xref: /netbsd-src/sys/dev/pci/if_stge.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: if_stge.c,v 1.33 2006/06/17 23:34:27 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.33 2006/06/17 23:34:27 christos Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stgereg.h>
84 
85 /* #define	STGE_CU_BUG			1 */
86 #define	STGE_VLAN_UNTAG			1
87 /* #define	STGE_VLAN_CFI		1 */
88 
89 /*
90  * Transmit descriptor list size.
91  */
92 #define	STGE_NTXDESC		256
93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
95 
96 /*
97  * Receive descriptor list size.
98  */
99 #define	STGE_NRXDESC		256
100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
102 
103 /*
104  * Only interrupt every N frames.  Must be a power-of-two.
105  */
106 #define	STGE_TXINTR_SPACING	16
107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108 
109 /*
110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
111  * a single clump that maps to a single DMA segment to make several things
112  * easier.
113  */
114 struct stge_control_data {
115 	/*
116 	 * The transmit descriptors.
117 	 */
118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
119 
120 	/*
121 	 * The receive descriptors.
122 	 */
123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125 
126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
129 
130 /*
131  * Software state for transmit and receive jobs.
132  */
133 struct stge_descsoft {
134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
136 };
137 
138 /*
139  * Software state per device.
140  */
141 struct stge_softc {
142 	struct device sc_dev;		/* generic device information */
143 	bus_space_tag_t sc_st;		/* bus space tag */
144 	bus_space_handle_t sc_sh;	/* bus space handle */
145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
146 	struct ethercom sc_ethercom;	/* ethernet common data */
147 	void *sc_sdhook;		/* shutdown hook */
148 	int sc_rev;			/* silicon revision */
149 
150 	void *sc_ih;			/* interrupt cookie */
151 
152 	struct mii_data sc_mii;		/* MII/media information */
153 
154 	struct callout sc_tick_ch;	/* tick callout */
155 
156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
158 
159 	/*
160 	 * Software state for transmit and receive descriptors.
161 	 */
162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164 
165 	/*
166 	 * Control data structures.
167 	 */
168 	struct stge_control_data *sc_control_data;
169 #define	sc_txdescs	sc_control_data->scd_txdescs
170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
171 
172 #ifdef STGE_EVENT_COUNTERS
173 	/*
174 	 * Event counters.
175 	 */
176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
180 
181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
188 
189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
192 
193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197 
198 	int	sc_txpending;		/* number of Tx requests pending */
199 	int	sc_txdirty;		/* first dirty Tx descriptor */
200 	int	sc_txlast;		/* last used Tx descriptor */
201 
202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
203 	int	sc_rxdiscard;
204 	int	sc_rxlen;
205 	struct mbuf *sc_rxhead;
206 	struct mbuf *sc_rxtail;
207 	struct mbuf **sc_rxtailp;
208 
209 	int	sc_txthresh;		/* Tx threshold */
210 	uint32_t sc_usefiber:1;		/* if we're fiber */
211 	uint32_t sc_stge1023:1;		/* are we a 1023 */
212 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
213 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
214 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
215 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
216 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
217 };
218 
219 #define	STGE_RXCHAIN_RESET(sc)						\
220 do {									\
221 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
222 	*(sc)->sc_rxtailp = NULL;					\
223 	(sc)->sc_rxlen = 0;						\
224 } while (/*CONSTCOND*/0)
225 
226 #define	STGE_RXCHAIN_LINK(sc, m)					\
227 do {									\
228 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
229 	(sc)->sc_rxtailp = &(m)->m_next;				\
230 } while (/*CONSTCOND*/0)
231 
232 #ifdef STGE_EVENT_COUNTERS
233 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
234 #else
235 #define	STGE_EVCNT_INCR(ev)	/* nothing */
236 #endif
237 
238 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
240 
241 #define	STGE_CDTXSYNC(sc, x, ops)					\
242 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
243 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244 
245 #define	STGE_CDRXSYNC(sc, x, ops)					\
246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
247 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248 
249 #define	STGE_INIT_RXDESC(sc, x)						\
250 do {									\
251 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
252 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
253 									\
254 	/*								\
255 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
256 	 * so that the payload after the Ethernet header is aligned	\
257 	 * to a 4-byte boundary.					\
258 	 */								\
259 	__rfd->rfd_frag.frag_word0 =					\
260 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 	    FRAG_LEN(MCLBYTES - 2));					\
262 	__rfd->rfd_next =						\
263 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
264 	__rfd->rfd_status = 0;						\
265 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267 
268 #define STGE_TIMEOUT 1000
269 
270 static void	stge_start(struct ifnet *);
271 static void	stge_watchdog(struct ifnet *);
272 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
273 static int	stge_init(struct ifnet *);
274 static void	stge_stop(struct ifnet *, int);
275 
276 static void	stge_shutdown(void *);
277 
278 static void	stge_reset(struct stge_softc *);
279 static void	stge_rxdrain(struct stge_softc *);
280 static int	stge_add_rxbuf(struct stge_softc *, int);
281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void	stge_tick(void *);
283 
284 static void	stge_stats_update(struct stge_softc *);
285 
286 static void	stge_set_filter(struct stge_softc *);
287 
288 static int	stge_intr(void *);
289 static void	stge_txintr(struct stge_softc *);
290 static void	stge_rxintr(struct stge_softc *);
291 
292 static int	stge_mii_readreg(struct device *, int, int);
293 static void	stge_mii_writereg(struct device *, int, int, int);
294 static void	stge_mii_statchg(struct device *);
295 
296 static int	stge_mediachange(struct ifnet *);
297 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
298 
299 static int	stge_match(struct device *, struct cfdata *, void *);
300 static void	stge_attach(struct device *, struct device *, void *);
301 
302 int	stge_copy_small = 0;
303 
304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
305     stge_match, stge_attach, NULL, NULL);
306 
307 static uint32_t stge_mii_bitbang_read(struct device *);
308 static void	stge_mii_bitbang_write(struct device *, uint32_t);
309 
310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
311 	stge_mii_bitbang_read,
312 	stge_mii_bitbang_write,
313 	{
314 		PC_MgmtData,		/* MII_BIT_MDO */
315 		PC_MgmtData,		/* MII_BIT_MDI */
316 		PC_MgmtClk,		/* MII_BIT_MDC */
317 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
318 		0,			/* MII_BIT_DIR_PHY_HOST */
319 	}
320 };
321 
322 /*
323  * Devices supported by this driver.
324  */
325 static const struct stge_product {
326 	pci_vendor_id_t		stge_vendor;
327 	pci_product_id_t	stge_product;
328 	const char		*stge_name;
329 } stge_products[] = {
330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
331 	  "Sundance ST-1023 Gigabit Ethernet" },
332 
333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
334 	  "Sundance ST-2021 Gigabit Ethernet" },
335 
336 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
337 	  "Tamarack TC9021 Gigabit Ethernet" },
338 
339 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 	  "Tamarack TC9021 Gigabit Ethernet" },
341 
342 	/*
343 	 * The Sundance sample boards use the Sundance vendor ID,
344 	 * but the Tamarack product ID.
