xref: /netbsd-src/sys/dev/pci/if_stge.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stgereg.h>
84 
85 /* #define	STGE_CU_BUG			1 */
86 #define	STGE_VLAN_UNTAG			1
87 /* #define	STGE_VLAN_CFI		1 */
88 
89 /*
90  * Transmit descriptor list size.
91  */
92 #define	STGE_NTXDESC		256
93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
95 
96 /*
97  * Receive descriptor list size.
98  */
99 #define	STGE_NRXDESC		256
100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
102 
103 /*
104  * Only interrupt every N frames.  Must be a power-of-two.
105  */
106 #define	STGE_TXINTR_SPACING	16
107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108 
109 /*
110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
111  * a single clump that maps to a single DMA segment to make several things
112  * easier.
113  */
114 struct stge_control_data {
115 	/*
116 	 * The transmit descriptors.
117 	 */
118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
119 
120 	/*
121 	 * The receive descriptors.
122 	 */
123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125 
126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
129 
130 /*
131  * Software state for transmit and receive jobs.
132  */
133 struct stge_descsoft {
134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
136 };
137 
138 /*
139  * Software state per device.
140  */
141 struct stge_softc {
142 	struct device sc_dev;		/* generic device information */
143 	bus_space_tag_t sc_st;		/* bus space tag */
144 	bus_space_handle_t sc_sh;	/* bus space handle */
145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
146 	struct ethercom sc_ethercom;	/* ethernet common data */
147 	void *sc_sdhook;		/* shutdown hook */
148 	int sc_rev;			/* silicon revision */
149 
150 	void *sc_ih;			/* interrupt cookie */
151 
152 	struct mii_data sc_mii;		/* MII/media information */
153 
154 	struct callout sc_tick_ch;	/* tick callout */
155 
156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
158 
159 	/*
160 	 * Software state for transmit and receive descriptors.
161 	 */
162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164 
165 	/*
166 	 * Control data structures.
167 	 */
168 	struct stge_control_data *sc_control_data;
169 #define	sc_txdescs	sc_control_data->scd_txdescs
170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
171 
172 #ifdef STGE_EVENT_COUNTERS
173 	/*
174 	 * Event counters.
175 	 */
176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
180 
181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
188 
189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
192 
193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197 
198 	int	sc_txpending;		/* number of Tx requests pending */
199 	int	sc_txdirty;		/* first dirty Tx descriptor */
200 	int	sc_txlast;		/* last used Tx descriptor */
201 
202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
203 	int	sc_rxdiscard;
204 	int	sc_rxlen;
205 	struct mbuf *sc_rxhead;
206 	struct mbuf *sc_rxtail;
207 	struct mbuf **sc_rxtailp;
208 
209 	int	sc_txthresh;		/* Tx threshold */
210 	uint32_t sc_usefiber:1;		/* if we're fiber */
211 	uint32_t sc_stge1023:1;		/* are we a 1023 */
212 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
213 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
214 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
215 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
216 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
217 };
218 
219 #define	STGE_RXCHAIN_RESET(sc)						\
220 do {									\
221 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
222 	*(sc)->sc_rxtailp = NULL;					\
223 	(sc)->sc_rxlen = 0;						\
224 } while (/*CONSTCOND*/0)
225 
226 #define	STGE_RXCHAIN_LINK(sc, m)					\
227 do {									\
228 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
229 	(sc)->sc_rxtailp = &(m)->m_next;				\
230 } while (/*CONSTCOND*/0)
231 
232 #ifdef STGE_EVENT_COUNTERS
233 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
234 #else
235 #define	STGE_EVCNT_INCR(ev)	/* nothing */
236 #endif
237 
238 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
240 
241 #define	STGE_CDTXSYNC(sc, x, ops)					\
242 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
243 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244 
245 #define	STGE_CDRXSYNC(sc, x, ops)					\
246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
247 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248 
249 #define	STGE_INIT_RXDESC(sc, x)						\
250 do {									\
251 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
252 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
253 									\
254 	/*								\
255 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
256 	 * so that the payload after the Ethernet header is aligned	\
257 	 * to a 4-byte boundary.					\
258 	 */								\
259 	__rfd->rfd_frag.frag_word0 =					\
260 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 	    FRAG_LEN(MCLBYTES - 2));					\
262 	__rfd->rfd_next =						\
263 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
264 	__rfd->rfd_status = 0;						\
265 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267 
