xref: /netbsd-src/sys/dev/pci/if_stge.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: if_stge.c,v 1.62 2016/12/15 09:28:05 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.62 2016/12/15 09:28:05 ozaki-r Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stgereg.h>
72 
73 #include <prop/proplib.h>
74 
75 /* #define	STGE_CU_BUG			1 */
76 #define	STGE_VLAN_UNTAG			1
77 /* #define	STGE_VLAN_CFI		1 */
78 
79 /*
80  * Transmit descriptor list size.
81  */
82 #define	STGE_NTXDESC		256
83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
85 
86 /*
87  * Receive descriptor list size.
88  */
89 #define	STGE_NRXDESC		256
90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
92 
93 /*
94  * Only interrupt every N frames.  Must be a power-of-two.
95  */
96 #define	STGE_TXINTR_SPACING	16
97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98 
99 /*
100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct stge_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115 
116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct stge_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct stge_softc {
132 	device_t sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	int sc_rev;			/* silicon revision */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct stge_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 #ifdef STGE_EVENT_COUNTERS
162 	/*
163 	 * Event counters.
164 	 */
165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
169 
170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
177 
178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
181 
182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186 
187 	int	sc_txpending;		/* number of Tx requests pending */
188 	int	sc_txdirty;		/* first dirty Tx descriptor */
189 	int	sc_txlast;		/* last used Tx descriptor */
190 
191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
192 	int	sc_rxdiscard;
193 	int	sc_rxlen;
194 	struct mbuf *sc_rxhead;
195 	struct mbuf *sc_rxtail;
196 	struct mbuf **sc_rxtailp;
197 
198 	int	sc_txthresh;		/* Tx threshold */
199 	uint32_t sc_usefiber:1;		/* if we're fiber */
200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
206 };
207 
208 #define	STGE_RXCHAIN_RESET(sc)						\
209 do {									\
210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
211 	*(sc)->sc_rxtailp = NULL;					\
212 	(sc)->sc_rxlen = 0;						\
213 } while (/*CONSTCOND*/0)
214 
215 #define	STGE_RXCHAIN_LINK(sc, m)					\
216 do {									\
217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
218 	(sc)->sc_rxtailp = &(m)->m_next;				\
219 } while (/*CONSTCOND*/0)
220 
221 #ifdef STGE_EVENT_COUNTERS
222 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
223 #else
224 #define	STGE_EVCNT_INCR(ev)	/* nothing */
225 #endif
226 
227 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
229 
230 #define	STGE_CDTXSYNC(sc, x, ops)					\
231 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
232 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233 
234 #define	STGE_CDRXSYNC(sc, x, ops)					\
235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237 
238 #define	STGE_INIT_RXDESC(sc, x)						\
239 do {									\
240 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
241 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
242 									\
243 	/*								\
244 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
245 	 * so that the payload after the Ethernet header is aligned	\
246 	 * to a 4-byte boundary.					\
247 	 */								\
248 	__rfd->rfd_frag.frag_word0 =					\
249 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 	    FRAG_LEN(MCLBYTES - 2));					\
251 	__rfd->rfd_next =						\
252 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
253 	__rfd->rfd_status = 0;						\
254 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256 
257 #define STGE_TIMEOUT 1000
258 
259 static void	stge_start(struct ifnet *);
260 static void	stge_watchdog(struct ifnet *);
261 static int	stge_ioctl(struct ifnet *, u_long, void *);
262 static int	stge_init(struct ifnet *);
263 static void	stge_stop(struct ifnet *, int);
264 
265 static bool	stge_shutdown(device_t, int);
266 
267 static void	stge_reset(struct stge_softc *);
268 static void	stge_rxdrain(struct stge_softc *);
269 static int	stge_add_rxbuf(struct stge_softc *, int);
270 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void	stge_tick(void *);
272 
273 static void	stge_stats_update(struct stge_softc *);
274 
275 static void	stge_set_filter(struct stge_softc *);
276 
277 static int	stge_intr(void *);
278 static void	stge_txintr(struct stge_softc *);
279 static void	stge_rxintr(struct stge_softc *);
280 
281 static int	stge_mii_readreg(device_t, int, int);
282 static void	stge_mii_writereg(device_t, int, int, int);
283 static void	stge_mii_statchg(struct ifnet *);
284 
285 static int	stge_match(device_t, cfdata_t, void *);
286 static void	stge_attach(device_t, device_t, void *);
287 
288 int	stge_copy_small = 0;
289 
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291     stge_match, stge_attach, NULL, NULL);
292 
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void	stge_mii_bitbang_write(device_t, uint32_t);
295 
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 	stge_mii_bitbang_read,
298 	stge_mii_bitbang_write,
299 	{
300 		PC_MgmtData,		/* MII_BIT_MDO */
301 		PC_MgmtData,		/* MII_BIT_MDI */
302 		PC_MgmtClk,		/* MII_BIT_MDC */
303 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
304 		0,			/* MII_BIT_DIR_PHY_HOST */
305 	}
306 };
307 
308 /*
309  * Devices supported by this driver.
310  */
311 static const struct stge_product {
312 	pci_vendor_id_t		stge_vendor;
313 	pci_product_id_t	stge_product;
314 	const char		*stge_name;
315 } stge_products[] = {
316 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
317 	  "Sundance ST-1023 Gigabit Ethernet" },
318 
319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
320 	  "Sundance ST-2021 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
323 	  "Tamarack TC9021 Gigabit Ethernet" },
324 
325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 	  "Tamarack TC9021 Gigabit Ethernet" },
327 
328 	/*
329 	 * The Sundance sample boards use the Sundance vendor ID,
330 	 * but the Tamarack product ID.
331 	 */
332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
333 	  "Sundance TC9021 Gigabit Ethernet" },
334 
335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 	  "Sundance TC9021 Gigabit Ethernet" },
337 
338 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
339 	  "D-Link DL-4000 Gigabit Ethernet" },
340 
341 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
342 	  "Antares Gigabit Ethernet" },
343 
344 	{ 0,				0,
345 	  NULL },
346 };
347 
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 	const struct stge_product *sp;
352 
353 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 			return (sp);
357 	}
358 	return (NULL);
359 }
360 
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 	struct pci_attach_args *pa = aux;
365 
366 	if (stge_lookup(pa) != NULL)
367 		return (1);
368 
369 	return (0);
370 }
371 
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 	struct stge_softc *sc = device_private(self);
376 	struct pci_attach_args *pa = aux;
377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 	pci_chipset_tag_t pc = pa->pa_pc;
379 	pci_intr_handle_t ih;
380 	const char *intrstr = NULL;
381 	bus_space_tag_t iot, memt;
382 	bus_space_handle_t ioh, memh;
383 	bus_dma_segment_t seg;
384 	prop_data_t data;
385 	int ioh_valid, memh_valid;
386 	int i, rseg, error;
387 	const struct stge_product *sp;
388 	uint8_t enaddr[ETHER_ADDR_LEN];
389 	char intrbuf[PCI_INTRSTR_LEN];
390 
391 	callout_init(&sc->sc_tick_ch, 0);
392 
393 	sp = stge_lookup(pa);
394 	if (sp == NULL) {
395 		printf("\n");
396 		panic("ste_attach: impossible");
397 	}
398 
399 	sc->sc_rev = PCI_REVISION(pa->pa_class);
400 
401 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
402 
403 	/*
404 	 * Map the device.
