xref: /netbsd-src/sys/dev/pci/if_stge.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: if_stge.c,v 1.50 2010/04/05 07:20:27 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.50 2010/04/05 07:20:27 joerg Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #include <net/bpf.h>
61 
62 #include <sys/bus.h>
63 #include <sys/intr.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 #include <dev/mii/mii_bitbang.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72 
73 #include <dev/pci/if_stgereg.h>
74 
75 /* #define	STGE_CU_BUG			1 */
76 #define	STGE_VLAN_UNTAG			1
77 /* #define	STGE_VLAN_CFI		1 */
78 
79 /*
80  * Transmit descriptor list size.
81  */
82 #define	STGE_NTXDESC		256
83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
85 
86 /*
87  * Receive descriptor list size.
88  */
89 #define	STGE_NRXDESC		256
90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
92 
93 /*
94  * Only interrupt every N frames.  Must be a power-of-two.
95  */
96 #define	STGE_TXINTR_SPACING	16
97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98 
99 /*
100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct stge_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115 
116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct stge_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct stge_softc {
132 	device_t sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	int sc_rev;			/* silicon revision */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct stge_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 #ifdef STGE_EVENT_COUNTERS
162 	/*
163 	 * Event counters.
164 	 */
165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
169 
170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
177 
178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
181 
182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186 
187 	int	sc_txpending;		/* number of Tx requests pending */
188 	int	sc_txdirty;		/* first dirty Tx descriptor */
189 	int	sc_txlast;		/* last used Tx descriptor */
190 
191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
192 	int	sc_rxdiscard;
193 	int	sc_rxlen;
194 	struct mbuf *sc_rxhead;
195 	struct mbuf *sc_rxtail;
196 	struct mbuf **sc_rxtailp;
197 
198 	int	sc_txthresh;		/* Tx threshold */
199 	uint32_t sc_usefiber:1;		/* if we're fiber */
200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
206 };
207 
208 #define	STGE_RXCHAIN_RESET(sc)						\
209 do {									\
210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
211 	*(sc)->sc_rxtailp = NULL;					\
212 	(sc)->sc_rxlen = 0;						\
213 } while (/*CONSTCOND*/0)
214 
215 #define	STGE_RXCHAIN_LINK(sc, m)					\
216 do {									\
217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
218 	(sc)->sc_rxtailp = &(m)->m_next;				\
219 } while (/*CONSTCOND*/0)
220 
221 #ifdef STGE_EVENT_COUNTERS
222 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
223 #else
224 #define	STGE_EVCNT_INCR(ev)	/* nothing */
225 #endif
226 
227 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
229 
230 #define	STGE_CDTXSYNC(sc, x, ops)					\
231 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
232 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233 
234 #define	STGE_CDRXSYNC(sc, x, ops)					\
235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237 
238 #define	STGE_INIT_RXDESC(sc, x)						\
239 do {									\
240 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
241 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
242 									\
243 	/*								\
244 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
245 	 * so that the payload after the Ethernet header is aligned	\
246 	 * to a 4-byte boundary.					\
247 	 */								\
248 	__rfd->rfd_frag.frag_word0 =					\
249 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 	    FRAG_LEN(MCLBYTES - 2));					\
251 	__rfd->rfd_next =						\
252 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
253 	__rfd->rfd_status = 0;						\
254 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256 
257 #define STGE_TIMEOUT 1000
258 
259 static void	stge_start(struct ifnet *);
260 static void	stge_watchdog(struct ifnet *);
261 static int	stge_ioctl(struct ifnet *, u_long, void *);
262 static int	stge_init(struct ifnet *);
263 static void	stge_stop(struct ifnet *, int);
264 
265 static bool	stge_shutdown(device_t, int);
266 
267 static void	stge_reset(struct stge_softc *);
268 static void	stge_rxdrain(struct stge_softc *);
269 static int	stge_add_rxbuf(struct stge_softc *, int);
270 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void	stge_tick(void *);
272 
273 static void	stge_stats_update(struct stge_softc *);
274 
275 static void	stge_set_filter(struct stge_softc *);
276 
277 static int	stge_intr(void *);
278 static void	stge_txintr(struct stge_softc *);
279 static void	stge_rxintr(struct stge_softc *);
280 
281 static int	stge_mii_readreg(device_t, int, int);
282 static void	stge_mii_writereg(device_t, int, int, int);
283 static void	stge_mii_statchg(device_t);
284 
285 static int	stge_match(device_t, cfdata_t, void *);
286 static void	stge_attach(device_t, device_t, void *);
287 
288 int	stge_copy_small = 0;
289 
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291     stge_match, stge_attach, NULL, NULL);
292 
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void	stge_mii_bitbang_write(device_t, uint32_t);
295 
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 	stge_mii_bitbang_read,
298 	stge_mii_bitbang_write,
299 	{
300 		PC_MgmtData,		/* MII_BIT_MDO */
301 		PC_MgmtData,		/* MII_BIT_MDI */
302 		PC_MgmtClk,		/* MII_BIT_MDC */
303 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
304 		0,			/* MII_BIT_DIR_PHY_HOST */
305 	}
306 };
307 
308 /*
309  * Devices supported by this driver.
310  */
311 static const struct stge_product {
312 	pci_vendor_id_t		stge_vendor;
313 	pci_product_id_t	stge_product;
314 	const char		*stge_name;
315 } stge_products[] = {
316 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
317 	  "Sundance ST-1023 Gigabit Ethernet" },
318 
319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
320 	  "Sundance ST-2021 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
323 	  "Tamarack TC9021 Gigabit Ethernet" },
324 
325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 	  "Tamarack TC9021 Gigabit Ethernet" },
327 
328 	/*
329 	 * The Sundance sample boards use the Sundance vendor ID,
330 	 * but the Tamarack product ID.
