xref: /netbsd-src/sys/dev/pci/if_ti.c (revision 21e37cc72a480a47828990a439cde7ac9ffaf0c6)
1 /* $NetBSD: if_ti.c,v 1.60 2004/03/18 23:20:32 bouyer Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.60 2004/03/18 23:20:32 bouyer Exp $");
85 
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119 
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124 
125 #include <machine/bus.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/pci/if_tireg.h>
132 
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static const struct ti_type ti_devs[] = {
141 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
142 		"Alteon AceNIC 1000BASE-SX Ethernet" },
143 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 		"Alteon AceNIC 1000BASE-T Ethernet" },
145 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 		"Netgear GA620 1000BASE-SX Ethernet" },
149 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 		"Netgear GA620 1000BASE-T Ethernet" },
151 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ 0, 0, NULL }
154 };
155 
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe	__P((struct device *, struct cfdata *, void *));
158 static void ti_attach	__P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1	__P((struct ti_softc *));
161 static void ti_txeof_tigon2	__P((struct ti_softc *));
162 static void ti_rxeof		__P((struct ti_softc *));
163 
164 static void ti_stats_update	__P((struct ti_softc *));
165 static int ti_encap_tigon1	__P((struct ti_softc *, struct mbuf *,
166 					u_int32_t *));
167 static int ti_encap_tigon2	__P((struct ti_softc *, struct mbuf *,
168 					u_int32_t *));
169 
170 static int ti_intr		__P((void *));
171 static void ti_start		__P((struct ifnet *));
172 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
173 static void ti_init		__P((void *));
174 static void ti_init2		__P((struct ti_softc *));
175 static void ti_stop		__P((struct ti_softc *));
176 static void ti_watchdog		__P((struct ifnet *));
177 static int ti_ifmedia_upd	__P((struct ifnet *));
178 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
179 
180 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
181 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
182 						int, u_int8_t *));
183 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
184 
185 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti		__P((struct ti_softc *));
188 
189 static void ti_mem		__P((struct ti_softc *, u_int32_t,
190 					u_int32_t, caddr_t));
191 static void ti_loadfw		__P((struct ti_softc *));
192 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
194 					caddr_t, int));
195 static void ti_handle_events	__P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
197 static void *ti_jalloc		__P((struct ti_softc *));
198 static void ti_jfree		__P((struct mbuf *, caddr_t, size_t, void *));
199 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std	__P((struct ti_softc *));
203 static void ti_free_rx_ring_std	__P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
206 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
207 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
208 static void ti_free_tx_ring	__P((struct ti_softc *));
209 static int ti_init_tx_ring	__P((struct ti_softc *));
210 
211 static int ti_64bitslot_war	__P((struct ti_softc *));
212 static int ti_chipinit		__P((struct ti_softc *));
213 static int ti_gibinit		__P((struct ti_softc *));
214 
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216 
217 CFATTACH_DECL(ti, sizeof(struct ti_softc),
218     ti_probe, ti_attach, NULL, NULL);
219 
220 /*
221  * Send an instruction or address to the EEPROM, check for ACK.
222  */
223 static u_int32_t ti_eeprom_putbyte(sc, byte)
224 	struct ti_softc		*sc;
225 	int			byte;
226 {
227 	int		i, ack = 0;
228 
229 	/*
230 	 * Make sure we're in TX mode.
231 	 */
232 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
233 
234 	/*
235 	 * Feed in each bit and stobe the clock.
236 	 */
237 	for (i = 0x80; i; i >>= 1) {
238 		if (byte & i) {
239 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 		} else {
241 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
242 		}
243 		DELAY(1);
244 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 		DELAY(1);
246 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 	}
248 
249 	/*
250 	 * Turn off TX mode.
251 	 */
252 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
253 
254 	/*
255 	 * Check for ack.
256 	 */
257 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
259 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
260 
261 	return(ack);
262 }
263 
264 /*
265  * Read a byte of data stored in the EEPROM at address 'addr.'
266  * We have to send two address bytes since the EEPROM can hold
267  * more than 256 bytes of data.
268  */
269 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
270 	struct ti_softc		*sc;
271 	int			addr;
272 	u_int8_t		*dest;
273 {
274 	int		i;
275 	u_int8_t		byte = 0;
276 
277 	EEPROM_START;
278 
279 	/*
280 	 * Send write control code to EEPROM.
281 	 */
282 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
283 		printf("%s: failed to send write command, status: %x\n",
284 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
285 		return(1);
286 	}
287 
288 	/*
289 	 * Send first byte of address of byte we want to read.
290 	 */
291 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
292 		printf("%s: failed to send address, status: %x\n",
293 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 		return(1);
295 	}
296 	/*
297 	 * Send second byte address of byte we want to read.
298 	 */
299 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
300 		printf("%s: failed to send address, status: %x\n",
301 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 		return(1);
303 	}
304 
305 	EEPROM_STOP;
306 	EEPROM_START;
307 	/*
308 	 * Send read control code to EEPROM.
309 	 */
310 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
311 		printf("%s: failed to send read command, status: %x\n",
312 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
313 		return(1);
314 	}
315 
316 	/*
317 	 * Start reading bits from EEPROM.
318 	 */
319 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
320 	for (i = 0x80; i; i >>= 1) {
321 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 		DELAY(1);
323 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
324 			byte |= i;
325 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 		DELAY(1);
327 	}
328 
329 	EEPROM_STOP;
330 
331 	/*
332 	 * No ACK generated for read, so just return byte.
333 	 */
334 
335 	*dest = byte;
336 
337 	return(0);
338 }
339 
340 /*
341  * Read a sequence of bytes from the EEPROM.
342  */
343 static int ti_read_eeprom(sc, dest, off, cnt)
344 	struct ti_softc		*sc;
345 	caddr_t			dest;
346 	int			off;
347 	int			cnt;
348 {
349 	int			err = 0, i;
350 	u_int8_t		byte = 0;
351 
352 	for (i = 0; i < cnt; i++) {
353 		err = ti_eeprom_getbyte(sc, off + i, &byte);
354 		if (err)
355 			break;
356 		*(dest + i) = byte;
357 	}
358 
359 	return(err ? 1 : 0);
360 }
361 
362 /*
363  * NIC memory access function. Can be used to either clear a section
364  * of NIC local memory or (if buf is non-NULL) copy data into it.
365  */
366 static void ti_mem(sc, addr, len, buf)
367 	struct ti_softc		*sc;
368 	u_int32_t		addr, len;
369 	caddr_t			buf;
370 {
371 	int			segptr, segsize, cnt;
372 	caddr_t			ptr;
373 
374 	segptr = addr;
375 	cnt = len;
376 	ptr = buf;
377 
378 	while(cnt) {
379 		if (cnt < TI_WINLEN)
380 			segsize = cnt;
381 		else
382 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 		if (buf == NULL) {
385 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
386 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
387 			    segsize / 4);
388 		} else {
389 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
390 			bus_space_write_region_stream_4(sc->ti_btag,
391 			    sc->ti_bhandle,
392 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
393 			    (u_int32_t *)ptr, segsize / 4);
394 #else
395 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
396 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
397 			    (u_int32_t *)ptr, segsize / 4);
398 #endif
399 			ptr += segsize;
400 		}
401 		segptr += segsize;
402 		cnt -= segsize;
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Load firmware image into the NIC. Check that the firmware revision
410  * is acceptable and see if we want the firmware for the Tigon 1 or
411  * Tigon 2.
412  */
413 static void ti_loadfw(sc)
414 	struct ti_softc		*sc;
415 {
416 	switch(sc->ti_hwrev) {
417 	case TI_HWREV_TIGON:
418 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421 			printf("%s: firmware revision mismatch; want "
422 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
423 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425 			    tigonFwReleaseMinor, tigonFwReleaseFix);
426 			return;
427 		}
428 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429 		    (caddr_t)tigonFwText);
430 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431 		    (caddr_t)tigonFwData);
432 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433 		    (caddr_t)tigonFwRodata);
434 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437 		break;
438 	case TI_HWREV_TIGON_II:
439 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442 			printf("%s: firmware revision mismatch; want "
443 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
444 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447 			return;
448 		}
449 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450 		    (caddr_t)tigon2FwText);
451 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452 		    (caddr_t)tigon2FwData);
453 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454 		    (caddr_t)tigon2FwRodata);
455 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458 		break;
459 	default:
460 		printf("%s: can't load firmware: unknown hardware rev\n",
461 		    sc->sc_dev.dv_xname);
462 		break;
463 	}
464 
465 	return;
466 }
467 
468 /*
469  * Send the NIC a command via the command ring.
470  */
471 static void ti_cmd(sc, cmd)
472 	struct ti_softc		*sc;
473 	struct ti_cmd_desc	*cmd;
474 {
475 	u_int32_t		index;
476 
477 	index = sc->ti_cmd_saved_prodidx;
478 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
479 	TI_INC(index, TI_CMD_RING_CNT);
480 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
481 	sc->ti_cmd_saved_prodidx = index;
482 
483 	return;
484 }
485 
486 /*
487  * Send the NIC an extended command. The 'len' parameter specifies the
488  * number of command slots to include after the initial command.
489  */
490 static void ti_cmd_ext(sc, cmd, arg, len)
491 	struct ti_softc		*sc;
492 	struct ti_cmd_desc	*cmd;
493 	caddr_t			arg;
494 	int			len;
495 {
496 	u_int32_t		index;
497 	int		i;
498 
499 	index = sc->ti_cmd_saved_prodidx;
500 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
501 	TI_INC(index, TI_CMD_RING_CNT);
502 	for (i = 0; i < len; i++) {
503 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
504 		    *(u_int32_t *)(&arg[i * 4]));
505 		TI_INC(index, TI_CMD_RING_CNT);
506 	}
507 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
508 	sc->ti_cmd_saved_prodidx = index;
509 
510 	return;
511 }
512 
513 /*
514  * Handle events that have triggered interrupts.
