xref: /netbsd-src/sys/dev/pci/if_stge.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /*	$NetBSD: if_stge.c,v 1.51 2010/11/13 13:52:07 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.51 2010/11/13 13:52:07 uebayasi Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stgereg.h>
72 
73 /* #define	STGE_CU_BUG			1 */
74 #define	STGE_VLAN_UNTAG			1
75 /* #define	STGE_VLAN_CFI		1 */
76 
77 /*
78  * Transmit descriptor list size.
79  */
80 #define	STGE_NTXDESC		256
81 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
82 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
83 
84 /*
85  * Receive descriptor list size.
86  */
87 #define	STGE_NRXDESC		256
88 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
89 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
90 
91 /*
92  * Only interrupt every N frames.  Must be a power-of-two.
93  */
94 #define	STGE_TXINTR_SPACING	16
95 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
96 
97 /*
98  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
99  * a single clump that maps to a single DMA segment to make several things
100  * easier.
101  */
102 struct stge_control_data {
103 	/*
104 	 * The transmit descriptors.
105 	 */
106 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
107 
108 	/*
109 	 * The receive descriptors.
110 	 */
111 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
112 };
113 
114 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
115 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
116 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
117 
118 /*
119  * Software state for transmit and receive jobs.
120  */
121 struct stge_descsoft {
122 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
123 	bus_dmamap_t ds_dmamap;		/* our DMA map */
124 };
125 
126 /*
127  * Software state per device.
128  */
129 struct stge_softc {
130 	device_t sc_dev;		/* generic device information */
131 	bus_space_tag_t sc_st;		/* bus space tag */
132 	bus_space_handle_t sc_sh;	/* bus space handle */
133 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
134 	struct ethercom sc_ethercom;	/* ethernet common data */
135 	int sc_rev;			/* silicon revision */
136 
137 	void *sc_ih;			/* interrupt cookie */
138 
139 	struct mii_data sc_mii;		/* MII/media information */
140 
141 	callout_t sc_tick_ch;		/* tick callout */
142 
143 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
144 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
145 
146 	/*
147 	 * Software state for transmit and receive descriptors.
148 	 */
149 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
150 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
151 
152 	/*
153 	 * Control data structures.
154 	 */
155 	struct stge_control_data *sc_control_data;
156 #define	sc_txdescs	sc_control_data->scd_txdescs
157 #define	sc_rxdescs	sc_control_data->scd_rxdescs
158 
159 #ifdef STGE_EVENT_COUNTERS
160 	/*
161 	 * Event counters.
162 	 */
163 	struct evcnt sc_ev_txstall;	/* Tx stalled */
164 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
165 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
166 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
167 
168 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
169 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
170 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
171 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
172 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
173 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
174 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
175 
176 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
177 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
178 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
179 
180 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
181 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
182 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
183 #endif /* STGE_EVENT_COUNTERS */
184 
185 	int	sc_txpending;		/* number of Tx requests pending */
186 	int	sc_txdirty;		/* first dirty Tx descriptor */
187 	int	sc_txlast;		/* last used Tx descriptor */
188 
189 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
190 	int	sc_rxdiscard;
191 	int	sc_rxlen;
192 	struct mbuf *sc_rxhead;
193 	struct mbuf *sc_rxtail;
194 	struct mbuf **sc_rxtailp;
195 
196 	int	sc_txthresh;		/* Tx threshold */
197 	uint32_t sc_usefiber:1;		/* if we're fiber */
198 	uint32_t sc_stge1023:1;		/* are we a 1023 */
199 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
200 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
201 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
202 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
203 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
204 };
205 
206 #define	STGE_RXCHAIN_RESET(sc)						\
207 do {									\
208 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
209 	*(sc)->sc_rxtailp = NULL;					\
210 	(sc)->sc_rxlen = 0;						\
211 } while (/*CONSTCOND*/0)
212 
213 #define	STGE_RXCHAIN_LINK(sc, m)					\
214 do {									\
215 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
216 	(sc)->sc_rxtailp = &(m)->m_next;				\
217 } while (/*CONSTCOND*/0)
218 
219 #ifdef STGE_EVENT_COUNTERS
220 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
221 #else
222 #define	STGE_EVCNT_INCR(ev)	/* nothing */
223 #endif
224 
225 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
226 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
227 
228 #define	STGE_CDTXSYNC(sc, x, ops)					\
229 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
230 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
231 
232 #define	STGE_CDRXSYNC(sc, x, ops)					\
233 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
234 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
235 
236 #define	STGE_INIT_RXDESC(sc, x)						\
237 do {									\
238 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
239 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
240 									\
241 	/*								\
242 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
243 	 * so that the payload after the Ethernet header is aligned	\
244 	 * to a 4-byte boundary.					\
245 	 */								\
246 	__rfd->rfd_frag.frag_word0 =					\
247 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
248 	    FRAG_LEN(MCLBYTES - 2));					\
249 	__rfd->rfd_next =						\
250 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
251 	__rfd->rfd_status = 0;						\
252 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
253 } while (/*CONSTCOND*/0)
254 
255 #define STGE_TIMEOUT 1000
256 
257 static void	stge_start(struct ifnet *);
258 static void	stge_watchdog(struct ifnet *);
259 static int	stge_ioctl(struct ifnet *, u_long, void *);
260 static int	stge_init(struct ifnet *);
261 static void	stge_stop(struct ifnet *, int);
262 
263 static bool	stge_shutdown(device_t, int);
264 
265 static void	stge_reset(struct stge_softc *);
266 static void	stge_rxdrain(struct stge_softc *);
267 static int	stge_add_rxbuf(struct stge_softc *, int);
268 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
269 static void	stge_tick(void *);
270 
271 static void	stge_stats_update(struct stge_softc *);
272 
273 static void	stge_set_filter(struct stge_softc *);
274 
275 static int	stge_intr(void *);
276 static void	stge_txintr(struct stge_softc *);
277 static void	stge_rxintr(struct stge_softc *);
278 
279 static int	stge_mii_readreg(device_t, int, int);
280 static void	stge_mii_writereg(device_t, int, int, int);
281 static void	stge_mii_statchg(device_t);
282 
283 static int	stge_match(device_t, cfdata_t, void *);
284 static void	stge_attach(device_t, device_t, void *);
285 
286 int	stge_copy_small = 0;
287 
288 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
289     stge_match, stge_attach, NULL, NULL);
290 
291 static uint32_t stge_mii_bitbang_read(device_t);
292 static void	stge_mii_bitbang_write(device_t, uint32_t);
293 
294 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
295 	stge_mii_bitbang_read,
296 	stge_mii_bitbang_write,
297 	{
298 		PC_MgmtData,		/* MII_BIT_MDO */
299 		PC_MgmtData,		/* MII_BIT_MDI */
300 		PC_MgmtClk,		/* MII_BIT_MDC */
301 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
302 		0,			/* MII_BIT_DIR_PHY_HOST */
303 	}
304 };
305 
306 /*
307  * Devices supported by this driver.