345 	 */
346 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
347 	  "Sundance TC9021 Gigabit Ethernet" },
348 
349 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
350 	  "Sundance TC9021 Gigabit Ethernet" },
351 
352 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
353 	  "D-Link DL-4000 Gigabit Ethernet" },
354 
355 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
356 	  "Antares Gigabit Ethernet" },
357 
358 	{ 0,				0,
359 	  NULL },
360 };
361 
362 static const struct stge_product *
363 stge_lookup(const struct pci_attach_args *pa)
364 {
365 	const struct stge_product *sp;
366 
367 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
368 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
369 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
370 			return (sp);
371 	}
372 	return (NULL);
373 }
374 
375 static int
376 stge_match(struct device *parent, struct cfdata *cf, void *aux)
377 {
378 	struct pci_attach_args *pa = aux;
379 
380 	if (stge_lookup(pa) != NULL)
381 		return (1);
382 
383 	return (0);
384 }
385 
386 static void
387 stge_attach(struct device *parent, struct device *self, void *aux)
388 {
389 	struct stge_softc *sc = (struct stge_softc *) self;
390 	struct pci_attach_args *pa = aux;
391 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 	pci_chipset_tag_t pc = pa->pa_pc;
393 	pci_intr_handle_t ih;
394 	const char *intrstr = NULL;
395 	bus_space_tag_t iot, memt;
396 	bus_space_handle_t ioh, memh;
397 	bus_dma_segment_t seg;
398 	int ioh_valid, memh_valid;
399 	int i, rseg, error;
400 	const struct stge_product *sp;
401 	uint8_t enaddr[ETHER_ADDR_LEN];
402 
403 	callout_init(&sc->sc_tick_ch);
404 
405 	sp = stge_lookup(pa);
406 	if (sp == NULL) {
407 		printf("\n");
408 		panic("ste_attach: impossible");
409 	}
410 
411 	sc->sc_rev = PCI_REVISION(pa->pa_class);
412 
413 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
414 
415 	/*
416 	 * Map the device.
417 	 */
418 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
419 	    PCI_MAPREG_TYPE_IO, 0,
420 	    &iot, &ioh, NULL, NULL) == 0);
421 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
422 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
423 	    &memt, &memh, NULL, NULL) == 0);
424 
425 	if (memh_valid) {
426 		sc->sc_st = memt;
427 		sc->sc_sh = memh;
428 	} else if (ioh_valid) {
429 		sc->sc_st = iot;
430 		sc->sc_sh = ioh;
431 	} else {
432 		printf("%s: unable to map device registers\n",
433 		    sc->sc_dev.dv_xname);
434 		return;
435 	}
436 
437 	sc->sc_dmat = pa->pa_dmat;
438 
439 	/* Enable bus mastering. */
440 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
441 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
442 	    PCI_COMMAND_MASTER_ENABLE);
443 
444 	/* power up chip */
445 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
446 	    NULL)) && error != EOPNOTSUPP) {
447 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
448 		    error);
449 		return;
450 	}
451 	/*
452 	 * Map and establish our interrupt.
453 	 */
454 	if (pci_intr_map(pa, &ih)) {
455 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
456 		return;
457 	}
458 	intrstr = pci_intr_string(pc, ih);
459 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
460 	if (sc->sc_ih == NULL) {
461 		printf("%s: unable to establish interrupt",
462 		    sc->sc_dev.dv_xname);
463 		if (intrstr != NULL)
464 			printf(" at %s", intrstr);
465 		printf("\n");
466 		return;
467 	}
468 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
469 
470 	/*
471 	 * Allocate the control data structures, and create and load the
472 	 * DMA map for it.
473 	 */
474 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
475 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
476 	    0)) != 0) {
477 		printf("%s: unable to allocate control data, error = %d\n",
478 		    sc->sc_dev.dv_xname, error);
479 		goto fail_0;
480 	}
481 
482 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
483 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
484 	    BUS_DMA_COHERENT)) != 0) {
485 		printf("%s: unable to map control data, error = %d\n",
486 		    sc->sc_dev.dv_xname, error);
487 		goto fail_1;
488 	}
489 
490 	if ((error = bus_dmamap_create(sc->sc_dmat,
491 	    sizeof(struct stge_control_data), 1,
492 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
493 		printf("%s: unable to create control data DMA map, "
494 		    "error = %d\n", sc->sc_dev.dv_xname, error);
495 		goto fail_2;
496 	}
497 
498 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
499 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
500 	    0)) != 0) {
501 		printf("%s: unable to load control data DMA map, error = %d\n",
502 		    sc->sc_dev.dv_xname, error);
503 		goto fail_3;
504 	}
505 
506 	/*
507 	 * Create the transmit buffer DMA maps.  Note that rev B.3
508 	 * and earlier seem to have a bug regarding multi-fragment
509 	 * packets.  We need to limit the number of Tx segments on
510 	 * such chips to 1.
511 	 */
512 	for (i = 0; i < STGE_NTXDESC; i++) {
513 		if ((error = bus_dmamap_create(sc->sc_dmat,
514 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
515 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
516 			printf("%s: unable to create tx DMA map %d, "
517 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
518 			goto fail_4;
519 		}
520 	}
521 
522 	/*
523 	 * Create the receive buffer DMA maps.
524 	 */
525 	for (i = 0; i < STGE_NRXDESC; i++) {
526 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
527 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
528 			printf("%s: unable to create rx DMA map %d, "
529 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
530 			goto fail_5;
531 		}
532 		sc->sc_rxsoft[i].ds_mbuf = NULL;
533 	}
534 
535 	/*
536 	 * Determine if we're copper or fiber.  It affects how we
537 	 * reset the card.
538 	 */
539 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
540 	    AC_PhyMedia)
541 		sc->sc_usefiber = 1;
542 	else
543 		sc->sc_usefiber = 0;
544 
545 	/*
546 	 * Reset the chip to a known state.
547 	 */
548 	stge_reset(sc);
549 
550 	/*
551 	 * Reading the station address from the EEPROM doesn't seem
552 	 * to work, at least on my sample boards.  Instead, since
553 	 * the reset sequence does AutoInit, read it from the station
554 	 * address registers. For Sundance 1023 you can only read it
555 	 * from EEPROM.
556 	 */
557 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
558 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 		    STGE_StationAddress0) & 0xff;
560 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
561 		    STGE_StationAddress0) >> 8;
562 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
563 		    STGE_StationAddress1) & 0xff;
564 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
565 		    STGE_StationAddress1) >> 8;
566 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
567 		    STGE_StationAddress2) & 0xff;
568 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
569 		    STGE_StationAddress2) >> 8;
570 		sc->sc_stge1023 = 0;
571 	} else {
572 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
573 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
574 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
575 			    &myaddr[i]);
576 			myaddr[i] = le16toh(myaddr[i]);
577 		}
578 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
579 		sc->sc_stge1023 = 1;
580 	}
581 
582 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
583 	    ether_sprintf(enaddr));
584 
585 	/*
586 	 * Read some important bits from the PhyCtrl register.
