753 			printf("%s: cluster allocation failed "
754 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
755 			m_freem(m_new);
756 			return(ENOBUFS);
757 		}
758 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
759 		m_adj(m_new, ETHER_ALIGN);
760 
761 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
762 				mtod(m_new, caddr_t), m_new->m_len, NULL,
763 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
764 			printf("%s: can't load recv map, error = %d\n",
765 			       sc->sc_dev.dv_xname, error);
766 			return (ENOMEM);
767 		}
768 	} else {
769 		m_new = m;
770 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
771 		m_new->m_data = m_new->m_ext.ext_buf;
772 		m_adj(m_new, ETHER_ALIGN);
773 
774 		/* reuse the dmamap */
775 	}
776 
777 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
778 	r = &sc->ti_rdata->ti_rx_std_ring[i];
779 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
780 	r->ti_type = TI_BDTYPE_RECV_BD;
781 	r->ti_flags = 0;
782 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
783 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
784 	if (sc->ethercom.ec_if.if_capenable &
785 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
786 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
787 	r->ti_len = m_new->m_len; /* == ds_len */
788 	r->ti_idx = i;
789 
790 	return(0);
791 }
792 
793 /*
794  * Intialize a mini receive ring descriptor. This only applies to
795  * the Tigon 2.
796  */
797 static int ti_newbuf_mini(sc, i, m, dmamap)
798 	struct ti_softc		*sc;
799 	int			i;
800 	struct mbuf		*m;
801 	bus_dmamap_t dmamap; /* required if (m != NULL) */
802 {
803 	struct mbuf		*m_new = NULL;
804 	struct ti_rx_desc	*r;
805 	int error;
806 
807 	if (dmamap == NULL) {
808 		/* if (m) panic() */
809 
810 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
811 					       MHLEN, 0, BUS_DMA_NOWAIT,
812 					       &dmamap)) != 0) {
813 			printf("%s: can't create recv map, error = %d\n",
814 			       sc->sc_dev.dv_xname, error);
815 			return(ENOMEM);
816 		}
817 	}
818 	sc->mini_dmamap[i] = dmamap;
819 
820 	if (m == NULL) {
821 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
822 		if (m_new == NULL) {
823 			printf("%s: mbuf allocation failed "
824 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
825 			return(ENOBUFS);
826 		}
827 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
828 		m_adj(m_new, ETHER_ALIGN);
829 
830 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
831 				mtod(m_new, caddr_t), m_new->m_len, NULL,
832 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
833 			printf("%s: can't load recv map, error = %d\n",
834 			       sc->sc_dev.dv_xname, error);
835 			return (ENOMEM);
836 		}
837 	} else {
838 		m_new = m;
839 		m_new->m_data = m_new->m_pktdat;
840 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
841 		m_adj(m_new, ETHER_ALIGN);
842 
843 		/* reuse the dmamap */
844 	}
845 
846 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
847 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
848 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
849 	r->ti_type = TI_BDTYPE_RECV_BD;
850 	r->ti_flags = TI_BDFLAG_MINI_RING;
851 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
852 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
853 	if (sc->ethercom.ec_if.if_capenable &
854 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
855 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
856 	r->ti_len = m_new->m_len; /* == ds_len */
857 	r->ti_idx = i;
858 
859 	return(0);
860 }
861 
862 /*
863  * Initialize a jumbo receive ring descriptor. This allocates
864  * a jumbo buffer from the pool managed internally by the driver.
865  */
866 static int ti_newbuf_jumbo(sc, i, m)
867 	struct ti_softc		*sc;
868 	int			i;
869 	struct mbuf		*m;
870 {
871 	struct mbuf		*m_new = NULL;
872 	struct ti_rx_desc	*r;
873 
874 	if (m == NULL) {
875 		caddr_t			*buf = NULL;
876 
877 		/* Allocate the mbuf. */
878 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
879 		if (m_new == NULL) {
880 			printf("%s: mbuf allocation failed "
881 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
882 			return(ENOBUFS);
883 		}
884 
885 		/* Allocate the jumbo buffer */
886 		buf = ti_jalloc(sc);
887 		if (buf == NULL) {
888 			m_freem(m_new);
889 			printf("%s: jumbo allocation failed "
890 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
891 			return(ENOBUFS);
892 		}
893 
894 		/* Attach the buffer to the mbuf. */
895 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
896 		m_new->m_flags |= M_EXT;
897 		m_new->m_len = m_new->m_pkthdr.len =
898 		    m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
899 		m_new->m_ext.ext_free = ti_jfree;
900 		m_new->m_ext.ext_arg = sc;
901 		MCLINITREFERENCE(m_new);
902 	} else {
903 		m_new = m;
904 		m_new->m_data = m_new->m_ext.ext_buf;
905 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
906 	}
907 
908 	m_adj(m_new, ETHER_ALIGN);
909 	/* Set up the descriptor. */
910 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
911 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
912 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
913 		((caddr_t)mtod(m_new, caddr_t)
914 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
915 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
916 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
917 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
918 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
919 	if (sc->ethercom.ec_if.if_capenable &
920 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
921 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
922 	r->ti_len = m_new->m_len;
923 	r->ti_idx = i;
924 
925 	return(0);
926 }
927 
928 /*
929  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
930  * that's 1MB or memory, which is a lot. For now, we fill only the first
931  * 256 ring entries and hope that our CPU is fast enough to keep up with
932  * the NIC.
933  */
934 static int ti_init_rx_ring_std(sc)
935 	struct ti_softc		*sc;
936 {
937 	int		i;
938 	struct ti_cmd_desc	cmd;
939 
940 	for (i = 0; i < TI_SSLOTS; i++) {
941 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
942 			return(ENOBUFS);
943 	};
944 
945 	TI_UPDATE_STDPROD(sc, i - 1);
946 	sc->ti_std = i - 1;
947 
948 	return(0);
949 }
950 
951 static void ti_free_rx_ring_std(sc)
952 	struct ti_softc		*sc;
953 {
954 	int		i;
955 
956 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
957 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
958 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
959 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
960 
961 			/* if (sc->std_dmamap[i] == 0) panic() */
962 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
963 			sc->std_dmamap[i] = 0;
964 		}
965 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
966 		    sizeof(struct ti_rx_desc));
967 	}
968 
969 	return;
970 }
971 
972 static int ti_init_rx_ring_jumbo(sc)
973 	struct ti_softc		*sc;
974 {
975 	int		i;
976 	struct ti_cmd_desc	cmd;
977 
978 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
979 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
980 			return(ENOBUFS);
981 	};
982 
983 	TI_UPDATE_JUMBOPROD(sc, i - 1);
984 	sc->ti_jumbo = i - 1;
985 
986 	return(0);
987 }
988 
989 static void ti_free_rx_ring_jumbo(sc)
990 	struct ti_softc		*sc;
991 {
992 	int		i;
993 
994 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
995 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
996 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
997 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
998 		}
999 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1000 		    sizeof(struct ti_rx_desc));
1001 	}
1002 
1003 	return;
1004 }
1005 
1006 static int ti_init_rx_ring_mini(sc)
1007 	struct ti_softc		*sc;
1008 {
1009 	int		i;
1010 
1011 	for (i = 0; i < TI_MSLOTS; i++) {
1012 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1013 			return(ENOBUFS);
1014 	};
1015 
1016 	TI_UPDATE_MINIPROD(sc, i - 1);
1017 	sc->ti_mini = i - 1;
1018 
1019 	return(0);
1020 }
1021 
1022 static void ti_free_rx_ring_mini(sc)
1023 	struct ti_softc		*sc;
1024 {
1025 	int		i;
1026 
1027 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1028 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1029 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1030 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1031 
1032 			/* if (sc->mini_dmamap[i] == 0) panic() */
1033 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1034 			sc->mini_dmamap[i] = 0;
1035 		}
1036 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1037 		    sizeof(struct ti_rx_desc));
1038 	}
1039 
1040 	return;
1041 }
1042 
1043 static void ti_free_tx_ring(sc)
1044 	struct ti_softc		*sc;
1045 {
1046 	int		i;
1047 	struct txdmamap_pool_entry *dma;
1048 
1049 	if (sc->ti_rdata->ti_tx_ring == NULL)
1050 		return;
1051 
1052 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1053 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1054 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1055 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1056 
1057 			/* if (sc->txdma[i] == 0) panic() */
1058 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1059 					    link);
1060 			sc->txdma[i] = 0;
1061 		}
1062 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1063 		    sizeof(struct ti_tx_desc));
1064 	}
1065 
1066 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1067 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1068 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1069 		free(dma, M_DEVBUF);
1070 	}
1071 
1072 	return;
1073 }
1074 
1075 static int ti_init_tx_ring(sc)
1076 	struct ti_softc		*sc;
1077 {
1078 	int i, error;
1079 	bus_dmamap_t dmamap;
1080 	struct txdmamap_pool_entry *dma;
1081 
1082 	sc->ti_txcnt = 0;
1083 	sc->ti_tx_saved_considx = 0;
1084 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1085 
1086 	SIMPLEQ_INIT(&sc->txdma_list);
1087 	for (i = 0; i < TI_RSLOTS; i++) {
1088 		/* I've seen mbufs with 30 fragments. */
1089 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1090 					       40, ETHER_MAX_LEN_JUMBO, 0,
1091 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1092 			printf("%s: can't create tx map, error = %d\n",
1093 			       sc->sc_dev.dv_xname, error);
1094 			return(ENOMEM);
1095 		}
1096 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1097 		if (!dma) {
1098 			printf("%s: can't alloc txdmamap_pool_entry\n",
1099 			       sc->sc_dev.dv_xname);
1100 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1101 			return (ENOMEM);
1102 		}
1103 		dma->dmamap = dmamap;
1104 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1105 	}
1106 
1107 	return(0);
1108 }
1109 
1110 /*
1111  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1112  * but we have to support the old way too so that Tigon 1 cards will
1113  * work.