405 	 */
406 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
407 	    PCI_MAPREG_TYPE_IO, 0,
408 	    &iot, &ioh, NULL, NULL) == 0);
409 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
410 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
411 	    &memt, &memh, NULL, NULL) == 0);
412 
413 	if (memh_valid) {
414 		sc->sc_st = memt;
415 		sc->sc_sh = memh;
416 	} else if (ioh_valid) {
417 		sc->sc_st = iot;
418 		sc->sc_sh = ioh;
419 	} else {
420 		aprint_error_dev(self, "unable to map device registers\n");
421 		return;
422 	}
423 
424 	sc->sc_dmat = pa->pa_dmat;
425 
426 	/* Enable bus mastering. */
427 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
428 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
429 	    PCI_COMMAND_MASTER_ENABLE);
430 
431 	/* power up chip */
432 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
433 	    error != EOPNOTSUPP) {
434 		aprint_error_dev(self, "cannot activate %d\n", error);
435 		return;
436 	}
437 	/*
438 	 * Map and establish our interrupt.
439 	 */
440 	if (pci_intr_map(pa, &ih)) {
441 		aprint_error_dev(self, "unable to map interrupt\n");
442 		return;
443 	}
444 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
445 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
446 	if (sc->sc_ih == NULL) {
447 		aprint_error_dev(self, "unable to establish interrupt");
448 		if (intrstr != NULL)
449 			aprint_error(" at %s", intrstr);
450 		aprint_error("\n");
451 		return;
452 	}
453 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
454 
455 	/*
456 	 * Allocate the control data structures, and create and load the
457 	 * DMA map for it.
458 	 */
459 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
460 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
461 	    0)) != 0) {
462 		aprint_error_dev(self,
463 		    "unable to allocate control data, error = %d\n", error);
464 		goto fail_0;
465 	}
466 
467 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
468 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
469 	    BUS_DMA_COHERENT)) != 0) {
470 		aprint_error_dev(self,
471 		    "unable to map control data, error = %d\n", error);
472 		goto fail_1;
473 	}
474 
475 	if ((error = bus_dmamap_create(sc->sc_dmat,
476 	    sizeof(struct stge_control_data), 1,
477 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
478 		aprint_error_dev(self,
479 		    "unable to create control data DMA map, error = %d\n",
480 		    error);
481 		goto fail_2;
482 	}
483 
484 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
485 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
486 	    0)) != 0) {
487 		aprint_error_dev(self,
488 		    "unable to load control data DMA map, error = %d\n",
489 		    error);
490 		goto fail_3;
491 	}
492 
493 	/*
494 	 * Create the transmit buffer DMA maps.  Note that rev B.3
495 	 * and earlier seem to have a bug regarding multi-fragment
496 	 * packets.  We need to limit the number of Tx segments on
497 	 * such chips to 1.
498 	 */
499 	for (i = 0; i < STGE_NTXDESC; i++) {
500 		if ((error = bus_dmamap_create(sc->sc_dmat,
501 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
502 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
503 			aprint_error_dev(self,
504 			    "unable to create tx DMA map %d, error = %d\n",
505 			    i, error);
506 			goto fail_4;
507 		}
508 	}
509 
510 	/*
511 	 * Create the receive buffer DMA maps.
512 	 */
513 	for (i = 0; i < STGE_NRXDESC; i++) {
514 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
515 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
516 			aprint_error_dev(self,
517 			    "unable to create rx DMA map %d, error = %d\n",
518 			    i, error);
519 			goto fail_5;
520 		}
521 		sc->sc_rxsoft[i].ds_mbuf = NULL;
522 	}
523 
524 	/*
525 	 * Determine if we're copper or fiber.  It affects how we
526 	 * reset the card.
527 	 */
528 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
529 	    AC_PhyMedia)
530 		sc->sc_usefiber = 1;
531 	else
532 		sc->sc_usefiber = 0;
533 
534 	/*
535 	 * Reset the chip to a known state.
536 	 */
537 	stge_reset(sc);
538 
539 	/*
540 	 * Reading the station address from the EEPROM doesn't seem
541 	 * to work, at least on my sample boards.  Instead, since
542 	 * the reset sequence does AutoInit, read it from the station
543 	 * address registers. For Sundance 1023 you can only read it
544 	 * from EEPROM.
545 	 */
546 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
547 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
548 		    STGE_StationAddress0) & 0xff;
549 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550 		    STGE_StationAddress0) >> 8;
551 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 		    STGE_StationAddress1) & 0xff;
553 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 		    STGE_StationAddress1) >> 8;
555 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 		    STGE_StationAddress2) & 0xff;
557 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 		    STGE_StationAddress2) >> 8;
559 		sc->sc_stge1023 = 0;
560 	} else {
561 		data = prop_dictionary_get(device_properties(self),
562 		    "mac-address");
563 		if (data != NULL) {
564 			/*
565 			 * Try to get the station address from device
566 			 * properties first, in case the EEPROM is missing.
567 			 */
568 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
569 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
570 			(void)memcpy(enaddr, prop_data_data_nocopy(data),
571 			    ETHER_ADDR_LEN);
572 		} else {
573 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
574 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
575 				stge_read_eeprom(sc,
576 				    STGE_EEPROM_StationAddress0 + i,
577 				    &myaddr[i]);
578 				myaddr[i] = le16toh(myaddr[i]);
579 			}
580 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
581 		}
582 		sc->sc_stge1023 = 1;
583 	}
584 
585 	aprint_normal_dev(self, "Ethernet address %s\n",
586 	    ether_sprintf(enaddr));
587 
588 	/*
589 	 * Read some important bits from the PhyCtrl register.
590 	 */
591 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
592 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
593 
594 	/*
595 	 * Initialize our media structures and probe the MII.