308  */
309 static const struct stge_product {
310 	pci_vendor_id_t		stge_vendor;
311 	pci_product_id_t	stge_product;
312 	const char		*stge_name;
313 } stge_products[] = {
314 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
315 	  "Sundance ST-1023 Gigabit Ethernet" },
316 
317 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
318 	  "Sundance ST-2021 Gigabit Ethernet" },
319 
320 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
321 	  "Tamarack TC9021 Gigabit Ethernet" },
322 
323 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
324 	  "Tamarack TC9021 Gigabit Ethernet" },
325 
326 	/*
327 	 * The Sundance sample boards use the Sundance vendor ID,
328 	 * but the Tamarack product ID.
329 	 */
330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
331 	  "Sundance TC9021 Gigabit Ethernet" },
332 
333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
334 	  "Sundance TC9021 Gigabit Ethernet" },
335 
336 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
337 	  "D-Link DL-4000 Gigabit Ethernet" },
338 
339 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
340 	  "Antares Gigabit Ethernet" },
341 
342 	{ 0,				0,
343 	  NULL },
344 };
345 
346 static const struct stge_product *
347 stge_lookup(const struct pci_attach_args *pa)
348 {
349 	const struct stge_product *sp;
350 
351 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
352 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
353 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
354 			return (sp);
355 	}
356 	return (NULL);
357 }
358 
359 static int
360 stge_match(device_t parent, cfdata_t cf, void *aux)
361 {
362 	struct pci_attach_args *pa = aux;
363 
364 	if (stge_lookup(pa) != NULL)
365 		return (1);
366 
367 	return (0);
368 }
369 
370 static void
371 stge_attach(device_t parent, device_t self, void *aux)
372 {
373 	struct stge_softc *sc = device_private(self);
374 	struct pci_attach_args *pa = aux;
375 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
376 	pci_chipset_tag_t pc = pa->pa_pc;
377 	pci_intr_handle_t ih;
378 	const char *intrstr = NULL;
379 	bus_space_tag_t iot, memt;
380 	bus_space_handle_t ioh, memh;
381 	bus_dma_segment_t seg;
382 	int ioh_valid, memh_valid;
383 	int i, rseg, error;
384 	const struct stge_product *sp;
385 	uint8_t enaddr[ETHER_ADDR_LEN];
386 
387 	callout_init(&sc->sc_tick_ch, 0);
388 
389 	sp = stge_lookup(pa);
390 	if (sp == NULL) {
391 		printf("\n");
392 		panic("ste_attach: impossible");
393 	}
394 
395 	sc->sc_rev = PCI_REVISION(pa->pa_class);
396 
397 	aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
398 
399 	/*
400 	 * Map the device.
401 	 */
402 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
403 	    PCI_MAPREG_TYPE_IO, 0,
404 	    &iot, &ioh, NULL, NULL) == 0);
405 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
406 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
407 	    &memt, &memh, NULL, NULL) == 0);
408 
409 	if (memh_valid) {
410 		sc->sc_st = memt;
411 		sc->sc_sh = memh;
412 	} else if (ioh_valid) {
413 		sc->sc_st = iot;
414 		sc->sc_sh = ioh;
415 	} else {
416 		aprint_error_dev(self, "unable to map device registers\n");
417 		return;
418 	}
419 
420 	sc->sc_dmat = pa->pa_dmat;
421 
422 	/* Enable bus mastering. */
423 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
424 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
425 	    PCI_COMMAND_MASTER_ENABLE);
426 
427 	/* power up chip */
428 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
429 	    error != EOPNOTSUPP) {
430 		aprint_error_dev(self, "cannot activate %d\n",
431 		    error);
432 		return;
433 	}
434 	/*
435 	 * Map and establish our interrupt.
436 	 */
437 	if (pci_intr_map(pa, &ih)) {
438 		aprint_error_dev(self, "unable to map interrupt\n");
439 		return;
440 	}
441 	intrstr = pci_intr_string(pc, ih);
442 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
443 	if (sc->sc_ih == NULL) {
444 		aprint_error_dev(self, "unable to establish interrupt");
445 		if (intrstr != NULL)
446 			aprint_error(" at %s", intrstr);
447 		aprint_error("\n");
448 		return;
449 	}
450 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
451 
452 	/*
453 	 * Allocate the control data structures, and create and load the
454 	 * DMA map for it.
455 	 */
456 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
457 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
458 	    0)) != 0) {
459 		aprint_error_dev(self,
460 		    "unable to allocate control data, error = %d\n",
461 		    error);
462 		goto fail_0;
463 	}
464 
465 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
466 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
467 	    BUS_DMA_COHERENT)) != 0) {
468 		aprint_error_dev(self,
469 		    "unable to map control data, error = %d\n",
470 		    error);
471 		goto fail_1;
472 	}
473 
474 	if ((error = bus_dmamap_create(sc->sc_dmat,
475 	    sizeof(struct stge_control_data), 1,
476 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
477 		aprint_error_dev(self,
478 		    "unable to create control data DMA map, error = %d\n",
479 		    error);
480 		goto fail_2;
481 	}
482 
483 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
484 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
485 	    0)) != 0) {
486 		aprint_error_dev(self,
487 		    "unable to load control data DMA map, error = %d\n",
488 		    error);
489 		goto fail_3;
490 	}
491 
492 	/*
493 	 * Create the transmit buffer DMA maps.  Note that rev B.3
494 	 * and earlier seem to have a bug regarding multi-fragment
495 	 * packets.  We need to limit the number of Tx segments on
496 	 * such chips to 1.
497 	 */
498 	for (i = 0; i < STGE_NTXDESC; i++) {
499 		if ((error = bus_dmamap_create(sc->sc_dmat,
500 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
501 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
502 			aprint_error_dev(self,
503 			    "unable to create tx DMA map %d, error = %d\n",
504 			    i, error);
505 			goto fail_4;
506 		}
507 	}
508 
509 	/*
510 	 * Create the receive buffer DMA maps.
511 	 */
512 	for (i = 0; i < STGE_NRXDESC; i++) {
513 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
514 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
515 			aprint_error_dev(self,
516 			    "unable to create rx DMA map %d, error = %d\n",
517 			    i, error);
518 			goto fail_5;
519 		}
520 		sc->sc_rxsoft[i].ds_mbuf = NULL;
521 	}
522 
523 	/*
524 	 * Determine if we're copper or fiber.  It affects how we
525 	 * reset the card.
526 	 */
527 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
528 	    AC_PhyMedia)
529 		sc->sc_usefiber = 1;
530 	else
531 		sc->sc_usefiber = 0;
532 
533 	/*
534 	 * Reset the chip to a known state.