1114  */
1115 void ti_add_mcast(sc, addr)
1116 	struct ti_softc		*sc;
1117 	struct ether_addr	*addr;
1118 {
1119 	struct ti_cmd_desc	cmd;
1120 	u_int16_t		*m;
1121 	u_int32_t		ext[2] = {0, 0};
1122 
1123 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1124 
1125 	switch(sc->ti_hwrev) {
1126 	case TI_HWREV_TIGON:
1127 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1128 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1129 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1130 		break;
1131 	case TI_HWREV_TIGON_II:
1132 		ext[0] = htons(m[0]);
1133 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1134 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1135 		break;
1136 	default:
1137 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1138 		break;
1139 	}
1140 
1141 	return;
1142 }
1143 
1144 void ti_del_mcast(sc, addr)
1145 	struct ti_softc		*sc;
1146 	struct ether_addr	*addr;
1147 {
1148 	struct ti_cmd_desc	cmd;
1149 	u_int16_t		*m;
1150 	u_int32_t		ext[2] = {0, 0};
1151 
1152 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1153 
1154 	switch(sc->ti_hwrev) {
1155 	case TI_HWREV_TIGON:
1156 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1157 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1158 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1159 		break;
1160 	case TI_HWREV_TIGON_II:
1161 		ext[0] = htons(m[0]);
1162 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1163 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1164 		break;
1165 	default:
1166 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1167 		break;
1168 	}
1169 
1170 	return;
1171 }
1172 
1173 /*
1174  * Configure the Tigon's multicast address filter.
1175  *
1176  * The actual multicast table management is a bit of a pain, thanks to
1177  * slight brain damage on the part of both Alteon and us. With our
1178  * multicast code, we are only alerted when the multicast address table
1179  * changes and at that point we only have the current list of addresses:
1180  * we only know the current state, not the previous state, so we don't
1181  * actually know what addresses were removed or added. The firmware has
1182  * state, but we can't get our grubby mits on it, and there is no 'delete
1183  * all multicast addresses' command. Hence, we have to maintain our own
1184  * state so we know what addresses have been programmed into the NIC at
1185  * any given time.
1186  */
1187 static void ti_setmulti(sc)
1188 	struct ti_softc		*sc;
1189 {
1190 	struct ifnet		*ifp;
1191 	struct ti_cmd_desc	cmd;
1192 	struct ti_mc_entry	*mc;
1193 	u_int32_t		intrs;
1194 	struct ether_multi *enm;
1195 	struct ether_multistep step;
1196 
1197 	ifp = &sc->ethercom.ec_if;
1198 
1199 	/* Disable interrupts. */
1200 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1201 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1202 
1203 	/* First, zot all the existing filters. */
1204 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1205 		ti_del_mcast(sc, &mc->mc_addr);
1206 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1207 		free(mc, M_DEVBUF);
1208 	}
1209 
1210 	/*
1211 	 * Remember all multicast addresses so that we can delete them
1212 	 * later.  Punt if there is a range of addresses or memory shortage.
1213 	 */
1214 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1215 	while (enm != NULL) {
1216 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1217 		    ETHER_ADDR_LEN) != 0)
1218 			goto allmulti;
1219 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1220 		    M_NOWAIT)) == NULL)
1221 			goto allmulti;
1222 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1223 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1224 		ETHER_NEXT_MULTI(step, enm);
1225 	}
1226 
1227 	/* Accept only programmed multicast addresses */
1228 	ifp->if_flags &= ~IFF_ALLMULTI;
1229 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1230 
1231 	/* Now program new ones. */
1232 	for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL;
1233 	    mc = SIMPLEQ_NEXT(mc, mc_entries))
1234 		ti_add_mcast(sc, &mc->mc_addr);
1235 
1236 	/* Re-enable interrupts. */
1237 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1238 
1239 	return;
1240 
1241 allmulti:
1242 	/* No need to keep individual multicast addresses */
1243 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1244 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc,
1245 		    mc_entries);
1246 		free(mc, M_DEVBUF);
1247 	}
1248 
1249 	/* Accept all multicast addresses */
1250 	ifp->if_flags |= IFF_ALLMULTI;
1251 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1252 
1253 	/* Re-enable interrupts. */
1254 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1255 }
1256 
1257 /*
1258  * Check to see if the BIOS has configured us for a 64 bit slot when
1259  * we aren't actually in one. If we detect this condition, we can work
1260  * around it on the Tigon 2 by setting a bit in the PCI state register,
1261  * but for the Tigon 1 we must give up and abort the interface attach.
1262  */
1263 static int ti_64bitslot_war(sc)
1264 	struct ti_softc		*sc;
1265 {
1266 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1267 		CSR_WRITE_4(sc, 0x600, 0);
1268 		CSR_WRITE_4(sc, 0x604, 0);
1269 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1270 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1271 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1272 				return(EINVAL);
1273 			else {
1274 				TI_SETBIT(sc, TI_PCI_STATE,
1275 				    TI_PCISTATE_32BIT_BUS);
1276 				return(0);
1277 			}
1278 		}
1279 	}
1280 
1281 	return(0);
1282 }
1283 
1284 /*
1285  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1286  * self-test results.