587 	 */
588 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
589 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
590 
591 	/*
592 	 * Initialize our media structures and probe the MII.
593 	 */
594 	sc->sc_mii.mii_ifp = ifp;
595 	sc->sc_mii.mii_readreg = stge_mii_readreg;
596 	sc->sc_mii.mii_writereg = stge_mii_writereg;
597 	sc->sc_mii.mii_statchg = stge_mii_statchg;
598 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
599 	    stge_mediastatus);
600 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
601 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
602 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
603 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
604 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
605 	} else
606 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
607 
608 	ifp = &sc->sc_ethercom.ec_if;
609 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
610 	ifp->if_softc = sc;
611 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
612 	ifp->if_ioctl = stge_ioctl;
613 	ifp->if_start = stge_start;
614 	ifp->if_watchdog = stge_watchdog;
615 	ifp->if_init = stge_init;
616 	ifp->if_stop = stge_stop;
617 	IFQ_SET_READY(&ifp->if_snd);
618 
619 	/*
620 	 * The manual recommends disabling early transmit, so we
621 	 * do.  It's disabled anyway, if using IP checksumming,
622 	 * since the entire packet must be in the FIFO in order
623 	 * for the chip to perform the checksum.
624 	 */
625 	sc->sc_txthresh = 0x0fff;
626 
627 	/*
628 	 * Disable MWI if the PCI layer tells us to.
629 	 */
630 	sc->sc_DMACtrl = 0;
631 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
632 		sc->sc_DMACtrl |= DMAC_MWIDisable;
633 
634 	/*
635 	 * We can support 802.1Q VLAN-sized frames and jumbo
636 	 * Ethernet frames.
637 	 *
638 	 * XXX Figure out how to do hw-assisted VLAN tagging in
639 	 * XXX a reasonable way on this chip.
640 	 */
641 	sc->sc_ethercom.ec_capabilities |=
642 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
643 	    ETHERCAP_VLAN_HWTAGGING;
644 
645 	/*
646 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
647 	 */
648 	sc->sc_ethercom.ec_if.if_capabilities |=
649 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
650 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
651 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
652 
653 	/*
654 	 * Attach the interface.
655 	 */
656 	if_attach(ifp);
657 	ether_ifattach(ifp, enaddr);
658 
659 #ifdef STGE_EVENT_COUNTERS
660 	/*
661 	 * Attach event counters.
662 	 */
663 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
664 	    NULL, sc->sc_dev.dv_xname, "txstall");
665 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
666 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
667 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
668 	    NULL, sc->sc_dev.dv_xname, "txindintr");
669 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
670 	    NULL, sc->sc_dev.dv_xname, "rxintr");
671 
672 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
673 	    NULL, sc->sc_dev.dv_xname, "txseg1");
674 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
675 	    NULL, sc->sc_dev.dv_xname, "txseg2");
676 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
677 	    NULL, sc->sc_dev.dv_xname, "txseg3");
678 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
679 	    NULL, sc->sc_dev.dv_xname, "txseg4");
680 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
681 	    NULL, sc->sc_dev.dv_xname, "txseg5");
682 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
683 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
684 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
685 	    NULL, sc->sc_dev.dv_xname, "txcopy");
686 
687 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
688 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
689 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
690 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
691 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
692 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
693 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
694 	    NULL, sc->sc_dev.dv_xname, "txipsum");
695 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
696 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
697 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
698 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
699 #endif /* STGE_EVENT_COUNTERS */
700 
701 	/*
702 	 * Make sure the interface is shutdown during reboot.
703 	 */
704 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
705 	if (sc->sc_sdhook == NULL)
706 		printf("%s: WARNING: unable to establish shutdown hook\n",
707 		    sc->sc_dev.dv_xname);
708 	return;
709 
710 	/*
711 	 * Free any resources we've allocated during the failed attach
712 	 * attempt.  Do this in reverse order and fall through.
713 	 */
714  fail_5:
715 	for (i = 0; i < STGE_NRXDESC; i++) {
716 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
717 			bus_dmamap_destroy(sc->sc_dmat,
718 			    sc->sc_rxsoft[i].ds_dmamap);
719 	}
720  fail_4:
721 	for (i = 0; i < STGE_NTXDESC; i++) {
722 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
723 			bus_dmamap_destroy(sc->sc_dmat,
724 			    sc->sc_txsoft[i].ds_dmamap);
725 	}
726 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
727  fail_3:
728 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
729  fail_2:
730 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
731 	    sizeof(struct stge_control_data));
732  fail_1:
733 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
734  fail_0:
735 	return;
736 }
737 
738 /*
739  * stge_shutdown:
740  *
741  *	Make sure the interface is stopped at reboot time.
742  */
743 static void
744 stge_shutdown(void *arg)
745 {
746 	struct stge_softc *sc = arg;
747 
748 	stge_stop(&sc->sc_ethercom.ec_if, 1);
749 }
750 
751 static void
752 stge_dma_wait(struct stge_softc *sc)
753 {
754 	int i;
755 
756 	for (i = 0; i < STGE_TIMEOUT; i++) {
757 		delay(2);
758 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
759 		     DMAC_TxDMAInProg) == 0)
760 			break;
761 	}
762 
763 	if (i == STGE_TIMEOUT)
764 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
765 }
766 
767 /*
768  * stge_start:		[ifnet interface function]
769  *
770  *	Start packet transmission on the interface.
771  */
772 static void
773 stge_start(struct ifnet *ifp)
774 {
775 	struct stge_softc *sc = ifp->if_softc;
776 	struct mbuf *m0;
777 	struct stge_descsoft *ds;
778 	struct stge_tfd *tfd;
779 	bus_dmamap_t dmamap;
780 	int error, firsttx, nexttx, opending, seg, totlen;
781 	uint64_t csum_flags;
782 
783 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
784 		return;
785 
786 	/*
787 	 * Remember the previous number of pending transmissions
788 	 * and the first descriptor we will use.
789 	 */
790 	opending = sc->sc_txpending;
791 	firsttx = STGE_NEXTTX(sc->sc_txlast);
792 
793 	/*
794 	 * Loop through the send queue, setting up transmit descriptors
795 	 * until we drain the queue, or use up all available transmit
796 	 * descriptors.
797 	 */
798 	for (;;) {
799 		struct m_tag *mtag;
800 		uint64_t tfc;
801 
802 		/*
803 		 * Grab a packet off the queue.