596 	 */
597 	sc->sc_mii.mii_ifp = ifp;
598 	sc->sc_mii.mii_readreg = stge_mii_readreg;
599 	sc->sc_mii.mii_writereg = stge_mii_writereg;
600 	sc->sc_mii.mii_statchg = stge_mii_statchg;
601 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
602 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
603 	    ether_mediastatus);
604 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
605 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
606 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
607 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
608 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
609 	} else
610 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
611 
612 	ifp = &sc->sc_ethercom.ec_if;
613 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
614 	ifp->if_softc = sc;
615 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
616 	ifp->if_ioctl = stge_ioctl;
617 	ifp->if_start = stge_start;
618 	ifp->if_watchdog = stge_watchdog;
619 	ifp->if_init = stge_init;
620 	ifp->if_stop = stge_stop;
621 	IFQ_SET_READY(&ifp->if_snd);
622 
623 	/*
624 	 * The manual recommends disabling early transmit, so we
625 	 * do.  It's disabled anyway, if using IP checksumming,
626 	 * since the entire packet must be in the FIFO in order
627 	 * for the chip to perform the checksum.
628 	 */
629 	sc->sc_txthresh = 0x0fff;
630 
631 	/*
632 	 * Disable MWI if the PCI layer tells us to.
633 	 */
634 	sc->sc_DMACtrl = 0;
635 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
636 		sc->sc_DMACtrl |= DMAC_MWIDisable;
637 
638 	/*
639 	 * We can support 802.1Q VLAN-sized frames and jumbo
640 	 * Ethernet frames.
641 	 *
642 	 * XXX Figure out how to do hw-assisted VLAN tagging in
643 	 * XXX a reasonable way on this chip.
644 	 */
645 	sc->sc_ethercom.ec_capabilities |=
646 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
647 	    ETHERCAP_VLAN_HWTAGGING;
648 
649 	/*
650 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
651 	 */
652 	sc->sc_ethercom.ec_if.if_capabilities |=
653 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
654 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
655 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
656 
657 	/*
658 	 * Attach the interface.
659 	 */
660 	if_attach(ifp);
661 	if_deferred_start_init(ifp, NULL);
662 	ether_ifattach(ifp, enaddr);
663 
664 #ifdef STGE_EVENT_COUNTERS
665 	/*
666 	 * Attach event counters.
667 	 */
668 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
669 	    NULL, device_xname(self), "txstall");
670 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
671 	    NULL, device_xname(self), "txdmaintr");
672 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
673 	    NULL, device_xname(self), "txindintr");
674 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
675 	    NULL, device_xname(self), "rxintr");
676 
677 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
678 	    NULL, device_xname(self), "txseg1");
679 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
680 	    NULL, device_xname(self), "txseg2");
681 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
682 	    NULL, device_xname(self), "txseg3");
683 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
684 	    NULL, device_xname(self), "txseg4");
685 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
686 	    NULL, device_xname(self), "txseg5");
687 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
688 	    NULL, device_xname(self), "txsegmore");
689 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
690 	    NULL, device_xname(self), "txcopy");
691 
692 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
693 	    NULL, device_xname(self), "rxipsum");
694 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
695 	    NULL, device_xname(self), "rxtcpsum");
696 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
697 	    NULL, device_xname(self), "rxudpsum");
698 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
699 	    NULL, device_xname(self), "txipsum");
700 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
701 	    NULL, device_xname(self), "txtcpsum");
702 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
703 	    NULL, device_xname(self), "txudpsum");
704 #endif /* STGE_EVENT_COUNTERS */
705 
706 	/*
707 	 * Make sure the interface is shutdown during reboot.
708 	 */
709 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
710 		pmf_class_network_register(self, ifp);
711 	else
712 		aprint_error_dev(self, "couldn't establish power handler\n");
713 
714 	return;
715 
716 	/*
717 	 * Free any resources we've allocated during the failed attach
718 	 * attempt.  Do this in reverse order and fall through.
719 	 */
720  fail_5:
721 	for (i = 0; i < STGE_NRXDESC; i++) {
722 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
723 			bus_dmamap_destroy(sc->sc_dmat,
724 			    sc->sc_rxsoft[i].ds_dmamap);
725 	}
726  fail_4:
727 	for (i = 0; i < STGE_NTXDESC; i++) {
728 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
729 			bus_dmamap_destroy(sc->sc_dmat,
730 			    sc->sc_txsoft[i].ds_dmamap);
731 	}
732 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
733  fail_3:
734 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
735  fail_2:
736 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
737 	    sizeof(struct stge_control_data));
738  fail_1:
739 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
740  fail_0:
741 	return;
742 }
743 
744 /*
745  * stge_shutdown:
746  *
747  *	Make sure the interface is stopped at reboot time.
748  */
749 static bool
750 stge_shutdown(device_t self, int howto)
751 {
752 	struct stge_softc *sc = device_private(self);
753 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
754 
755 	stge_stop(ifp, 1);
756 	stge_reset(sc);
757 	return true;
758 }
759 
760 static void
761 stge_dma_wait(struct stge_softc *sc)
762 {
763 	int i;
764 
765 	for (i = 0; i < STGE_TIMEOUT; i++) {
766 		delay(2);
767 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
768 		     DMAC_TxDMAInProg) == 0)
769 			break;
770 	}
771 
772 	if (i == STGE_TIMEOUT)
773 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
774 }
775 
776 /*
777  * stge_start:		[ifnet interface function]
778  *
779  *	Start packet transmission on the interface.
780  */
781 static void
782 stge_start(struct ifnet *ifp)
783 {
784 	struct stge_softc *sc = ifp->if_softc;
785 	struct mbuf *m0;
786 	struct stge_descsoft *ds;
787 	struct stge_tfd *tfd;
788 	bus_dmamap_t dmamap;
789 	int error, firsttx, nexttx, opending, seg, totlen;
790 	uint64_t csum_flags;
791 
792 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
793 		return;
794 
795 	/*
796 	 * Remember the previous number of pending transmissions
797 	 * and the first descriptor we will use.
798 	 */
799 	opending = sc->sc_txpending;
800 	firsttx = STGE_NEXTTX(sc->sc_txlast);
801 
802 	/*
803 	 * Loop through the send queue, setting up transmit descriptors
804 	 * until we drain the queue, or use up all available transmit
805 	 * descriptors.
806 	 */
807 	for (;;) {
808 		struct m_tag *mtag;
809 		uint64_t tfc;
810 
811 		/*
812 		 * Grab a packet off the queue.
813 		 */
814 		IFQ_POLL(&ifp->if_snd, m0);
815 		if (m0 == NULL)
816 			break;
817 
818 		/*
819 		 * Leave one unused descriptor at the end of the
820 		 * list to prevent wrapping completely around.