331 	 */
332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
333 	  "Sundance TC9021 Gigabit Ethernet" },
334 
335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 	  "Sundance TC9021 Gigabit Ethernet" },
337 
338 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
339 	  "D-Link DL-4000 Gigabit Ethernet" },
340 
341 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
342 	  "Antares Gigabit Ethernet" },
343 
344 	{ 0,				0,
345 	  NULL },
346 };
347 
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 	const struct stge_product *sp;
352 
353 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 			return (sp);
357 	}
358 	return (NULL);
359 }
360 
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 	struct pci_attach_args *pa = aux;
365 
366 	if (stge_lookup(pa) != NULL)
367 		return (1);
368 
369 	return (0);
370 }
371 
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 	struct stge_softc *sc = device_private(self);
376 	struct pci_attach_args *pa = aux;
377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 	pci_chipset_tag_t pc = pa->pa_pc;
379 	pci_intr_handle_t ih;
380 	const char *intrstr = NULL;
381 	bus_space_tag_t iot, memt;
382 	bus_space_handle_t ioh, memh;
383 	bus_dma_segment_t seg;
384 	int ioh_valid, memh_valid;
385 	int i, rseg, error;
386 	const struct stge_product *sp;
387 	uint8_t enaddr[ETHER_ADDR_LEN];
388 
389 	callout_init(&sc->sc_tick_ch, 0);
390 
391 	sp = stge_lookup(pa);
392 	if (sp == NULL) {
393 		printf("\n");
394 		panic("ste_attach: impossible");
395 	}
396 
397 	sc->sc_rev = PCI_REVISION(pa->pa_class);
398 
399 	aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
400 
401 	/*
402 	 * Map the device.
403 	 */
404 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
405 	    PCI_MAPREG_TYPE_IO, 0,
406 	    &iot, &ioh, NULL, NULL) == 0);
407 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
408 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
409 	    &memt, &memh, NULL, NULL) == 0);
410 
411 	if (memh_valid) {
412 		sc->sc_st = memt;
413 		sc->sc_sh = memh;
414 	} else if (ioh_valid) {
415 		sc->sc_st = iot;
416 		sc->sc_sh = ioh;
417 	} else {
418 		aprint_error_dev(self, "unable to map device registers\n");
419 		return;
420 	}
421 
422 	sc->sc_dmat = pa->pa_dmat;
423 
424 	/* Enable bus mastering. */
425 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
426 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
427 	    PCI_COMMAND_MASTER_ENABLE);
428 
429 	/* power up chip */
430 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
431 	    error != EOPNOTSUPP) {
432 		aprint_error_dev(self, "cannot activate %d\n",
433 		    error);
434 		return;
435 	}
436 	/*
437 	 * Map and establish our interrupt.
438 	 */
439 	if (pci_intr_map(pa, &ih)) {
440 		aprint_error_dev(self, "unable to map interrupt\n");
441 		return;
442 	}
443 	intrstr = pci_intr_string(pc, ih);
444 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
445 	if (sc->sc_ih == NULL) {
446 		aprint_error_dev(self, "unable to establish interrupt");
447 		if (intrstr != NULL)
448 			aprint_error(" at %s", intrstr);
449 		aprint_error("\n");
450 		return;
451 	}
452 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
453 
454 	/*
455 	 * Allocate the control data structures, and create and load the
456 	 * DMA map for it.
457 	 */
458 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
459 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
460 	    0)) != 0) {
461 		aprint_error_dev(self,
462 		    "unable to allocate control data, error = %d\n",
463 		    error);
464 		goto fail_0;
465 	}
466 
467 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
468 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
469 	    BUS_DMA_COHERENT)) != 0) {
470 		aprint_error_dev(self,
471 		    "unable to map control data, error = %d\n",
472 		    error);
473 		goto fail_1;
474 	}
475 
476 	if ((error = bus_dmamap_create(sc->sc_dmat,
477 	    sizeof(struct stge_control_data), 1,
478 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
479 		aprint_error_dev(self,
480 		    "unable to create control data DMA map, error = %d\n",
481 		    error);
482 		goto fail_2;
483 	}
484 
485 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
486 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
487 	    0)) != 0) {
488 		aprint_error_dev(self,
489 		    "unable to load control data DMA map, error = %d\n",
490 		    error);
491 		goto fail_3;
492 	}
493 
494 	/*
495 	 * Create the transmit buffer DMA maps.  Note that rev B.3
496 	 * and earlier seem to have a bug regarding multi-fragment
497 	 * packets.  We need to limit the number of Tx segments on
498 	 * such chips to 1.
499 	 */
500 	for (i = 0; i < STGE_NTXDESC; i++) {
501 		if ((error = bus_dmamap_create(sc->sc_dmat,
502 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
503 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
504 			aprint_error_dev(self,
505 			    "unable to create tx DMA map %d, error = %d\n",
506 			    i, error);
507 			goto fail_4;
508 		}
509 	}
510 
511 	/*
512 	 * Create the receive buffer DMA maps.
513 	 */
514 	for (i = 0; i < STGE_NRXDESC; i++) {
515 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
516 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
517 			aprint_error_dev(self,
518 			    "unable to create rx DMA map %d, error = %d\n",
519 			    i, error);
520 			goto fail_5;
521 		}
522 		sc->sc_rxsoft[i].ds_mbuf = NULL;
523 	}
524 
525 	/*
526 	 * Determine if we're copper or fiber.  It affects how we
527 	 * reset the card.
528 	 */
529 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
530 	    AC_PhyMedia)
531 		sc->sc_usefiber = 1;
532 	else
533 		sc->sc_usefiber = 0;
534 
535 	/*
536 	 * Reset the chip to a known state.
537 	 */
538 	stge_reset(sc);
539 
540 	/*
541 	 * Reading the station address from the EEPROM doesn't seem
542 	 * to work, at least on my sample boards.  Instead, since
543 	 * the reset sequence does AutoInit, read it from the station
544 	 * address registers. For Sundance 1023 you can only read it
545 	 * from EEPROM.
546 	 */
547 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
548 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
549 		    STGE_StationAddress0) & 0xff;
550 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
551 		    STGE_StationAddress0) >> 8;
552 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
553 		    STGE_StationAddress1) & 0xff;
554 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
555 		    STGE_StationAddress1) >> 8;
556 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 		    STGE_StationAddress2) & 0xff;
558 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 		    STGE_StationAddress2) >> 8;
560 		sc->sc_stge1023 = 0;
561 	} else {
562 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
563 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
564 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
565 			    &myaddr[i]);
566 			myaddr[i] = le16toh(myaddr[i]);
567 		}
568 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
569 		sc->sc_stge1023 = 1;
570 	}
571 
572 	aprint_normal_dev(self, "Ethernet address %s\n",
573 	    ether_sprintf(enaddr));
574 
575 	/*
576 	 * Read some important bits from the PhyCtrl register.
577 	 */
578 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
579 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
580 
581 	/*
582 	 * Initialize our media structures and probe the MII.