804 		 */
805 		IFQ_POLL(&ifp->if_snd, m0);
806 		if (m0 == NULL)
807 			break;
808 
809 		/*
810 		 * Leave one unused descriptor at the end of the
811 		 * list to prevent wrapping completely around.
812 		 */
813 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
814 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
815 			break;
816 		}
817 
818 		/*
819 		 * See if we have any VLAN stuff.
820 		 */
821 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
822 
823 		/*
824 		 * Get the last and next available transmit descriptor.
825 		 */
826 		nexttx = STGE_NEXTTX(sc->sc_txlast);
827 		tfd = &sc->sc_txdescs[nexttx];
828 		ds = &sc->sc_txsoft[nexttx];
829 
830 		dmamap = ds->ds_dmamap;
831 
832 		/*
833 		 * Load the DMA map.  If this fails, the packet either
834 		 * didn't fit in the alloted number of segments, or we
835 		 * were short on resources.  For the too-many-segments
836 		 * case, we simply report an error and drop the packet,
837 		 * since we can't sanely copy a jumbo packet to a single
838 		 * buffer.
839 		 */
840 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
841 		    BUS_DMA_NOWAIT);
842 		if (error) {
843 			if (error == EFBIG) {
844 				printf("%s: Tx packet consumes too many "
845 				    "DMA segments, dropping...\n",
846 				    sc->sc_dev.dv_xname);
847 				IFQ_DEQUEUE(&ifp->if_snd, m0);
848 				m_freem(m0);
849 				continue;
850 			}
851 			/*
852 			 * Short on resources, just stop for now.
853 			 */
854 			break;
855 		}
856 
857 		IFQ_DEQUEUE(&ifp->if_snd, m0);
858 
859 		/*
860 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
861 		 */
862 
863 		/* Sync the DMA map. */
864 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
865 		    BUS_DMASYNC_PREWRITE);
866 
867 		/* Initialize the fragment list. */
868 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
869 			tfd->tfd_frags[seg].frag_word0 =
870 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
871 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
872 			totlen += dmamap->dm_segs[seg].ds_len;
873 		}
874 
875 #ifdef STGE_EVENT_COUNTERS
876 		switch (dmamap->dm_nsegs) {
877 		case 1:
878 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
879 			break;
880 		case 2:
881 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
882 			break;
883 		case 3:
884 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
885 			break;
886 		case 4:
887 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
888 			break;
889 		case 5:
890 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
891 			break;
892 		default:
893 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
894 			break;
895 		}
896 #endif /* STGE_EVENT_COUNTERS */
897 
898 		/*
899 		 * Initialize checksumming flags in the descriptor.
900 		 * Byte-swap constants so the compiler can optimize.
901 		 */
902 		csum_flags = 0;
903 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
904 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
905 			csum_flags |= TFD_IPChecksumEnable;
906 		}
907 
908 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
909 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
910 			csum_flags |= TFD_TCPChecksumEnable;
911 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
912 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
913 			csum_flags |= TFD_UDPChecksumEnable;
914 		}
915 
916 		/*
917 		 * Initialize the descriptor and give it to the chip.
918 		 * Check to see if we have a VLAN tag to insert.
919 		 */
920 
921 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
922 		    TFD_FragCount(seg) | csum_flags |
923 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
924 			TFD_TxDMAIndicate : 0);
925 		if (mtag) {
926 #if	0
927 			struct ether_header *eh =
928 			    mtod(m0, struct ether_header *);
929 			u_int16_t etype = ntohs(eh->ether_type);
930 			printf("%s: xmit (tag %d) etype %x\n",
931 			   ifp->if_xname, *mtod(n, int *), etype);
932 #endif
933 			tfc |= TFD_VLANTagInsert |
934 #ifdef	STGE_VLAN_CFI
935 			    TFD_CFI |
936 #endif
937 			    TFD_VID(VLAN_TAG_VALUE(mtag));
938 		}
939 		tfd->tfd_control = htole64(tfc);
940 
941 		/* Sync the descriptor. */
942 		STGE_CDTXSYNC(sc, nexttx,
943 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
944 
945 		/*
946 		 * Kick the transmit DMA logic.
947 		 */
948 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
949 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
950 
951 		/*
952 		 * Store a pointer to the packet so we can free it later.
953 		 */
954 		ds->ds_mbuf = m0;
955 
956 		/* Advance the tx pointer. */
957 		sc->sc_txpending++;
958 		sc->sc_txlast = nexttx;
959 
960 #if NBPFILTER > 0
961 		/*
962 		 * Pass the packet to any BPF listeners.
963 		 */
964 		if (ifp->if_bpf)
965 			bpf_mtap(ifp->if_bpf, m0);
966 #endif /* NBPFILTER > 0 */
967 	}
968 
969 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
970 		/* No more slots left; notify upper layer. */
971 		ifp->if_flags |= IFF_OACTIVE;
972 	}
973 
974 	if (sc->sc_txpending != opending) {
975 		/*
976 		 * We enqueued packets.  If the transmitter was idle,
977 		 * reset the txdirty pointer.
978 		 */
979 		if (opending == 0)
980 			sc->sc_txdirty = firsttx;
981 
982 		/* Set a watchdog timer in case the chip flakes out. */
983 		ifp->if_timer = 5;
984 	}
985 }
986 
987 /*
988  * stge_watchdog:	[ifnet interface function]
989  *
990  *	Watchdog timer handler.
991  */
992 static void
993 stge_watchdog(struct ifnet *ifp)
994 {
995 	struct stge_softc *sc = ifp->if_softc;
996 
997 	/*
998 	 * Sweep up first, since we don't interrupt every frame.
999 	 */
1000 	stge_txintr(sc);
1001 	if (sc->sc_txpending != 0) {
1002 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1003 		ifp->if_oerrors++;
1004 
1005 		(void) stge_init(ifp);
1006 
1007 		/* Try to get more packets going. */
1008 		stge_start(ifp);
1009 	}
1010 }
1011 
1012 /*
1013  * stge_ioctl:		[ifnet interface function]
1014  *
1015  *	Handle control requests from the operator.
1016  */
1017 static int
1018 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1019 {
1020 	struct stge_softc *sc = ifp->if_softc;
1021 	struct ifreq *ifr = (struct ifreq *)data;
1022 	int s, error;
1023 
1024 	s = splnet();
1025 
1026 	switch (cmd) {
1027 	case SIOCSIFMEDIA:
1028 	case SIOCGIFMEDIA:
1029 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1030 		break;
1031 
1032 	default:
1033 		error = ether_ioctl(ifp, cmd, data);
1034 		if (error == ENETRESET) {
1035 			/*
1036 			 * Multicast list has changed; set the hardware filter
1037 			 * accordingly.
1038 			 */
1039 			if (ifp->if_flags & IFF_RUNNING)
1040 				stge_set_filter(sc);
1041 			error = 0;
1042 		}
1043 		break;
1044 	}
1045 
1046 	/* Try to get more packets going. */
1047 	stge_start(ifp);
1048 
1049 	splx(s);
1050 	return (error);
1051 }
1052 
1053 /*
1054  * stge_intr:
1055  *
1056  *	Interrupt service routine.