1287  */
1288 static int ti_chipinit(sc)
1289 	struct ti_softc		*sc;
1290 {
1291 	u_int32_t		cacheline;
1292 	u_int32_t		pci_writemax = 0;
1293 
1294 	/* Initialize link to down state. */
1295 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1296 
1297 	/* Set endianness before we access any non-PCI registers. */
1298 #if BYTE_ORDER == BIG_ENDIAN
1299 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1300 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1301 #else
1302 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1303 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1304 #endif
1305 
1306 	/* Check the ROM failed bit to see if self-tests passed. */
1307 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1308 		printf("%s: board self-diagnostics failed!\n",
1309 		       sc->sc_dev.dv_xname);
1310 		return(ENODEV);
1311 	}
1312 
1313 	/* Halt the CPU. */
1314 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1315 
1316 	/* Figure out the hardware revision. */
1317 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1318 	case TI_REV_TIGON_I:
1319 		sc->ti_hwrev = TI_HWREV_TIGON;
1320 		break;
1321 	case TI_REV_TIGON_II:
1322 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1323 		break;
1324 	default:
1325 		printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1326 		return(ENODEV);
1327 	}
1328 
1329 	/* Do special setup for Tigon 2. */
1330 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1331 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1332 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1333 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1334 	}
1335 
1336 	/* Set up the PCI state register. */
1337 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1338 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1339 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1340 	}
1341 
1342 	/* Clear the read/write max DMA parameters. */
1343 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1344 	    TI_PCISTATE_READ_MAXDMA));
1345 
1346 	/* Get cache line size. */
1347 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1348 
1349 	/*
1350 	 * If the system has set enabled the PCI memory write
1351 	 * and invalidate command in the command register, set
1352 	 * the write max parameter accordingly. This is necessary
1353 	 * to use MWI with the Tigon 2.
1354 	 */
1355 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1356 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1357 		switch(cacheline) {
1358 		case 1:
1359 		case 4:
1360 		case 8:
1361 		case 16:
1362 		case 32:
1363 		case 64:
1364 			break;
1365 		default:
1366 		/* Disable PCI memory write and invalidate. */
1367 			if (bootverbose)
1368 				printf("%s: cache line size %d not "
1369 				    "supported; disabling PCI MWI\n",
1370 				    sc->sc_dev.dv_xname, cacheline);
1371 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1372 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1373 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1374 			break;
1375 		}
1376 	}
1377 
1378 #ifdef __brokenalpha__
1379 	/*
1380 	 * From the Alteon sample driver:
1381 	 * Must insure that we do not cross an 8K (bytes) boundary
1382 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1383 	 * restriction on some ALPHA platforms with early revision
1384 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1385 	 */
1386 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1387 #else
1388 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1389 #endif
1390 
1391 	/* This sets the min dma param all the way up (0xff). */
1392 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1393 
1394 	/* Configure DMA variables. */
1395 #if BYTE_ORDER == BIG_ENDIAN
1396 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1397 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1398 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1399 	    TI_OPMODE_DONT_FRAG_JUMBO);
1400 #else
1401 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1402 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1403 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1404 #endif
1405 
1406 	/*
1407 	 * Only allow 1 DMA channel to be active at a time.
1408 	 * I don't think this is a good idea, but without it
1409 	 * the firmware racks up lots of nicDmaReadRingFull
1410 	 * errors.
1411 	 * Incompatible with hardware assisted checksums.
1412 	 */
1413 	if ((sc->ethercom.ec_if.if_capenable &
1414 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1415 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1416 
1417 	/* Recommended settings from Tigon manual. */
1418 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1419 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1420 
1421 	if (ti_64bitslot_war(sc)) {
1422 		printf("%s: bios thinks we're in a 64 bit slot, "
1423 		    "but we aren't", sc->sc_dev.dv_xname);
1424 		return(EINVAL);
1425 	}
1426 
1427 	return(0);
1428 }
1429 
1430 /*
1431  * Initialize the general information block and firmware, and
1432  * start the CPU(s) running.
1433  */
1434 static int ti_gibinit(sc)
1435 	struct ti_softc		*sc;
1436 {
1437 	struct ti_rcb		*rcb;
1438 	int			i;
1439 	struct ifnet		*ifp;
1440 
1441 	ifp = &sc->ethercom.ec_if;
1442 
1443 	/* Disable interrupts for now. */
1444 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1445 
1446 	/* Tell the chip where to find the general information block. */
1447 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1448 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1449 
1450 	/* Load the firmware into SRAM. */
1451 	ti_loadfw(sc);
1452 
1453 	/* Set up the contents of the general info and ring control blocks. */
1454 
1455 	/* Set up the event ring and producer pointer. */
1456 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1457 
1458 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1459 	rcb->ti_flags = 0;
1460 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1461 	    TI_CDEVPRODADDR(sc);
1462 
1463 	sc->ti_ev_prodidx.ti_idx = 0;
1464 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1465 	sc->ti_ev_saved_considx = 0;
1466 
1467 	/* Set up the command ring and producer mailbox. */
1468 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1469 
1470 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1471 	rcb->ti_flags = 0;
1472 	rcb->ti_max_len = 0;
1473 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1474 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1475 	}
1476 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1477 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1478 	sc->ti_cmd_saved_prodidx = 0;
1479 
1480 	/*
1481 	 * Assign the address of the stats refresh buffer.
1482 	 * We re-use the current stats buffer for this to
1483 	 * conserve memory.
1484 	 */
1485 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1486 	    TI_CDSTATSADDR(sc);
1487 
1488 	/* Set up the standard receive ring. */
1489 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1490 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1491 	rcb->ti_max_len = ETHER_MAX_LEN;
1492 	rcb->ti_flags = 0;
1493 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1494 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1495 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1496 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1497 	if (sc->ethercom.ec_nvlans != 0)
1498 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1499 
1500 	/* Set up the jumbo receive ring. */
1501 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1502 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1503 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1504 	rcb->ti_flags = 0;
1505 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1506 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1507 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1508 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1509 	if (sc->ethercom.ec_nvlans != 0)
1510 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1511 
1512 	/*
1513 	 * Set up the mini ring. Only activated on the
1514 	 * Tigon 2 but the slot in the config block is
1515 	 * still there on the Tigon 1.
1516 	 */
1517 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1518 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1519 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1520 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1521 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1522 	else
1523 		rcb->ti_flags = 0;
1524 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1525 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1526 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1527 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1528 	if (sc->ethercom.ec_nvlans != 0)
1529 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1530 
1531 	/*
1532 	 * Set up the receive return ring.
1533 	 */
1534 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1535 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1536 	rcb->ti_flags = 0;
1537 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1538 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1539 	    TI_CDRTNPRODADDR(sc);
1540 
1541 	/*
1542 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1543 	 * of putting the transmit ring in the host's address space and
1544 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1545 	 * memory and accessing it through the shared memory region. We
1546 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1547 	 * so we have to revert to the shared memory scheme if we detect
1548 	 * a Tigon 1 chip.
1549 	 */
1550 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1551 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1552 		sc->ti_tx_ring_nic =
1553 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1554 	}
1555 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1556 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1557 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1558 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1559 		rcb->ti_flags = 0;
1560 	else
1561 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1562 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1563 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1564 	/*
1565 	 * When we get the packet, there is a pseudo-header seed already
1566 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1567 	 * compute the pseudo-header checksum again!
1568 	 */
1569 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1570 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1571 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1572 	if (sc->ethercom.ec_nvlans != 0)
1573 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1574 	rcb->ti_max_len = TI_TX_RING_CNT;
1575 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1576 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1577 	else
1578 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1579 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1580 	    TI_CDTXCONSADDR(sc);
1581 
1582 	/*
1583 	 * We're done frobbing the General Information Block.  Sync
1584 	 * it.  Note we take care of the first stats sync here, as
1585 	 * well.
1586 	 */
1587 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1588 
1589 	/* Set up tuneables */
1590 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1591 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1592 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1593 		    (sc->ti_rx_coal_ticks / 10));
1594 	else
1595 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1596 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1597 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1598 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1599 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1600 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1601 
1602 	/* Turn interrupts on. */
1603 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1604 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1605 
1606 	/* Start CPU. */
1607 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1608 
1609 	return(0);
1610 }
1611 
1612 /*
1613  * look for id in the device list, returning the first match
1614  */
1615 static const struct ti_type *
1616 ti_type_match(pa)
1617 	struct pci_attach_args *pa;
1618 {
1619 	const struct ti_type          *t;
1620 
1621 	t = ti_devs;
1622 	while(t->ti_name != NULL) {
1623 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1624 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1625 			return (t);
1626 		}
1627 		t++;
1628 	}
1629 
1630 	return(NULL);
1631 }
1632 
1633 /*
1634  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1635  * against our list and return its name if we find a match.