515  */
516 static void ti_handle_events(sc)
517 	struct ti_softc		*sc;
518 {
519 	struct ti_event_desc	*e;
520 
521 	if (sc->ti_rdata->ti_event_ring == NULL)
522 		return;
523 
524 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
525 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
526 		switch(e->ti_event) {
527 		case TI_EV_LINKSTAT_CHANGED:
528 			sc->ti_linkstat = e->ti_code;
529 			if (e->ti_code == TI_EV_CODE_LINK_UP)
530 				printf("%s: 10/100 link up\n",
531 				       sc->sc_dev.dv_xname);
532 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533 				printf("%s: gigabit link up\n",
534 				       sc->sc_dev.dv_xname);
535 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
536 				printf("%s: link down\n",
537 				       sc->sc_dev.dv_xname);
538 			break;
539 		case TI_EV_ERROR:
540 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
541 				printf("%s: invalid command\n",
542 				       sc->sc_dev.dv_xname);
543 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
544 				printf("%s: unknown command\n",
545 				       sc->sc_dev.dv_xname);
546 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
547 				printf("%s: bad config data\n",
548 				       sc->sc_dev.dv_xname);
549 			break;
550 		case TI_EV_FIRMWARE_UP:
551 			ti_init2(sc);
552 			break;
553 		case TI_EV_STATS_UPDATED:
554 			ti_stats_update(sc);
555 			break;
556 		case TI_EV_RESET_JUMBO_RING:
557 		case TI_EV_MCAST_UPDATED:
558 			/* Who cares. */
559 			break;
560 		default:
561 			printf("%s: unknown event: %d\n",
562 			    sc->sc_dev.dv_xname, e->ti_event);
563 			break;
564 		}
565 		/* Advance the consumer index. */
566 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568 	}
569 
570 	return;
571 }
572 
573 /*
574  * Memory management for the jumbo receive ring is a pain in the
575  * butt. We need to allocate at least 9018 bytes of space per frame,
576  * _and_ it has to be contiguous (unless you use the extended
577  * jumbo descriptor format). Using malloc() all the time won't
578  * work: malloc() allocates memory in powers of two, which means we
579  * would end up wasting a considerable amount of space by allocating
580  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581  * to do our own memory management.
582  *
583  * The driver needs to allocate a contiguous chunk of memory at boot
584  * time. We then chop this up ourselves into 9K pieces and use them
585  * as external mbuf storage.
586  *
587  * One issue here is how much memory to allocate. The jumbo ring has
588  * 256 slots in it, but at 9K per slot than can consume over 2MB of
589  * RAM. This is a bit much, especially considering we also need
590  * RAM for the standard ring and mini ring (on the Tigon 2). To
591  * save space, we only actually allocate enough memory for 64 slots
592  * by default, which works out to between 500 and 600K. This can
593  * be tuned by changing a #define in if_tireg.h.
594  */
595 
596 static int ti_alloc_jumbo_mem(sc)
597 	struct ti_softc		*sc;
598 {
599 	caddr_t			ptr;
600 	int		i;
601 	struct ti_jpool_entry   *entry;
602 	bus_dma_segment_t dmaseg;
603 	int error, dmanseg;
604 
605 	/* Grab a big chunk o' storage. */
606 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
607 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
608 	    BUS_DMA_NOWAIT)) != 0) {
609 		printf("%s: can't allocate jumbo buffer, error = %d\n",
610 		       sc->sc_dev.dv_xname, error);
611 		return (error);
612 	}
613 
614 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
615 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
616 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
617 		printf("%s: can't map jumbo buffer, error = %d\n",
618 		       sc->sc_dev.dv_xname, error);
619 		return (error);
620 	}
621 
622 	if ((error = bus_dmamap_create(sc->sc_dmat,
623 	    TI_JMEM, 1,
624 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
625 	    &sc->jumbo_dmamap)) != 0) {
626 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
627 		       sc->sc_dev.dv_xname, error);
628 		return (error);
629 	}
630 
631 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
632 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
633 	    BUS_DMA_NOWAIT)) != 0) {
634 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
635 		       sc->sc_dev.dv_xname, error);
636 		return (error);
637 	}
638 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
639 
640 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
641 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
642 
643 	/*
644 	 * Now divide it up into 9K pieces and save the addresses
645 	 * in an array.
646 	 */
647 	ptr = sc->ti_cdata.ti_jumbo_buf;
648 	for (i = 0; i < TI_JSLOTS; i++) {
649 		sc->ti_cdata.ti_jslots[i] = ptr;
650 		ptr += TI_JLEN;
651 		entry = malloc(sizeof(struct ti_jpool_entry),
652 			       M_DEVBUF, M_NOWAIT);
653 		if (entry == NULL) {
654 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
655 			sc->ti_cdata.ti_jumbo_buf = NULL;
656 			printf("%s: no memory for jumbo "
657 			    "buffer queue!\n", sc->sc_dev.dv_xname);
658 			return(ENOBUFS);
659 		}
660 		entry->slot = i;
661 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
662 				    jpool_entries);
663 	}
664 
665 	return(0);
666 }
667 
668 /*
669  * Allocate a jumbo buffer.
670  */
671 static void *ti_jalloc(sc)
672 	struct ti_softc		*sc;
673 {
674 	struct ti_jpool_entry   *entry;
675 
676 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
677 
678 	if (entry == NULL) {
679 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
680 		return(NULL);
681 	}
682 
683 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
684 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
685 	return(sc->ti_cdata.ti_jslots[entry->slot]);
686 }
687 
688 /*
689  * Release a jumbo buffer.
690  */
691 static void ti_jfree(m, buf, size, arg)
692 	struct mbuf		*m;
693 	caddr_t			buf;
694 	size_t			size;
695 	void *arg;
696 {
697 	struct ti_softc		*sc;
698 	int		        i, s;
699 	struct ti_jpool_entry   *entry;
700 
701 	/* Extract the softc struct pointer. */
702 	sc = (struct ti_softc *)arg;
703 
704 	if (sc == NULL)
705 		panic("ti_jfree: didn't get softc pointer!");
706 
707 	/* calculate the slot this buffer belongs to */
708 
709 	i = ((caddr_t)buf
710 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
711 
712 	if ((i < 0) || (i >= TI_JSLOTS))
713 		panic("ti_jfree: asked to free buffer that we don't manage!");
714 
715 	s = splvm();
716 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
717 	if (entry == NULL)
718 		panic("ti_jfree: buffer not in use!");
719 	entry->slot = i;
720 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
721 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
722 
723 	if (__predict_true(m != NULL))
724 		pool_cache_put(&mbpool_cache, m);
725 	splx(s);
726 }
727 
728 
729 /*
730  * Intialize a standard receive ring descriptor.
731  */
732 static int ti_newbuf_std(sc, i, m, dmamap)
733 	struct ti_softc		*sc;
734 	int			i;
735 	struct mbuf		*m;
736 	bus_dmamap_t dmamap; /* required if (m != NULL) */
737 {
738 	struct mbuf		*m_new = NULL;
739 	struct ti_rx_desc	*r;
740 	int error;
741 
742 	if (dmamap == NULL) {
743 		/* if (m) panic() */
744 
745 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
746 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
747 					       &dmamap)) != 0) {
748 			printf("%s: can't create recv map, error = %d\n",
749 			       sc->sc_dev.dv_xname, error);
750 			return(ENOMEM);
751 		}
752 	}
753 	sc->std_dmamap[i] = dmamap;
754 
755 	if (m == NULL) {
756 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
757 		if (m_new == NULL) {
758 			printf("%s: mbuf allocation failed "
759 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
760 			return(ENOBUFS);
761 		}
762 
763 		MCLGET(m_new, M_DONTWAIT);
764 		if (!(m_new->m_flags & M_EXT)) {
765 			printf("%s: cluster allocation failed "
766 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
767 			m_freem(m_new);
768 			return(ENOBUFS);
769 		}
770 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
771 		m_adj(m_new, ETHER_ALIGN);
772 
773 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
774 				mtod(m_new, caddr_t), m_new->m_len, NULL,
775 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
776 			printf("%s: can't load recv map, error = %d\n",
777 			       sc->sc_dev.dv_xname, error);
778 			return (ENOMEM);
779 		}
780 	} else {
781 		m_new = m;
782 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
783 		m_new->m_data = m_new->m_ext.ext_buf;
784 		m_adj(m_new, ETHER_ALIGN);
785 
786 		/* reuse the dmamap */
787 	}
788 
789 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
790 	r = &sc->ti_rdata->ti_rx_std_ring[i];
791 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
792 	r->ti_type = TI_BDTYPE_RECV_BD;
793 	r->ti_flags = 0;
794 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
795 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
796 	if (sc->ethercom.ec_if.if_capenable &
797 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
798 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
799 	r->ti_len = m_new->m_len; /* == ds_len */
800 	r->ti_idx = i;
801 
802 	return(0);
803 }
804 
805 /*
806  * Intialize a mini receive ring descriptor. This only applies to
807  * the Tigon 2.
808  */
809 static int ti_newbuf_mini(sc, i, m, dmamap)
810 	struct ti_softc		*sc;
811 	int			i;
812 	struct mbuf		*m;
813 	bus_dmamap_t dmamap; /* required if (m != NULL) */
814 {
815 	struct mbuf		*m_new = NULL;
816 	struct ti_rx_desc	*r;
817 	int error;
818 
819 	if (dmamap == NULL) {
820 		/* if (m) panic() */
821 
822 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
823 					       MHLEN, 0, BUS_DMA_NOWAIT,
824 					       &dmamap)) != 0) {
825 			printf("%s: can't create recv map, error = %d\n",
826 			       sc->sc_dev.dv_xname, error);
827 			return(ENOMEM);
828 		}
829 	}
830 	sc->mini_dmamap[i] = dmamap;
831 
832 	if (m == NULL) {
833 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
834 		if (m_new == NULL) {
835 			printf("%s: mbuf allocation failed "
836 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
837 			return(ENOBUFS);
838 		}
839 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
840 		m_adj(m_new, ETHER_ALIGN);
841 
842 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
843 				mtod(m_new, caddr_t), m_new->m_len, NULL,
844 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
845 			printf("%s: can't load recv map, error = %d\n",
846 			       sc->sc_dev.dv_xname, error);
847 			return (ENOMEM);
848 		}
849 	} else {
850 		m_new = m;
851 		m_new->m_data = m_new->m_pktdat;
852 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
853 		m_adj(m_new, ETHER_ALIGN);
854 
855 		/* reuse the dmamap */
856 	}
857 
858 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
859 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
860 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
861 	r->ti_type = TI_BDTYPE_RECV_BD;
862 	r->ti_flags = TI_BDFLAG_MINI_RING;
863 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
864 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
865 	if (sc->ethercom.ec_if.if_capenable &
866 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
867 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
868 	r->ti_len = m_new->m_len; /* == ds_len */
869 	r->ti_idx = i;
870 
871 	return(0);
872 }
873 
874 /*
875  * Initialize a jumbo receive ring descriptor. This allocates
876  * a jumbo buffer from the pool managed internally by the driver.