821 		 */
822 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
823 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
824 			break;
825 		}
826 
827 		/*
828 		 * See if we have any VLAN stuff.
829 		 */
830 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
831 
832 		/*
833 		 * Get the last and next available transmit descriptor.
834 		 */
835 		nexttx = STGE_NEXTTX(sc->sc_txlast);
836 		tfd = &sc->sc_txdescs[nexttx];
837 		ds = &sc->sc_txsoft[nexttx];
838 
839 		dmamap = ds->ds_dmamap;
840 
841 		/*
842 		 * Load the DMA map.  If this fails, the packet either
843 		 * didn't fit in the alloted number of segments, or we
844 		 * were short on resources.  For the too-many-segments
845 		 * case, we simply report an error and drop the packet,
846 		 * since we can't sanely copy a jumbo packet to a single
847 		 * buffer.
848 		 */
849 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
850 		    BUS_DMA_NOWAIT);
851 		if (error) {
852 			if (error == EFBIG) {
853 				printf("%s: Tx packet consumes too many "
854 				    "DMA segments, dropping...\n",
855 				    device_xname(sc->sc_dev));
856 				IFQ_DEQUEUE(&ifp->if_snd, m0);
857 				m_freem(m0);
858 				continue;
859 			}
860 			/*
861 			 * Short on resources, just stop for now.
862 			 */
863 			break;
864 		}
865 
866 		IFQ_DEQUEUE(&ifp->if_snd, m0);
867 
868 		/*
869 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
870 		 */
871 
872 		/* Sync the DMA map. */
873 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
874 		    BUS_DMASYNC_PREWRITE);
875 
876 		/* Initialize the fragment list. */
877 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
878 			tfd->tfd_frags[seg].frag_word0 =
879 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
880 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
881 			totlen += dmamap->dm_segs[seg].ds_len;
882 		}
883 
884 #ifdef STGE_EVENT_COUNTERS
885 		switch (dmamap->dm_nsegs) {
886 		case 1:
887 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
888 			break;
889 		case 2:
890 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
891 			break;
892 		case 3:
893 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
894 			break;
895 		case 4:
896 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
897 			break;
898 		case 5:
899 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
900 			break;
901 		default:
902 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
903 			break;
904 		}
905 #endif /* STGE_EVENT_COUNTERS */
906 
907 		/*
908 		 * Initialize checksumming flags in the descriptor.
909 		 * Byte-swap constants so the compiler can optimize.
910 		 */
911 		csum_flags = 0;
912 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
913 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
914 			csum_flags |= TFD_IPChecksumEnable;
915 		}
916 
917 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
918 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
919 			csum_flags |= TFD_TCPChecksumEnable;
920 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
921 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
922 			csum_flags |= TFD_UDPChecksumEnable;
923 		}
924 
925 		/*
926 		 * Initialize the descriptor and give it to the chip.
927 		 * Check to see if we have a VLAN tag to insert.
928 		 */
929 
930 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
931 		    TFD_FragCount(seg) | csum_flags |
932 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
933 			TFD_TxDMAIndicate : 0);
934 		if (mtag) {
935 #if	0
936 			struct ether_header *eh =
937 			    mtod(m0, struct ether_header *);
938 			u_int16_t etype = ntohs(eh->ether_type);
939 			printf("%s: xmit (tag %d) etype %x\n",
940 			   ifp->if_xname, *mtod(n, int *), etype);
941 #endif
942 			tfc |= TFD_VLANTagInsert |
943 #ifdef	STGE_VLAN_CFI
944 			    TFD_CFI |
945 #endif
946 			    TFD_VID(VLAN_TAG_VALUE(mtag));
947 		}
948 		tfd->tfd_control = htole64(tfc);
949 
950 		/* Sync the descriptor. */
951 		STGE_CDTXSYNC(sc, nexttx,
952 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
953 
954 		/*
955 		 * Kick the transmit DMA logic.
956 		 */
957 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
958 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
959 
960 		/*
961 		 * Store a pointer to the packet so we can free it later.
962 		 */
963 		ds->ds_mbuf = m0;
964 
965 		/* Advance the tx pointer. */
966 		sc->sc_txpending++;
967 		sc->sc_txlast = nexttx;
968 
969 		/*
970 		 * Pass the packet to any BPF listeners.
971 		 */
972 		bpf_mtap(ifp, m0);
973 	}
974 
975 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
976 		/* No more slots left; notify upper layer. */
977 		ifp->if_flags |= IFF_OACTIVE;
978 	}
979 
980 	if (sc->sc_txpending != opending) {
981 		/*
982 		 * We enqueued packets.  If the transmitter was idle,
983 		 * reset the txdirty pointer.
984 		 */
985 		if (opending == 0)
986 			sc->sc_txdirty = firsttx;
987 
988 		/* Set a watchdog timer in case the chip flakes out. */
989 		ifp->if_timer = 5;
990 	}
991 }
992 
993 /*
994  * stge_watchdog:	[ifnet interface function]
995  *
996  *	Watchdog timer handler.
997  */
998 static void
999 stge_watchdog(struct ifnet *ifp)
1000 {
1001 	struct stge_softc *sc = ifp->if_softc;
1002 
1003 	/*
1004 	 * Sweep up first, since we don't interrupt every frame.
1005 	 */
1006 	stge_txintr(sc);
1007 	if (sc->sc_txpending != 0) {
1008 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1009 		ifp->if_oerrors++;
1010 
1011 		(void) stge_init(ifp);
1012 
1013 		/* Try to get more packets going. */
1014 		stge_start(ifp);
1015 	}
1016 }
1017 
1018 /*
1019  * stge_ioctl:		[ifnet interface function]
1020  *
1021  *	Handle control requests from the operator.
1022  */
1023 static int
1024 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1025 {
1026 	struct stge_softc *sc = ifp->if_softc;
1027 	int s, error;
1028 
1029 	s = splnet();
1030 
1031 	error = ether_ioctl(ifp, cmd, data);
1032 	if (error == ENETRESET) {
1033 		error = 0;
1034 
1035 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1036 			;
1037 		else if (ifp->if_flags & IFF_RUNNING) {
1038 			/*
1039 			 * Multicast list has changed; set the hardware filter
1040 			 * accordingly.
1041 			 */
1042 			stge_set_filter(sc);
1043 		}
1044 	}
1045 
1046 	/* Try to get more packets going. */
1047 	stge_start(ifp);
1048 
1049 	splx(s);
1050 	return (error);
1051 }
1052 
1053 /*
1054  * stge_intr:
1055  *
1056  *	Interrupt service routine.