1636  */
1637 static int ti_probe(parent, match, aux)
1638 	struct device *parent;
1639 	struct cfdata *match;
1640 	void *aux;
1641 {
1642 	struct pci_attach_args *pa = aux;
1643 	const struct ti_type		*t;
1644 
1645 	t = ti_type_match(pa);
1646 
1647 	return((t == NULL) ? 0 : 1);
1648 }
1649 
1650 static void ti_attach(parent, self, aux)
1651 	struct device *parent, *self;
1652 	void *aux;
1653 {
1654 	u_int32_t		command;
1655 	struct ifnet		*ifp;
1656 	struct ti_softc		*sc;
1657 	u_char eaddr[ETHER_ADDR_LEN];
1658 	struct pci_attach_args *pa = aux;
1659 	pci_chipset_tag_t pc = pa->pa_pc;
1660 	pci_intr_handle_t ih;
1661 	const char *intrstr = NULL;
1662 	bus_dma_segment_t dmaseg;
1663 	int error, dmanseg, nolinear;
1664 	const struct ti_type		*t;
1665 
1666 	t = ti_type_match(pa);
1667 	if (t == NULL) {
1668 		printf("ti_attach: were did the card go ?\n");
1669 		return;
1670 	}
1671 
1672 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1673 
1674 	sc = (struct ti_softc *)self;
1675 
1676 	/*
1677 	 * Map control/status registers.
1678 	 */
1679 	nolinear = 0;
1680 	if (pci_mapreg_map(pa, 0x10,
1681 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1682 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1683 	    NULL, NULL)) {
1684 		nolinear = 1;
1685 		if (pci_mapreg_map(pa, 0x10,
1686 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1687 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1688 			printf(": can't map memory space\n");
1689 			return;
1690 		}
1691 	}
1692 	if (nolinear == 0)
1693 		sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1694 	else
1695 		sc->ti_vhandle = NULL;
1696 
1697 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1698 	command |= PCI_COMMAND_MASTER_ENABLE;
1699 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1700 
1701 	/* Allocate interrupt */
1702 	if (pci_intr_map(pa, &ih)) {
1703 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1704 		return;;
1705 	}
1706 	intrstr = pci_intr_string(pc, ih);
1707 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1708 	if (sc->sc_ih == NULL) {
1709 		printf("%s: couldn't establish interrupt",
1710 		    sc->sc_dev.dv_xname);
1711 		if (intrstr != NULL)
1712 			printf(" at %s", intrstr);
1713 		printf("\n");
1714 		return;;
1715 	}
1716 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1717 	/*
1718 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1719 	 * doing do could allow DMA to corrupt kernel memory during the
1720 	 * reboot before the driver initializes.
1721 	 */
1722 	(void) shutdownhook_establish(ti_shutdown, sc);
1723 
1724 	if (ti_chipinit(sc)) {
1725 		printf("%s: chip initialization failed\n", self->dv_xname);
1726 		goto fail2;
1727 	}
1728 
1729 	/*
1730 	 * Deal with some chip diffrences.
1731 	 */
1732 	switch (sc->ti_hwrev) {
1733 	case TI_HWREV_TIGON:
1734 		sc->sc_tx_encap = ti_encap_tigon1;
1735 		sc->sc_tx_eof = ti_txeof_tigon1;
1736 		if (nolinear == 1)
1737 			printf("%s: memory space not mapped linear\n",
1738 			    self->dv_xname);
1739 		break;
1740 
1741 	case TI_HWREV_TIGON_II:
1742 		sc->sc_tx_encap = ti_encap_tigon2;
1743 		sc->sc_tx_eof = ti_txeof_tigon2;
1744 		break;
1745 
1746 	default:
1747 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
1748 		    sc->ti_hwrev);
1749 		goto fail2;
1750 	}
1751 
1752 	/* Zero out the NIC's on-board SRAM. */
1753 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1754 
1755 	/* Init again -- zeroing memory may have clobbered some registers. */
1756 	if (ti_chipinit(sc)) {
1757 		printf("%s: chip initialization failed\n", self->dv_xname);
1758 		goto fail2;
1759 	}
1760 
1761 	/*
1762 	 * Get station address from the EEPROM. Note: the manual states
1763 	 * that the MAC address is at offset 0x8c, however the data is
1764 	 * stored as two longwords (since that's how it's loaded into
1765 	 * the NIC). This means the MAC address is actually preceeded
1766 	 * by two zero bytes. We need to skip over those.
1767 	 */
1768 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1769 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1770 		printf("%s: failed to read station address\n", self->dv_xname);
1771 		goto fail2;
1772 	}
1773 
1774 	/*
1775 	 * A Tigon chip was detected. Inform the world.
1776 	 */
1777 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1778 				ether_sprintf(eaddr));
1779 
1780 	sc->sc_dmat = pa->pa_dmat;
1781 
1782 	/* Allocate the general information block and ring buffers. */
1783 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1784 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1785 	    BUS_DMA_NOWAIT)) != 0) {
1786 		printf("%s: can't allocate ring buffer, error = %d\n",
1787 		       sc->sc_dev.dv_xname, error);
1788 		goto fail2;
1789 	}
1790 
1791 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1792 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1793 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1794 		printf("%s: can't map ring buffer, error = %d\n",
1795 		       sc->sc_dev.dv_xname, error);
1796 		goto fail2;
1797 	}
1798 
1799 	if ((error = bus_dmamap_create(sc->sc_dmat,
1800 	    sizeof(struct ti_ring_data), 1,
1801 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1802 	    &sc->info_dmamap)) != 0) {
1803 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1804 		       sc->sc_dev.dv_xname, error);
1805 		goto fail2;
1806 	}
1807 
1808 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1809 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1810 	    BUS_DMA_NOWAIT)) != 0) {
1811 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1812 		       sc->sc_dev.dv_xname, error);
1813 		goto fail2;
1814 	}
1815 
1816 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1817 
1818 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1819 
1820 	/* Try to allocate memory for jumbo buffers. */
1821 	if (ti_alloc_jumbo_mem(sc)) {
1822 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1823 		goto fail2;
1824 	}
1825 
1826 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1827 
1828 	/*
1829 	 * We really need a better way to tell a 1000baseT card
1830 	 * from a 1000baseSX one, since in theory there could be
1831 	 * OEMed 1000baseT cards from lame vendors who aren't
1832 	 * clever enough to change the PCI ID. For the moment
1833 	 * though, the AceNIC is the only copper card available.
1834 	 */
1835 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1836 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1837 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1838 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1839 		sc->ti_copper = 1;
1840 	else
1841 		sc->ti_copper = 0;
1842 
1843 	/* Set default tuneable values. */
1844 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1845 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1846 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1847 	sc->ti_rx_max_coal_bds = 64;
1848 	sc->ti_tx_max_coal_bds = 128;
1849 	sc->ti_tx_buf_ratio = 21;
1850 
1851 	/* Set up ifnet structure */
1852 	ifp = &sc->ethercom.ec_if;
1853 	ifp->if_softc = sc;
1854 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1855 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1856 	ifp->if_ioctl = ti_ioctl;
1857 	ifp->if_start = ti_start;
1858 	ifp->if_watchdog = ti_watchdog;
1859 	IFQ_SET_READY(&ifp->if_snd);
1860 
1861 #if 0
1862 	/*
1863 	 * XXX This is not really correct -- we don't necessarily
1864 	 * XXX want to queue up as many as we can transmit at the
1865 	 * XXX upper layer like that.  Someone with a board should
1866 	 * XXX check to see how this affects performance.
1867 	 */
1868 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1869 #endif
1870 
1871 	/*
1872 	 * We can support 802.1Q VLAN-sized frames.