1057  */
1058 static int
1059 stge_intr(void *arg)
1060 {
1061 	struct stge_softc *sc = arg;
1062 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1063 	uint32_t txstat;
1064 	int wantinit;
1065 	uint16_t isr;
1066 
1067 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1068 	     IS_InterruptStatus) == 0)
1069 		return (0);
1070 
1071 	for (wantinit = 0; wantinit == 0;) {
1072 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1073 		if ((isr & sc->sc_IntEnable) == 0)
1074 			break;
1075 
1076 		/* Host interface errors. */
1077 		if (isr & IS_HostError) {
1078 			printf("%s: Host interface error\n",
1079 			    sc->sc_dev.dv_xname);
1080 			wantinit = 1;
1081 			continue;
1082 		}
1083 
1084 		/* Receive interrupts. */
1085 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1086 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1087 			stge_rxintr(sc);
1088 			if (isr & IS_RFDListEnd) {
1089 				printf("%s: receive ring overflow\n",
1090 				    sc->sc_dev.dv_xname);
1091 				/*
1092 				 * XXX Should try to recover from this
1093 				 * XXX more gracefully.
1094 				 */
1095 				wantinit = 1;
1096 			}
1097 		}
1098 
1099 		/* Transmit interrupts. */
1100 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1101 #ifdef STGE_EVENT_COUNTERS
1102 			if (isr & IS_TxDMAComplete)
1103 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1104 #endif
1105 			stge_txintr(sc);
1106 		}
1107 
1108 		/* Statistics overflow. */
1109 		if (isr & IS_UpdateStats)
1110 			stge_stats_update(sc);
1111 
1112 		/* Transmission errors. */
1113 		if (isr & IS_TxComplete) {
1114 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1115 			for (;;) {
1116 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1117 				    STGE_TxStatus);
1118 				if ((txstat & TS_TxComplete) == 0)
1119 					break;
1120 				if (txstat & TS_TxUnderrun) {
1121 					sc->sc_txthresh++;
1122 					if (sc->sc_txthresh > 0x0fff)
1123 						sc->sc_txthresh = 0x0fff;
1124 					printf("%s: transmit underrun, new "
1125 					    "threshold: %d bytes\n",
1126 					    sc->sc_dev.dv_xname,
1127 					    sc->sc_txthresh << 5);
1128 				}
1129 				if (txstat & TS_MaxCollisions)
1130 					printf("%s: excessive collisions\n",
1131 					    sc->sc_dev.dv_xname);
1132 			}
1133 			wantinit = 1;
1134 		}
1135 
1136 	}
1137 
1138 	if (wantinit)
1139 		stge_init(ifp);
1140 
1141 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1142 	    sc->sc_IntEnable);
1143 
1144 	/* Try to get more packets going. */
1145 	stge_start(ifp);
1146 
1147 	return (1);
1148 }
1149 
1150 /*
1151  * stge_txintr:
1152  *
1153  *	Helper; handle transmit interrupts.
1154  */
1155 static void
1156 stge_txintr(struct stge_softc *sc)
1157 {
1158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1159 	struct stge_descsoft *ds;
1160 	uint64_t control;
1161 	int i;
1162 
1163 	ifp->if_flags &= ~IFF_OACTIVE;
1164 
1165 	/*
1166 	 * Go through our Tx list and free mbufs for those
1167 	 * frames which have been transmitted.
1168 	 */
1169 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1170 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1171 		ds = &sc->sc_txsoft[i];
1172 
1173 		STGE_CDTXSYNC(sc, i,
1174 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1175 
1176 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1177 		if ((control & TFD_TFDDone) == 0)
1178 			break;
1179 
1180 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1181 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1182 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1183 		m_freem(ds->ds_mbuf);
1184 		ds->ds_mbuf = NULL;
1185 	}
1186 
1187 	/* Update the dirty transmit buffer pointer. */
1188 	sc->sc_txdirty = i;
1189 
1190 	/*
1191 	 * If there are no more pending transmissions, cancel the watchdog
1192 	 * timer.
1193 	 */
1194 	if (sc->sc_txpending == 0)
1195 		ifp->if_timer = 0;
1196 }
1197 
1198 /*
1199  * stge_rxintr:
1200  *
1201  *	Helper; handle receive interrupts.
1202  */
1203 static void
1204 stge_rxintr(struct stge_softc *sc)
1205 {
1206 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 	struct stge_descsoft *ds;
1208 	struct mbuf *m, *tailm;
1209 	uint64_t status;
1210 	int i, len;
1211 
1212 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1213 		ds = &sc->sc_rxsoft[i];
1214 
1215 		STGE_CDRXSYNC(sc, i,
1216 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1217 
1218 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1219 
1220 		if ((status & RFD_RFDDone) == 0)
1221 			break;
1222 
1223 		if (__predict_false(sc->sc_rxdiscard)) {
1224 			STGE_INIT_RXDESC(sc, i);
1225 			if (status & RFD_FrameEnd) {
1226 				/* Reset our state. */
1227 				sc->sc_rxdiscard = 0;
1228 			}
1229 			continue;
1230 		}
1231 
1232 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1233 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1234 
1235 		m = ds->ds_mbuf;
1236 
1237 		/*
1238 		 * Add a new receive buffer to the ring.
1239 		 */
1240 		if (stge_add_rxbuf(sc, i) != 0) {
1241 			/*
1242 			 * Failed, throw away what we've done so
1243 			 * far, and discard the rest of the packet.
1244 			 */
1245 			ifp->if_ierrors++;
1246 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1247 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1248 			STGE_INIT_RXDESC(sc, i);
1249 			if ((status & RFD_FrameEnd) == 0)
1250 				sc->sc_rxdiscard = 1;
1251 			if (sc->sc_rxhead != NULL)
1252 				m_freem(sc->sc_rxhead);
1253 			STGE_RXCHAIN_RESET(sc);
1254 			continue;
1255 		}
1256 
1257 #ifdef DIAGNOSTIC
1258 		if (status & RFD_FrameStart) {
1259 			KASSERT(sc->sc_rxhead == NULL);
1260 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1261 		}
1262 #endif
1263 
1264 		STGE_RXCHAIN_LINK(sc, m);
1265 
1266 		/*
1267 		 * If this is not the end of the packet, keep
1268 		 * looking.
1269 		 */
1270 		if ((status & RFD_FrameEnd) == 0) {
1271 			sc->sc_rxlen += m->m_len;
1272 			continue;
1273 		}
1274 
1275 		/*
1276 		 * Okay, we have the entire packet now...
1277 		 */
1278 		*sc->sc_rxtailp = NULL;
1279 		m = sc->sc_rxhead;
1280 		tailm = sc->sc_rxtail;
1281 
1282 		STGE_RXCHAIN_RESET(sc);
1283 
1284 		/*
1285 		 * If the packet had an error, drop it.  Note we
1286 		 * count the error later in the periodic stats update.