877  */
878 static int ti_newbuf_jumbo(sc, i, m)
879 	struct ti_softc		*sc;
880 	int			i;
881 	struct mbuf		*m;
882 {
883 	struct mbuf		*m_new = NULL;
884 	struct ti_rx_desc	*r;
885 
886 	if (m == NULL) {
887 		caddr_t			*buf = NULL;
888 
889 		/* Allocate the mbuf. */
890 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
891 		if (m_new == NULL) {
892 			printf("%s: mbuf allocation failed "
893 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
894 			return(ENOBUFS);
895 		}
896 
897 		/* Allocate the jumbo buffer */
898 		buf = ti_jalloc(sc);
899 		if (buf == NULL) {
900 			m_freem(m_new);
901 			printf("%s: jumbo allocation failed "
902 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
903 			return(ENOBUFS);
904 		}
905 
906 		/* Attach the buffer to the mbuf. */
907 		MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
908 		    M_DEVBUF, ti_jfree, sc);
909 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
910 	} else {
911 		m_new = m;
912 		m_new->m_data = m_new->m_ext.ext_buf;
913 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
914 	}
915 
916 	m_adj(m_new, ETHER_ALIGN);
917 	/* Set up the descriptor. */
918 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
919 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
920 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
921 		((caddr_t)mtod(m_new, caddr_t)
922 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
923 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
924 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
925 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
926 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
927 	if (sc->ethercom.ec_if.if_capenable &
928 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
929 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
930 	r->ti_len = m_new->m_len;
931 	r->ti_idx = i;
932 
933 	return(0);
934 }
935 
936 /*
937  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
938  * that's 1MB or memory, which is a lot. For now, we fill only the first
939  * 256 ring entries and hope that our CPU is fast enough to keep up with
940  * the NIC.
941  */
942 static int ti_init_rx_ring_std(sc)
943 	struct ti_softc		*sc;
944 {
945 	int		i;
946 	struct ti_cmd_desc	cmd;
947 
948 	for (i = 0; i < TI_SSLOTS; i++) {
949 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
950 			return(ENOBUFS);
951 	};
952 
953 	TI_UPDATE_STDPROD(sc, i - 1);
954 	sc->ti_std = i - 1;
955 
956 	return(0);
957 }
958 
959 static void ti_free_rx_ring_std(sc)
960 	struct ti_softc		*sc;
961 {
962 	int		i;
963 
964 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
965 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
966 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
967 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
968 
969 			/* if (sc->std_dmamap[i] == 0) panic() */
970 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
971 			sc->std_dmamap[i] = 0;
972 		}
973 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
974 		    sizeof(struct ti_rx_desc));
975 	}
976 
977 	return;
978 }
979 
980 static int ti_init_rx_ring_jumbo(sc)
981 	struct ti_softc		*sc;
982 {
983 	int		i;
984 	struct ti_cmd_desc	cmd;
985 
986 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
987 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
988 			return(ENOBUFS);
989 	};
990 
991 	TI_UPDATE_JUMBOPROD(sc, i - 1);
992 	sc->ti_jumbo = i - 1;
993 
994 	return(0);
995 }
996 
997 static void ti_free_rx_ring_jumbo(sc)
998 	struct ti_softc		*sc;
999 {
1000 	int		i;
1001 
1002 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1003 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1004 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1005 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1006 		}
1007 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1008 		    sizeof(struct ti_rx_desc));
1009 	}
1010 
1011 	return;
1012 }
1013 
1014 static int ti_init_rx_ring_mini(sc)
1015 	struct ti_softc		*sc;
1016 {
1017 	int		i;
1018 
1019 	for (i = 0; i < TI_MSLOTS; i++) {
1020 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1021 			return(ENOBUFS);
1022 	};
1023 
1024 	TI_UPDATE_MINIPROD(sc, i - 1);
1025 	sc->ti_mini = i - 1;
1026 
1027 	return(0);
1028 }
1029 
1030 static void ti_free_rx_ring_mini(sc)
1031 	struct ti_softc		*sc;
1032 {
1033 	int		i;
1034 
1035 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1036 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1037 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1038 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1039 
1040 			/* if (sc->mini_dmamap[i] == 0) panic() */
1041 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1042 			sc->mini_dmamap[i] = 0;
1043 		}
1044 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1045 		    sizeof(struct ti_rx_desc));
1046 	}
1047 
1048 	return;
1049 }
1050 
1051 static void ti_free_tx_ring(sc)
1052 	struct ti_softc		*sc;
1053 {
1054 	int		i;
1055 	struct txdmamap_pool_entry *dma;
1056 
1057 	if (sc->ti_rdata->ti_tx_ring == NULL)
1058 		return;
1059 
1060 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1061 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1062 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1063 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1064 
1065 			/* if (sc->txdma[i] == 0) panic() */
1066 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1067 					    link);
1068 			sc->txdma[i] = 0;
1069 		}
1070 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1071 		    sizeof(struct ti_tx_desc));
1072 	}
1073 
1074 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1075 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1076 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1077 		free(dma, M_DEVBUF);
1078 	}
1079 
1080 	return;
1081 }
1082 
1083 static int ti_init_tx_ring(sc)
1084 	struct ti_softc		*sc;
1085 {
1086 	int i, error;
1087 	bus_dmamap_t dmamap;
1088 	struct txdmamap_pool_entry *dma;
1089 
1090 	sc->ti_txcnt = 0;
1091 	sc->ti_tx_saved_considx = 0;
1092 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1093 
1094 	SIMPLEQ_INIT(&sc->txdma_list);
1095 	for (i = 0; i < TI_RSLOTS; i++) {
1096 		/* I've seen mbufs with 30 fragments. */
1097 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1098 					       40, ETHER_MAX_LEN_JUMBO, 0,
1099 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1100 			printf("%s: can't create tx map, error = %d\n",
1101 			       sc->sc_dev.dv_xname, error);
1102 			return(ENOMEM);
1103 		}
1104 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1105 		if (!dma) {
1106 			printf("%s: can't alloc txdmamap_pool_entry\n",
1107 			       sc->sc_dev.dv_xname);
1108 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1109 			return (ENOMEM);
1110 		}
1111 		dma->dmamap = dmamap;
1112 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1113 	}
1114 
1115 	return(0);
1116 }
1117 
1118 /*
1119  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1120  * but we have to support the old way too so that Tigon 1 cards will
1121  * work.
1122  */
1123 void ti_add_mcast(sc, addr)
1124 	struct ti_softc		*sc;
1125 	struct ether_addr	*addr;
1126 {
1127 	struct ti_cmd_desc	cmd;
1128 	u_int16_t		*m;
1129 	u_int32_t		ext[2] = {0, 0};
1130 
1131 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1132 
1133 	switch(sc->ti_hwrev) {
1134 	case TI_HWREV_TIGON:
1135 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1136 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1137 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1138 		break;
1139 	case TI_HWREV_TIGON_II:
1140 		ext[0] = htons(m[0]);
1141 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1142 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1143 		break;
1144 	default:
1145 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1146 		break;
1147 	}
1148 
1149 	return;
1150 }
1151 
1152 void ti_del_mcast(sc, addr)
1153 	struct ti_softc		*sc;
1154 	struct ether_addr	*addr;
1155 {
1156 	struct ti_cmd_desc	cmd;
1157 	u_int16_t		*m;
1158 	u_int32_t		ext[2] = {0, 0};
1159 
1160 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1161 
1162 	switch(sc->ti_hwrev) {
1163 	case TI_HWREV_TIGON:
1164 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1165 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1166 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1167 		break;
1168 	case TI_HWREV_TIGON_II:
1169 		ext[0] = htons(m[0]);
1170 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1171 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1172 		break;
1173 	default:
1174 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1175 		break;
1176 	}
1177 
1178 	return;
1179 }
1180 
1181 /*
1182  * Configure the Tigon's multicast address filter.
1183  *
1184  * The actual multicast table management is a bit of a pain, thanks to
1185  * slight brain damage on the part of both Alteon and us. With our
1186  * multicast code, we are only alerted when the multicast address table
1187  * changes and at that point we only have the current list of addresses:
1188  * we only know the current state, not the previous state, so we don't
1189  * actually know what addresses were removed or added. The firmware has
1190  * state, but we can't get our grubby mits on it, and there is no 'delete
1191  * all multicast addresses' command. Hence, we have to maintain our own
1192  * state so we know what addresses have been programmed into the NIC at
1193  * any given time.
1194  */
1195 static void ti_setmulti(sc)
1196 	struct ti_softc		*sc;
1197 {
1198 	struct ifnet		*ifp;
1199 	struct ti_cmd_desc	cmd;
1200 	struct ti_mc_entry	*mc;
1201 	u_int32_t		intrs;
1202 	struct ether_multi *enm;
1203 	struct ether_multistep step;
1204 
1205 	ifp = &sc->ethercom.ec_if;
1206 
1207 	/* Disable interrupts. */
1208 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1209 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1210 
1211 	/* First, zot all the existing filters. */
1212 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1213 		ti_del_mcast(sc, &mc->mc_addr);
1214 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1215 		free(mc, M_DEVBUF);
1216 	}
1217 
1218 	/*
1219 	 * Remember all multicast addresses so that we can delete them
1220 	 * later.  Punt if there is a range of addresses or memory shortage.