1057  */
1058 static int
1059 stge_intr(void *arg)
1060 {
1061 	struct stge_softc *sc = arg;
1062 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1063 	uint32_t txstat;
1064 	int wantinit;
1065 	uint16_t isr;
1066 
1067 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1068 	     IS_InterruptStatus) == 0)
1069 		return (0);
1070 
1071 	for (wantinit = 0; wantinit == 0;) {
1072 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1073 		if ((isr & sc->sc_IntEnable) == 0)
1074 			break;
1075 
1076 		/* Host interface errors. */
1077 		if (isr & IS_HostError) {
1078 			printf("%s: Host interface error\n",
1079 			    device_xname(sc->sc_dev));
1080 			wantinit = 1;
1081 			continue;
1082 		}
1083 
1084 		/* Receive interrupts. */
1085 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1086 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1087 			stge_rxintr(sc);
1088 			if (isr & IS_RFDListEnd) {
1089 				printf("%s: receive ring overflow\n",
1090 				    device_xname(sc->sc_dev));
1091 				/*
1092 				 * XXX Should try to recover from this
1093 				 * XXX more gracefully.
1094 				 */
1095 				wantinit = 1;
1096 			}
1097 		}
1098 
1099 		/* Transmit interrupts. */
1100 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1101 #ifdef STGE_EVENT_COUNTERS
1102 			if (isr & IS_TxDMAComplete)
1103 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1104 #endif
1105 			stge_txintr(sc);
1106 		}
1107 
1108 		/* Statistics overflow. */
1109 		if (isr & IS_UpdateStats)
1110 			stge_stats_update(sc);
1111 
1112 		/* Transmission errors. */
1113 		if (isr & IS_TxComplete) {
1114 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1115 			for (;;) {
1116 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1117 				    STGE_TxStatus);
1118 				if ((txstat & TS_TxComplete) == 0)
1119 					break;
1120 				if (txstat & TS_TxUnderrun) {
1121 					sc->sc_txthresh++;
1122 					if (sc->sc_txthresh > 0x0fff)
1123 						sc->sc_txthresh = 0x0fff;
1124 					printf("%s: transmit underrun, new "
1125 					    "threshold: %d bytes\n",
1126 					    device_xname(sc->sc_dev),
1127 					    sc->sc_txthresh << 5);
1128 				}
1129 				if (txstat & TS_MaxCollisions)
1130 					printf("%s: excessive collisions\n",
1131 					    device_xname(sc->sc_dev));
1132 			}
1133 			wantinit = 1;
1134 		}
1135 
1136 	}
1137 
1138 	if (wantinit)
1139 		stge_init(ifp);
1140 
1141 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1142 	    sc->sc_IntEnable);
1143 
1144 	/* Try to get more packets going. */
1145 	if_schedule_deferred_start(ifp);
1146 
1147 	return (1);
1148 }
1149 
1150 /*
1151  * stge_txintr:
1152  *
1153  *	Helper; handle transmit interrupts.
1154  */
1155 static void
1156 stge_txintr(struct stge_softc *sc)
1157 {
1158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1159 	struct stge_descsoft *ds;
1160 	uint64_t control;
1161 	int i;
1162 
1163 	ifp->if_flags &= ~IFF_OACTIVE;
1164 
1165 	/*
1166 	 * Go through our Tx list and free mbufs for those
1167 	 * frames which have been transmitted.
1168 	 */
1169 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1170 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1171 		ds = &sc->sc_txsoft[i];
1172 
1173 		STGE_CDTXSYNC(sc, i,
1174 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1175 
1176 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1177 		if ((control & TFD_TFDDone) == 0)
1178 			break;
1179 
1180 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1181 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1182 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1183 		m_freem(ds->ds_mbuf);
1184 		ds->ds_mbuf = NULL;
1185 	}
1186 
1187 	/* Update the dirty transmit buffer pointer. */
1188 	sc->sc_txdirty = i;
1189 
1190 	/*
1191 	 * If there are no more pending transmissions, cancel the watchdog
1192 	 * timer.
1193 	 */
1194 	if (sc->sc_txpending == 0)
1195 		ifp->if_timer = 0;
1196 }
1197 
1198 /*
1199  * stge_rxintr:
1200  *
1201  *	Helper; handle receive interrupts.
1202  */
1203 static void
1204 stge_rxintr(struct stge_softc *sc)
1205 {
1206 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 	struct stge_descsoft *ds;
1208 	struct mbuf *m, *tailm;
1209 	uint64_t status;
1210 	int i, len;
1211 
1212 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1213 		ds = &sc->sc_rxsoft[i];
1214 
1215 		STGE_CDRXSYNC(sc, i,
1216 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1217 
1218 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1219 
1220 		if ((status & RFD_RFDDone) == 0)
1221 			break;
1222 
1223 		if (__predict_false(sc->sc_rxdiscard)) {
1224 			STGE_INIT_RXDESC(sc, i);
1225 			if (status & RFD_FrameEnd) {
1226 				/* Reset our state. */
1227 				sc->sc_rxdiscard = 0;
1228 			}
1229 			continue;
1230 		}
1231 
1232 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1233 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1234 
1235 		m = ds->ds_mbuf;
1236 
1237 		/*
1238 		 * Add a new receive buffer to the ring.
1239 		 */
1240 		if (stge_add_rxbuf(sc, i) != 0) {
1241 			/*
1242 			 * Failed, throw away what we've done so
1243 			 * far, and discard the rest of the packet.
1244 			 */
1245 			ifp->if_ierrors++;
1246 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1247 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1248 			STGE_INIT_RXDESC(sc, i);
1249 			if ((status & RFD_FrameEnd) == 0)
1250 				sc->sc_rxdiscard = 1;
1251 			if (sc->sc_rxhead != NULL)
1252 				m_freem(sc->sc_rxhead);
1253 			STGE_RXCHAIN_RESET(sc);
1254 			continue;
1255 		}
1256 
1257 #ifdef DIAGNOSTIC
1258 		if (status & RFD_FrameStart) {
1259 			KASSERT(sc->sc_rxhead == NULL);
1260 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1261 		}
1262 #endif
1263 
1264 		STGE_RXCHAIN_LINK(sc, m);
1265 
1266 		/*
1267 		 * If this is not the end of the packet, keep
1268 		 * looking.
1269 		 */
1270 		if ((status & RFD_FrameEnd) == 0) {
1271 			sc->sc_rxlen += m->m_len;
1272 			continue;
1273 		}
1274 
1275 		/*
1276 		 * Okay, we have the entire packet now...