535 	 */
536 	stge_reset(sc);
537 
538 	/*
539 	 * Reading the station address from the EEPROM doesn't seem
540 	 * to work, at least on my sample boards.  Instead, since
541 	 * the reset sequence does AutoInit, read it from the station
542 	 * address registers. For Sundance 1023 you can only read it
543 	 * from EEPROM.
544 	 */
545 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
546 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
547 		    STGE_StationAddress0) & 0xff;
548 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
549 		    STGE_StationAddress0) >> 8;
550 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
551 		    STGE_StationAddress1) & 0xff;
552 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
553 		    STGE_StationAddress1) >> 8;
554 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
555 		    STGE_StationAddress2) & 0xff;
556 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 		    STGE_StationAddress2) >> 8;
558 		sc->sc_stge1023 = 0;
559 	} else {
560 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
561 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
562 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
563 			    &myaddr[i]);
564 			myaddr[i] = le16toh(myaddr[i]);
565 		}
566 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
567 		sc->sc_stge1023 = 1;
568 	}
569 
570 	aprint_normal_dev(self, "Ethernet address %s\n",
571 	    ether_sprintf(enaddr));
572 
573 	/*
574 	 * Read some important bits from the PhyCtrl register.
575 	 */
576 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
577 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
578 
579 	/*
580 	 * Initialize our media structures and probe the MII.
581 	 */
582 	sc->sc_mii.mii_ifp = ifp;
583 	sc->sc_mii.mii_readreg = stge_mii_readreg;
584 	sc->sc_mii.mii_writereg = stge_mii_writereg;
585 	sc->sc_mii.mii_statchg = stge_mii_statchg;
586 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
587 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
588 	    ether_mediastatus);
589 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
590 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
591 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
592 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
593 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
594 	} else
595 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
596 
597 	ifp = &sc->sc_ethercom.ec_if;
598 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
599 	ifp->if_softc = sc;
600 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
601 	ifp->if_ioctl = stge_ioctl;
602 	ifp->if_start = stge_start;
603 	ifp->if_watchdog = stge_watchdog;
604 	ifp->if_init = stge_init;
605 	ifp->if_stop = stge_stop;
606 	IFQ_SET_READY(&ifp->if_snd);
607 
608 	/*
609 	 * The manual recommends disabling early transmit, so we
610 	 * do.  It's disabled anyway, if using IP checksumming,
611 	 * since the entire packet must be in the FIFO in order
612 	 * for the chip to perform the checksum.
613 	 */
614 	sc->sc_txthresh = 0x0fff;
615 
616 	/*
617 	 * Disable MWI if the PCI layer tells us to.
618 	 */
619 	sc->sc_DMACtrl = 0;
620 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
621 		sc->sc_DMACtrl |= DMAC_MWIDisable;
622 
623 	/*
624 	 * We can support 802.1Q VLAN-sized frames and jumbo
625 	 * Ethernet frames.
626 	 *
627 	 * XXX Figure out how to do hw-assisted VLAN tagging in
628 	 * XXX a reasonable way on this chip.
629 	 */
630 	sc->sc_ethercom.ec_capabilities |=
631 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
632 	    ETHERCAP_VLAN_HWTAGGING;
633 
634 	/*
635 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
636 	 */
637 	sc->sc_ethercom.ec_if.if_capabilities |=
638 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
639 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
640 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
641 
642 	/*
643 	 * Attach the interface.
644 	 */
645 	if_attach(ifp);
646 	ether_ifattach(ifp, enaddr);
647 
648 #ifdef STGE_EVENT_COUNTERS
649 	/*
650 	 * Attach event counters.
651 	 */
652 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
653 	    NULL, device_xname(self), "txstall");
654 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
655 	    NULL, device_xname(self), "txdmaintr");
656 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
657 	    NULL, device_xname(self), "txindintr");
658 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
659 	    NULL, device_xname(self), "rxintr");
660 
661 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
662 	    NULL, device_xname(self), "txseg1");
663 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
664 	    NULL, device_xname(self), "txseg2");
665 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
666 	    NULL, device_xname(self), "txseg3");
667 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
668 	    NULL, device_xname(self), "txseg4");
669 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
670 	    NULL, device_xname(self), "txseg5");
671 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
672 	    NULL, device_xname(self), "txsegmore");
673 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
674 	    NULL, device_xname(self), "txcopy");
675 
676 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
677 	    NULL, device_xname(self), "rxipsum");
678 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
679 	    NULL, device_xname(self), "rxtcpsum");
680 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
681 	    NULL, device_xname(self), "rxudpsum");
682 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
683 	    NULL, device_xname(self), "txipsum");
684 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
685 	    NULL, device_xname(self), "txtcpsum");
686 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
687 	    NULL, device_xname(self), "txudpsum");
688 #endif /* STGE_EVENT_COUNTERS */
689 
690 	/*
691 	 * Make sure the interface is shutdown during reboot.
692 	 */
693 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
694 		pmf_class_network_register(self, ifp);
695 	else
696 		aprint_error_dev(self, "couldn't establish power handler\n");
697 
698 	return;
699 
700 	/*
701 	 * Free any resources we've allocated during the failed attach
702 	 * attempt.  Do this in reverse order and fall through.
703 	 */
704  fail_5:
705 	for (i = 0; i < STGE_NRXDESC; i++) {
706 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
707 			bus_dmamap_destroy(sc->sc_dmat,
708 			    sc->sc_rxsoft[i].ds_dmamap);
709 	}
710  fail_4:
711 	for (i = 0; i < STGE_NTXDESC; i++) {
712 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
713 			bus_dmamap_destroy(sc->sc_dmat,
714 			    sc->sc_txsoft[i].ds_dmamap);
715 	}
716 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
717  fail_3:
718 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
719  fail_2:
720 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
721 	    sizeof(struct stge_control_data));
722  fail_1:
723 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
724  fail_0:
725 	return;
726 }
727 
728 /*
729  * stge_shutdown:
730  *
731  *	Make sure the interface is stopped at reboot time.
732  */
733 static bool
734 stge_shutdown(device_t self, int howto)
735 {
736 	struct stge_softc *sc = device_private(self);
737 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
738 
739 	stge_stop(ifp, 1);
740 
741 	return true;
742 }
743 
744 static void
745 stge_dma_wait(struct stge_softc *sc)
746 {
747 	int i;
748 
749 	for (i = 0; i < STGE_TIMEOUT; i++) {
750 		delay(2);
751 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
752 		     DMAC_TxDMAInProg) == 0)
753 			break;
754 	}
755 
756 	if (i == STGE_TIMEOUT)
757 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
758 }
759 
760 /*
761  * stge_start:		[ifnet interface function]
762  *
763  *	Start packet transmission on the interface.