1873 	 */
1874 	sc->ethercom.ec_capabilities |=
1875 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1876 
1877 	/*
1878 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1879 	 */
1880 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1881 	    IFCAP_CSUM_UDPv4;
1882 
1883 	/* Set up ifmedia support. */
1884 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1885 	if (sc->ti_copper) {
1886                 /*
1887                  * Copper cards allow manual 10/100 mode selection,
1888                  * but not manual 1000baseT mode selection. Why?
1889                  * Becuase currently there's no way to specify the
1890                  * master/slave setting through the firmware interface,
1891                  * so Alteon decided to just bag it and handle it
1892                  * via autonegotiation.
1893                  */
1894                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1895                 ifmedia_add(&sc->ifmedia,
1896                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1897                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1898                 ifmedia_add(&sc->ifmedia,
1899                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1900                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1901                 ifmedia_add(&sc->ifmedia,
1902                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1903 	} else {
1904 		/* Fiber cards don't support 10/100 modes. */
1905 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1906 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1907 	}
1908 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1909 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1910 
1911 	/*
1912 	 * Call MI attach routines.
1913 	 */
1914 	if_attach(ifp);
1915 	ether_ifattach(ifp, eaddr);
1916 
1917 	return;
1918 fail2:
1919 	pci_intr_disestablish(pc, sc->sc_ih);
1920 	return;
1921 }
1922 
1923 /*
1924  * Frame reception handling. This is called if there's a frame
1925  * on the receive return list.
1926  *
1927  * Note: we have to be able to handle three possibilities here:
1928  * 1) the frame is from the mini receive ring (can only happen)
1929  *    on Tigon 2 boards)
1930  * 2) the frame is from the jumbo receive ring
1931  * 3) the frame is from the standard receive ring
1932  */
1933 
1934 static void ti_rxeof(sc)
1935 	struct ti_softc		*sc;
1936 {
1937 	struct ifnet		*ifp;
1938 	struct ti_cmd_desc	cmd;
1939 
1940 	ifp = &sc->ethercom.ec_if;
1941 
1942 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1943 		struct ti_rx_desc	*cur_rx;
1944 		u_int32_t		rxidx;
1945 		struct mbuf		*m = NULL;
1946 		u_int16_t		vlan_tag = 0;
1947 		int			have_tag = 0;
1948 		struct ether_header	*eh;
1949 		bus_dmamap_t dmamap;
1950 
1951 		cur_rx =
1952 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1953 		rxidx = cur_rx->ti_idx;
1954 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1955 
1956 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1957 			have_tag = 1;
1958 			vlan_tag = cur_rx->ti_vlan_tag;
1959 		}
1960 
1961 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1962 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1963 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1964 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1965 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1966 				ifp->if_ierrors++;
1967 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1968 				continue;
1969 			}
1970 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1971 			    == ENOBUFS) {
1972 				ifp->if_ierrors++;
1973 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1974 				continue;
1975 			}
1976 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1977 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1978 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1979 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1980 			dmamap = sc->mini_dmamap[rxidx];
1981 			sc->mini_dmamap[rxidx] = 0;
1982 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1983 				ifp->if_ierrors++;
1984 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1985 				continue;
1986 			}
1987 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1988 			    == ENOBUFS) {
1989 				ifp->if_ierrors++;
1990 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1991 				continue;
1992 			}
1993 		} else {
1994 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1995 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1996 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1997 			dmamap = sc->std_dmamap[rxidx];
1998 			sc->std_dmamap[rxidx] = 0;
1999 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2000 				ifp->if_ierrors++;
2001 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2002 				continue;
2003 			}
2004 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2005 			    == ENOBUFS) {
2006 				ifp->if_ierrors++;
2007 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2008 				continue;
2009 			}
2010 		}
2011 
2012 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2013 		ifp->if_ipackets++;
2014 		m->m_pkthdr.rcvif = ifp;
2015 
2016 #if NBPFILTER > 0
2017 		/*
2018 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
2019 	 	 * don't pass it up to the ether_input() layer unless it's
2020 	 	 * a broadcast packet, multicast packet, matches our ethernet
2021 	 	 * address or the interface is in promiscuous mode.
2022 	 	 */
2023 		if (ifp->if_bpf)
2024 			bpf_mtap(ifp->if_bpf, m);
2025 #endif
2026 
2027 		eh = mtod(m, struct ether_header *);
2028 		switch (ntohs(eh->ether_type)) {
2029 		case ETHERTYPE_IP:
2030 		    {
2031 			struct ip *ip = (struct ip *) (eh + 1);
2032 
2033 			/*
2034 			 * Note the Tigon firmware does not invert
2035 			 * the checksum for us, hence the XOR.
2036 			 */
2037 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2038 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2039 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2040 			/*
2041 			 * ntohs() the constant so the compiler can
2042 			 * optimize...
2043 			 *
2044 			 * XXX Figure out a sane way to deal with
2045 			 * fragmented packets.
2046 			 */
2047 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2048 				switch (ip->ip_p) {
2049 				case IPPROTO_TCP:
2050 					m->m_pkthdr.csum_data =
2051 					    cur_rx->ti_tcp_udp_cksum;
2052 					m->m_pkthdr.csum_flags |=
2053 					    M_CSUM_TCPv4|M_CSUM_DATA;
2054 					break;
2055 				case IPPROTO_UDP:
2056 					m->m_pkthdr.csum_data =
2057 					    cur_rx->ti_tcp_udp_cksum;
2058 					m->m_pkthdr.csum_flags |=
2059 					    M_CSUM_UDPv4|M_CSUM_DATA;
2060 					break;
2061 				default:
2062 					/* Nothing */;
2063 				}
2064 			}
2065 			break;
2066 		    }
2067 		default:
2068 			/* Nothing. */
2069 			break;
2070 		}
2071 
2072 		if (have_tag) {
2073 			struct mbuf *n;
2074 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2075 			if (n) {
2076 				*mtod(n, int *) = vlan_tag;
2077 				n->m_len = sizeof(int);
2078 			} else {
2079 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2080 				m_freem(m);
2081 				continue;
2082 			}
2083 			have_tag = vlan_tag = 0;
2084 		}
2085 		(*ifp->if_input)(ifp, m);
2086 	}
2087 
2088 	/* Only necessary on the Tigon 1. */
2089 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2090 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2091 		    sc->ti_rx_saved_considx);
2092 
2093 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2094 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2095 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2096 
2097 	return;
2098 }
2099 
2100 static void ti_txeof_tigon1(sc)
2101 	struct ti_softc		*sc;
2102 {
2103 	struct ti_tx_desc	*cur_tx = NULL;
2104 	struct ifnet		*ifp;
2105 	struct txdmamap_pool_entry *dma;
2106 
2107 	ifp = &sc->ethercom.ec_if;
2108 
2109 	/*
2110 	 * Go through our tx ring and free mbufs for those
2111 	 * frames that have been sent.
2112 	 */
2113 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2114 		u_int32_t		idx = 0;
2115 
2116 		idx = sc->ti_tx_saved_considx;
2117 		if (idx > 383)
2118 			CSR_WRITE_4(sc, TI_WINBASE,
2119 			    TI_TX_RING_BASE + 6144);
2120 		else if (idx > 255)
2121 			CSR_WRITE_4(sc, TI_WINBASE,
2122 			    TI_TX_RING_BASE + 4096);
2123 		else if (idx > 127)
2124 			CSR_WRITE_4(sc, TI_WINBASE,
2125 			    TI_TX_RING_BASE + 2048);
2126 		else
2127 			CSR_WRITE_4(sc, TI_WINBASE,
2128 			    TI_TX_RING_BASE);
2129 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2130 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2131 			ifp->if_opackets++;
2132 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2133 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2134 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2135 
2136 			dma = sc->txdma[idx];
2137 			KDASSERT(dma != NULL);
2138 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2139 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2140 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2141 
2142 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2143 			sc->txdma[idx] = NULL;
2144 		}
2145 		sc->ti_txcnt--;
2146 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2147 		ifp->if_timer = 0;
2148 	}
2149 
2150 	if (cur_tx != NULL)
2151 		ifp->if_flags &= ~IFF_OACTIVE;
2152 
2153 	return;
2154 }
2155 
2156 static void ti_txeof_tigon2(sc)
2157 	struct ti_softc		*sc;
2158 {
2159 	struct ti_tx_desc	*cur_tx = NULL;
2160 	struct ifnet		*ifp;
2161 	struct txdmamap_pool_entry *dma;
2162 	int firstidx, cnt;
2163 
2164 	ifp = &sc->ethercom.ec_if;
2165 
2166 	/*
2167 	 * Go through our tx ring and free mbufs for those
2168 	 * frames that have been sent.