1287 		 */
1288 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1289 			      RFD_RxAlignmentError | RFD_RxFCSError |
1290 			      RFD_RxLengthError)) {
1291 			m_freem(m);
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * No errors.
1297 		 *
1298 		 * Note we have configured the chip to not include
1299 		 * the CRC at the end of the packet.
1300 		 */
1301 		len = RFD_RxDMAFrameLen(status);
1302 		tailm->m_len = len - sc->sc_rxlen;
1303 
1304 		/*
1305 		 * If the packet is small enough to fit in a
1306 		 * single header mbuf, allocate one and copy
1307 		 * the data into it.  This greatly reduces
1308 		 * memory consumption when we receive lots
1309 		 * of small packets.
1310 		 */
1311 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1312 			struct mbuf *nm;
1313 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1314 			if (nm == NULL) {
1315 				ifp->if_ierrors++;
1316 				m_freem(m);
1317 				continue;
1318 			}
1319 			nm->m_data += 2;
1320 			nm->m_pkthdr.len = nm->m_len = len;
1321 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1322 			m_freem(m);
1323 			m = nm;
1324 		}
1325 
1326 		/*
1327 		 * Set the incoming checksum information for the packet.
1328 		 */
1329 		if (status & RFD_IPDetected) {
1330 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1331 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1332 			if (status & RFD_IPError)
1333 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1334 			if (status & RFD_TCPDetected) {
1335 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1336 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1337 				if (status & RFD_TCPError)
1338 					m->m_pkthdr.csum_flags |=
1339 					    M_CSUM_TCP_UDP_BAD;
1340 			} else if (status & RFD_UDPDetected) {
1341 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1342 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1343 				if (status & RFD_UDPError)
1344 					m->m_pkthdr.csum_flags |=
1345 					    M_CSUM_TCP_UDP_BAD;
1346 			}
1347 		}
1348 
1349 		m->m_pkthdr.rcvif = ifp;
1350 		m->m_pkthdr.len = len;
1351 
1352 #if NBPFILTER > 0
1353 		/*
1354 		 * Pass this up to any BPF listeners, but only
1355 		 * pass if up the stack if it's for us.
1356 		 */
1357 		if (ifp->if_bpf)
1358 			bpf_mtap(ifp->if_bpf, m);
1359 #endif /* NBPFILTER > 0 */
1360 #ifdef	STGE_VLAN_UNTAG
1361 		/*
1362 		 * Check for VLAN tagged packets
1363 		 */
1364 		if (status & RFD_VLANDetected)
1365 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1366 
1367 #endif
1368 #if	0
1369 		if (status & RFD_VLANDetected) {
1370 			struct ether_header *eh;
1371 			u_int16_t etype;
1372 
1373 			eh = mtod(m, struct ether_header *);
1374 			etype = ntohs(eh->ether_type);
1375 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1376 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1377 			    etype);
1378 		}
1379 #endif
1380 		/* Pass it on. */
1381 		(*ifp->if_input)(ifp, m);
1382 	}
1383 
1384 	/* Update the receive pointer. */
1385 	sc->sc_rxptr = i;
1386 }
1387 
1388 /*
1389  * stge_tick:
1390  *
1391  *	One second timer, used to tick the MII.
1392  */
1393 static void
1394 stge_tick(void *arg)
1395 {
1396 	struct stge_softc *sc = arg;
1397 	int s;
1398 
1399 	s = splnet();
1400 	mii_tick(&sc->sc_mii);
1401 	stge_stats_update(sc);
1402 	splx(s);
1403 
1404 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1405 }
1406 
1407 /*
1408  * stge_stats_update:
1409  *
1410  *	Read the TC9021 statistics counters.
1411  */
1412 static void
1413 stge_stats_update(struct stge_softc *sc)
1414 {
1415 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1416 	bus_space_tag_t st = sc->sc_st;
1417 	bus_space_handle_t sh = sc->sc_sh;
1418 
1419 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1420 
1421 	ifp->if_ipackets +=
1422 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1423 
1424 	ifp->if_ierrors +=
1425 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1426 
1427 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1428 
1429 	ifp->if_opackets +=
1430 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1431 
1432 	ifp->if_collisions +=
1433 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1434 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1435 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1436 
1437 	ifp->if_oerrors +=
1438 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1439 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1440 }
1441 
1442 /*
1443  * stge_reset:
1444  *
1445  *	Perform a soft reset on the TC9021.
1446  */
1447 static void
1448 stge_reset(struct stge_softc *sc)
1449 {
1450 	uint32_t ac;
1451 	int i;
1452 
1453 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1454 
1455 	/*
1456 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1457 	 * to be present in order for the reset to complete on fiber
1458 	 * cards.
1459 	 */
1460 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1461 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1462 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1463 	    (sc->sc_usefiber ? AC_RstOut : 0));
1464 
1465 	delay(50000);
1466 
1467 	for (i = 0; i < STGE_TIMEOUT; i++) {
1468 		delay(5000);
1469 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1470 		     AC_ResetBusy) == 0)
1471 			break;
1472 	}
1473 
1474 	if (i == STGE_TIMEOUT)
1475 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1476 
1477 	delay(1000);
1478 }
1479 
1480 /*
1481  * stge_init:		[ ifnet interface function ]
1482  *
1483  *	Initialize the interface.  Must be called at splnet().
1484  */
1485 static int
1486 stge_init(struct ifnet *ifp)
1487 {
1488 	struct stge_softc *sc = ifp->if_softc;
1489 	bus_space_tag_t st = sc->sc_st;
1490 	bus_space_handle_t sh = sc->sc_sh;
1491 	struct stge_descsoft *ds;
1492 	int i, error = 0;
1493 
1494 	/*
1495 	 * Cancel any pending I/O.
1496 	 */
1497 	stge_stop(ifp, 0);
1498 
1499 	/*
1500 	 * Reset the chip to a known state.
1501 	 */
1502 	stge_reset(sc);
1503 
1504 	/*
1505 	 * Initialize the transmit descriptor ring.
1506 	 */
1507 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1508 	for (i = 0; i < STGE_NTXDESC; i++) {
1509 		sc->sc_txdescs[i].tfd_next = htole64(
1510 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1511 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1512 	}
1513 	sc->sc_txpending = 0;
1514 	sc->sc_txdirty = 0;
1515 	sc->sc_txlast = STGE_NTXDESC - 1;
1516 
1517 	/*
1518 	 * Initialize the receive descriptor and receive job
1519 	 * descriptor rings.