764  */
765 static void
766 stge_start(struct ifnet *ifp)
767 {
768 	struct stge_softc *sc = ifp->if_softc;
769 	struct mbuf *m0;
770 	struct stge_descsoft *ds;
771 	struct stge_tfd *tfd;
772 	bus_dmamap_t dmamap;
773 	int error, firsttx, nexttx, opending, seg, totlen;
774 	uint64_t csum_flags;
775 
776 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
777 		return;
778 
779 	/*
780 	 * Remember the previous number of pending transmissions
781 	 * and the first descriptor we will use.
782 	 */
783 	opending = sc->sc_txpending;
784 	firsttx = STGE_NEXTTX(sc->sc_txlast);
785 
786 	/*
787 	 * Loop through the send queue, setting up transmit descriptors
788 	 * until we drain the queue, or use up all available transmit
789 	 * descriptors.
790 	 */
791 	for (;;) {
792 		struct m_tag *mtag;
793 		uint64_t tfc;
794 
795 		/*
796 		 * Grab a packet off the queue.
797 		 */
798 		IFQ_POLL(&ifp->if_snd, m0);
799 		if (m0 == NULL)
800 			break;
801 
802 		/*
803 		 * Leave one unused descriptor at the end of the
804 		 * list to prevent wrapping completely around.
805 		 */
806 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
807 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
808 			break;
809 		}
810 
811 		/*
812 		 * See if we have any VLAN stuff.
813 		 */
814 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
815 
816 		/*
817 		 * Get the last and next available transmit descriptor.
818 		 */
819 		nexttx = STGE_NEXTTX(sc->sc_txlast);
820 		tfd = &sc->sc_txdescs[nexttx];
821 		ds = &sc->sc_txsoft[nexttx];
822 
823 		dmamap = ds->ds_dmamap;
824 
825 		/*
826 		 * Load the DMA map.  If this fails, the packet either
827 		 * didn't fit in the alloted number of segments, or we
828 		 * were short on resources.  For the too-many-segments
829 		 * case, we simply report an error and drop the packet,
830 		 * since we can't sanely copy a jumbo packet to a single
831 		 * buffer.
832 		 */
833 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
834 		    BUS_DMA_NOWAIT);
835 		if (error) {
836 			if (error == EFBIG) {
837 				printf("%s: Tx packet consumes too many "
838 				    "DMA segments, dropping...\n",
839 				    device_xname(sc->sc_dev));
840 				IFQ_DEQUEUE(&ifp->if_snd, m0);
841 				m_freem(m0);
842 				continue;
843 			}
844 			/*
845 			 * Short on resources, just stop for now.
846 			 */
847 			break;
848 		}
849 
850 		IFQ_DEQUEUE(&ifp->if_snd, m0);
851 
852 		/*
853 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
854 		 */
855 
856 		/* Sync the DMA map. */
857 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
858 		    BUS_DMASYNC_PREWRITE);
859 
860 		/* Initialize the fragment list. */
861 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
862 			tfd->tfd_frags[seg].frag_word0 =
863 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
864 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
865 			totlen += dmamap->dm_segs[seg].ds_len;
866 		}
867 
868 #ifdef STGE_EVENT_COUNTERS
869 		switch (dmamap->dm_nsegs) {
870 		case 1:
871 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
872 			break;
873 		case 2:
874 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
875 			break;
876 		case 3:
877 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
878 			break;
879 		case 4:
880 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
881 			break;
882 		case 5:
883 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
884 			break;
885 		default:
886 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
887 			break;
888 		}
889 #endif /* STGE_EVENT_COUNTERS */
890 
891 		/*
892 		 * Initialize checksumming flags in the descriptor.
893 		 * Byte-swap constants so the compiler can optimize.
894 		 */
895 		csum_flags = 0;
896 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
897 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
898 			csum_flags |= TFD_IPChecksumEnable;
899 		}
900 
901 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
902 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
903 			csum_flags |= TFD_TCPChecksumEnable;
904 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
905 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
906 			csum_flags |= TFD_UDPChecksumEnable;
907 		}
908 
909 		/*
910 		 * Initialize the descriptor and give it to the chip.
911 		 * Check to see if we have a VLAN tag to insert.
912 		 */
913 
914 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
915 		    TFD_FragCount(seg) | csum_flags |
916 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
917 			TFD_TxDMAIndicate : 0);
918 		if (mtag) {
919 #if	0
920 			struct ether_header *eh =
921 			    mtod(m0, struct ether_header *);
922 			u_int16_t etype = ntohs(eh->ether_type);
923 			printf("%s: xmit (tag %d) etype %x\n",
924 			   ifp->if_xname, *mtod(n, int *), etype);
925 #endif
926 			tfc |= TFD_VLANTagInsert |
927 #ifdef	STGE_VLAN_CFI
928 			    TFD_CFI |
929 #endif
930 			    TFD_VID(VLAN_TAG_VALUE(mtag));
931 		}
932 		tfd->tfd_control = htole64(tfc);
933 
934 		/* Sync the descriptor. */
935 		STGE_CDTXSYNC(sc, nexttx,
936 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
937 
938 		/*
939 		 * Kick the transmit DMA logic.
940 		 */
941 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
942 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
943 
944 		/*
945 		 * Store a pointer to the packet so we can free it later.
946 		 */
947 		ds->ds_mbuf = m0;
948 
949 		/* Advance the tx pointer. */
950 		sc->sc_txpending++;
951 		sc->sc_txlast = nexttx;
952 
953 		/*
954 		 * Pass the packet to any BPF listeners.
955 		 */
956 		bpf_mtap(ifp, m0);
957 	}
958 
959 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
960 		/* No more slots left; notify upper layer. */
961 		ifp->if_flags |= IFF_OACTIVE;
962 	}
963 
964 	if (sc->sc_txpending != opending) {
965 		/*
966 		 * We enqueued packets.  If the transmitter was idle,
967 		 * reset the txdirty pointer.
968 		 */
969 		if (opending == 0)
970 			sc->sc_txdirty = firsttx;
971 
972 		/* Set a watchdog timer in case the chip flakes out. */
973 		ifp->if_timer = 5;
974 	}
975 }
976 
977 /*
978  * stge_watchdog:	[ifnet interface function]
979  *
980  *	Watchdog timer handler.
981  */
982 static void
983 stge_watchdog(struct ifnet *ifp)
984 {
985 	struct stge_softc *sc = ifp->if_softc;
986 
987 	/*
988 	 * Sweep up first, since we don't interrupt every frame.
989 	 */
990 	stge_txintr(sc);
991 	if (sc->sc_txpending != 0) {
992 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
993 		ifp->if_oerrors++;
994 
995 		(void) stge_init(ifp);
996 
997 		/* Try to get more packets going. */
998 		stge_start(ifp);
999 	}
1000 }
1001 
1002 /*
1003  * stge_ioctl:		[ifnet interface function]
1004  *
1005  *	Handle control requests from the operator.