583 	 */
584 	sc->sc_mii.mii_ifp = ifp;
585 	sc->sc_mii.mii_readreg = stge_mii_readreg;
586 	sc->sc_mii.mii_writereg = stge_mii_writereg;
587 	sc->sc_mii.mii_statchg = stge_mii_statchg;
588 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
589 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
590 	    ether_mediastatus);
591 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
592 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
593 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
594 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
595 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
596 	} else
597 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
598 
599 	ifp = &sc->sc_ethercom.ec_if;
600 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
601 	ifp->if_softc = sc;
602 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603 	ifp->if_ioctl = stge_ioctl;
604 	ifp->if_start = stge_start;
605 	ifp->if_watchdog = stge_watchdog;
606 	ifp->if_init = stge_init;
607 	ifp->if_stop = stge_stop;
608 	IFQ_SET_READY(&ifp->if_snd);
609 
610 	/*
611 	 * The manual recommends disabling early transmit, so we
612 	 * do.  It's disabled anyway, if using IP checksumming,
613 	 * since the entire packet must be in the FIFO in order
614 	 * for the chip to perform the checksum.
615 	 */
616 	sc->sc_txthresh = 0x0fff;
617 
618 	/*
619 	 * Disable MWI if the PCI layer tells us to.
620 	 */
621 	sc->sc_DMACtrl = 0;
622 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
623 		sc->sc_DMACtrl |= DMAC_MWIDisable;
624 
625 	/*
626 	 * We can support 802.1Q VLAN-sized frames and jumbo
627 	 * Ethernet frames.
628 	 *
629 	 * XXX Figure out how to do hw-assisted VLAN tagging in
630 	 * XXX a reasonable way on this chip.
631 	 */
632 	sc->sc_ethercom.ec_capabilities |=
633 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
634 	    ETHERCAP_VLAN_HWTAGGING;
635 
636 	/*
637 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
638 	 */
639 	sc->sc_ethercom.ec_if.if_capabilities |=
640 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
641 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
642 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
643 
644 	/*
645 	 * Attach the interface.
646 	 */
647 	if_attach(ifp);
648 	ether_ifattach(ifp, enaddr);
649 
650 #ifdef STGE_EVENT_COUNTERS
651 	/*
652 	 * Attach event counters.
653 	 */
654 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
655 	    NULL, device_xname(self), "txstall");
656 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
657 	    NULL, device_xname(self), "txdmaintr");
658 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
659 	    NULL, device_xname(self), "txindintr");
660 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
661 	    NULL, device_xname(self), "rxintr");
662 
663 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
664 	    NULL, device_xname(self), "txseg1");
665 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
666 	    NULL, device_xname(self), "txseg2");
667 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
668 	    NULL, device_xname(self), "txseg3");
669 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
670 	    NULL, device_xname(self), "txseg4");
671 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
672 	    NULL, device_xname(self), "txseg5");
673 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
674 	    NULL, device_xname(self), "txsegmore");
675 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
676 	    NULL, device_xname(self), "txcopy");
677 
678 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
679 	    NULL, device_xname(self), "rxipsum");
680 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
681 	    NULL, device_xname(self), "rxtcpsum");
682 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
683 	    NULL, device_xname(self), "rxudpsum");
684 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
685 	    NULL, device_xname(self), "txipsum");
686 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
687 	    NULL, device_xname(self), "txtcpsum");
688 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
689 	    NULL, device_xname(self), "txudpsum");
690 #endif /* STGE_EVENT_COUNTERS */
691 
692 	/*
693 	 * Make sure the interface is shutdown during reboot.
694 	 */
695 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
696 		pmf_class_network_register(self, ifp);
697 	else
698 		aprint_error_dev(self, "couldn't establish power handler\n");
699 
700 	return;
701 
702 	/*
703 	 * Free any resources we've allocated during the failed attach
704 	 * attempt.  Do this in reverse order and fall through.
705 	 */
706  fail_5:
707 	for (i = 0; i < STGE_NRXDESC; i++) {
708 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
709 			bus_dmamap_destroy(sc->sc_dmat,
710 			    sc->sc_rxsoft[i].ds_dmamap);
711 	}
712  fail_4:
713 	for (i = 0; i < STGE_NTXDESC; i++) {
714 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
715 			bus_dmamap_destroy(sc->sc_dmat,
716 			    sc->sc_txsoft[i].ds_dmamap);
717 	}
718 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
719  fail_3:
720 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
721  fail_2:
722 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
723 	    sizeof(struct stge_control_data));
724  fail_1:
725 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
726  fail_0:
727 	return;
728 }
729 
730 /*
731  * stge_shutdown:
732  *
733  *	Make sure the interface is stopped at reboot time.
734  */
735 static bool
736 stge_shutdown(device_t self, int howto)
737 {
738 	struct stge_softc *sc = device_private(self);
739 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
740 
741 	stge_stop(ifp, 1);
742 
743 	return true;
744 }
745 
746 static void
747 stge_dma_wait(struct stge_softc *sc)
748 {
749 	int i;
750 
751 	for (i = 0; i < STGE_TIMEOUT; i++) {
752 		delay(2);
753 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
754 		     DMAC_TxDMAInProg) == 0)
755 			break;
756 	}
757 
758 	if (i == STGE_TIMEOUT)
759 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
760 }
761 
762 /*
763  * stge_start:		[ifnet interface function]
764  *
765  *	Start packet transmission on the interface.
766  */
767 static void
768 stge_start(struct ifnet *ifp)
769 {
770 	struct stge_softc *sc = ifp->if_softc;
771 	struct mbuf *m0;
772 	struct stge_descsoft *ds;
773 	struct stge_tfd *tfd;
774 	bus_dmamap_t dmamap;
775 	int error, firsttx, nexttx, opending, seg, totlen;
776 	uint64_t csum_flags;
777 
778 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
779 		return;
780 
781 	/*
782 	 * Remember the previous number of pending transmissions
783 	 * and the first descriptor we will use.
784 	 */
785 	opending = sc->sc_txpending;
786 	firsttx = STGE_NEXTTX(sc->sc_txlast);
787 
788 	/*
789 	 * Loop through the send queue, setting up transmit descriptors
790 	 * until we drain the queue, or use up all available transmit
791 	 * descriptors.
792 	 */
793 	for (;;) {
794 		struct m_tag *mtag;
795 		uint64_t tfc;
796 
797 		/*
798 		 * Grab a packet off the queue.
799 		 */
800 		IFQ_POLL(&ifp->if_snd, m0);
801 		if (m0 == NULL)
802 			break;
803 
804 		/*
805 		 * Leave one unused descriptor at the end of the
806 		 * list to prevent wrapping completely around.
807 		 */
808 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
809 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
810 			break;
811 		}
812 
813 		/*
814 		 * See if we have any VLAN stuff.
815 		 */
816 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
817 
818 		/*
819 		 * Get the last and next available transmit descriptor.