1277 		 */
1278 		*sc->sc_rxtailp = NULL;
1279 		m = sc->sc_rxhead;
1280 		tailm = sc->sc_rxtail;
1281 
1282 		STGE_RXCHAIN_RESET(sc);
1283 
1284 		/*
1285 		 * If the packet had an error, drop it.  Note we
1286 		 * count the error later in the periodic stats update.
1287 		 */
1288 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1289 			      RFD_RxAlignmentError | RFD_RxFCSError |
1290 			      RFD_RxLengthError)) {
1291 			m_freem(m);
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * No errors.
1297 		 *
1298 		 * Note we have configured the chip to not include
1299 		 * the CRC at the end of the packet.
1300 		 */
1301 		len = RFD_RxDMAFrameLen(status);
1302 		tailm->m_len = len - sc->sc_rxlen;
1303 
1304 		/*
1305 		 * If the packet is small enough to fit in a
1306 		 * single header mbuf, allocate one and copy
1307 		 * the data into it.  This greatly reduces
1308 		 * memory consumption when we receive lots
1309 		 * of small packets.
1310 		 */
1311 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1312 			struct mbuf *nm;
1313 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1314 			if (nm == NULL) {
1315 				ifp->if_ierrors++;
1316 				m_freem(m);
1317 				continue;
1318 			}
1319 			nm->m_data += 2;
1320 			nm->m_pkthdr.len = nm->m_len = len;
1321 			m_copydata(m, 0, len, mtod(nm, void *));
1322 			m_freem(m);
1323 			m = nm;
1324 		}
1325 
1326 		/*
1327 		 * Set the incoming checksum information for the packet.
1328 		 */
1329 		if (status & RFD_IPDetected) {
1330 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1331 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1332 			if (status & RFD_IPError)
1333 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1334 			if (status & RFD_TCPDetected) {
1335 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1336 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1337 				if (status & RFD_TCPError)
1338 					m->m_pkthdr.csum_flags |=
1339 					    M_CSUM_TCP_UDP_BAD;
1340 			} else if (status & RFD_UDPDetected) {
1341 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1342 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1343 				if (status & RFD_UDPError)
1344 					m->m_pkthdr.csum_flags |=
1345 					    M_CSUM_TCP_UDP_BAD;
1346 			}
1347 		}
1348 
1349 		m_set_rcvif(m, ifp);
1350 		m->m_pkthdr.len = len;
1351 
1352 		/*
1353 		 * Pass this up to any BPF listeners, but only
1354 		 * pass if up the stack if it's for us.
1355 		 */
1356 #ifdef	STGE_VLAN_UNTAG
1357 		/*
1358 		 * Check for VLAN tagged packets
1359 		 */
1360 		if (status & RFD_VLANDetected)
1361 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1362 
1363 #endif
1364 #if	0
1365 		if (status & RFD_VLANDetected) {
1366 			struct ether_header *eh;
1367 			u_int16_t etype;
1368 
1369 			eh = mtod(m, struct ether_header *);
1370 			etype = ntohs(eh->ether_type);
1371 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1372 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1373 			    etype);
1374 		}
1375 #endif
1376 		/* Pass it on. */
1377 		if_percpuq_enqueue(ifp->if_percpuq, m);
1378 	}
1379 
1380 	/* Update the receive pointer. */
1381 	sc->sc_rxptr = i;
1382 }
1383 
1384 /*
1385  * stge_tick:
1386  *
1387  *	One second timer, used to tick the MII.
1388  */
1389 static void
1390 stge_tick(void *arg)
1391 {
1392 	struct stge_softc *sc = arg;
1393 	int s;
1394 
1395 	s = splnet();
1396 	mii_tick(&sc->sc_mii);
1397 	stge_stats_update(sc);
1398 	splx(s);
1399 
1400 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1401 }
1402 
1403 /*
1404  * stge_stats_update:
1405  *
1406  *	Read the TC9021 statistics counters.
1407  */
1408 static void
1409 stge_stats_update(struct stge_softc *sc)
1410 {
1411 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1412 	bus_space_tag_t st = sc->sc_st;
1413 	bus_space_handle_t sh = sc->sc_sh;
1414 
1415 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1416 
1417 	ifp->if_ipackets +=
1418 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1419 
1420 	ifp->if_ierrors +=
1421 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1422 
1423 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1424 
1425 	ifp->if_opackets +=
1426 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1427 
1428 	ifp->if_collisions +=
1429 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1430 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1431 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1432 
1433 	ifp->if_oerrors +=
1434 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1435 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1436 }
1437 
1438 /*
1439  * stge_reset:
1440  *
1441  *	Perform a soft reset on the TC9021.
1442  */
1443 static void
1444 stge_reset(struct stge_softc *sc)
1445 {
1446 	uint32_t ac;
1447 	int i;
1448 
1449 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1450 
1451 	/*
1452 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1453 	 * to be present in order for the reset to complete on fiber
1454 	 * cards.
1455 	 */
1456 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1457 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1458 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1459 	    (sc->sc_usefiber ? AC_RstOut : 0));
1460 
1461 	delay(50000);
1462 
1463 	for (i = 0; i < STGE_TIMEOUT; i++) {
1464 		delay(5000);
1465 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1466 		     AC_ResetBusy) == 0)
1467 			break;
1468 	}
1469 
1470 	if (i == STGE_TIMEOUT)
1471 		printf("%s: reset failed to complete\n",
1472 		    device_xname(sc->sc_dev));
1473 
1474 	delay(1000);
1475 }
1476 
1477 /*
1478  * stge_init:		[ ifnet interface function ]
1479  *
1480  *	Initialize the interface.  Must be called at splnet().
1481  */
1482 static int
1483 stge_init(struct ifnet *ifp)
1484 {
1485 	struct stge_softc *sc = ifp->if_softc;
1486 	bus_space_tag_t st = sc->sc_st;
1487 	bus_space_handle_t sh = sc->sc_sh;
1488 	struct stge_descsoft *ds;
1489 	int i, error = 0;
1490 
1491 	/*
1492 	 * Cancel any pending I/O.
1493 	 */
1494 	stge_stop(ifp, 0);
1495 
1496 	/*
1497 	 * Reset the chip to a known state.
1498 	 */
1499 	stge_reset(sc);
1500 
1501 	/*
1502 	 * Initialize the transmit descriptor ring.
1503 	 */
1504 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1505 	for (i = 0; i < STGE_NTXDESC; i++) {
1506 		sc->sc_txdescs[i].tfd_next = htole64(
1507 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1508 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1509 	}
1510 	sc->sc_txpending = 0;
1511 	sc->sc_txdirty = 0;
1512 	sc->sc_txlast = STGE_NTXDESC - 1;
1513 
1514 	/*
1515 	 * Initialize the receive descriptor and receive job
1516 	 * descriptor rings.