1006  */
1007 static int
1008 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1009 {
1010 	struct stge_softc *sc = ifp->if_softc;
1011 	int s, error;
1012 
1013 	s = splnet();
1014 
1015 	error = ether_ioctl(ifp, cmd, data);
1016 	if (error == ENETRESET) {
1017 		error = 0;
1018 
1019 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1020 			;
1021 		else if (ifp->if_flags & IFF_RUNNING) {
1022 			/*
1023 			 * Multicast list has changed; set the hardware filter
1024 			 * accordingly.
1025 			 */
1026 			stge_set_filter(sc);
1027 		}
1028 	}
1029 
1030 	/* Try to get more packets going. */
1031 	stge_start(ifp);
1032 
1033 	splx(s);
1034 	return (error);
1035 }
1036 
1037 /*
1038  * stge_intr:
1039  *
1040  *	Interrupt service routine.
1041  */
1042 static int
1043 stge_intr(void *arg)
1044 {
1045 	struct stge_softc *sc = arg;
1046 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1047 	uint32_t txstat;
1048 	int wantinit;
1049 	uint16_t isr;
1050 
1051 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1052 	     IS_InterruptStatus) == 0)
1053 		return (0);
1054 
1055 	for (wantinit = 0; wantinit == 0;) {
1056 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1057 		if ((isr & sc->sc_IntEnable) == 0)
1058 			break;
1059 
1060 		/* Host interface errors. */
1061 		if (isr & IS_HostError) {
1062 			printf("%s: Host interface error\n",
1063 			    device_xname(sc->sc_dev));
1064 			wantinit = 1;
1065 			continue;
1066 		}
1067 
1068 		/* Receive interrupts. */
1069 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1070 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1071 			stge_rxintr(sc);
1072 			if (isr & IS_RFDListEnd) {
1073 				printf("%s: receive ring overflow\n",
1074 				    device_xname(sc->sc_dev));
1075 				/*
1076 				 * XXX Should try to recover from this
1077 				 * XXX more gracefully.
1078 				 */
1079 				wantinit = 1;
1080 			}
1081 		}
1082 
1083 		/* Transmit interrupts. */
1084 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1085 #ifdef STGE_EVENT_COUNTERS
1086 			if (isr & IS_TxDMAComplete)
1087 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1088 #endif
1089 			stge_txintr(sc);
1090 		}
1091 
1092 		/* Statistics overflow. */
1093 		if (isr & IS_UpdateStats)
1094 			stge_stats_update(sc);
1095 
1096 		/* Transmission errors. */
1097 		if (isr & IS_TxComplete) {
1098 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1099 			for (;;) {
1100 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1101 				    STGE_TxStatus);
1102 				if ((txstat & TS_TxComplete) == 0)
1103 					break;
1104 				if (txstat & TS_TxUnderrun) {
1105 					sc->sc_txthresh++;
1106 					if (sc->sc_txthresh > 0x0fff)
1107 						sc->sc_txthresh = 0x0fff;
1108 					printf("%s: transmit underrun, new "
1109 					    "threshold: %d bytes\n",
1110 					    device_xname(sc->sc_dev),
1111 					    sc->sc_txthresh << 5);
1112 				}
1113 				if (txstat & TS_MaxCollisions)
1114 					printf("%s: excessive collisions\n",
1115 					    device_xname(sc->sc_dev));
1116 			}
1117 			wantinit = 1;
1118 		}
1119 
1120 	}
1121 
1122 	if (wantinit)
1123 		stge_init(ifp);
1124 
1125 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1126 	    sc->sc_IntEnable);
1127 
1128 	/* Try to get more packets going. */
1129 	stge_start(ifp);
1130 
1131 	return (1);
1132 }
1133 
1134 /*
1135  * stge_txintr:
1136  *
1137  *	Helper; handle transmit interrupts.
1138  */
1139 static void
1140 stge_txintr(struct stge_softc *sc)
1141 {
1142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1143 	struct stge_descsoft *ds;
1144 	uint64_t control;
1145 	int i;
1146 
1147 	ifp->if_flags &= ~IFF_OACTIVE;
1148 
1149 	/*
1150 	 * Go through our Tx list and free mbufs for those
1151 	 * frames which have been transmitted.
1152 	 */
1153 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1154 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1155 		ds = &sc->sc_txsoft[i];
1156 
1157 		STGE_CDTXSYNC(sc, i,
1158 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1159 
1160 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1161 		if ((control & TFD_TFDDone) == 0)
1162 			break;
1163 
1164 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1165 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1166 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1167 		m_freem(ds->ds_mbuf);
1168 		ds->ds_mbuf = NULL;
1169 	}
1170 
1171 	/* Update the dirty transmit buffer pointer. */
1172 	sc->sc_txdirty = i;
1173 
1174 	/*
1175 	 * If there are no more pending transmissions, cancel the watchdog
1176 	 * timer.
1177 	 */
1178 	if (sc->sc_txpending == 0)
1179 		ifp->if_timer = 0;
1180 }
1181 
1182 /*
1183  * stge_rxintr:
1184  *
1185  *	Helper; handle receive interrupts.
1186  */
1187 static void
1188 stge_rxintr(struct stge_softc *sc)
1189 {
1190 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1191 	struct stge_descsoft *ds;
1192 	struct mbuf *m, *tailm;
1193 	uint64_t status;
1194 	int i, len;
1195 
1196 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1197 		ds = &sc->sc_rxsoft[i];
1198 
1199 		STGE_CDRXSYNC(sc, i,
1200 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1201 
1202 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1203 
1204 		if ((status & RFD_RFDDone) == 0)
1205 			break;
1206 
1207 		if (__predict_false(sc->sc_rxdiscard)) {
1208 			STGE_INIT_RXDESC(sc, i);
1209 			if (status & RFD_FrameEnd) {
1210 				/* Reset our state. */
1211 				sc->sc_rxdiscard = 0;
1212 			}
1213 			continue;
1214 		}
1215 
1216 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1217 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1218 
1219 		m = ds->ds_mbuf;
1220 
1221 		/*
1222 		 * Add a new receive buffer to the ring.
1223 		 */
1224 		if (stge_add_rxbuf(sc, i) != 0) {
1225 			/*
1226 			 * Failed, throw away what we've done so
1227 			 * far, and discard the rest of the packet.
1228 			 */
1229 			ifp->if_ierrors++;
1230 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1231 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1232 			STGE_INIT_RXDESC(sc, i);
1233 			if ((status & RFD_FrameEnd) == 0)
1234 				sc->sc_rxdiscard = 1;
1235 			if (sc->sc_rxhead != NULL)
1236 				m_freem(sc->sc_rxhead);
1237 			STGE_RXCHAIN_RESET(sc);
1238 			continue;
1239 		}
1240 
1241 #ifdef DIAGNOSTIC
1242 		if (status & RFD_FrameStart) {
1243 			KASSERT(sc->sc_rxhead == NULL);
1244 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1245 		}
1246 #endif
1247 
1248 		STGE_RXCHAIN_LINK(sc, m);
1249 
1250 		/*
1251 		 * If this is not the end of the packet, keep
1252 		 * looking.