820 		 */
821 		nexttx = STGE_NEXTTX(sc->sc_txlast);
822 		tfd = &sc->sc_txdescs[nexttx];
823 		ds = &sc->sc_txsoft[nexttx];
824 
825 		dmamap = ds->ds_dmamap;
826 
827 		/*
828 		 * Load the DMA map.  If this fails, the packet either
829 		 * didn't fit in the alloted number of segments, or we
830 		 * were short on resources.  For the too-many-segments
831 		 * case, we simply report an error and drop the packet,
832 		 * since we can't sanely copy a jumbo packet to a single
833 		 * buffer.
834 		 */
835 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
836 		    BUS_DMA_NOWAIT);
837 		if (error) {
838 			if (error == EFBIG) {
839 				printf("%s: Tx packet consumes too many "
840 				    "DMA segments, dropping...\n",
841 				    device_xname(sc->sc_dev));
842 				IFQ_DEQUEUE(&ifp->if_snd, m0);
843 				m_freem(m0);
844 				continue;
845 			}
846 			/*
847 			 * Short on resources, just stop for now.
848 			 */
849 			break;
850 		}
851 
852 		IFQ_DEQUEUE(&ifp->if_snd, m0);
853 
854 		/*
855 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
856 		 */
857 
858 		/* Sync the DMA map. */
859 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
860 		    BUS_DMASYNC_PREWRITE);
861 
862 		/* Initialize the fragment list. */
863 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
864 			tfd->tfd_frags[seg].frag_word0 =
865 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
866 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
867 			totlen += dmamap->dm_segs[seg].ds_len;
868 		}
869 
870 #ifdef STGE_EVENT_COUNTERS
871 		switch (dmamap->dm_nsegs) {
872 		case 1:
873 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
874 			break;
875 		case 2:
876 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
877 			break;
878 		case 3:
879 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
880 			break;
881 		case 4:
882 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
883 			break;
884 		case 5:
885 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
886 			break;
887 		default:
888 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
889 			break;
890 		}
891 #endif /* STGE_EVENT_COUNTERS */
892 
893 		/*
894 		 * Initialize checksumming flags in the descriptor.
895 		 * Byte-swap constants so the compiler can optimize.
896 		 */
897 		csum_flags = 0;
898 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
899 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
900 			csum_flags |= TFD_IPChecksumEnable;
901 		}
902 
903 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
904 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
905 			csum_flags |= TFD_TCPChecksumEnable;
906 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
907 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
908 			csum_flags |= TFD_UDPChecksumEnable;
909 		}
910 
911 		/*
912 		 * Initialize the descriptor and give it to the chip.
913 		 * Check to see if we have a VLAN tag to insert.
914 		 */
915 
916 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
917 		    TFD_FragCount(seg) | csum_flags |
918 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
919 			TFD_TxDMAIndicate : 0);
920 		if (mtag) {
921 #if	0
922 			struct ether_header *eh =
923 			    mtod(m0, struct ether_header *);
924 			u_int16_t etype = ntohs(eh->ether_type);
925 			printf("%s: xmit (tag %d) etype %x\n",
926 			   ifp->if_xname, *mtod(n, int *), etype);
927 #endif
928 			tfc |= TFD_VLANTagInsert |
929 #ifdef	STGE_VLAN_CFI
930 			    TFD_CFI |
931 #endif
932 			    TFD_VID(VLAN_TAG_VALUE(mtag));
933 		}
934 		tfd->tfd_control = htole64(tfc);
935 
936 		/* Sync the descriptor. */
937 		STGE_CDTXSYNC(sc, nexttx,
938 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
939 
940 		/*
941 		 * Kick the transmit DMA logic.
942 		 */
943 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
944 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
945 
946 		/*
947 		 * Store a pointer to the packet so we can free it later.
948 		 */
949 		ds->ds_mbuf = m0;
950 
951 		/* Advance the tx pointer. */
952 		sc->sc_txpending++;
953 		sc->sc_txlast = nexttx;
954 
955 		/*
956 		 * Pass the packet to any BPF listeners.
957 		 */
958 		bpf_mtap(ifp, m0);
959 	}
960 
961 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
962 		/* No more slots left; notify upper layer. */
963 		ifp->if_flags |= IFF_OACTIVE;
964 	}
965 
966 	if (sc->sc_txpending != opending) {
967 		/*
968 		 * We enqueued packets.  If the transmitter was idle,
969 		 * reset the txdirty pointer.
970 		 */
971 		if (opending == 0)
972 			sc->sc_txdirty = firsttx;
973 
974 		/* Set a watchdog timer in case the chip flakes out. */
975 		ifp->if_timer = 5;
976 	}
977 }
978 
979 /*
980  * stge_watchdog:	[ifnet interface function]
981  *
982  *	Watchdog timer handler.
983  */
984 static void
985 stge_watchdog(struct ifnet *ifp)
986 {
987 	struct stge_softc *sc = ifp->if_softc;
988 
989 	/*
990 	 * Sweep up first, since we don't interrupt every frame.
991 	 */
992 	stge_txintr(sc);
993 	if (sc->sc_txpending != 0) {
994 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
995 		ifp->if_oerrors++;
996 
997 		(void) stge_init(ifp);
998 
999 		/* Try to get more packets going. */
1000 		stge_start(ifp);
1001 	}
1002 }
1003 
1004 /*
1005  * stge_ioctl:		[ifnet interface function]
1006  *
1007  *	Handle control requests from the operator.
1008  */
1009 static int
1010 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1011 {
1012 	struct stge_softc *sc = ifp->if_softc;
1013 	int s, error;
1014 
1015 	s = splnet();
1016 
1017 	error = ether_ioctl(ifp, cmd, data);
1018 	if (error == ENETRESET) {
1019 		error = 0;
1020 
1021 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1022 			;
1023 		else if (ifp->if_flags & IFF_RUNNING) {
1024 			/*
1025 			 * Multicast list has changed; set the hardware filter
1026 			 * accordingly.
1027 			 */
1028 			stge_set_filter(sc);
1029 		}
1030 	}
1031 
1032 	/* Try to get more packets going. */
1033 	stge_start(ifp);
1034 
1035 	splx(s);
1036 	return (error);
1037 }
1038 
1039 /*
1040  * stge_intr:
1041  *
1042  *	Interrupt service routine.