1520 	 */
1521 	for (i = 0; i < STGE_NRXDESC; i++) {
1522 		ds = &sc->sc_rxsoft[i];
1523 		if (ds->ds_mbuf == NULL) {
1524 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1525 				printf("%s: unable to allocate or map rx "
1526 				    "buffer %d, error = %d\n",
1527 				    sc->sc_dev.dv_xname, i, error);
1528 				/*
1529 				 * XXX Should attempt to run with fewer receive
1530 				 * XXX buffers instead of just failing.
1531 				 */
1532 				stge_rxdrain(sc);
1533 				goto out;
1534 			}
1535 		} else
1536 			STGE_INIT_RXDESC(sc, i);
1537 	}
1538 	sc->sc_rxptr = 0;
1539 	sc->sc_rxdiscard = 0;
1540 	STGE_RXCHAIN_RESET(sc);
1541 
1542 	/* Set the station address. */
1543 	for (i = 0; i < 6; i++)
1544 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1545 		    LLADDR(ifp->if_sadl)[i]);
1546 
1547 	/*
1548 	 * Set the statistics masks.  Disable all the RMON stats,
1549 	 * and disable selected stats in the non-RMON stats registers.
1550 	 */
1551 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1552 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1553 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1554 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1555 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1556 	    (1U << 21));
1557 
1558 	/* Set up the receive filter. */
1559 	stge_set_filter(sc);
1560 
1561 	/*
1562 	 * Give the transmit and receive ring to the chip.
1563 	 */
1564 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1565 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1566 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1567 
1568 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1569 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1570 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1571 
1572 	/*
1573 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1574 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1575 	 * transmit engine when there's actually a packet.
1576 	 */
1577 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1578 
1579 	/* ..and the Rx auto-poll period. */
1580 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1581 
1582 	/* Initialize the Tx start threshold. */
1583 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1584 
1585 	/* RX DMA thresholds, from linux */
1586 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1587 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1588 
1589 	/*
1590 	 * Initialize the Rx DMA interrupt control register.  We
1591 	 * request an interrupt after every incoming packet, but
1592 	 * defer it for 32us (64 * 512 ns).  When the number of
1593 	 * interrupts pending reaches 8, we stop deferring the
1594 	 * interrupt, and signal it immediately.
1595 	 */
1596 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1597 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1598 
1599 	/*
1600 	 * Initialize the interrupt mask.
1601 	 */
1602 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1603 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1604 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1605 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1606 
1607 	/*
1608 	 * Configure the DMA engine.
1609 	 * XXX Should auto-tune TxBurstLimit.
1610 	 */
1611 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1612 	    DMAC_TxBurstLimit(3));
1613 
1614 	/*
1615 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1616 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1617 	 * empty again.
1618 	 */
1619 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1620 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1621 
1622 	/*
1623 	 * Set the maximum frame size.
1624 	 */
1625 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1626 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1627 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1628 	     ETHER_VLAN_ENCAP_LEN : 0));
1629 
1630 	/*
1631 	 * Initialize MacCtrl -- do it before setting the media,
1632 	 * as setting the media will actually program the register.
1633 	 *
1634 	 * Note: We have to poke the IFS value before poking
1635 	 * anything else.
1636 	 */
1637 	sc->sc_MACCtrl = MC_IFSSelect(0);
1638 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1639 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1640 #ifdef	STGE_VLAN_UNTAG
1641 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1642 #endif
1643 
1644 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1645 		/* Multi-frag frame bug work-around. */
1646 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1647 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1648 
1649 		/* Tx Poll Now bug work-around. */
1650 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1651 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1652 		/* XXX ? from linux */
1653 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1654 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1655 	}
1656 
1657 	/*
1658 	 * Set the current media.
1659 	 */
1660 	mii_mediachg(&sc->sc_mii);
1661 
1662 	/*
1663 	 * Start the one second MII clock.
1664 	 */
1665 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1666 
1667 	/*
1668 	 * ...all done!
1669 	 */
1670 	ifp->if_flags |= IFF_RUNNING;
1671 	ifp->if_flags &= ~IFF_OACTIVE;
1672 
1673  out:
1674 	if (error)
1675 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1676 	return (error);
1677 }
1678 
1679 /*
1680  * stge_drain:
1681  *
1682  *	Drain the receive queue.
1683  */
1684 static void
1685 stge_rxdrain(struct stge_softc *sc)
1686 {
1687 	struct stge_descsoft *ds;
1688 	int i;
1689 
1690 	for (i = 0; i < STGE_NRXDESC; i++) {
1691 		ds = &sc->sc_rxsoft[i];
1692 		if (ds->ds_mbuf != NULL) {
1693 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1694 			ds->ds_mbuf->m_next = NULL;
1695 			m_freem(ds->ds_mbuf);
1696 			ds->ds_mbuf = NULL;
1697 		}
1698 	}
1699 }
1700 
1701 /*
1702  * stge_stop:		[ ifnet interface function ]
1703  *
1704  *	Stop transmission on the interface.
1705  */
1706 static void
1707 stge_stop(struct ifnet *ifp, int disable)
1708 {
1709 	struct stge_softc *sc = ifp->if_softc;
1710 	struct stge_descsoft *ds;
1711 	int i;
1712 
1713 	/*
1714 	 * Stop the one second clock.
1715 	 */
1716 	callout_stop(&sc->sc_tick_ch);
1717 
1718 	/* Down the MII. */
1719 	mii_down(&sc->sc_mii);
1720 
1721 	/*
1722 	 * Disable interrupts.
1723 	 */
1724 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1725 
1726 	/*
1727 	 * Stop receiver, transmitter, and stats update.
1728 	 */
1729 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1730 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1731 
1732 	/*
1733 	 * Stop the transmit and receive DMA.
1734 	 */
1735 	stge_dma_wait(sc);
1736 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1737 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1738 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1739 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1740 
1741 	/*
1742 	 * Release any queued transmit buffers.
1743 	 */
1744 	for (i = 0; i < STGE_NTXDESC; i++) {
1745 		ds = &sc->sc_txsoft[i];
1746 		if (ds->ds_mbuf != NULL) {
1747 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1748 			m_freem(ds->ds_mbuf);
1749 			ds->ds_mbuf = NULL;
1750 		}
1751 	}
1752 
1753 	if (disable)
1754 		stge_rxdrain(sc);
1755 
1756 	/*
1757 	 * Mark the interface down and cancel the watchdog timer.
1758 	 */
1759 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1760 	ifp->if_timer = 0;
1761 }
1762 
1763 static int
1764 stge_eeprom_wait(struct stge_softc *sc)
1765 {
1766 	int i;
1767 
1768 	for (i = 0; i < STGE_TIMEOUT; i++) {
1769 		delay(1000);
1770 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1771 		     EC_EepromBusy) == 0)
1772 			return (0);
1773 	}
1774 	return (1);
1775 }
1776 
1777 /*
1778  * stge_read_eeprom:
1779  *
1780  *	Read data from the serial EEPROM.