1253 		 */
1254 		if ((status & RFD_FrameEnd) == 0) {
1255 			sc->sc_rxlen += m->m_len;
1256 			continue;
1257 		}
1258 
1259 		/*
1260 		 * Okay, we have the entire packet now...
1261 		 */
1262 		*sc->sc_rxtailp = NULL;
1263 		m = sc->sc_rxhead;
1264 		tailm = sc->sc_rxtail;
1265 
1266 		STGE_RXCHAIN_RESET(sc);
1267 
1268 		/*
1269 		 * If the packet had an error, drop it.  Note we
1270 		 * count the error later in the periodic stats update.
1271 		 */
1272 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1273 			      RFD_RxAlignmentError | RFD_RxFCSError |
1274 			      RFD_RxLengthError)) {
1275 			m_freem(m);
1276 			continue;
1277 		}
1278 
1279 		/*
1280 		 * No errors.
1281 		 *
1282 		 * Note we have configured the chip to not include
1283 		 * the CRC at the end of the packet.
1284 		 */
1285 		len = RFD_RxDMAFrameLen(status);
1286 		tailm->m_len = len - sc->sc_rxlen;
1287 
1288 		/*
1289 		 * If the packet is small enough to fit in a
1290 		 * single header mbuf, allocate one and copy
1291 		 * the data into it.  This greatly reduces
1292 		 * memory consumption when we receive lots
1293 		 * of small packets.
1294 		 */
1295 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1296 			struct mbuf *nm;
1297 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1298 			if (nm == NULL) {
1299 				ifp->if_ierrors++;
1300 				m_freem(m);
1301 				continue;
1302 			}
1303 			nm->m_data += 2;
1304 			nm->m_pkthdr.len = nm->m_len = len;
1305 			m_copydata(m, 0, len, mtod(nm, void *));
1306 			m_freem(m);
1307 			m = nm;
1308 		}
1309 
1310 		/*
1311 		 * Set the incoming checksum information for the packet.
1312 		 */
1313 		if (status & RFD_IPDetected) {
1314 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1315 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1316 			if (status & RFD_IPError)
1317 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1318 			if (status & RFD_TCPDetected) {
1319 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1320 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1321 				if (status & RFD_TCPError)
1322 					m->m_pkthdr.csum_flags |=
1323 					    M_CSUM_TCP_UDP_BAD;
1324 			} else if (status & RFD_UDPDetected) {
1325 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1326 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1327 				if (status & RFD_UDPError)
1328 					m->m_pkthdr.csum_flags |=
1329 					    M_CSUM_TCP_UDP_BAD;
1330 			}
1331 		}
1332 
1333 		m->m_pkthdr.rcvif = ifp;
1334 		m->m_pkthdr.len = len;
1335 
1336 		/*
1337 		 * Pass this up to any BPF listeners, but only
1338 		 * pass if up the stack if it's for us.
1339 		 */
1340 		bpf_mtap(ifp, m);
1341 #ifdef	STGE_VLAN_UNTAG
1342 		/*
1343 		 * Check for VLAN tagged packets
1344 		 */
1345 		if (status & RFD_VLANDetected)
1346 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1347 
1348 #endif
1349 #if	0
1350 		if (status & RFD_VLANDetected) {
1351 			struct ether_header *eh;
1352 			u_int16_t etype;
1353 
1354 			eh = mtod(m, struct ether_header *);
1355 			etype = ntohs(eh->ether_type);
1356 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1357 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1358 			    etype);
1359 		}
1360 #endif
1361 		/* Pass it on. */
1362 		(*ifp->if_input)(ifp, m);
1363 	}
1364 
1365 	/* Update the receive pointer. */
1366 	sc->sc_rxptr = i;
1367 }
1368 
1369 /*
1370  * stge_tick:
1371  *
1372  *	One second timer, used to tick the MII.
1373  */
1374 static void
1375 stge_tick(void *arg)
1376 {
1377 	struct stge_softc *sc = arg;
1378 	int s;
1379 
1380 	s = splnet();
1381 	mii_tick(&sc->sc_mii);
1382 	stge_stats_update(sc);
1383 	splx(s);
1384 
1385 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1386 }
1387 
1388 /*
1389  * stge_stats_update:
1390  *
1391  *	Read the TC9021 statistics counters.
1392  */
1393 static void
1394 stge_stats_update(struct stge_softc *sc)
1395 {
1396 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1397 	bus_space_tag_t st = sc->sc_st;
1398 	bus_space_handle_t sh = sc->sc_sh;
1399 
1400 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1401 
1402 	ifp->if_ipackets +=
1403 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1404 
1405 	ifp->if_ierrors +=
1406 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1407 
1408 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1409 
1410 	ifp->if_opackets +=
1411 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1412 
1413 	ifp->if_collisions +=
1414 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1415 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1416 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1417 
1418 	ifp->if_oerrors +=
1419 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1420 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1421 }
1422 
1423 /*
1424  * stge_reset:
1425  *
1426  *	Perform a soft reset on the TC9021.
1427  */
1428 static void
1429 stge_reset(struct stge_softc *sc)
1430 {
1431 	uint32_t ac;
1432 	int i;
1433 
1434 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1435 
1436 	/*
1437 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1438 	 * to be present in order for the reset to complete on fiber
1439 	 * cards.
1440 	 */
1441 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1442 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1443 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1444 	    (sc->sc_usefiber ? AC_RstOut : 0));
1445 
1446 	delay(50000);
1447 
1448 	for (i = 0; i < STGE_TIMEOUT; i++) {
1449 		delay(5000);
1450 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1451 		     AC_ResetBusy) == 0)
1452 			break;
1453 	}
1454 
1455 	if (i == STGE_TIMEOUT)
1456 		printf("%s: reset failed to complete\n",
1457 		    device_xname(sc->sc_dev));
1458 
1459 	delay(1000);
1460 }
1461 
1462 /*
1463  * stge_init:		[ ifnet interface function ]
1464  *
1465  *	Initialize the interface.  Must be called at splnet().
1466  */
1467 static int
1468 stge_init(struct ifnet *ifp)
1469 {
1470 	struct stge_softc *sc = ifp->if_softc;
1471 	bus_space_tag_t st = sc->sc_st;
1472 	bus_space_handle_t sh = sc->sc_sh;
1473 	struct stge_descsoft *ds;
1474 	int i, error = 0;
1475 
1476 	/*
1477 	 * Cancel any pending I/O.
1478 	 */
1479 	stge_stop(ifp, 0);
1480 
1481 	/*
1482 	 * Reset the chip to a known state.
1483 	 */
1484 	stge_reset(sc);
1485 
1486 	/*
1487 	 * Initialize the transmit descriptor ring.