1043  */
1044 static int
1045 stge_intr(void *arg)
1046 {
1047 	struct stge_softc *sc = arg;
1048 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1049 	uint32_t txstat;
1050 	int wantinit;
1051 	uint16_t isr;
1052 
1053 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1054 	     IS_InterruptStatus) == 0)
1055 		return (0);
1056 
1057 	for (wantinit = 0; wantinit == 0;) {
1058 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1059 		if ((isr & sc->sc_IntEnable) == 0)
1060 			break;
1061 
1062 		/* Host interface errors. */
1063 		if (isr & IS_HostError) {
1064 			printf("%s: Host interface error\n",
1065 			    device_xname(sc->sc_dev));
1066 			wantinit = 1;
1067 			continue;
1068 		}
1069 
1070 		/* Receive interrupts. */
1071 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1072 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1073 			stge_rxintr(sc);
1074 			if (isr & IS_RFDListEnd) {
1075 				printf("%s: receive ring overflow\n",
1076 				    device_xname(sc->sc_dev));
1077 				/*
1078 				 * XXX Should try to recover from this
1079 				 * XXX more gracefully.
1080 				 */
1081 				wantinit = 1;
1082 			}
1083 		}
1084 
1085 		/* Transmit interrupts. */
1086 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1087 #ifdef STGE_EVENT_COUNTERS
1088 			if (isr & IS_TxDMAComplete)
1089 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1090 #endif
1091 			stge_txintr(sc);
1092 		}
1093 
1094 		/* Statistics overflow. */
1095 		if (isr & IS_UpdateStats)
1096 			stge_stats_update(sc);
1097 
1098 		/* Transmission errors. */
1099 		if (isr & IS_TxComplete) {
1100 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1101 			for (;;) {
1102 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1103 				    STGE_TxStatus);
1104 				if ((txstat & TS_TxComplete) == 0)
1105 					break;
1106 				if (txstat & TS_TxUnderrun) {
1107 					sc->sc_txthresh++;
1108 					if (sc->sc_txthresh > 0x0fff)
1109 						sc->sc_txthresh = 0x0fff;
1110 					printf("%s: transmit underrun, new "
1111 					    "threshold: %d bytes\n",
1112 					    device_xname(sc->sc_dev),
1113 					    sc->sc_txthresh << 5);
1114 				}
1115 				if (txstat & TS_MaxCollisions)
1116 					printf("%s: excessive collisions\n",
1117 					    device_xname(sc->sc_dev));
1118 			}
1119 			wantinit = 1;
1120 		}
1121 
1122 	}
1123 
1124 	if (wantinit)
1125 		stge_init(ifp);
1126 
1127 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1128 	    sc->sc_IntEnable);
1129 
1130 	/* Try to get more packets going. */
1131 	stge_start(ifp);
1132 
1133 	return (1);
1134 }
1135 
1136 /*
1137  * stge_txintr:
1138  *
1139  *	Helper; handle transmit interrupts.
1140  */
1141 static void
1142 stge_txintr(struct stge_softc *sc)
1143 {
1144 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1145 	struct stge_descsoft *ds;
1146 	uint64_t control;
1147 	int i;
1148 
1149 	ifp->if_flags &= ~IFF_OACTIVE;
1150 
1151 	/*
1152 	 * Go through our Tx list and free mbufs for those
1153 	 * frames which have been transmitted.
1154 	 */
1155 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1156 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1157 		ds = &sc->sc_txsoft[i];
1158 
1159 		STGE_CDTXSYNC(sc, i,
1160 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1161 
1162 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1163 		if ((control & TFD_TFDDone) == 0)
1164 			break;
1165 
1166 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1167 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1168 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1169 		m_freem(ds->ds_mbuf);
1170 		ds->ds_mbuf = NULL;
1171 	}
1172 
1173 	/* Update the dirty transmit buffer pointer. */
1174 	sc->sc_txdirty = i;
1175 
1176 	/*
1177 	 * If there are no more pending transmissions, cancel the watchdog
1178 	 * timer.
1179 	 */
1180 	if (sc->sc_txpending == 0)
1181 		ifp->if_timer = 0;
1182 }
1183 
1184 /*
1185  * stge_rxintr:
1186  *
1187  *	Helper; handle receive interrupts.
1188  */
1189 static void
1190 stge_rxintr(struct stge_softc *sc)
1191 {
1192 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1193 	struct stge_descsoft *ds;
1194 	struct mbuf *m, *tailm;
1195 	uint64_t status;
1196 	int i, len;
1197 
1198 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1199 		ds = &sc->sc_rxsoft[i];
1200 
1201 		STGE_CDRXSYNC(sc, i,
1202 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1203 
1204 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1205 
1206 		if ((status & RFD_RFDDone) == 0)
1207 			break;
1208 
1209 		if (__predict_false(sc->sc_rxdiscard)) {
1210 			STGE_INIT_RXDESC(sc, i);
1211 			if (status & RFD_FrameEnd) {
1212 				/* Reset our state. */
1213 				sc->sc_rxdiscard = 0;
1214 			}
1215 			continue;
1216 		}
1217 
1218 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1219 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1220 
1221 		m = ds->ds_mbuf;
1222 
1223 		/*
1224 		 * Add a new receive buffer to the ring.
1225 		 */
1226 		if (stge_add_rxbuf(sc, i) != 0) {
1227 			/*
1228 			 * Failed, throw away what we've done so
1229 			 * far, and discard the rest of the packet.
1230 			 */
1231 			ifp->if_ierrors++;
1232 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1233 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1234 			STGE_INIT_RXDESC(sc, i);
1235 			if ((status & RFD_FrameEnd) == 0)
1236 				sc->sc_rxdiscard = 1;
1237 			if (sc->sc_rxhead != NULL)
1238 				m_freem(sc->sc_rxhead);
1239 			STGE_RXCHAIN_RESET(sc);
1240 			continue;
1241 		}
1242 
1243 #ifdef DIAGNOSTIC
1244 		if (status & RFD_FrameStart) {
1245 			KASSERT(sc->sc_rxhead == NULL);
1246 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1247 		}
1248 #endif
1249 
1250 		STGE_RXCHAIN_LINK(sc, m);
1251 
1252 		/*
1253 		 * If this is not the end of the packet, keep
1254 		 * looking.
1255 		 */
1256 		if ((status & RFD_FrameEnd) == 0) {
1257 			sc->sc_rxlen += m->m_len;
1258 			continue;
1259 		}
1260 
1261 		/*
1262 		 * Okay, we have the entire packet now...
1263 		 */
1264 		*sc->sc_rxtailp = NULL;
1265 		m = sc->sc_rxhead;
1266 		tailm = sc->sc_rxtail;
1267 
1268 		STGE_RXCHAIN_RESET(sc);
1269 
1270 		/*
1271 		 * If the packet had an error, drop it.  Note we
1272 		 * count the error later in the periodic stats update.