1221 	 */
1222 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1223 	while (enm != NULL) {
1224 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1225 		    ETHER_ADDR_LEN) != 0)
1226 			goto allmulti;
1227 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1228 		    M_NOWAIT)) == NULL)
1229 			goto allmulti;
1230 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1231 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1232 		ETHER_NEXT_MULTI(step, enm);
1233 	}
1234 
1235 	/* Accept only programmed multicast addresses */
1236 	ifp->if_flags &= ~IFF_ALLMULTI;
1237 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1238 
1239 	/* Now program new ones. */
1240 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1241 		ti_add_mcast(sc, &mc->mc_addr);
1242 
1243 	/* Re-enable interrupts. */
1244 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1245 
1246 	return;
1247 
1248 allmulti:
1249 	/* No need to keep individual multicast addresses */
1250 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1251 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1252 		free(mc, M_DEVBUF);
1253 	}
1254 
1255 	/* Accept all multicast addresses */
1256 	ifp->if_flags |= IFF_ALLMULTI;
1257 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1258 
1259 	/* Re-enable interrupts. */
1260 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1261 }
1262 
1263 /*
1264  * Check to see if the BIOS has configured us for a 64 bit slot when
1265  * we aren't actually in one. If we detect this condition, we can work
1266  * around it on the Tigon 2 by setting a bit in the PCI state register,
1267  * but for the Tigon 1 we must give up and abort the interface attach.
1268  */
1269 static int ti_64bitslot_war(sc)
1270 	struct ti_softc		*sc;
1271 {
1272 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1273 		CSR_WRITE_4(sc, 0x600, 0);
1274 		CSR_WRITE_4(sc, 0x604, 0);
1275 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1276 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1277 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1278 				return(EINVAL);
1279 			else {
1280 				TI_SETBIT(sc, TI_PCI_STATE,
1281 				    TI_PCISTATE_32BIT_BUS);
1282 				return(0);
1283 			}
1284 		}
1285 	}
1286 
1287 	return(0);
1288 }
1289 
1290 /*
1291  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1292  * self-test results.
1293  */
1294 static int ti_chipinit(sc)
1295 	struct ti_softc		*sc;
1296 {
1297 	u_int32_t		cacheline;
1298 	u_int32_t		pci_writemax = 0;
1299 	u_int32_t		rev;
1300 
1301 	/* Initialize link to down state. */
1302 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1303 
1304 	/* Set endianness before we access any non-PCI registers. */
1305 #if BYTE_ORDER == BIG_ENDIAN
1306 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1307 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1308 #else
1309 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1310 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1311 #endif
1312 
1313 	/* Check the ROM failed bit to see if self-tests passed. */
1314 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1315 		printf("%s: board self-diagnostics failed!\n",
1316 		       sc->sc_dev.dv_xname);
1317 		return(ENODEV);
1318 	}
1319 
1320 	/* Halt the CPU. */
1321 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1322 
1323 	/* Figure out the hardware revision. */
1324 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1325 	switch(rev) {
1326 	case TI_REV_TIGON_I:
1327 		sc->ti_hwrev = TI_HWREV_TIGON;
1328 		break;
1329 	case TI_REV_TIGON_II:
1330 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1331 		break;
1332 	default:
1333 		printf("%s: unsupported chip revision 0x%x\n",
1334 		    sc->sc_dev.dv_xname, rev);
1335 		return(ENODEV);
1336 	}
1337 
1338 	/* Do special setup for Tigon 2. */
1339 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1340 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1341 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1342 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1343 	}
1344 
1345 	/* Set up the PCI state register. */
1346 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1347 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1348 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1349 	}
1350 
1351 	/* Clear the read/write max DMA parameters. */
1352 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1353 	    TI_PCISTATE_READ_MAXDMA));
1354 
1355 	/* Get cache line size. */
1356 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1357 
1358 	/*
1359 	 * If the system has set enabled the PCI memory write
1360 	 * and invalidate command in the command register, set
1361 	 * the write max parameter accordingly. This is necessary
1362 	 * to use MWI with the Tigon 2.
1363 	 */
1364 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1365 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1366 		switch(cacheline) {
1367 		case 1:
1368 		case 4:
1369 		case 8:
1370 		case 16:
1371 		case 32:
1372 		case 64:
1373 			break;
1374 		default:
1375 		/* Disable PCI memory write and invalidate. */
1376 			if (bootverbose)
1377 				printf("%s: cache line size %d not "
1378 				    "supported; disabling PCI MWI\n",
1379 				    sc->sc_dev.dv_xname, cacheline);
1380 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1381 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1382 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1383 			break;
1384 		}
1385 	}
1386 
1387 #ifdef __brokenalpha__
1388 	/*
1389 	 * From the Alteon sample driver:
1390 	 * Must insure that we do not cross an 8K (bytes) boundary
1391 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1392 	 * restriction on some ALPHA platforms with early revision
1393 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1394 	 */
1395 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1396 #else
1397 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1398 #endif
1399 
1400 	/* This sets the min dma param all the way up (0xff). */
1401 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1402 
1403 	/* Configure DMA variables. */
1404 #if BYTE_ORDER == BIG_ENDIAN
1405 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1406 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1407 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1408 	    TI_OPMODE_DONT_FRAG_JUMBO);
1409 #else
1410 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1411 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1412 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1413 #endif
1414 
1415 	/*
1416 	 * Only allow 1 DMA channel to be active at a time.
1417 	 * I don't think this is a good idea, but without it
1418 	 * the firmware racks up lots of nicDmaReadRingFull
1419 	 * errors.
1420 	 * Incompatible with hardware assisted checksums.
1421 	 */
1422 	if ((sc->ethercom.ec_if.if_capenable &
1423 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1424 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1425 
1426 	/* Recommended settings from Tigon manual. */
1427 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1428 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1429 
1430 	if (ti_64bitslot_war(sc)) {
1431 		printf("%s: bios thinks we're in a 64 bit slot, "
1432 		    "but we aren't", sc->sc_dev.dv_xname);
1433 		return(EINVAL);
1434 	}
1435 
1436 	return(0);
1437 }
1438 
1439 /*
1440  * Initialize the general information block and firmware, and
1441  * start the CPU(s) running.
1442  */
1443 static int ti_gibinit(sc)
1444 	struct ti_softc		*sc;
1445 {
1446 	struct ti_rcb		*rcb;
1447 	int			i;
1448 	struct ifnet		*ifp;
1449 
1450 	ifp = &sc->ethercom.ec_if;
1451 
1452 	/* Disable interrupts for now. */
1453 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1454 
1455 	/* Tell the chip where to find the general information block. */
1456 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1457 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1458 
1459 	/* Load the firmware into SRAM. */
1460 	ti_loadfw(sc);
1461 
1462 	/* Set up the contents of the general info and ring control blocks. */
1463 
1464 	/* Set up the event ring and producer pointer. */
1465 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1466 
1467 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1468 	rcb->ti_flags = 0;
1469 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1470 	    TI_CDEVPRODADDR(sc);
1471 
1472 	sc->ti_ev_prodidx.ti_idx = 0;
1473 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1474 	sc->ti_ev_saved_considx = 0;
1475 
1476 	/* Set up the command ring and producer mailbox. */
1477 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1478 
1479 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1480 	rcb->ti_flags = 0;
1481 	rcb->ti_max_len = 0;
1482 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1483 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1484 	}
1485 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1486 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1487 	sc->ti_cmd_saved_prodidx = 0;
1488 
1489 	/*
1490 	 * Assign the address of the stats refresh buffer.
1491 	 * We re-use the current stats buffer for this to
1492 	 * conserve memory.
1493 	 */
1494 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1495 	    TI_CDSTATSADDR(sc);
1496 
1497 	/* Set up the standard receive ring. */
1498 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1499 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1500 	rcb->ti_max_len = ETHER_MAX_LEN;
1501 	rcb->ti_flags = 0;
1502 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1503 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1504 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1505 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1506 	if (sc->ethercom.ec_nvlans != 0)
1507 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1508 
1509 	/* Set up the jumbo receive ring. */
1510 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1511 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1512 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1513 	rcb->ti_flags = 0;
1514 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1515 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1516 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1517 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1518 	if (sc->ethercom.ec_nvlans != 0)
1519 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1520 
1521 	/*
1522 	 * Set up the mini ring. Only activated on the
1523 	 * Tigon 2 but the slot in the config block is
1524 	 * still there on the Tigon 1.
1525 	 */
1526 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1527 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1528 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1529 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1530 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1531 	else
1532 		rcb->ti_flags = 0;
1533 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1534 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1535 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1536 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1537 	if (sc->ethercom.ec_nvlans != 0)
1538 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1539 
1540 	/*
1541 	 * Set up the receive return ring.
1542 	 */
1543 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1544 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1545 	rcb->ti_flags = 0;
1546 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1547 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1548 	    TI_CDRTNPRODADDR(sc);
1549 
1550 	/*
1551 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1552 	 * of putting the transmit ring in the host's address space and
1553 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1554 	 * memory and accessing it through the shared memory region. We
1555 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1556 	 * so we have to revert to the shared memory scheme if we detect
1557 	 * a Tigon 1 chip.
1558 	 */
1559 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1560 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1561 		sc->ti_tx_ring_nic =
1562 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1563 	}
1564 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1565 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1566 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1567 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1568 		rcb->ti_flags = 0;
1569 	else
1570 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1571 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1572 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1573 	/*
1574 	 * When we get the packet, there is a pseudo-header seed already
1575 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1576 	 * compute the pseudo-header checksum again!
1577 	 */
1578 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1579 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1580 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1581 	if (sc->ethercom.ec_nvlans != 0)
1582 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1583 	rcb->ti_max_len = TI_TX_RING_CNT;
1584 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1585 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1586 	else
1587 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1588 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1589 	    TI_CDTXCONSADDR(sc);
1590 
1591 	/*
1592 	 * We're done frobbing the General Information Block.  Sync
1593 	 * it.  Note we take care of the first stats sync here, as
1594 	 * well.