1488 	 */
1489 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1490 	for (i = 0; i < STGE_NTXDESC; i++) {
1491 		sc->sc_txdescs[i].tfd_next = htole64(
1492 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1493 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1494 	}
1495 	sc->sc_txpending = 0;
1496 	sc->sc_txdirty = 0;
1497 	sc->sc_txlast = STGE_NTXDESC - 1;
1498 
1499 	/*
1500 	 * Initialize the receive descriptor and receive job
1501 	 * descriptor rings.
1502 	 */
1503 	for (i = 0; i < STGE_NRXDESC; i++) {
1504 		ds = &sc->sc_rxsoft[i];
1505 		if (ds->ds_mbuf == NULL) {
1506 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1507 				printf("%s: unable to allocate or map rx "
1508 				    "buffer %d, error = %d\n",
1509 				    device_xname(sc->sc_dev), i, error);
1510 				/*
1511 				 * XXX Should attempt to run with fewer receive
1512 				 * XXX buffers instead of just failing.
1513 				 */
1514 				stge_rxdrain(sc);
1515 				goto out;
1516 			}
1517 		} else
1518 			STGE_INIT_RXDESC(sc, i);
1519 	}
1520 	sc->sc_rxptr = 0;
1521 	sc->sc_rxdiscard = 0;
1522 	STGE_RXCHAIN_RESET(sc);
1523 
1524 	/* Set the station address. */
1525 	for (i = 0; i < 6; i++)
1526 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1527 		    CLLADDR(ifp->if_sadl)[i]);
1528 
1529 	/*
1530 	 * Set the statistics masks.  Disable all the RMON stats,
1531 	 * and disable selected stats in the non-RMON stats registers.
1532 	 */
1533 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1534 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1535 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1536 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1537 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1538 	    (1U << 21));
1539 
1540 	/* Set up the receive filter. */
1541 	stge_set_filter(sc);
1542 
1543 	/*
1544 	 * Give the transmit and receive ring to the chip.
1545 	 */
1546 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1547 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1548 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1549 
1550 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1551 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1552 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1553 
1554 	/*
1555 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1556 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1557 	 * transmit engine when there's actually a packet.
1558 	 */
1559 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1560 
1561 	/* ..and the Rx auto-poll period. */
1562 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1563 
1564 	/* Initialize the Tx start threshold. */
1565 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1566 
1567 	/* RX DMA thresholds, from linux */
1568 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1569 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1570 
1571 	/*
1572 	 * Initialize the Rx DMA interrupt control register.  We
1573 	 * request an interrupt after every incoming packet, but
1574 	 * defer it for 32us (64 * 512 ns).  When the number of
1575 	 * interrupts pending reaches 8, we stop deferring the
1576 	 * interrupt, and signal it immediately.
1577 	 */
1578 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1579 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1580 
1581 	/*
1582 	 * Initialize the interrupt mask.
1583 	 */
1584 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1585 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1586 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1587 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1588 
1589 	/*
1590 	 * Configure the DMA engine.
1591 	 * XXX Should auto-tune TxBurstLimit.
1592 	 */
1593 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1594 	    DMAC_TxBurstLimit(3));
1595 
1596 	/*
1597 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1598 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1599 	 * empty again.
1600 	 */
1601 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1602 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1603 
1604 	/*
1605 	 * Set the maximum frame size.
1606 	 */
1607 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1608 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1609 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1610 	     ETHER_VLAN_ENCAP_LEN : 0));
1611 
1612 	/*
1613 	 * Initialize MacCtrl -- do it before setting the media,
1614 	 * as setting the media will actually program the register.
1615 	 *
1616 	 * Note: We have to poke the IFS value before poking
1617 	 * anything else.
1618 	 */
1619 	sc->sc_MACCtrl = MC_IFSSelect(0);
1620 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1621 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1622 #ifdef	STGE_VLAN_UNTAG
1623 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1624 #endif
1625 
1626 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1627 		/* Multi-frag frame bug work-around. */
1628 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1629 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1630 
1631 		/* Tx Poll Now bug work-around. */
1632 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1633 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1634 		/* XXX ? from linux */
1635 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1636 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1637 	}
1638 
1639 	/*
1640 	 * Set the current media.
1641 	 */
1642 	if ((error = ether_mediachange(ifp)) != 0)
1643 		goto out;
1644 
1645 	/*
1646 	 * Start the one second MII clock.
1647 	 */
1648 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1649 
1650 	/*
1651 	 * ...all done!
1652 	 */
1653 	ifp->if_flags |= IFF_RUNNING;
1654 	ifp->if_flags &= ~IFF_OACTIVE;
1655 
1656  out:
1657 	if (error)
1658 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1659 	return (error);
1660 }
1661 
1662 /*
1663  * stge_drain:
1664  *
1665  *	Drain the receive queue.
1666  */
1667 static void
1668 stge_rxdrain(struct stge_softc *sc)
1669 {
1670 	struct stge_descsoft *ds;
1671 	int i;
1672 
1673 	for (i = 0; i < STGE_NRXDESC; i++) {
1674 		ds = &sc->sc_rxsoft[i];
1675 		if (ds->ds_mbuf != NULL) {
1676 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1677 			ds->ds_mbuf->m_next = NULL;
1678 			m_freem(ds->ds_mbuf);
1679 			ds->ds_mbuf = NULL;
1680 		}
1681 	}
1682 }
1683 
1684 /*
1685  * stge_stop:		[ ifnet interface function ]
1686  *
1687  *	Stop transmission on the interface.
1688  */
1689 static void
1690 stge_stop(struct ifnet *ifp, int disable)
1691 {
1692 	struct stge_softc *sc = ifp->if_softc;
1693 	struct stge_descsoft *ds;
1694 	int i;
1695 
1696 	/*
1697 	 * Stop the one second clock.
1698 	 */
1699 	callout_stop(&sc->sc_tick_ch);
1700 
1701 	/* Down the MII. */
1702 	mii_down(&sc->sc_mii);
1703 
1704 	/*
1705 	 * Disable interrupts.
1706 	 */
1707 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1708 
1709 	/*
1710 	 * Stop receiver, transmitter, and stats update.
1711 	 */
1712 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1713 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1714 
1715 	/*
1716 	 * Stop the transmit and receive DMA.
1717 	 */
1718 	stge_dma_wait(sc);
1719 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1720 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1721 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1722 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1723 
1724 	/*
1725 	 * Release any queued transmit buffers.
1726 	 */
1727 	for (i = 0; i < STGE_NTXDESC; i++) {
1728 		ds = &sc->sc_txsoft[i];
1729 		if (ds->ds_mbuf != NULL) {
1730 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1731 			m_freem(ds->ds_mbuf);
1732 			ds->ds_mbuf = NULL;
1733 		}
1734 	}
1735 
1736 	/*
1737 	 * Mark the interface down and cancel the watchdog timer.