1273 		 */
1274 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1275 			      RFD_RxAlignmentError | RFD_RxFCSError |
1276 			      RFD_RxLengthError)) {
1277 			m_freem(m);
1278 			continue;
1279 		}
1280 
1281 		/*
1282 		 * No errors.
1283 		 *
1284 		 * Note we have configured the chip to not include
1285 		 * the CRC at the end of the packet.
1286 		 */
1287 		len = RFD_RxDMAFrameLen(status);
1288 		tailm->m_len = len - sc->sc_rxlen;
1289 
1290 		/*
1291 		 * If the packet is small enough to fit in a
1292 		 * single header mbuf, allocate one and copy
1293 		 * the data into it.  This greatly reduces
1294 		 * memory consumption when we receive lots
1295 		 * of small packets.
1296 		 */
1297 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1298 			struct mbuf *nm;
1299 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1300 			if (nm == NULL) {
1301 				ifp->if_ierrors++;
1302 				m_freem(m);
1303 				continue;
1304 			}
1305 			nm->m_data += 2;
1306 			nm->m_pkthdr.len = nm->m_len = len;
1307 			m_copydata(m, 0, len, mtod(nm, void *));
1308 			m_freem(m);
1309 			m = nm;
1310 		}
1311 
1312 		/*
1313 		 * Set the incoming checksum information for the packet.
1314 		 */
1315 		if (status & RFD_IPDetected) {
1316 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1317 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1318 			if (status & RFD_IPError)
1319 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1320 			if (status & RFD_TCPDetected) {
1321 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1322 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1323 				if (status & RFD_TCPError)
1324 					m->m_pkthdr.csum_flags |=
1325 					    M_CSUM_TCP_UDP_BAD;
1326 			} else if (status & RFD_UDPDetected) {
1327 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1328 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1329 				if (status & RFD_UDPError)
1330 					m->m_pkthdr.csum_flags |=
1331 					    M_CSUM_TCP_UDP_BAD;
1332 			}
1333 		}
1334 
1335 		m->m_pkthdr.rcvif = ifp;
1336 		m->m_pkthdr.len = len;
1337 
1338 		/*
1339 		 * Pass this up to any BPF listeners, but only
1340 		 * pass if up the stack if it's for us.
1341 		 */
1342 		bpf_mtap(ifp, m);
1343 #ifdef	STGE_VLAN_UNTAG
1344 		/*
1345 		 * Check for VLAN tagged packets
1346 		 */
1347 		if (status & RFD_VLANDetected)
1348 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1349 
1350 #endif
1351 #if	0
1352 		if (status & RFD_VLANDetected) {
1353 			struct ether_header *eh;
1354 			u_int16_t etype;
1355 
1356 			eh = mtod(m, struct ether_header *);
1357 			etype = ntohs(eh->ether_type);
1358 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1359 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1360 			    etype);
1361 		}
1362 #endif
1363 		/* Pass it on. */
1364 		(*ifp->if_input)(ifp, m);
1365 	}
1366 
1367 	/* Update the receive pointer. */
1368 	sc->sc_rxptr = i;
1369 }
1370 
1371 /*
1372  * stge_tick:
1373  *
1374  *	One second timer, used to tick the MII.
1375  */
1376 static void
1377 stge_tick(void *arg)
1378 {
1379 	struct stge_softc *sc = arg;
1380 	int s;
1381 
1382 	s = splnet();
1383 	mii_tick(&sc->sc_mii);
1384 	stge_stats_update(sc);
1385 	splx(s);
1386 
1387 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1388 }
1389 
1390 /*
1391  * stge_stats_update:
1392  *
1393  *	Read the TC9021 statistics counters.
1394  */
1395 static void
1396 stge_stats_update(struct stge_softc *sc)
1397 {
1398 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1399 	bus_space_tag_t st = sc->sc_st;
1400 	bus_space_handle_t sh = sc->sc_sh;
1401 
1402 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1403 
1404 	ifp->if_ipackets +=
1405 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1406 
1407 	ifp->if_ierrors +=
1408 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1409 
1410 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1411 
1412 	ifp->if_opackets +=
1413 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1414 
1415 	ifp->if_collisions +=
1416 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1417 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1418 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1419 
1420 	ifp->if_oerrors +=
1421 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1422 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1423 }
1424 
1425 /*
1426  * stge_reset:
1427  *
1428  *	Perform a soft reset on the TC9021.
1429  */
1430 static void
1431 stge_reset(struct stge_softc *sc)
1432 {
1433 	uint32_t ac;
1434 	int i;
1435 
1436 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1437 
1438 	/*
1439 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1440 	 * to be present in order for the reset to complete on fiber
1441 	 * cards.
1442 	 */
1443 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1444 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1445 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1446 	    (sc->sc_usefiber ? AC_RstOut : 0));
1447 
1448 	delay(50000);
1449 
1450 	for (i = 0; i < STGE_TIMEOUT; i++) {
1451 		delay(5000);
1452 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1453 		     AC_ResetBusy) == 0)
1454 			break;
1455 	}
1456 
1457 	if (i == STGE_TIMEOUT)
1458 		printf("%s: reset failed to complete\n",
1459 		    device_xname(sc->sc_dev));
1460 
1461 	delay(1000);
1462 }
1463 
1464 /*
1465  * stge_init:		[ ifnet interface function ]
1466  *
1467  *	Initialize the interface.  Must be called at splnet().
1468  */
1469 static int
1470 stge_init(struct ifnet *ifp)
1471 {
1472 	struct stge_softc *sc = ifp->if_softc;
1473 	bus_space_tag_t st = sc->sc_st;
1474 	bus_space_handle_t sh = sc->sc_sh;
1475 	struct stge_descsoft *ds;
1476 	int i, error = 0;
1477 
1478 	/*
1479 	 * Cancel any pending I/O.
1480 	 */
1481 	stge_stop(ifp, 0);
1482 
1483 	/*
1484 	 * Reset the chip to a known state.
1485 	 */
1486 	stge_reset(sc);
1487 
1488 	/*
1489 	 * Initialize the transmit descriptor ring.
1490 	 */
1491 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1492 	for (i = 0; i < STGE_NTXDESC; i++) {
1493 		sc->sc_txdescs[i].tfd_next = htole64(
1494 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1495 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1496 	}
1497 	sc->sc_txpending = 0;
1498 	sc->sc_txdirty = 0;
1499 	sc->sc_txlast = STGE_NTXDESC - 1;
1500 
1501 	/*
1502 	 * Initialize the receive descriptor and receive job
1503 	 * descriptor rings.