1595 	 */
1596 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1597 
1598 	/* Set up tuneables */
1599 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1600 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1601 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1602 		    (sc->ti_rx_coal_ticks / 10));
1603 	else
1604 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1605 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1606 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1607 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1608 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1609 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1610 
1611 	/* Turn interrupts on. */
1612 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1613 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1614 
1615 	/* Start CPU. */
1616 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1617 
1618 	return(0);
1619 }
1620 
1621 /*
1622  * look for id in the device list, returning the first match
1623  */
1624 static const struct ti_type *
1625 ti_type_match(pa)
1626 	struct pci_attach_args *pa;
1627 {
1628 	const struct ti_type          *t;
1629 
1630 	t = ti_devs;
1631 	while(t->ti_name != NULL) {
1632 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1633 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1634 			return (t);
1635 		}
1636 		t++;
1637 	}
1638 
1639 	return(NULL);
1640 }
1641 
1642 /*
1643  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1644  * against our list and return its name if we find a match.
1645  */
1646 static int ti_probe(parent, match, aux)
1647 	struct device *parent;
1648 	struct cfdata *match;
1649 	void *aux;
1650 {
1651 	struct pci_attach_args *pa = aux;
1652 	const struct ti_type		*t;
1653 
1654 	t = ti_type_match(pa);
1655 
1656 	return((t == NULL) ? 0 : 1);
1657 }
1658 
1659 static void ti_attach(parent, self, aux)
1660 	struct device *parent, *self;
1661 	void *aux;
1662 {
1663 	u_int32_t		command;
1664 	struct ifnet		*ifp;
1665 	struct ti_softc		*sc;
1666 	u_char eaddr[ETHER_ADDR_LEN];
1667 	struct pci_attach_args *pa = aux;
1668 	pci_chipset_tag_t pc = pa->pa_pc;
1669 	pci_intr_handle_t ih;
1670 	const char *intrstr = NULL;
1671 	bus_dma_segment_t dmaseg;
1672 	int error, dmanseg, nolinear;
1673 	const struct ti_type		*t;
1674 
1675 	t = ti_type_match(pa);
1676 	if (t == NULL) {
1677 		printf("ti_attach: were did the card go ?\n");
1678 		return;
1679 	}
1680 
1681 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1682 
1683 	sc = (struct ti_softc *)self;
1684 
1685 	/*
1686 	 * Map control/status registers.
1687 	 */
1688 	nolinear = 0;
1689 	if (pci_mapreg_map(pa, 0x10,
1690 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1691 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1692 	    NULL, NULL)) {
1693 		nolinear = 1;
1694 		if (pci_mapreg_map(pa, 0x10,
1695 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1696 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1697 			printf(": can't map memory space\n");
1698 			return;
1699 		}
1700 	}
1701 	if (nolinear == 0)
1702 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1703 	else
1704 		sc->ti_vhandle = NULL;
1705 
1706 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1707 	command |= PCI_COMMAND_MASTER_ENABLE;
1708 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1709 
1710 	/* Allocate interrupt */
1711 	if (pci_intr_map(pa, &ih)) {
1712 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1713 		return;
1714 	}
1715 	intrstr = pci_intr_string(pc, ih);
1716 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1717 	if (sc->sc_ih == NULL) {
1718 		printf("%s: couldn't establish interrupt",
1719 		    sc->sc_dev.dv_xname);
1720 		if (intrstr != NULL)
1721 			printf(" at %s", intrstr);
1722 		printf("\n");
1723 		return;
1724 	}
1725 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1726 	/*
1727 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1728 	 * doing do could allow DMA to corrupt kernel memory during the
1729 	 * reboot before the driver initializes.
1730 	 */
1731 	(void) shutdownhook_establish(ti_shutdown, sc);
1732 
1733 	if (ti_chipinit(sc)) {
1734 		printf("%s: chip initialization failed\n", self->dv_xname);
1735 		goto fail2;
1736 	}
1737 
1738 	/*
1739 	 * Deal with some chip diffrences.
1740 	 */
1741 	switch (sc->ti_hwrev) {
1742 	case TI_HWREV_TIGON:
1743 		sc->sc_tx_encap = ti_encap_tigon1;
1744 		sc->sc_tx_eof = ti_txeof_tigon1;
1745 		if (nolinear == 1)
1746 			printf("%s: memory space not mapped linear\n",
1747 			    self->dv_xname);
1748 		break;
1749 
1750 	case TI_HWREV_TIGON_II:
1751 		sc->sc_tx_encap = ti_encap_tigon2;
1752 		sc->sc_tx_eof = ti_txeof_tigon2;
1753 		break;
1754 
1755 	default:
1756 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
1757 		    sc->ti_hwrev);
1758 		goto fail2;
1759 	}
1760 
1761 	/* Zero out the NIC's on-board SRAM. */
1762 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1763 
1764 	/* Init again -- zeroing memory may have clobbered some registers. */
1765 	if (ti_chipinit(sc)) {
1766 		printf("%s: chip initialization failed\n", self->dv_xname);
1767 		goto fail2;
1768 	}
1769 
1770 	/*
1771 	 * Get station address from the EEPROM. Note: the manual states
1772 	 * that the MAC address is at offset 0x8c, however the data is
1773 	 * stored as two longwords (since that's how it's loaded into
1774 	 * the NIC). This means the MAC address is actually preceded
1775 	 * by two zero bytes. We need to skip over those.
1776 	 */
1777 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1778 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1779 		printf("%s: failed to read station address\n", self->dv_xname);
1780 		goto fail2;
1781 	}
1782 
1783 	/*
1784 	 * A Tigon chip was detected. Inform the world.
1785 	 */
1786 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1787 				ether_sprintf(eaddr));
1788 
1789 	sc->sc_dmat = pa->pa_dmat;
1790 
1791 	/* Allocate the general information block and ring buffers. */
1792 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1793 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1794 	    BUS_DMA_NOWAIT)) != 0) {
1795 		printf("%s: can't allocate ring buffer, error = %d\n",
1796 		       sc->sc_dev.dv_xname, error);
1797 		goto fail2;
1798 	}
1799 
1800 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1801 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1802 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1803 		printf("%s: can't map ring buffer, error = %d\n",
1804 		       sc->sc_dev.dv_xname, error);
1805 		goto fail2;
1806 	}
1807 
1808 	if ((error = bus_dmamap_create(sc->sc_dmat,
1809 	    sizeof(struct ti_ring_data), 1,
1810 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1811 	    &sc->info_dmamap)) != 0) {
1812 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1813 		       sc->sc_dev.dv_xname, error);
1814 		goto fail2;
1815 	}
1816 
1817 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1818 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1819 	    BUS_DMA_NOWAIT)) != 0) {
1820 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1821 		       sc->sc_dev.dv_xname, error);
1822 		goto fail2;
1823 	}
1824 
1825 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1826 
1827 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1828 
1829 	/* Try to allocate memory for jumbo buffers. */
1830 	if (ti_alloc_jumbo_mem(sc)) {
1831 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1832 		goto fail2;
1833 	}
1834 
1835 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1836 
1837 	/*
1838 	 * We really need a better way to tell a 1000baseT card
1839 	 * from a 1000baseSX one, since in theory there could be
1840 	 * OEMed 1000baseT cards from lame vendors who aren't
1841 	 * clever enough to change the PCI ID. For the moment
1842 	 * though, the AceNIC is the only copper card available.
1843 	 */
1844 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1845 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1846 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1847 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1848 		sc->ti_copper = 1;
1849 	else
1850 		sc->ti_copper = 0;
1851 
1852 	/* Set default tuneable values. */
1853 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1854 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1855 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1856 	sc->ti_rx_max_coal_bds = 64;
1857 	sc->ti_tx_max_coal_bds = 128;
1858 	sc->ti_tx_buf_ratio = 21;
1859 
1860 	/* Set up ifnet structure */
1861 	ifp = &sc->ethercom.ec_if;
1862 	ifp->if_softc = sc;
1863 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1864 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1865 	ifp->if_ioctl = ti_ioctl;
1866 	ifp->if_start = ti_start;
1867 	ifp->if_watchdog = ti_watchdog;
1868 	IFQ_SET_READY(&ifp->if_snd);
1869 
1870 #if 0
1871 	/*
1872 	 * XXX This is not really correct -- we don't necessarily
1873 	 * XXX want to queue up as many as we can transmit at the
1874 	 * XXX upper layer like that.  Someone with a board should
1875 	 * XXX check to see how this affects performance.
1876 	 */
1877 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1878 #endif
1879 
1880 	/*
1881 	 * We can support 802.1Q VLAN-sized frames.
1882 	 */
1883 	sc->ethercom.ec_capabilities |=
1884 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1885 
1886 	/*
1887 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1888 	 */
1889 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1890 	    IFCAP_CSUM_UDPv4;
1891 
1892 	/* Set up ifmedia support. */
1893 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1894 	if (sc->ti_copper) {
1895                 /*
1896                  * Copper cards allow manual 10/100 mode selection,
1897                  * but not manual 1000baseT mode selection. Why?
1898                  * Because currently there's no way to specify the
1899                  * master/slave setting through the firmware interface,
1900                  * so Alteon decided to just bag it and handle it
1901                  * via autonegotiation.
1902                  */
1903                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1904                 ifmedia_add(&sc->ifmedia,
1905                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1906                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1907                 ifmedia_add(&sc->ifmedia,
1908                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1909                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1910                 ifmedia_add(&sc->ifmedia,
1911                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1912 	} else {
1913 		/* Fiber cards don't support 10/100 modes. */
1914 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1915 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1916 	}
1917 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1918 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1919 
1920 	/*
1921 	 * Call MI attach routines.
1922 	 */
1923 	if_attach(ifp);
1924 	ether_ifattach(ifp, eaddr);
1925 
1926 	return;
1927 fail2:
1928 	pci_intr_disestablish(pc, sc->sc_ih);
1929 	return;
1930 }
1931 
1932 /*
1933  * Frame reception handling. This is called if there's a frame
1934  * on the receive return list.