2169 	 */
2170 	firstidx = sc->ti_tx_saved_considx;
2171 	cnt = 0;
2172 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2173 		u_int32_t		idx = 0;
2174 
2175 		idx = sc->ti_tx_saved_considx;
2176 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2177 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2178 			ifp->if_opackets++;
2179 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2180 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2181 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2182 
2183 			dma = sc->txdma[idx];
2184 			KDASSERT(dma != NULL);
2185 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2186 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2187 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2188 
2189 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2190 			sc->txdma[idx] = NULL;
2191 		}
2192 		cnt++;
2193 		sc->ti_txcnt--;
2194 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2195 		ifp->if_timer = 0;
2196 	}
2197 
2198 	if (cnt != 0)
2199 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2200 
2201 	if (cur_tx != NULL)
2202 		ifp->if_flags &= ~IFF_OACTIVE;
2203 
2204 	return;
2205 }
2206 
2207 static int ti_intr(xsc)
2208 	void			*xsc;
2209 {
2210 	struct ti_softc		*sc;
2211 	struct ifnet		*ifp;
2212 
2213 	sc = xsc;
2214 	ifp = &sc->ethercom.ec_if;
2215 
2216 #ifdef notdef
2217 	/* Avoid this for now -- checking this register is expensive. */
2218 	/* Make sure this is really our interrupt. */
2219 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2220 		return (0);
2221 #endif
2222 
2223 	/* Ack interrupt and stop others from occuring. */
2224 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2225 
2226 	if (ifp->if_flags & IFF_RUNNING) {
2227 		/* Check RX return ring producer/consumer */
2228 		ti_rxeof(sc);
2229 
2230 		/* Check TX ring producer/consumer */
2231 		(*sc->sc_tx_eof)(sc);
2232 	}
2233 
2234 	ti_handle_events(sc);
2235 
2236 	/* Re-enable interrupts. */
2237 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2238 
2239 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2240 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2241 		ti_start(ifp);
2242 
2243 	return (1);
2244 }
2245 
2246 static void ti_stats_update(sc)
2247 	struct ti_softc		*sc;
2248 {
2249 	struct ifnet		*ifp;
2250 
2251 	ifp = &sc->ethercom.ec_if;
2252 
2253 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2254 
2255 	ifp->if_collisions +=
2256 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2257 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2258 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2259 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2260 	   ifp->if_collisions;
2261 
2262 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2263 }
2264 
2265 /*
2266  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2267  * pointers to descriptors.
2268  */
2269 static int ti_encap_tigon1(sc, m_head, txidx)
2270 	struct ti_softc		*sc;
2271 	struct mbuf		*m_head;
2272 	u_int32_t		*txidx;
2273 {
2274 	struct ti_tx_desc	*f = NULL;
2275 	u_int32_t		frag, cur, cnt = 0;
2276 	struct txdmamap_pool_entry *dma;
2277 	bus_dmamap_t dmamap;
2278 	int error, i;
2279 	struct mbuf *n;
2280 	u_int16_t csum_flags = 0;
2281 
2282 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2283 	if (dma == NULL) {
2284 		return ENOMEM;
2285 	}
2286 	dmamap = dma->dmamap;
2287 
2288 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2289 	    BUS_DMA_WRITE);
2290 	if (error) {
2291 		struct mbuf *m;
2292 		int i = 0;
2293 		for (m = m_head; m; m = m->m_next)
2294 			i++;
2295 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2296 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2297 		return (ENOMEM);
2298 	}
2299 
2300 	cur = frag = *txidx;
2301 
2302 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2303 		/* IP header checksum field must be 0! */
2304 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2305 	}
2306 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2307 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2308 
2309 	/* XXX fragmented packet checksum capability? */
2310 
2311 	/*
2312  	 * Start packing the mbufs in this chain into
2313 	 * the fragment pointers. Stop when we run out
2314  	 * of fragments or hit the end of the mbuf chain.
2315 	 */
2316 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2317 		if (frag > 383)
2318 			CSR_WRITE_4(sc, TI_WINBASE,
2319 			    TI_TX_RING_BASE + 6144);
2320 		else if (frag > 255)
2321 			CSR_WRITE_4(sc, TI_WINBASE,
2322 			    TI_TX_RING_BASE + 4096);
2323 		else if (frag > 127)
2324 			CSR_WRITE_4(sc, TI_WINBASE,
2325 			    TI_TX_RING_BASE + 2048);
2326 		else
2327 			CSR_WRITE_4(sc, TI_WINBASE,
2328 			    TI_TX_RING_BASE);
2329 		f = &sc->ti_tx_ring_nic[frag % 128];
2330 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2331 			break;
2332 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2333 		f->ti_len = dmamap->dm_segs[i].ds_len;
2334 		f->ti_flags = csum_flags;
2335 		n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2336 		if (n) {
2337 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2338 			f->ti_vlan_tag = *mtod(n, int *);
2339 		} else {
2340 			f->ti_vlan_tag = 0;
2341 		}
2342 		/*
2343 		 * Sanity check: avoid coming within 16 descriptors
2344 		 * of the end of the ring.
2345 		 */
2346 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2347 			return(ENOBUFS);
2348 		cur = frag;
2349 		TI_INC(frag, TI_TX_RING_CNT);
2350 		cnt++;
2351 	}
2352 
2353 	if (i < dmamap->dm_nsegs)
2354 		return(ENOBUFS);
2355 
2356 	if (frag == sc->ti_tx_saved_considx)
2357 		return(ENOBUFS);
2358 
2359 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2360 	    TI_BDFLAG_END;
2361 
2362 	/* Sync the packet's DMA map. */
2363 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2364 	    BUS_DMASYNC_PREWRITE);
2365 
2366 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2367 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2368 	sc->txdma[cur] = dma;
2369 	sc->ti_txcnt += cnt;
2370 
2371 	*txidx = frag;
2372 
2373 	return(0);
2374 }
2375 
2376 static int ti_encap_tigon2(sc, m_head, txidx)
2377 	struct ti_softc		*sc;
2378 	struct mbuf		*m_head;
2379 	u_int32_t		*txidx;
2380 {
2381 	struct ti_tx_desc	*f = NULL;
2382 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2383 	struct txdmamap_pool_entry *dma;
2384 	bus_dmamap_t dmamap;
2385 	int error, i;
2386 	struct mbuf *n;
2387 	u_int16_t csum_flags = 0;
2388 
2389 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2390 	if (dma == NULL) {
2391 		return ENOMEM;
2392 	}
2393 	dmamap = dma->dmamap;
2394 
2395 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2396 	    BUS_DMA_WRITE);
2397 	if (error) {
2398 		struct mbuf *m;
2399 		int i = 0;
2400 		for (m = m_head; m; m = m->m_next)
2401 			i++;
2402 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2403 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2404 		return (ENOMEM);
2405 	}
2406 
2407 	cur = firstfrag = frag = *txidx;
2408 
2409 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2410 		/* IP header checksum field must be 0! */
2411 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2412 	}
2413 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2414 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2415 
2416 	/* XXX fragmented packet checksum capability? */
2417 
2418 	/*
2419  	 * Start packing the mbufs in this chain into
2420 	 * the fragment pointers. Stop when we run out
2421  	 * of fragments or hit the end of the mbuf chain.