1504 	 */
1505 	for (i = 0; i < STGE_NRXDESC; i++) {
1506 		ds = &sc->sc_rxsoft[i];
1507 		if (ds->ds_mbuf == NULL) {
1508 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1509 				printf("%s: unable to allocate or map rx "
1510 				    "buffer %d, error = %d\n",
1511 				    device_xname(sc->sc_dev), i, error);
1512 				/*
1513 				 * XXX Should attempt to run with fewer receive
1514 				 * XXX buffers instead of just failing.
1515 				 */
1516 				stge_rxdrain(sc);
1517 				goto out;
1518 			}
1519 		} else
1520 			STGE_INIT_RXDESC(sc, i);
1521 	}
1522 	sc->sc_rxptr = 0;
1523 	sc->sc_rxdiscard = 0;
1524 	STGE_RXCHAIN_RESET(sc);
1525 
1526 	/* Set the station address. */
1527 	for (i = 0; i < 6; i++)
1528 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1529 		    CLLADDR(ifp->if_sadl)[i]);
1530 
1531 	/*
1532 	 * Set the statistics masks.  Disable all the RMON stats,
1533 	 * and disable selected stats in the non-RMON stats registers.
1534 	 */
1535 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1536 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1537 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1538 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1539 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1540 	    (1U << 21));
1541 
1542 	/* Set up the receive filter. */
1543 	stge_set_filter(sc);
1544 
1545 	/*
1546 	 * Give the transmit and receive ring to the chip.
1547 	 */
1548 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1549 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1550 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1551 
1552 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1553 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1554 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1555 
1556 	/*
1557 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1558 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1559 	 * transmit engine when there's actually a packet.
1560 	 */
1561 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1562 
1563 	/* ..and the Rx auto-poll period. */
1564 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1565 
1566 	/* Initialize the Tx start threshold. */
1567 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1568 
1569 	/* RX DMA thresholds, from linux */
1570 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1571 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1572 
1573 	/*
1574 	 * Initialize the Rx DMA interrupt control register.  We
1575 	 * request an interrupt after every incoming packet, but
1576 	 * defer it for 32us (64 * 512 ns).  When the number of
1577 	 * interrupts pending reaches 8, we stop deferring the
1578 	 * interrupt, and signal it immediately.
1579 	 */
1580 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1581 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1582 
1583 	/*
1584 	 * Initialize the interrupt mask.
1585 	 */
1586 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1587 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1588 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1589 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1590 
1591 	/*
1592 	 * Configure the DMA engine.
1593 	 * XXX Should auto-tune TxBurstLimit.
1594 	 */
1595 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1596 	    DMAC_TxBurstLimit(3));
1597 
1598 	/*
1599 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1600 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1601 	 * empty again.
1602 	 */
1603 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1604 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1605 
1606 	/*
1607 	 * Set the maximum frame size.
1608 	 */
1609 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1610 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1611 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1612 	     ETHER_VLAN_ENCAP_LEN : 0));
1613 
1614 	/*
1615 	 * Initialize MacCtrl -- do it before setting the media,
1616 	 * as setting the media will actually program the register.
1617 	 *
1618 	 * Note: We have to poke the IFS value before poking
1619 	 * anything else.
1620 	 */
1621 	sc->sc_MACCtrl = MC_IFSSelect(0);
1622 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1623 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1624 #ifdef	STGE_VLAN_UNTAG
1625 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1626 #endif
1627 
1628 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1629 		/* Multi-frag frame bug work-around. */
1630 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1631 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1632 
1633 		/* Tx Poll Now bug work-around. */
1634 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1635 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1636 		/* XXX ? from linux */
1637 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1638 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1639 	}
1640 
1641 	/*
1642 	 * Set the current media.
1643 	 */
1644 	if ((error = ether_mediachange(ifp)) != 0)
1645 		goto out;
1646 
1647 	/*
1648 	 * Start the one second MII clock.
1649 	 */
1650 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1651 
1652 	/*
1653 	 * ...all done!
1654 	 */
1655 	ifp->if_flags |= IFF_RUNNING;
1656 	ifp->if_flags &= ~IFF_OACTIVE;
1657 
1658  out:
1659 	if (error)
1660 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1661 	return (error);
1662 }
1663 
1664 /*
1665  * stge_drain:
1666  *
1667  *	Drain the receive queue.
1668  */
1669 static void
1670 stge_rxdrain(struct stge_softc *sc)
1671 {
1672 	struct stge_descsoft *ds;
1673 	int i;
1674 
1675 	for (i = 0; i < STGE_NRXDESC; i++) {
1676 		ds = &sc->sc_rxsoft[i];
1677 		if (ds->ds_mbuf != NULL) {
1678 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1679 			ds->ds_mbuf->m_next = NULL;
1680 			m_freem(ds->ds_mbuf);
1681 			ds->ds_mbuf = NULL;
1682 		}
1683 	}
1684 }
1685 
1686 /*
1687  * stge_stop:		[ ifnet interface function ]
1688  *
1689  *	Stop transmission on the interface.
1690  */
1691 static void
1692 stge_stop(struct ifnet *ifp, int disable)
1693 {
1694 	struct stge_softc *sc = ifp->if_softc;
1695 	struct stge_descsoft *ds;
1696 	int i;
1697 
1698 	/*
1699 	 * Stop the one second clock.
1700 	 */
1701 	callout_stop(&sc->sc_tick_ch);
1702 
1703 	/* Down the MII. */
1704 	mii_down(&sc->sc_mii);
1705 
1706 	/*
1707 	 * Disable interrupts.
1708 	 */
1709 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1710 
1711 	/*
1712 	 * Stop receiver, transmitter, and stats update.
1713 	 */
1714 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1715 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1716 
1717 	/*
1718 	 * Stop the transmit and receive DMA.
1719 	 */
1720 	stge_dma_wait(sc);
1721 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1722 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1723 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1724 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1725 
1726 	/*
1727 	 * Release any queued transmit buffers.
1728 	 */
1729 	for (i = 0; i < STGE_NTXDESC; i++) {
1730 		ds = &sc->sc_txsoft[i];
1731 		if (ds->ds_mbuf != NULL) {
1732 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1733 			m_freem(ds->ds_mbuf);
1734 			ds->ds_mbuf = NULL;
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * Mark the interface down and cancel the watchdog timer.