1935  *
1936  * Note: we have to be able to handle three possibilities here:
1937  * 1) the frame is from the mini receive ring (can only happen)
1938  *    on Tigon 2 boards)
1939  * 2) the frame is from the jumbo receive ring
1940  * 3) the frame is from the standard receive ring
1941  */
1942 
1943 static void ti_rxeof(sc)
1944 	struct ti_softc		*sc;
1945 {
1946 	struct ifnet		*ifp;
1947 	struct ti_cmd_desc	cmd;
1948 
1949 	ifp = &sc->ethercom.ec_if;
1950 
1951 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1952 		struct ti_rx_desc	*cur_rx;
1953 		u_int32_t		rxidx;
1954 		struct mbuf		*m = NULL;
1955 		u_int16_t		vlan_tag = 0;
1956 		int			have_tag = 0;
1957 		struct ether_header	*eh;
1958 		bus_dmamap_t dmamap;
1959 
1960 		cur_rx =
1961 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1962 		rxidx = cur_rx->ti_idx;
1963 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1964 
1965 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1966 			have_tag = 1;
1967 			/* ti_vlan_tag also has the priority, trim it */
1968 			vlan_tag = cur_rx->ti_vlan_tag & 4095;
1969 		}
1970 
1971 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1972 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1973 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1974 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1975 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1976 				ifp->if_ierrors++;
1977 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1978 				continue;
1979 			}
1980 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1981 			    == ENOBUFS) {
1982 				ifp->if_ierrors++;
1983 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1984 				continue;
1985 			}
1986 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1987 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1988 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1989 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1990 			dmamap = sc->mini_dmamap[rxidx];
1991 			sc->mini_dmamap[rxidx] = 0;
1992 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1993 				ifp->if_ierrors++;
1994 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1995 				continue;
1996 			}
1997 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1998 			    == ENOBUFS) {
1999 				ifp->if_ierrors++;
2000 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2001 				continue;
2002 			}
2003 		} else {
2004 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2005 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2006 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2007 			dmamap = sc->std_dmamap[rxidx];
2008 			sc->std_dmamap[rxidx] = 0;
2009 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2010 				ifp->if_ierrors++;
2011 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2012 				continue;
2013 			}
2014 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2015 			    == ENOBUFS) {
2016 				ifp->if_ierrors++;
2017 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2018 				continue;
2019 			}
2020 		}
2021 
2022 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2023 		ifp->if_ipackets++;
2024 		m->m_pkthdr.rcvif = ifp;
2025 
2026 #if NBPFILTER > 0
2027 		/*
2028 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
2029 	 	 * don't pass it up to the ether_input() layer unless it's
2030 	 	 * a broadcast packet, multicast packet, matches our ethernet
2031 	 	 * address or the interface is in promiscuous mode.
2032 	 	 */
2033 		if (ifp->if_bpf)
2034 			bpf_mtap(ifp->if_bpf, m);
2035 #endif
2036 
2037 		eh = mtod(m, struct ether_header *);
2038 		switch (ntohs(eh->ether_type)) {
2039 #ifdef INET
2040 		case ETHERTYPE_IP:
2041 		    {
2042 			struct ip *ip = (struct ip *) (eh + 1);
2043 
2044 			/*
2045 			 * Note the Tigon firmware does not invert
2046 			 * the checksum for us, hence the XOR.
2047 			 */
2048 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2049 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2050 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2051 			/*
2052 			 * ntohs() the constant so the compiler can
2053 			 * optimize...
2054 			 *
2055 			 * XXX Figure out a sane way to deal with
2056 			 * fragmented packets.
2057 			 */
2058 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2059 				switch (ip->ip_p) {
2060 				case IPPROTO_TCP:
2061 					m->m_pkthdr.csum_data =
2062 					    cur_rx->ti_tcp_udp_cksum;
2063 					m->m_pkthdr.csum_flags |=
2064 					    M_CSUM_TCPv4|M_CSUM_DATA;
2065 					break;
2066 				case IPPROTO_UDP:
2067 					m->m_pkthdr.csum_data =
2068 					    cur_rx->ti_tcp_udp_cksum;
2069 					m->m_pkthdr.csum_flags |=
2070 					    M_CSUM_UDPv4|M_CSUM_DATA;
2071 					break;
2072 				default:
2073 					/* Nothing */;
2074 				}
2075 			}
2076 			break;
2077 		    }
2078 #endif
2079 		default:
2080 			/* Nothing. */
2081 			break;
2082 		}
2083 
2084 		if (have_tag) {
2085 			struct m_tag *mtag;
2086 
2087 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2088 			    M_NOWAIT);
2089 			if (mtag) {
2090 				*(u_int *)(mtag + 1) = vlan_tag;
2091 				m_tag_prepend(m, mtag);
2092 				have_tag = vlan_tag = 0;
2093 			} else {
2094 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2095 				m_freem(m);
2096 				have_tag = vlan_tag = 0;
2097 				continue;
2098 			}
2099 		}
2100 		(*ifp->if_input)(ifp, m);
2101 	}
2102 
2103 	/* Only necessary on the Tigon 1. */
2104 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2105 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2106 		    sc->ti_rx_saved_considx);
2107 
2108 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2109 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2110 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2111 
2112 	return;
2113 }
2114 
2115 static void ti_txeof_tigon1(sc)
2116 	struct ti_softc		*sc;
2117 {
2118 	struct ti_tx_desc	*cur_tx = NULL;
2119 	struct ifnet		*ifp;
2120 	struct txdmamap_pool_entry *dma;
2121 
2122 	ifp = &sc->ethercom.ec_if;
2123 
2124 	/*
2125 	 * Go through our tx ring and free mbufs for those
2126 	 * frames that have been sent.
2127 	 */
2128 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2129 		u_int32_t		idx = 0;
2130 
2131 		idx = sc->ti_tx_saved_considx;
2132 		if (idx > 383)
2133 			CSR_WRITE_4(sc, TI_WINBASE,
2134 			    TI_TX_RING_BASE + 6144);
2135 		else if (idx > 255)
2136 			CSR_WRITE_4(sc, TI_WINBASE,
2137 			    TI_TX_RING_BASE + 4096);
2138 		else if (idx > 127)
2139 			CSR_WRITE_4(sc, TI_WINBASE,
2140 			    TI_TX_RING_BASE + 2048);
2141 		else
2142 			CSR_WRITE_4(sc, TI_WINBASE,
2143 			    TI_TX_RING_BASE);
2144 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2145 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2146 			ifp->if_opackets++;
2147 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2148 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2149 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2150 
2151 			dma = sc->txdma[idx];
2152 			KDASSERT(dma != NULL);
2153 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2154 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2155 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2156 
2157 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2158 			sc->txdma[idx] = NULL;
2159 		}
2160 		sc->ti_txcnt--;
2161 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2162 		ifp->if_timer = 0;
2163 	}
2164 
2165 	if (cur_tx != NULL)
2166 		ifp->if_flags &= ~IFF_OACTIVE;
2167 
2168 	return;
2169 }
2170 
2171 static void ti_txeof_tigon2(sc)
2172 	struct ti_softc		*sc;
2173 {
2174 	struct ti_tx_desc	*cur_tx = NULL;
2175 	struct ifnet		*ifp;
2176 	struct txdmamap_pool_entry *dma;
2177 	int firstidx, cnt;
2178 
2179 	ifp = &sc->ethercom.ec_if;
2180 
2181 	/*
2182 	 * Go through our tx ring and free mbufs for those
2183 	 * frames that have been sent.
2184 	 */
2185 	firstidx = sc->ti_tx_saved_considx;
2186 	cnt = 0;
2187 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2188 		u_int32_t		idx = 0;
2189 
2190 		idx = sc->ti_tx_saved_considx;
2191 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2192 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2193 			ifp->if_opackets++;
2194 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2195 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2196 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2197 
2198 			dma = sc->txdma[idx];
2199 			KDASSERT(dma != NULL);
2200 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2201 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2202 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2203 
2204 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2205 			sc->txdma[idx] = NULL;
2206 		}
2207 		cnt++;
2208 		sc->ti_txcnt--;
2209 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2210 		ifp->if_timer = 0;
2211 	}
2212 
2213 	if (cnt != 0)
2214 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2215 
2216 	if (cur_tx != NULL)
2217 		ifp->if_flags &= ~IFF_OACTIVE;
2218 
2219 	return;
2220 }
2221 
2222 static int ti_intr(xsc)
2223 	void			*xsc;
2224 {
2225 	struct ti_softc		*sc;
2226 	struct ifnet		*ifp;
2227 
2228 	sc = xsc;
2229 	ifp = &sc->ethercom.ec_if;
2230 
2231 #ifdef notdef
2232 	/* Avoid this for now -- checking this register is expensive. */
2233 	/* Make sure this is really our interrupt. */
2234 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2235 		return (0);
2236 #endif
2237 
2238 	/* Ack interrupt and stop others from occuring. */
2239 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2240 
2241 	if (ifp->if_flags & IFF_RUNNING) {
2242 		/* Check RX return ring producer/consumer */
2243 		ti_rxeof(sc);
2244 
2245 		/* Check TX ring producer/consumer */
2246 		(*sc->sc_tx_eof)(sc);
2247 	}
2248 
2249 	ti_handle_events(sc);
2250 
2251 	/* Re-enable interrupts. */
2252 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2253 
2254 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2255 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2256 		ti_start(ifp);
2257 
2258 	return (1);
2259 }
2260 
2261 static void ti_stats_update(sc)
2262 	struct ti_softc		*sc;
2263 {
2264 	struct ifnet		*ifp;
2265 
2266 	ifp = &sc->ethercom.ec_if;
2267 
2268 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2269 
2270 	ifp->if_collisions +=
2271 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2272 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2273 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2274 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2275 	   ifp->if_collisions;
2276 
2277 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2278 }
2279 
2280 /*
2281  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2282  * pointers to descriptors.