1738 	 */
1739 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1740 	ifp->if_timer = 0;
1741 
1742 	if (disable)
1743 		stge_rxdrain(sc);
1744 }
1745 
1746 static int
1747 stge_eeprom_wait(struct stge_softc *sc)
1748 {
1749 	int i;
1750 
1751 	for (i = 0; i < STGE_TIMEOUT; i++) {
1752 		delay(1000);
1753 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1754 		     EC_EepromBusy) == 0)
1755 			return (0);
1756 	}
1757 	return (1);
1758 }
1759 
1760 /*
1761  * stge_read_eeprom:
1762  *
1763  *	Read data from the serial EEPROM.
1764  */
1765 static void
1766 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1767 {
1768 
1769 	if (stge_eeprom_wait(sc))
1770 		printf("%s: EEPROM failed to come ready\n",
1771 		    device_xname(sc->sc_dev));
1772 
1773 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1774 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1775 	if (stge_eeprom_wait(sc))
1776 		printf("%s: EEPROM read timed out\n",
1777 		    device_xname(sc->sc_dev));
1778 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1779 }
1780 
1781 /*
1782  * stge_add_rxbuf:
1783  *
1784  *	Add a receive buffer to the indicated descriptor.
1785  */
1786 static int
1787 stge_add_rxbuf(struct stge_softc *sc, int idx)
1788 {
1789 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1790 	struct mbuf *m;
1791 	int error;
1792 
1793 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1794 	if (m == NULL)
1795 		return (ENOBUFS);
1796 
1797 	MCLGET(m, M_DONTWAIT);
1798 	if ((m->m_flags & M_EXT) == 0) {
1799 		m_freem(m);
1800 		return (ENOBUFS);
1801 	}
1802 
1803 	m->m_data = m->m_ext.ext_buf + 2;
1804 	m->m_len = MCLBYTES - 2;
1805 
1806 	if (ds->ds_mbuf != NULL)
1807 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1808 
1809 	ds->ds_mbuf = m;
1810 
1811 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1812 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1813 	if (error) {
1814 		printf("%s: can't load rx DMA map %d, error = %d\n",
1815 		    device_xname(sc->sc_dev), idx, error);
1816 		panic("stge_add_rxbuf");	/* XXX */
1817 	}
1818 
1819 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1820 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1821 
1822 	STGE_INIT_RXDESC(sc, idx);
1823 
1824 	return (0);
1825 }
1826 
1827 /*
1828  * stge_set_filter:
1829  *
1830  *	Set up the receive filter.
1831  */
1832 static void
1833 stge_set_filter(struct stge_softc *sc)
1834 {
1835 	struct ethercom *ec = &sc->sc_ethercom;
1836 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1837 	struct ether_multi *enm;
1838 	struct ether_multistep step;
1839 	uint32_t crc;
1840 	uint32_t mchash[2];
1841 
1842 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1843 	if (ifp->if_flags & IFF_BROADCAST)
1844 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1845 
1846 	/* XXX: ST1023 only works in promiscuous mode */
1847 	if (sc->sc_stge1023)
1848 		ifp->if_flags |= IFF_PROMISC;
1849 
1850 	if (ifp->if_flags & IFF_PROMISC) {
1851 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1852 		goto allmulti;
1853 	}
1854 
1855 	/*
1856 	 * Set up the multicast address filter by passing all multicast
1857 	 * addresses through a CRC generator, and then using the low-order
1858 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1859 	 * high order bits select the register, while the rest of the bits
1860 	 * select the bit within the register.
1861 	 */
1862 
1863 	memset(mchash, 0, sizeof(mchash));
1864 
1865 	ETHER_FIRST_MULTI(step, ec, enm);
1866 	if (enm == NULL)
1867 		goto done;
1868 
1869 	while (enm != NULL) {
1870 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1871 			/*
1872 			 * We must listen to a range of multicast addresses.
1873 			 * For now, just accept all multicasts, rather than
1874 			 * trying to set only those filter bits needed to match
1875 			 * the range.  (At this time, the only use of address
1876 			 * ranges is for IP multicast routing, for which the
1877 			 * range is big enough to require all bits set.)
1878 			 */
1879 			goto allmulti;
1880 		}
1881 
1882 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1883 
1884 		/* Just want the 6 least significant bits. */
1885 		crc &= 0x3f;
1886 
1887 		/* Set the corresponding bit in the hash table. */
1888 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1889 
1890 		ETHER_NEXT_MULTI(step, enm);
1891 	}
1892 
1893 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1894 
1895 	ifp->if_flags &= ~IFF_ALLMULTI;
1896 	goto done;
1897 
1898  allmulti:
1899 	ifp->if_flags |= IFF_ALLMULTI;
1900 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1901 
1902  done:
1903 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1904 		/*
1905 		 * Program the multicast hash table.
1906 		 */
1907 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1908 		    mchash[0]);
1909 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1910 		    mchash[1]);
1911 	}
1912 
1913 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1914 	    sc->sc_ReceiveMode);
1915 }
1916 
1917 /*
1918  * stge_mii_readreg:	[mii interface function]
1919  *
1920  *	Read a PHY register on the MII of the TC9021.
1921  */
1922 static int
1923 stge_mii_readreg(device_t self, int phy, int reg)
1924 {
1925 
1926 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1927 }
1928 
1929 /*
1930  * stge_mii_writereg:	[mii interface function]
1931  *
1932  *	Write a PHY register on the MII of the TC9021.
1933  */
1934 static void
1935 stge_mii_writereg(device_t self, int phy, int reg, int val)
1936 {
1937 
1938 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1939 }
1940 
1941 /*
1942  * stge_mii_statchg:	[mii interface function]
1943  *
1944  *	Callback from MII layer when media changes.
1945  */
1946 static void
1947 stge_mii_statchg(device_t self)
1948 {
1949 	struct stge_softc *sc = device_private(self);
1950 
1951 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1952 		sc->sc_MACCtrl |= MC_DuplexSelect;
1953 	else
1954 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1955 
1956 	/* XXX 802.1x flow-control? */
1957 
1958 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1959 }
1960 
1961 /*
1962  * sste_mii_bitbang_read: [mii bit-bang interface function]
1963  *
1964  *	Read the MII serial port for the MII bit-bang module.
1965  */
1966 static uint32_t
1967 stge_mii_bitbang_read(device_t self)
1968 {
1969 	struct stge_softc *sc = device_private(self);
1970 
1971 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1972 }
1973 
1974 /*
1975  * stge_mii_bitbang_write: [mii big-bang interface function]
1976  *
1977  *	Write the MII serial port for the MII bit-bang module.
1978  */
1979 static void
1980 stge_mii_bitbang_write(device_t self, uint32_t val)
1981 {
1982 	struct stge_softc *sc = device_private(self);
1983 
1984 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1985 	    val | sc->sc_PhyCtrl);
1986 }
1987