1740 	 */
1741 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1742 	ifp->if_timer = 0;
1743 
1744 	if (disable)
1745 		stge_rxdrain(sc);
1746 }
1747 
1748 static int
1749 stge_eeprom_wait(struct stge_softc *sc)
1750 {
1751 	int i;
1752 
1753 	for (i = 0; i < STGE_TIMEOUT; i++) {
1754 		delay(1000);
1755 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1756 		     EC_EepromBusy) == 0)
1757 			return (0);
1758 	}
1759 	return (1);
1760 }
1761 
1762 /*
1763  * stge_read_eeprom:
1764  *
1765  *	Read data from the serial EEPROM.
1766  */
1767 static void
1768 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1769 {
1770 
1771 	if (stge_eeprom_wait(sc))
1772 		printf("%s: EEPROM failed to come ready\n",
1773 		    device_xname(sc->sc_dev));
1774 
1775 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1776 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1777 	if (stge_eeprom_wait(sc))
1778 		printf("%s: EEPROM read timed out\n",
1779 		    device_xname(sc->sc_dev));
1780 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1781 }
1782 
1783 /*
1784  * stge_add_rxbuf:
1785  *
1786  *	Add a receive buffer to the indicated descriptor.
1787  */
1788 static int
1789 stge_add_rxbuf(struct stge_softc *sc, int idx)
1790 {
1791 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1792 	struct mbuf *m;
1793 	int error;
1794 
1795 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1796 	if (m == NULL)
1797 		return (ENOBUFS);
1798 
1799 	MCLGET(m, M_DONTWAIT);
1800 	if ((m->m_flags & M_EXT) == 0) {
1801 		m_freem(m);
1802 		return (ENOBUFS);
1803 	}
1804 
1805 	m->m_data = m->m_ext.ext_buf + 2;
1806 	m->m_len = MCLBYTES - 2;
1807 
1808 	if (ds->ds_mbuf != NULL)
1809 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1810 
1811 	ds->ds_mbuf = m;
1812 
1813 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1814 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1815 	if (error) {
1816 		printf("%s: can't load rx DMA map %d, error = %d\n",
1817 		    device_xname(sc->sc_dev), idx, error);
1818 		panic("stge_add_rxbuf");	/* XXX */
1819 	}
1820 
1821 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1822 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1823 
1824 	STGE_INIT_RXDESC(sc, idx);
1825 
1826 	return (0);
1827 }
1828 
1829 /*
1830  * stge_set_filter:
1831  *
1832  *	Set up the receive filter.
1833  */
1834 static void
1835 stge_set_filter(struct stge_softc *sc)
1836 {
1837 	struct ethercom *ec = &sc->sc_ethercom;
1838 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1839 	struct ether_multi *enm;
1840 	struct ether_multistep step;
1841 	uint32_t crc;
1842 	uint32_t mchash[2];
1843 
1844 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1845 	if (ifp->if_flags & IFF_BROADCAST)
1846 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1847 
1848 	/* XXX: ST1023 only works in promiscuous mode */
1849 	if (sc->sc_stge1023)
1850 		ifp->if_flags |= IFF_PROMISC;
1851 
1852 	if (ifp->if_flags & IFF_PROMISC) {
1853 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1854 		goto allmulti;
1855 	}
1856 
1857 	/*
1858 	 * Set up the multicast address filter by passing all multicast
1859 	 * addresses through a CRC generator, and then using the low-order
1860 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1861 	 * high order bits select the register, while the rest of the bits
1862 	 * select the bit within the register.
1863 	 */
1864 
1865 	memset(mchash, 0, sizeof(mchash));
1866 
1867 	ETHER_FIRST_MULTI(step, ec, enm);
1868 	if (enm == NULL)
1869 		goto done;
1870 
1871 	while (enm != NULL) {
1872 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1873 			/*
1874 			 * We must listen to a range of multicast addresses.
1875 			 * For now, just accept all multicasts, rather than
1876 			 * trying to set only those filter bits needed to match
1877 			 * the range.  (At this time, the only use of address
1878 			 * ranges is for IP multicast routing, for which the
1879 			 * range is big enough to require all bits set.)
1880 			 */
1881 			goto allmulti;
1882 		}
1883 
1884 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1885 
1886 		/* Just want the 6 least significant bits. */
1887 		crc &= 0x3f;
1888 
1889 		/* Set the corresponding bit in the hash table. */
1890 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1891 
1892 		ETHER_NEXT_MULTI(step, enm);
1893 	}
1894 
1895 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1896 
1897 	ifp->if_flags &= ~IFF_ALLMULTI;
1898 	goto done;
1899 
1900  allmulti:
1901 	ifp->if_flags |= IFF_ALLMULTI;
1902 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1903 
1904  done:
1905 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1906 		/*
1907 		 * Program the multicast hash table.
1908 		 */
1909 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1910 		    mchash[0]);
1911 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1912 		    mchash[1]);
1913 	}
1914 
1915 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1916 	    sc->sc_ReceiveMode);
1917 }
1918 
1919 /*
1920  * stge_mii_readreg:	[mii interface function]
1921  *
1922  *	Read a PHY register on the MII of the TC9021.
1923  */
1924 static int
1925 stge_mii_readreg(device_t self, int phy, int reg)
1926 {
1927 
1928 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1929 }
1930 
1931 /*
1932  * stge_mii_writereg:	[mii interface function]
1933  *
1934  *	Write a PHY register on the MII of the TC9021.
1935  */
1936 static void
1937 stge_mii_writereg(device_t self, int phy, int reg, int val)
1938 {
1939 
1940 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1941 }
1942 
1943 /*
1944  * stge_mii_statchg:	[mii interface function]
1945  *
1946  *	Callback from MII layer when media changes.
1947  */
1948 static void
1949 stge_mii_statchg(device_t self)
1950 {
1951 	struct stge_softc *sc = device_private(self);
1952 
1953 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1954 		sc->sc_MACCtrl |= MC_DuplexSelect;
1955 	else
1956 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1957 
1958 	/* XXX 802.1x flow-control? */
1959 
1960 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1961 }
1962 
1963 /*
1964  * sste_mii_bitbang_read: [mii bit-bang interface function]
1965  *
1966  *	Read the MII serial port for the MII bit-bang module.
1967  */
1968 static uint32_t
1969 stge_mii_bitbang_read(device_t self)
1970 {
1971 	struct stge_softc *sc = device_private(self);
1972 
1973 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1974 }
1975 
1976 /*
1977  * stge_mii_bitbang_write: [mii big-bang interface function]
1978  *
1979  *	Write the MII serial port for the MII bit-bang module.
1980  */
1981 static void
1982 stge_mii_bitbang_write(device_t self, uint32_t val)
1983 {
1984 	struct stge_softc *sc = device_private(self);
1985 
1986 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1987 	    val | sc->sc_PhyCtrl);
1988 }
1989