2283  */
2284 static int ti_encap_tigon1(sc, m_head, txidx)
2285 	struct ti_softc		*sc;
2286 	struct mbuf		*m_head;
2287 	u_int32_t		*txidx;
2288 {
2289 	struct ti_tx_desc	*f = NULL;
2290 	u_int32_t		frag, cur, cnt = 0;
2291 	struct txdmamap_pool_entry *dma;
2292 	bus_dmamap_t dmamap;
2293 	int error, i;
2294 	struct m_tag *mtag;
2295 	u_int16_t csum_flags = 0;
2296 
2297 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2298 	if (dma == NULL) {
2299 		return ENOMEM;
2300 	}
2301 	dmamap = dma->dmamap;
2302 
2303 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2304 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2305 	if (error) {
2306 		struct mbuf *m;
2307 		int i = 0;
2308 		for (m = m_head; m; m = m->m_next)
2309 			i++;
2310 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2311 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2312 		return (ENOMEM);
2313 	}
2314 
2315 	cur = frag = *txidx;
2316 
2317 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2318 		/* IP header checksum field must be 0! */
2319 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2320 	}
2321 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2322 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2323 
2324 	/* XXX fragmented packet checksum capability? */
2325 
2326 	/*
2327  	 * Start packing the mbufs in this chain into
2328 	 * the fragment pointers. Stop when we run out
2329  	 * of fragments or hit the end of the mbuf chain.
2330 	 */
2331 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2332 		if (frag > 383)
2333 			CSR_WRITE_4(sc, TI_WINBASE,
2334 			    TI_TX_RING_BASE + 6144);
2335 		else if (frag > 255)
2336 			CSR_WRITE_4(sc, TI_WINBASE,
2337 			    TI_TX_RING_BASE + 4096);
2338 		else if (frag > 127)
2339 			CSR_WRITE_4(sc, TI_WINBASE,
2340 			    TI_TX_RING_BASE + 2048);
2341 		else
2342 			CSR_WRITE_4(sc, TI_WINBASE,
2343 			    TI_TX_RING_BASE);
2344 		f = &sc->ti_tx_ring_nic[frag % 128];
2345 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2346 			break;
2347 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2348 		f->ti_len = dmamap->dm_segs[i].ds_len;
2349 		f->ti_flags = csum_flags;
2350 		mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2351 		if (mtag) {
2352 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2353 			f->ti_vlan_tag = *(u_int *)(mtag + 1);
2354 		} else {
2355 			f->ti_vlan_tag = 0;
2356 		}
2357 		/*
2358 		 * Sanity check: avoid coming within 16 descriptors
2359 		 * of the end of the ring.
2360 		 */
2361 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2362 			return(ENOBUFS);
2363 		cur = frag;
2364 		TI_INC(frag, TI_TX_RING_CNT);
2365 		cnt++;
2366 	}
2367 
2368 	if (i < dmamap->dm_nsegs)
2369 		return(ENOBUFS);
2370 
2371 	if (frag == sc->ti_tx_saved_considx)
2372 		return(ENOBUFS);
2373 
2374 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2375 	    TI_BDFLAG_END;
2376 
2377 	/* Sync the packet's DMA map. */
2378 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2379 	    BUS_DMASYNC_PREWRITE);
2380 
2381 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2382 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2383 	sc->txdma[cur] = dma;
2384 	sc->ti_txcnt += cnt;
2385 
2386 	*txidx = frag;
2387 
2388 	return(0);
2389 }
2390 
2391 static int ti_encap_tigon2(sc, m_head, txidx)
2392 	struct ti_softc		*sc;
2393 	struct mbuf		*m_head;
2394 	u_int32_t		*txidx;
2395 {
2396 	struct ti_tx_desc	*f = NULL;
2397 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2398 	struct txdmamap_pool_entry *dma;
2399 	bus_dmamap_t dmamap;
2400 	int error, i;
2401 	struct m_tag *mtag;
2402 	u_int16_t csum_flags = 0;
2403 
2404 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2405 	if (dma == NULL) {
2406 		return ENOMEM;
2407 	}
2408 	dmamap = dma->dmamap;
2409 
2410 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2411 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2412 	if (error) {
2413 		struct mbuf *m;
2414 		int i = 0;
2415 		for (m = m_head; m; m = m->m_next)
2416 			i++;
2417 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2418 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2419 		return (ENOMEM);
2420 	}
2421 
2422 	cur = firstfrag = frag = *txidx;
2423 
2424 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2425 		/* IP header checksum field must be 0! */
2426 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2427 	}
2428 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2429 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2430 
2431 	/* XXX fragmented packet checksum capability? */
2432 
2433 	/*
2434  	 * Start packing the mbufs in this chain into
2435 	 * the fragment pointers. Stop when we run out
2436  	 * of fragments or hit the end of the mbuf chain.
2437 	 */
2438 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2439 		f = &sc->ti_rdata->ti_tx_ring[frag];
2440 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2441 			break;
2442 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2443 		f->ti_len = dmamap->dm_segs[i].ds_len;
2444 		f->ti_flags = csum_flags;
2445 		mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2446 		if (mtag) {
2447 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2448 			f->ti_vlan_tag = *(u_int *)(mtag + 1);
2449 		} else {
2450 			f->ti_vlan_tag = 0;
2451 		}
2452 		/*
2453 		 * Sanity check: avoid coming within 16 descriptors
2454 		 * of the end of the ring.
2455 		 */
2456 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2457 			return(ENOBUFS);
2458 		cur = frag;
2459 		TI_INC(frag, TI_TX_RING_CNT);
2460 		cnt++;
2461 	}
2462 
2463 	if (i < dmamap->dm_nsegs)
2464 		return(ENOBUFS);
2465 
2466 	if (frag == sc->ti_tx_saved_considx)
2467 		return(ENOBUFS);
2468 
2469 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2470 
2471 	/* Sync the packet's DMA map. */
2472 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2473 	    BUS_DMASYNC_PREWRITE);
2474 
2475 	/* Sync the descriptors we are using. */
2476 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2477 
2478 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2479 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2480 	sc->txdma[cur] = dma;
2481 	sc->ti_txcnt += cnt;
2482 
2483 	*txidx = frag;
2484 
2485 	return(0);
2486 }
2487 
2488 /*
2489  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2490  * to the mbuf data regions directly in the transmit descriptors.
2491  */
2492 static void ti_start(ifp)
2493 	struct ifnet		*ifp;
2494 {
2495 	struct ti_softc		*sc;
2496 	struct mbuf		*m_head = NULL;
2497 	u_int32_t		prodidx = 0;
2498 
2499 	sc = ifp->if_softc;
2500 
2501 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2502 
2503 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2504 		IFQ_POLL(&ifp->if_snd, m_head);
2505 		if (m_head == NULL)
2506 			break;
2507 
2508 		/*
2509 		 * Pack the data into the transmit ring. If we
2510 		 * don't have room, set the OACTIVE flag and wait
2511 		 * for the NIC to drain the ring.
2512 		 */
2513 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2514 			ifp->if_flags |= IFF_OACTIVE;
2515 			break;
2516 		}
2517 
2518 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2519 
2520 		/*
2521 		 * If there's a BPF listener, bounce a copy of this frame
2522 		 * to him.
2523 		 */
2524 #if NBPFILTER > 0
2525 		if (ifp->if_bpf)
2526 			bpf_mtap(ifp->if_bpf, m_head);
2527 #endif
2528 	}
2529 
2530 	/* Transmit */
2531 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2532 
2533 	/*
2534 	 * Set a timeout in case the chip goes out to lunch.
2535 	 */
2536 	ifp->if_timer = 5;
2537 
2538 	return;
2539 }
2540 
2541 static void ti_init(xsc)
2542 	void			*xsc;
2543 {
2544 	struct ti_softc		*sc = xsc;
2545         int			s;
2546 
2547 	s = splnet();
2548 
2549 	/* Cancel pending I/O and flush buffers. */
2550 	ti_stop(sc);
2551 
2552 	/* Init the gen info block, ring control blocks and firmware. */
2553 	if (ti_gibinit(sc)) {
2554 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2555 		splx(s);
2556 		return;
2557 	}
2558 
2559 	splx(s);
2560 
2561 	return;
2562 }
2563 
2564 static void ti_init2(sc)
2565 	struct ti_softc		*sc;
2566 {
2567 	struct ti_cmd_desc	cmd;
2568 	struct ifnet		*ifp;
2569 	u_int8_t		*m;
2570 	struct ifmedia		*ifm;
2571 	int			tmp;
2572 
2573 	ifp = &sc->ethercom.ec_if;
2574 
2575 	/* Specify MTU and interface index. */
2576 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2577 
2578 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2579 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2580 		tmp += ETHER_VLAN_ENCAP_LEN;
2581 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2582 
2583 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2584 
2585 	/* Load our MAC address. */
2586 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2587 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2588 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2589 		    | (m[4] << 8) | m[5]);
2590 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2591 
2592 	/* Enable or disable promiscuous mode as needed. */
2593 	if (ifp->if_flags & IFF_PROMISC) {
2594 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2595 	} else {
2596 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2597 	}
2598 
2599 	/* Program multicast filter. */
2600 	ti_setmulti(sc);
2601 
2602 	/*
2603 	 * If this is a Tigon 1, we should tell the
2604 	 * firmware to use software packet filtering.
2605 	 */
2606 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2607 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2608 	}
2609 
2610 	/* Init RX ring. */
2611 	ti_init_rx_ring_std(sc);
2612 
2613 	/* Init jumbo RX ring. */
2614 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2615 		ti_init_rx_ring_jumbo(sc);
2616 
2617 	/*
2618 	 * If this is a Tigon 2, we can also configure the
2619 	 * mini ring.
2620 	 */
2621 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2622 		ti_init_rx_ring_mini(sc);
2623 
2624 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2625 	sc->ti_rx_saved_considx = 0;
2626 
2627 	/* Init TX ring. */
2628 	ti_init_tx_ring(sc);
2629 
2630 	/* Tell firmware we're alive. */
2631 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2632 
2633 	/* Enable host interrupts. */
2634 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2635 
2636 	ifp->if_flags |= IFF_RUNNING;
2637 	ifp->if_flags &= ~IFF_OACTIVE;
2638 
2639 	/*
2640 	 * Make sure to set media properly. We have to do this
2641 	 * here since we have to issue commands in order to set
2642 	 * the link negotiation and we can't issue commands until
2643 	 * the firmware is running.