1781  */
1782 static void
1783 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1784 {
1785 
1786 	if (stge_eeprom_wait(sc))
1787 		printf("%s: EEPROM failed to come ready\n",
1788 		    sc->sc_dev.dv_xname);
1789 
1790 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1791 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1792 	if (stge_eeprom_wait(sc))
1793 		printf("%s: EEPROM read timed out\n",
1794 		    sc->sc_dev.dv_xname);
1795 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1796 }
1797 
1798 /*
1799  * stge_add_rxbuf:
1800  *
1801  *	Add a receive buffer to the indicated descriptor.
1802  */
1803 static int
1804 stge_add_rxbuf(struct stge_softc *sc, int idx)
1805 {
1806 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1807 	struct mbuf *m;
1808 	int error;
1809 
1810 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1811 	if (m == NULL)
1812 		return (ENOBUFS);
1813 
1814 	MCLGET(m, M_DONTWAIT);
1815 	if ((m->m_flags & M_EXT) == 0) {
1816 		m_freem(m);
1817 		return (ENOBUFS);
1818 	}
1819 
1820 	m->m_data = m->m_ext.ext_buf + 2;
1821 	m->m_len = MCLBYTES - 2;
1822 
1823 	if (ds->ds_mbuf != NULL)
1824 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1825 
1826 	ds->ds_mbuf = m;
1827 
1828 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1829 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1830 	if (error) {
1831 		printf("%s: can't load rx DMA map %d, error = %d\n",
1832 		    sc->sc_dev.dv_xname, idx, error);
1833 		panic("stge_add_rxbuf");	/* XXX */
1834 	}
1835 
1836 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1837 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1838 
1839 	STGE_INIT_RXDESC(sc, idx);
1840 
1841 	return (0);
1842 }
1843 
1844 /*
1845  * stge_set_filter:
1846  *
1847  *	Set up the receive filter.
1848  */
1849 static void
1850 stge_set_filter(struct stge_softc *sc)
1851 {
1852 	struct ethercom *ec = &sc->sc_ethercom;
1853 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1854 	struct ether_multi *enm;
1855 	struct ether_multistep step;
1856 	uint32_t crc;
1857 	uint32_t mchash[2];
1858 
1859 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1860 	if (ifp->if_flags & IFF_BROADCAST)
1861 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1862 
1863 	/* XXX: ST1023 only works in promiscuous mode */
1864 	if (sc->sc_stge1023)
1865 		ifp->if_flags |= IFF_PROMISC;
1866 
1867 	if (ifp->if_flags & IFF_PROMISC) {
1868 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1869 		goto allmulti;
1870 	}
1871 
1872 	/*
1873 	 * Set up the multicast address filter by passing all multicast
1874 	 * addresses through a CRC generator, and then using the low-order
1875 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1876 	 * high order bits select the register, while the rest of the bits
1877 	 * select the bit within the register.
1878 	 */
1879 
1880 	memset(mchash, 0, sizeof(mchash));
1881 
1882 	ETHER_FIRST_MULTI(step, ec, enm);
1883 	if (enm == NULL)
1884 		goto done;
1885 
1886 	while (enm != NULL) {
1887 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1888 			/*
1889 			 * We must listen to a range of multicast addresses.
1890 			 * For now, just accept all multicasts, rather than
1891 			 * trying to set only those filter bits needed to match
1892 			 * the range.  (At this time, the only use of address
1893 			 * ranges is for IP multicast routing, for which the
1894 			 * range is big enough to require all bits set.)
1895 			 */
1896 			goto allmulti;
1897 		}
1898 
1899 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1900 
1901 		/* Just want the 6 least significant bits. */
1902 		crc &= 0x3f;
1903 
1904 		/* Set the corresponding bit in the hash table. */
1905 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1906 
1907 		ETHER_NEXT_MULTI(step, enm);
1908 	}
1909 
1910 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1911 
1912 	ifp->if_flags &= ~IFF_ALLMULTI;
1913 	goto done;
1914 
1915  allmulti:
1916 	ifp->if_flags |= IFF_ALLMULTI;
1917 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1918 
1919  done:
1920 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1921 		/*
1922 		 * Program the multicast hash table.
1923 		 */
1924 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1925 		    mchash[0]);
1926 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1927 		    mchash[1]);
1928 	}
1929 
1930 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1931 	    sc->sc_ReceiveMode);
1932 }
1933 
1934 /*
1935  * stge_mii_readreg:	[mii interface function]
1936  *
1937  *	Read a PHY register on the MII of the TC9021.
1938  */
1939 static int
1940 stge_mii_readreg(struct device *self, int phy, int reg)
1941 {
1942 
1943 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1944 }
1945 
1946 /*
1947  * stge_mii_writereg:	[mii interface function]
1948  *
1949  *	Write a PHY register on the MII of the TC9021.
1950  */
1951 static void
1952 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1953 {
1954 
1955 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1956 }
1957 
1958 /*
1959  * stge_mii_statchg:	[mii interface function]
1960  *
1961  *	Callback from MII layer when media changes.
1962  */
1963 static void
1964 stge_mii_statchg(struct device *self)
1965 {
1966 	struct stge_softc *sc = (struct stge_softc *) self;
1967 
1968 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1969 		sc->sc_MACCtrl |= MC_DuplexSelect;
1970 	else
1971 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1972 
1973 	/* XXX 802.1x flow-control? */
1974 
1975 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1976 }
1977 
1978 /*
1979  * sste_mii_bitbang_read: [mii bit-bang interface function]
1980  *
1981  *	Read the MII serial port for the MII bit-bang module.
1982  */
1983 static uint32_t
1984 stge_mii_bitbang_read(struct device *self)
1985 {
1986 	struct stge_softc *sc = (void *) self;
1987 
1988 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1989 }
1990 
1991 /*
1992  * stge_mii_bitbang_write: [mii big-bang interface function]
1993  *
1994  *	Write the MII serial port for the MII bit-bang module.
1995  */
1996 static void
1997 stge_mii_bitbang_write(struct device *self, uint32_t val)
1998 {
1999 	struct stge_softc *sc = (void *) self;
2000 
2001 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2002 	    val | sc->sc_PhyCtrl);
2003 }
2004 
2005 /*
2006  * stge_mediastatus:	[ifmedia interface function]
2007  *
2008  *	Get the current interface media status.
2009  */
2010 static void
2011 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2012 {
2013 	struct stge_softc *sc = ifp->if_softc;
2014 
2015 	mii_pollstat(&sc->sc_mii);
2016 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2017 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2018 }
2019 
2020 /*
2021  * stge_mediachange:	[ifmedia interface function]
2022  *
2023  *	Set hardware to newly-selected media.
2024  */
2025 static int
2026 stge_mediachange(struct ifnet *ifp)
2027 {
2028 	struct stge_softc *sc = ifp->if_softc;
2029 
2030 	if (ifp->if_flags & IFF_UP)
2031 		mii_mediachg(&sc->sc_mii);
2032 	return (0);
2033 }
2034