1517 	 */
1518 	for (i = 0; i < STGE_NRXDESC; i++) {
1519 		ds = &sc->sc_rxsoft[i];
1520 		if (ds->ds_mbuf == NULL) {
1521 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1522 				printf("%s: unable to allocate or map rx "
1523 				    "buffer %d, error = %d\n",
1524 				    device_xname(sc->sc_dev), i, error);
1525 				/*
1526 				 * XXX Should attempt to run with fewer receive
1527 				 * XXX buffers instead of just failing.
1528 				 */
1529 				stge_rxdrain(sc);
1530 				goto out;
1531 			}
1532 		} else
1533 			STGE_INIT_RXDESC(sc, i);
1534 	}
1535 	sc->sc_rxptr = 0;
1536 	sc->sc_rxdiscard = 0;
1537 	STGE_RXCHAIN_RESET(sc);
1538 
1539 	/* Set the station address. */
1540 	for (i = 0; i < 6; i++)
1541 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1542 		    CLLADDR(ifp->if_sadl)[i]);
1543 
1544 	/*
1545 	 * Set the statistics masks.  Disable all the RMON stats,
1546 	 * and disable selected stats in the non-RMON stats registers.
1547 	 */
1548 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1549 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1550 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1551 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1552 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1553 	    (1U << 21));
1554 
1555 	/* Set up the receive filter. */
1556 	stge_set_filter(sc);
1557 
1558 	/*
1559 	 * Give the transmit and receive ring to the chip.
1560 	 */
1561 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1562 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1563 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1564 
1565 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1566 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1567 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1568 
1569 	/*
1570 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1571 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1572 	 * transmit engine when there's actually a packet.
1573 	 */
1574 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1575 
1576 	/* ..and the Rx auto-poll period. */
1577 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1578 
1579 	/* Initialize the Tx start threshold. */
1580 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1581 
1582 	/* RX DMA thresholds, from linux */
1583 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1584 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1585 
1586 	/*
1587 	 * Initialize the Rx DMA interrupt control register.  We
1588 	 * request an interrupt after every incoming packet, but
1589 	 * defer it for 32us (64 * 512 ns).  When the number of
1590 	 * interrupts pending reaches 8, we stop deferring the
1591 	 * interrupt, and signal it immediately.
1592 	 */
1593 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1594 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1595 
1596 	/*
1597 	 * Initialize the interrupt mask.
1598 	 */
1599 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1600 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1601 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1602 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1603 
1604 	/*
1605 	 * Configure the DMA engine.
1606 	 * XXX Should auto-tune TxBurstLimit.
1607 	 */
1608 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1609 	    DMAC_TxBurstLimit(3));
1610 
1611 	/*
1612 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1613 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1614 	 * empty again.
1615 	 */
1616 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1617 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1618 
1619 	/*
1620 	 * Set the maximum frame size.
1621 	 */
1622 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1623 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1624 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1625 	     ETHER_VLAN_ENCAP_LEN : 0));
1626 
1627 	/*
1628 	 * Initialize MacCtrl -- do it before setting the media,
1629 	 * as setting the media will actually program the register.
1630 	 *
1631 	 * Note: We have to poke the IFS value before poking
1632 	 * anything else.
1633 	 */
1634 	sc->sc_MACCtrl = MC_IFSSelect(0);
1635 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1636 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1637 #ifdef	STGE_VLAN_UNTAG
1638 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1639 #endif
1640 
1641 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1642 		/* Multi-frag frame bug work-around. */
1643 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1644 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1645 
1646 		/* Tx Poll Now bug work-around. */
1647 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1648 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1649 		/* XXX ? from linux */
1650 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1651 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1652 	}
1653 
1654 	/*
1655 	 * Set the current media.
1656 	 */
1657 	if ((error = ether_mediachange(ifp)) != 0)
1658 		goto out;
1659 
1660 	/*
1661 	 * Start the one second MII clock.
1662 	 */
1663 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1664 
1665 	/*
1666 	 * ...all done!
1667 	 */
1668 	ifp->if_flags |= IFF_RUNNING;
1669 	ifp->if_flags &= ~IFF_OACTIVE;
1670 
1671  out:
1672 	if (error)
1673 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1674 	return (error);
1675 }
1676 
1677 /*
1678  * stge_drain:
1679  *
1680  *	Drain the receive queue.
1681  */
1682 static void
1683 stge_rxdrain(struct stge_softc *sc)
1684 {
1685 	struct stge_descsoft *ds;
1686 	int i;
1687 
1688 	for (i = 0; i < STGE_NRXDESC; i++) {
1689 		ds = &sc->sc_rxsoft[i];
1690 		if (ds->ds_mbuf != NULL) {
1691 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1692 			ds->ds_mbuf->m_next = NULL;
1693 			m_freem(ds->ds_mbuf);
1694 			ds->ds_mbuf = NULL;
1695 		}
1696 	}
1697 }
1698 
1699 /*
1700  * stge_stop:		[ ifnet interface function ]
1701  *
1702  *	Stop transmission on the interface.
1703  */
1704 static void
1705 stge_stop(struct ifnet *ifp, int disable)
1706 {
1707 	struct stge_softc *sc = ifp->if_softc;
1708 	struct stge_descsoft *ds;
1709 	int i;
1710 
1711 	/*
1712 	 * Stop the one second clock.
1713 	 */
1714 	callout_stop(&sc->sc_tick_ch);
1715 
1716 	/* Down the MII. */
1717 	mii_down(&sc->sc_mii);
1718 
1719 	/*
1720 	 * Disable interrupts.
1721 	 */
1722 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1723 
1724 	/*
1725 	 * Stop receiver, transmitter, and stats update.
1726 	 */
1727 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1728 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1729 
1730 	/*
1731 	 * Stop the transmit and receive DMA.
1732 	 */
1733 	stge_dma_wait(sc);
1734 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1735 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1736 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1737 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1738 
1739 	/*
1740 	 * Release any queued transmit buffers.
1741 	 */
1742 	for (i = 0; i < STGE_NTXDESC; i++) {
1743 		ds = &sc->sc_txsoft[i];
1744 		if (ds->ds_mbuf != NULL) {
1745 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1746 			m_freem(ds->ds_mbuf);
1747 			ds->ds_mbuf = NULL;
1748 		}
1749 	}
1750 
1751 	/*
1752 	 * Mark the interface down and cancel the watchdog timer.