2644 	 */
2645 	ifm = &sc->ifmedia;
2646 	tmp = ifm->ifm_media;
2647 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2648 	ti_ifmedia_upd(ifp);
2649 	ifm->ifm_media = tmp;
2650 
2651 	return;
2652 }
2653 
2654 /*
2655  * Set media options.
2656  */
2657 static int ti_ifmedia_upd(ifp)
2658 	struct ifnet		*ifp;
2659 {
2660 	struct ti_softc		*sc;
2661 	struct ifmedia		*ifm;
2662 	struct ti_cmd_desc	cmd;
2663 
2664 	sc = ifp->if_softc;
2665 	ifm = &sc->ifmedia;
2666 
2667 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2668 		return(EINVAL);
2669 
2670 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2671 	case IFM_AUTO:
2672 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2673 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2674 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2675 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2676 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2677 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2678 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2679 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2680 		break;
2681 	case IFM_1000_SX:
2682 	case IFM_1000_T:
2683 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2684 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2685 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2686 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2687 		} else {
2688 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2689 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2690 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2691 		}
2692 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2693 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2694 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2695 		break;
2696 	case IFM_100_FX:
2697 	case IFM_10_FL:
2698 	case IFM_100_TX:
2699 	case IFM_10_T:
2700 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2701 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2702 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2703 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2704 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2705 		} else {
2706 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2707 		}
2708 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2709 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2710 		} else {
2711 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2712 		}
2713 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2714 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2715 		break;
2716 	}
2717 
2718 	sc->ethercom.ec_if.if_baudrate =
2719 	    ifmedia_baudrate(ifm->ifm_media);
2720 
2721 	return(0);
2722 }
2723 
2724 /*
2725  * Report current media status.
2726  */
2727 static void ti_ifmedia_sts(ifp, ifmr)
2728 	struct ifnet		*ifp;
2729 	struct ifmediareq	*ifmr;
2730 {
2731 	struct ti_softc		*sc;
2732 	u_int32_t               media = 0;
2733 
2734 	sc = ifp->if_softc;
2735 
2736 	ifmr->ifm_status = IFM_AVALID;
2737 	ifmr->ifm_active = IFM_ETHER;
2738 
2739 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2740 		return;
2741 
2742 	ifmr->ifm_status |= IFM_ACTIVE;
2743 
2744 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2745 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2746 		if (sc->ti_copper)
2747 			ifmr->ifm_active |= IFM_1000_T;
2748 		else
2749 			ifmr->ifm_active |= IFM_1000_SX;
2750 		if (media & TI_GLNK_FULL_DUPLEX)
2751 			ifmr->ifm_active |= IFM_FDX;
2752 		else
2753 			ifmr->ifm_active |= IFM_HDX;
2754 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2755 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2756 		if (sc->ti_copper) {
2757 			if (media & TI_LNK_100MB)
2758 				ifmr->ifm_active |= IFM_100_TX;
2759 			if (media & TI_LNK_10MB)
2760 				ifmr->ifm_active |= IFM_10_T;
2761 		} else {
2762 			if (media & TI_LNK_100MB)
2763 				ifmr->ifm_active |= IFM_100_FX;
2764 			if (media & TI_LNK_10MB)
2765 				ifmr->ifm_active |= IFM_10_FL;
2766 		}
2767 		if (media & TI_LNK_FULL_DUPLEX)
2768 			ifmr->ifm_active |= IFM_FDX;
2769 		if (media & TI_LNK_HALF_DUPLEX)
2770 			ifmr->ifm_active |= IFM_HDX;
2771 	}
2772 
2773 	sc->ethercom.ec_if.if_baudrate =
2774 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2775 
2776 	return;
2777 }
2778 
2779 static int
2780 ti_ether_ioctl(ifp, cmd, data)
2781 	struct ifnet *ifp;
2782 	u_long cmd;
2783 	caddr_t data;
2784 {
2785 	struct ifaddr *ifa = (struct ifaddr *) data;
2786 	struct ti_softc *sc = ifp->if_softc;
2787 
2788 	if ((ifp->if_flags & IFF_UP) == 0) {
2789 		ifp->if_flags |= IFF_UP;
2790 		ti_init(sc);
2791 	}
2792 
2793 	switch (cmd) {
2794 	case SIOCSIFADDR:
2795 
2796 		switch (ifa->ifa_addr->sa_family) {
2797 #ifdef INET
2798 		case AF_INET:
2799 			arp_ifinit(ifp, ifa);
2800 			break;
2801 #endif
2802 #ifdef NS
2803 		case AF_NS:
2804 		    {
2805 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2806 
2807 			 if (ns_nullhost(*ina))
2808 				ina->x_host = *(union ns_host *)
2809 				    LLADDR(ifp->if_sadl);
2810 			 else
2811 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2812 				    ifp->if_addrlen);
2813 			 break;
2814 		    }
2815 #endif
2816 		default:
2817 			break;
2818 		}
2819 		break;
2820 
2821 	default:
2822 		return (EINVAL);
2823 	}
2824 
2825 	return (0);
2826 }
2827 
2828 static int ti_ioctl(ifp, command, data)
2829 	struct ifnet		*ifp;
2830 	u_long			command;
2831 	caddr_t			data;
2832 {
2833 	struct ti_softc		*sc = ifp->if_softc;
2834 	struct ifreq		*ifr = (struct ifreq *) data;
2835 	int			s, error = 0;
2836 	struct ti_cmd_desc	cmd;
2837 
2838 	s = splnet();
2839 
2840 	switch(command) {
2841 	case SIOCSIFADDR:
2842 	case SIOCGIFADDR:
2843 		error = ti_ether_ioctl(ifp, command, data);
2844 		break;
2845 	case SIOCSIFMTU:
2846 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2847 			error = EINVAL;
2848 		else {
2849 			ifp->if_mtu = ifr->ifr_mtu;
2850 			ti_init(sc);
2851 		}
2852 		break;
2853 	case SIOCSIFFLAGS:
2854 		if (ifp->if_flags & IFF_UP) {
2855 			/*
2856 			 * If only the state of the PROMISC flag changed,
2857 			 * then just use the 'set promisc mode' command
2858 			 * instead of reinitializing the entire NIC. Doing
2859 			 * a full re-init means reloading the firmware and
2860 			 * waiting for it to start up, which may take a
2861 			 * second or two.
2862 			 */
2863 			if (ifp->if_flags & IFF_RUNNING &&
2864 			    ifp->if_flags & IFF_PROMISC &&
2865 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2866 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2867 				    TI_CMD_CODE_PROMISC_ENB, 0);
2868 			} else if (ifp->if_flags & IFF_RUNNING &&
2869 			    !(ifp->if_flags & IFF_PROMISC) &&
2870 			    sc->ti_if_flags & IFF_PROMISC) {
2871 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2872 				    TI_CMD_CODE_PROMISC_DIS, 0);
2873 			} else
2874 				ti_init(sc);
2875 		} else {
2876 			if (ifp->if_flags & IFF_RUNNING) {
2877 				ti_stop(sc);
2878 			}
2879 		}
2880 		sc->ti_if_flags = ifp->if_flags;
2881 		error = 0;
2882 		break;
2883 	case SIOCADDMULTI:
2884 	case SIOCDELMULTI:
2885 		error = (command == SIOCADDMULTI) ?
2886 		    ether_addmulti(ifr, &sc->ethercom) :
2887 		    ether_delmulti(ifr, &sc->ethercom);
2888 		if (error == ENETRESET) {
2889 			if (ifp->if_flags & IFF_RUNNING)
2890 				ti_setmulti(sc);
2891 			error = 0;
2892 		}
2893 		break;
2894 	case SIOCSIFMEDIA:
2895 	case SIOCGIFMEDIA:
2896 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2897 		break;
2898 	default:
2899 		error = EINVAL;
2900 		break;
2901 	}
2902 
2903 	(void)splx(s);
2904 
2905 	return(error);
2906 }
2907 
2908 static void ti_watchdog(ifp)
2909 	struct ifnet		*ifp;
2910 {
2911 	struct ti_softc		*sc;
2912 
2913 	sc = ifp->if_softc;
2914 
2915 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2916 	ti_stop(sc);
2917 	ti_init(sc);
2918 
2919 	ifp->if_oerrors++;
2920 
2921 	return;
2922 }
2923 
2924 /*
2925  * Stop the adapter and free any mbufs allocated to the
2926  * RX and TX lists.
2927  */
2928 static void ti_stop(sc)
2929 	struct ti_softc		*sc;
2930 {
2931 	struct ifnet		*ifp;
2932 	struct ti_cmd_desc	cmd;
2933 
2934 	ifp = &sc->ethercom.ec_if;
2935 
2936 	/* Disable host interrupts. */
2937 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2938 	/*
2939 	 * Tell firmware we're shutting down.
2940 	 */
2941 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2942 
2943 	/* Halt and reinitialize. */
2944 	ti_chipinit(sc);
2945 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2946 	ti_chipinit(sc);
2947 
2948 	/* Free the RX lists. */
2949 	ti_free_rx_ring_std(sc);
2950 
2951 	/* Free jumbo RX list. */
2952 	ti_free_rx_ring_jumbo(sc);
2953 
2954 	/* Free mini RX list. */
2955 	ti_free_rx_ring_mini(sc);
2956 
2957 	/* Free TX buffers. */
2958 	ti_free_tx_ring(sc);
2959 
2960 	sc->ti_ev_prodidx.ti_idx = 0;
2961 	sc->ti_return_prodidx.ti_idx = 0;
2962 	sc->ti_tx_considx.ti_idx = 0;
2963 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2964 
2965 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2966 
2967 	return;
2968 }
2969 
2970 /*
2971  * Stop all chip I/O so that the kernel's probe routines don't
2972  * get confused by errant DMAs when rebooting.
2973  */
2974 static void ti_shutdown(v)
2975 	void *v;
2976 {
2977 	struct ti_softc		*sc = v;
2978 
2979 	ti_chipinit(sc);
2980 
2981 	return;
2982 }
2983