2422 	 */
2423 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2424 		f = &sc->ti_rdata->ti_tx_ring[frag];
2425 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2426 			break;
2427 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2428 		f->ti_len = dmamap->dm_segs[i].ds_len;
2429 		f->ti_flags = csum_flags;
2430 		n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2431 		if (n) {
2432 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2433 			f->ti_vlan_tag = *mtod(n, int *);
2434 		} else {
2435 			f->ti_vlan_tag = 0;
2436 		}
2437 		/*
2438 		 * Sanity check: avoid coming within 16 descriptors
2439 		 * of the end of the ring.
2440 		 */
2441 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2442 			return(ENOBUFS);
2443 		cur = frag;
2444 		TI_INC(frag, TI_TX_RING_CNT);
2445 		cnt++;
2446 	}
2447 
2448 	if (i < dmamap->dm_nsegs)
2449 		return(ENOBUFS);
2450 
2451 	if (frag == sc->ti_tx_saved_considx)
2452 		return(ENOBUFS);
2453 
2454 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2455 
2456 	/* Sync the packet's DMA map. */
2457 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2458 	    BUS_DMASYNC_PREWRITE);
2459 
2460 	/* Sync the descriptors we are using. */
2461 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2462 
2463 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2464 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2465 	sc->txdma[cur] = dma;
2466 	sc->ti_txcnt += cnt;
2467 
2468 	*txidx = frag;
2469 
2470 	return(0);
2471 }
2472 
2473 /*
2474  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2475  * to the mbuf data regions directly in the transmit descriptors.
2476  */
2477 static void ti_start(ifp)
2478 	struct ifnet		*ifp;
2479 {
2480 	struct ti_softc		*sc;
2481 	struct mbuf		*m_head = NULL;
2482 	u_int32_t		prodidx = 0;
2483 
2484 	sc = ifp->if_softc;
2485 
2486 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2487 
2488 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2489 		IFQ_POLL(&ifp->if_snd, m_head);
2490 		if (m_head == NULL)
2491 			break;
2492 
2493 		/*
2494 		 * Pack the data into the transmit ring. If we
2495 		 * don't have room, set the OACTIVE flag and wait
2496 		 * for the NIC to drain the ring.
2497 		 */
2498 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2499 			ifp->if_flags |= IFF_OACTIVE;
2500 			break;
2501 		}
2502 
2503 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2504 
2505 		/*
2506 		 * If there's a BPF listener, bounce a copy of this frame
2507 		 * to him.
2508 		 */
2509 #if NBPFILTER > 0
2510 		if (ifp->if_bpf)
2511 			bpf_mtap(ifp->if_bpf, m_head);
2512 #endif
2513 	}
2514 
2515 	/* Transmit */
2516 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2517 
2518 	/*
2519 	 * Set a timeout in case the chip goes out to lunch.
2520 	 */
2521 	ifp->if_timer = 5;
2522 
2523 	return;
2524 }
2525 
2526 static void ti_init(xsc)
2527 	void			*xsc;
2528 {
2529 	struct ti_softc		*sc = xsc;
2530         int			s;
2531 
2532 	s = splnet();
2533 
2534 	/* Cancel pending I/O and flush buffers. */
2535 	ti_stop(sc);
2536 
2537 	/* Init the gen info block, ring control blocks and firmware. */
2538 	if (ti_gibinit(sc)) {
2539 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2540 		splx(s);
2541 		return;
2542 	}
2543 
2544 	splx(s);
2545 
2546 	return;
2547 }
2548 
2549 static void ti_init2(sc)
2550 	struct ti_softc		*sc;
2551 {
2552 	struct ti_cmd_desc	cmd;
2553 	struct ifnet		*ifp;
2554 	u_int8_t		*m;
2555 	struct ifmedia		*ifm;
2556 	int			tmp;
2557 
2558 	ifp = &sc->ethercom.ec_if;
2559 
2560 	/* Specify MTU and interface index. */
2561 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2562 
2563 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2564 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2565 		tmp += ETHER_VLAN_ENCAP_LEN;
2566 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2567 
2568 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2569 
2570 	/* Load our MAC address. */
2571 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2572 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2573 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2574 		    | (m[4] << 8) | m[5]);
2575 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2576 
2577 	/* Enable or disable promiscuous mode as needed. */
2578 	if (ifp->if_flags & IFF_PROMISC) {
2579 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2580 	} else {
2581 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2582 	}
2583 
2584 	/* Program multicast filter. */
2585 	ti_setmulti(sc);
2586 
2587 	/*
2588 	 * If this is a Tigon 1, we should tell the
2589 	 * firmware to use software packet filtering.
2590 	 */
2591 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2592 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2593 	}
2594 
2595 	/* Init RX ring. */
2596 	ti_init_rx_ring_std(sc);
2597 
2598 	/* Init jumbo RX ring. */
2599 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2600 		ti_init_rx_ring_jumbo(sc);
2601 
2602 	/*
2603 	 * If this is a Tigon 2, we can also configure the
2604 	 * mini ring.
2605 	 */
2606 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2607 		ti_init_rx_ring_mini(sc);
2608 
2609 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2610 	sc->ti_rx_saved_considx = 0;
2611 
2612 	/* Init TX ring. */
2613 	ti_init_tx_ring(sc);
2614 
2615 	/* Tell firmware we're alive. */
2616 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2617 
2618 	/* Enable host interrupts. */
2619 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2620 
2621 	ifp->if_flags |= IFF_RUNNING;
2622 	ifp->if_flags &= ~IFF_OACTIVE;
2623 
2624 	/*
2625 	 * Make sure to set media properly. We have to do this
2626 	 * here since we have to issue commands in order to set
2627 	 * the link negotiation and we can't issue commands until
2628 	 * the firmware is running.
2629 	 */
2630 	ifm = &sc->ifmedia;
2631 	tmp = ifm->ifm_media;
2632 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2633 	ti_ifmedia_upd(ifp);
2634 	ifm->ifm_media = tmp;
2635 
2636 	return;
2637 }
2638 
2639 /*
2640  * Set media options.
2641  */
2642 static int ti_ifmedia_upd(ifp)
2643 	struct ifnet		*ifp;
2644 {
2645 	struct ti_softc		*sc;
2646 	struct ifmedia		*ifm;
2647 	struct ti_cmd_desc	cmd;
2648 
2649 	sc = ifp->if_softc;
2650 	ifm = &sc->ifmedia;
2651 
2652 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2653 		return(EINVAL);
2654 
2655 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2656 	case IFM_AUTO:
2657 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2658 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2659 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2660 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2661 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2662 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2663 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2664 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2665 		break;
2666 	case IFM_1000_SX:
2667 	case IFM_1000_T:
2668 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2669 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2670 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2671 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2672 		} else {
2673 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2674 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2675 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2676 		}
2677 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2678 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2679 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2680 		break;
2681 	case IFM_100_FX:
2682 	case IFM_10_FL:
2683 	case IFM_100_TX:
2684 	case IFM_10_T:
2685 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2686 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2687 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2688 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2689 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2690 		} else {
2691 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2692 		}
2693 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2694 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2695 		} else {
2696 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2697 		}
2698 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2699 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2700 		break;
2701 	}
2702 
2703 	sc->ethercom.ec_if.if_baudrate =
2704 	    ifmedia_baudrate(ifm->ifm_media);
2705 
2706 	return(0);
2707 }
2708 
2709 /*
2710  * Report current media status.