1753 	 */
1754 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1755 	ifp->if_timer = 0;
1756 
1757 	if (disable)
1758 		stge_rxdrain(sc);
1759 }
1760 
1761 static int
1762 stge_eeprom_wait(struct stge_softc *sc)
1763 {
1764 	int i;
1765 
1766 	for (i = 0; i < STGE_TIMEOUT; i++) {
1767 		delay(1000);
1768 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1769 		     EC_EepromBusy) == 0)
1770 			return (0);
1771 	}
1772 	return (1);
1773 }
1774 
1775 /*
1776  * stge_read_eeprom:
1777  *
1778  *	Read data from the serial EEPROM.
1779  */
1780 static void
1781 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1782 {
1783 
1784 	if (stge_eeprom_wait(sc))
1785 		printf("%s: EEPROM failed to come ready\n",
1786 		    device_xname(sc->sc_dev));
1787 
1788 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1789 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1790 	if (stge_eeprom_wait(sc))
1791 		printf("%s: EEPROM read timed out\n",
1792 		    device_xname(sc->sc_dev));
1793 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1794 }
1795 
1796 /*
1797  * stge_add_rxbuf:
1798  *
1799  *	Add a receive buffer to the indicated descriptor.
1800  */
1801 static int
1802 stge_add_rxbuf(struct stge_softc *sc, int idx)
1803 {
1804 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1805 	struct mbuf *m;
1806 	int error;
1807 
1808 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1809 	if (m == NULL)
1810 		return (ENOBUFS);
1811 
1812 	MCLGET(m, M_DONTWAIT);
1813 	if ((m->m_flags & M_EXT) == 0) {
1814 		m_freem(m);
1815 		return (ENOBUFS);
1816 	}
1817 
1818 	m->m_data = m->m_ext.ext_buf + 2;
1819 	m->m_len = MCLBYTES - 2;
1820 
1821 	if (ds->ds_mbuf != NULL)
1822 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1823 
1824 	ds->ds_mbuf = m;
1825 
1826 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1827 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1828 	if (error) {
1829 		printf("%s: can't load rx DMA map %d, error = %d\n",
1830 		    device_xname(sc->sc_dev), idx, error);
1831 		panic("stge_add_rxbuf");	/* XXX */
1832 	}
1833 
1834 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1835 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1836 
1837 	STGE_INIT_RXDESC(sc, idx);
1838 
1839 	return (0);
1840 }
1841 
1842 /*
1843  * stge_set_filter:
1844  *
1845  *	Set up the receive filter.
1846  */
1847 static void
1848 stge_set_filter(struct stge_softc *sc)
1849 {
1850 	struct ethercom *ec = &sc->sc_ethercom;
1851 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1852 	struct ether_multi *enm;
1853 	struct ether_multistep step;
1854 	uint32_t crc;
1855 	uint32_t mchash[2];
1856 
1857 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1858 	if (ifp->if_flags & IFF_BROADCAST)
1859 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1860 
1861 	/* XXX: ST1023 only works in promiscuous mode */
1862 	if (sc->sc_stge1023)
1863 		ifp->if_flags |= IFF_PROMISC;
1864 
1865 	if (ifp->if_flags & IFF_PROMISC) {
1866 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1867 		goto allmulti;
1868 	}
1869 
1870 	/*
1871 	 * Set up the multicast address filter by passing all multicast
1872 	 * addresses through a CRC generator, and then using the low-order
1873 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1874 	 * high order bits select the register, while the rest of the bits
1875 	 * select the bit within the register.
1876 	 */
1877 
1878 	memset(mchash, 0, sizeof(mchash));
1879 
1880 	ETHER_FIRST_MULTI(step, ec, enm);
1881 	if (enm == NULL)
1882 		goto done;
1883 
1884 	while (enm != NULL) {
1885 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1886 			/*
1887 			 * We must listen to a range of multicast addresses.
1888 			 * For now, just accept all multicasts, rather than
1889 			 * trying to set only those filter bits needed to match
1890 			 * the range.  (At this time, the only use of address
1891 			 * ranges is for IP multicast routing, for which the
1892 			 * range is big enough to require all bits set.)
1893 			 */
1894 			goto allmulti;
1895 		}
1896 
1897 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1898 
1899 		/* Just want the 6 least significant bits. */
1900 		crc &= 0x3f;
1901 
1902 		/* Set the corresponding bit in the hash table. */
1903 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1904 
1905 		ETHER_NEXT_MULTI(step, enm);
1906 	}
1907 
1908 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1909 
1910 	ifp->if_flags &= ~IFF_ALLMULTI;
1911 	goto done;
1912 
1913  allmulti:
1914 	ifp->if_flags |= IFF_ALLMULTI;
1915 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1916 
1917  done:
1918 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1919 		/*
1920 		 * Program the multicast hash table.
1921 		 */
1922 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1923 		    mchash[0]);
1924 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1925 		    mchash[1]);
1926 	}
1927 
1928 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1929 	    sc->sc_ReceiveMode);
1930 }
1931 
1932 /*
1933  * stge_mii_readreg:	[mii interface function]
1934  *
1935  *	Read a PHY register on the MII of the TC9021.
1936  */
1937 static int
1938 stge_mii_readreg(device_t self, int phy, int reg)
1939 {
1940 
1941 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1942 }
1943 
1944 /*
1945  * stge_mii_writereg:	[mii interface function]
1946  *
1947  *	Write a PHY register on the MII of the TC9021.
1948  */
1949 static void
1950 stge_mii_writereg(device_t self, int phy, int reg, int val)
1951 {
1952 
1953 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1954 }
1955 
1956 /*
1957  * stge_mii_statchg:	[mii interface function]
1958  *
1959  *	Callback from MII layer when media changes.
1960  */
1961 static void
1962 stge_mii_statchg(struct ifnet *ifp)
1963 {
1964 	struct stge_softc *sc = ifp->if_softc;
1965 
1966 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1967 		sc->sc_MACCtrl |= MC_DuplexSelect;
1968 	else
1969 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1970 
1971 	/* XXX 802.1x flow-control? */
1972 
1973 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1974 }
1975 
1976 /*
1977  * sste_mii_bitbang_read: [mii bit-bang interface function]
1978  *
1979  *	Read the MII serial port for the MII bit-bang module.
1980  */
1981 static uint32_t
1982 stge_mii_bitbang_read(device_t self)
1983 {
1984 	struct stge_softc *sc = device_private(self);
1985 
1986 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1987 }
1988 
1989 /*
1990  * stge_mii_bitbang_write: [mii big-bang interface function]
1991  *
1992  *	Write the MII serial port for the MII bit-bang module.
1993  */
1994 static void
1995 stge_mii_bitbang_write(device_t self, uint32_t val)
1996 {
1997 	struct stge_softc *sc = device_private(self);
1998 
1999 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2000 	    val | sc->sc_PhyCtrl);
2001 }
2002