2711  */
2712 static void ti_ifmedia_sts(ifp, ifmr)
2713 	struct ifnet		*ifp;
2714 	struct ifmediareq	*ifmr;
2715 {
2716 	struct ti_softc		*sc;
2717 	u_int32_t               media = 0;
2718 
2719 	sc = ifp->if_softc;
2720 
2721 	ifmr->ifm_status = IFM_AVALID;
2722 	ifmr->ifm_active = IFM_ETHER;
2723 
2724 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2725 		return;
2726 
2727 	ifmr->ifm_status |= IFM_ACTIVE;
2728 
2729 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2730 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2731 		if (sc->ti_copper)
2732 			ifmr->ifm_active |= IFM_1000_T;
2733 		else
2734 			ifmr->ifm_active |= IFM_1000_SX;
2735 		if (media & TI_GLNK_FULL_DUPLEX)
2736 			ifmr->ifm_active |= IFM_FDX;
2737 		else
2738 			ifmr->ifm_active |= IFM_HDX;
2739 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2740 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2741 		if (sc->ti_copper) {
2742 			if (media & TI_LNK_100MB)
2743 				ifmr->ifm_active |= IFM_100_TX;
2744 			if (media & TI_LNK_10MB)
2745 				ifmr->ifm_active |= IFM_10_T;
2746 		} else {
2747 			if (media & TI_LNK_100MB)
2748 				ifmr->ifm_active |= IFM_100_FX;
2749 			if (media & TI_LNK_10MB)
2750 				ifmr->ifm_active |= IFM_10_FL;
2751 		}
2752 		if (media & TI_LNK_FULL_DUPLEX)
2753 			ifmr->ifm_active |= IFM_FDX;
2754 		if (media & TI_LNK_HALF_DUPLEX)
2755 			ifmr->ifm_active |= IFM_HDX;
2756 	}
2757 
2758 	sc->ethercom.ec_if.if_baudrate =
2759 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2760 
2761 	return;
2762 }
2763 
2764 static int
2765 ti_ether_ioctl(ifp, cmd, data)
2766 	struct ifnet *ifp;
2767 	u_long cmd;
2768 	caddr_t data;
2769 {
2770 	struct ifaddr *ifa = (struct ifaddr *) data;
2771 	struct ti_softc *sc = ifp->if_softc;
2772 
2773 	if ((ifp->if_flags & IFF_UP) == 0) {
2774 		ifp->if_flags |= IFF_UP;
2775 		ti_init(sc);
2776 	}
2777 
2778 	switch (cmd) {
2779 	case SIOCSIFADDR:
2780 
2781 		switch (ifa->ifa_addr->sa_family) {
2782 #ifdef INET
2783 		case AF_INET:
2784 			arp_ifinit(ifp, ifa);
2785 			break;
2786 #endif
2787 #ifdef NS
2788 		case AF_NS:
2789 		    {
2790 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2791 
2792 			 if (ns_nullhost(*ina))
2793 				ina->x_host = *(union ns_host *)
2794 				    LLADDR(ifp->if_sadl);
2795 			 else
2796 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2797 				    ifp->if_addrlen);
2798 			 break;
2799 		    }
2800 #endif
2801 		default:
2802 			break;
2803 		}
2804 		break;
2805 
2806 	default:
2807 		return (EINVAL);
2808 	}
2809 
2810 	return (0);
2811 }
2812 
2813 static int ti_ioctl(ifp, command, data)
2814 	struct ifnet		*ifp;
2815 	u_long			command;
2816 	caddr_t			data;
2817 {
2818 	struct ti_softc		*sc = ifp->if_softc;
2819 	struct ifreq		*ifr = (struct ifreq *) data;
2820 	int			s, error = 0;
2821 	struct ti_cmd_desc	cmd;
2822 
2823 	s = splnet();
2824 
2825 	switch(command) {
2826 	case SIOCSIFADDR:
2827 	case SIOCGIFADDR:
2828 		error = ti_ether_ioctl(ifp, command, data);
2829 		break;
2830 	case SIOCSIFMTU:
2831 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2832 			error = EINVAL;
2833 		else {
2834 			ifp->if_mtu = ifr->ifr_mtu;
2835 			ti_init(sc);
2836 		}
2837 		break;
2838 	case SIOCSIFFLAGS:
2839 		if (ifp->if_flags & IFF_UP) {
2840 			/*
2841 			 * If only the state of the PROMISC flag changed,
2842 			 * then just use the 'set promisc mode' command
2843 			 * instead of reinitializing the entire NIC. Doing
2844 			 * a full re-init means reloading the firmware and
2845 			 * waiting for it to start up, which may take a
2846 			 * second or two.
2847 			 */
2848 			if (ifp->if_flags & IFF_RUNNING &&
2849 			    ifp->if_flags & IFF_PROMISC &&
2850 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2851 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2852 				    TI_CMD_CODE_PROMISC_ENB, 0);
2853 			} else if (ifp->if_flags & IFF_RUNNING &&
2854 			    !(ifp->if_flags & IFF_PROMISC) &&
2855 			    sc->ti_if_flags & IFF_PROMISC) {
2856 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2857 				    TI_CMD_CODE_PROMISC_DIS, 0);
2858 			} else
2859 				ti_init(sc);
2860 		} else {
2861 			if (ifp->if_flags & IFF_RUNNING) {
2862 				ti_stop(sc);
2863 			}
2864 		}
2865 		sc->ti_if_flags = ifp->if_flags;
2866 		error = 0;
2867 		break;
2868 	case SIOCADDMULTI:
2869 	case SIOCDELMULTI:
2870 		error = (command == SIOCADDMULTI) ?
2871 		    ether_addmulti(ifr, &sc->ethercom) :
2872 		    ether_delmulti(ifr, &sc->ethercom);
2873 		if (error == ENETRESET) {
2874 			if (ifp->if_flags & IFF_RUNNING)
2875 				ti_setmulti(sc);
2876 			error = 0;
2877 		}
2878 		break;
2879 	case SIOCSIFMEDIA:
2880 	case SIOCGIFMEDIA:
2881 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2882 		break;
2883 	default:
2884 		error = EINVAL;
2885 		break;
2886 	}
2887 
2888 	(void)splx(s);
2889 
2890 	return(error);
2891 }
2892 
2893 static void ti_watchdog(ifp)
2894 	struct ifnet		*ifp;
2895 {
2896 	struct ti_softc		*sc;
2897 
2898 	sc = ifp->if_softc;
2899 
2900 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2901 	ti_stop(sc);
2902 	ti_init(sc);
2903 
2904 	ifp->if_oerrors++;
2905 
2906 	return;
2907 }
2908 
2909 /*
2910  * Stop the adapter and free any mbufs allocated to the
2911  * RX and TX lists.
2912  */
2913 static void ti_stop(sc)
2914 	struct ti_softc		*sc;
2915 {
2916 	struct ifnet		*ifp;
2917 	struct ti_cmd_desc	cmd;
2918 
2919 	ifp = &sc->ethercom.ec_if;
2920 
2921 	/* Disable host interrupts. */
2922 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2923 	/*
2924 	 * Tell firmware we're shutting down.
2925 	 */
2926 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2927 
2928 	/* Halt and reinitialize. */
2929 	ti_chipinit(sc);
2930 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2931 	ti_chipinit(sc);
2932 
2933 	/* Free the RX lists. */
2934 	ti_free_rx_ring_std(sc);
2935 
2936 	/* Free jumbo RX list. */
2937 	ti_free_rx_ring_jumbo(sc);
2938 
2939 	/* Free mini RX list. */
2940 	ti_free_rx_ring_mini(sc);
2941 
2942 	/* Free TX buffers. */
2943 	ti_free_tx_ring(sc);
2944 
2945 	sc->ti_ev_prodidx.ti_idx = 0;
2946 	sc->ti_return_prodidx.ti_idx = 0;
2947 	sc->ti_tx_considx.ti_idx = 0;
2948 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2949 
2950 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2951 
2952 	return;
2953 }
2954 
2955 /*
2956  * Stop all chip I/O so that the kernel's probe routines don't
2957  * get confused by errant DMAs when rebooting.
2958  */
2959 static void ti_shutdown(v)
2960 	void *v;
2961 {
2962 	struct ti_softc		*sc = v;
2963 
2964 	ti_chipinit(sc);
2965 
2966 	return;
2967 }
2968