268 #define STGE_TIMEOUT 1000
269 
270 static void	stge_start(struct ifnet *);
271 static void	stge_watchdog(struct ifnet *);
272 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
273 static int	stge_init(struct ifnet *);
274 static void	stge_stop(struct ifnet *, int);
275 
276 static void	stge_shutdown(void *);
277 
278 static void	stge_reset(struct stge_softc *);
279 static void	stge_rxdrain(struct stge_softc *);
280 static int	stge_add_rxbuf(struct stge_softc *, int);
281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void	stge_tick(void *);
283 
284 static void	stge_stats_update(struct stge_softc *);
285 
286 static void	stge_set_filter(struct stge_softc *);
287 
288 static int	stge_intr(void *);
289 static void	stge_txintr(struct stge_softc *);
290 static void	stge_rxintr(struct stge_softc *);
291 
292 static int	stge_mii_readreg(struct device *, int, int);
293 static void	stge_mii_writereg(struct device *, int, int, int);
294 static void	stge_mii_statchg(struct device *);
295 
296 static int	stge_mediachange(struct ifnet *);
297 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
298 
299 static int	stge_match(struct device *, struct cfdata *, void *);
300 static void	stge_attach(struct device *, struct device *, void *);
301 
302 int	stge_copy_small = 0;
303 
304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
305     stge_match, stge_attach, NULL, NULL);
306 
307 static uint32_t stge_mii_bitbang_read(struct device *);
308 static void	stge_mii_bitbang_write(struct device *, uint32_t);
309 
310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
311 	stge_mii_bitbang_read,
312 	stge_mii_bitbang_write,
313 	{
314 		PC_MgmtData,		/* MII_BIT_MDO */
315 		PC_MgmtData,		/* MII_BIT_MDI */
316 		PC_MgmtClk,		/* MII_BIT_MDC */
317 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
318 		0,			/* MII_BIT_DIR_PHY_HOST */
319 	}
320 };
321 
322 /*
323  * Devices supported by this driver.
324  */
325 static const struct stge_product {
326 	pci_vendor_id_t		stge_vendor;
327 	pci_product_id_t	stge_product;
328 	const char		*stge_name;
329 } stge_products[] = {
330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
331 	  "Sundance ST-1023 Gigabit Ethernet" },
332 
333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
334 	  "Sundance ST-2021 Gigabit Ethernet" },
335 
336 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
337 	  "Tamarack TC9021 Gigabit Ethernet" },
338 
339 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 	  "Tamarack TC9021 Gigabit Ethernet" },
341 
342 	/*
343 	 * The Sundance sample boards use the Sundance vendor ID,
344 	 * but the Tamarack product ID.
345 	 */
346 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
347 	  "Sundance TC9021 Gigabit Ethernet" },
348 
349 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
350 	  "Sundance TC9021 Gigabit Ethernet" },
351 
352 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
353 	  "D-Link DL-4000 Gigabit Ethernet" },
354 
355 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
356 	  "Antares Gigabit Ethernet" },
357 
358 	{ 0,				0,
359 	  NULL },
360 };
361 
362 static const struct stge_product *
363 stge_lookup(const struct pci_attach_args *pa)
364 {
365 	const struct stge_product *sp;
366 
367 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
368 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
369 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
370 			return (sp);
371 	}
372 	return (NULL);
373 }
374 
375 static int
376 stge_match(struct device *parent, struct cfdata *cf, void *aux)
377 {
378 	struct pci_attach_args *pa = aux;
379 
380 	if (stge_lookup(pa) != NULL)
381 		return (1);
382 
383 	return (0);
384 }
385 
386 static void
387 stge_attach(struct device *parent, struct device *self, void *aux)
388 {
389 	struct stge_softc *sc = (struct stge_softc *) self;
390 	struct pci_attach_args *pa = aux;
391 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 	pci_chipset_tag_t pc = pa->pa_pc;
393 	pci_intr_handle_t ih;
394 	const char *intrstr = NULL;
395 	bus_space_tag_t iot, memt;
396 	bus_space_handle_t ioh, memh;
397 	bus_dma_segment_t seg;
398 	int ioh_valid, memh_valid;
399 	int i, rseg, error;
400 	const struct stge_product *sp;
401 	pcireg_t pmode;
402 	uint8_t enaddr[ETHER_ADDR_LEN];
403 	int pmreg;
404 
405 	callout_init(&sc->sc_tick_ch);
406 
407 	sp = stge_lookup(pa);
408 	if (sp == NULL) {
409 		printf("\n");
410 		panic("ste_attach: impossible");
411 	}
412 
413 	sc->sc_rev = PCI_REVISION(pa->pa_class);
414 
415 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
416 
417 	/*
418 	 * Map the device.
419 	 */
420 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
421 	    PCI_MAPREG_TYPE_IO, 0,
422 	    &iot, &ioh, NULL, NULL) == 0);
423 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
424 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
425 	    &memt, &memh, NULL, NULL) == 0);
426 
427 	if (memh_valid) {
428 		sc->sc_st = memt;
429 		sc->sc_sh = memh;
430 	} else if (ioh_valid) {
431 		sc->sc_st = iot;
432 		sc->sc_sh = ioh;
433 	} else {
434 		printf("%s: unable to map device registers\n",
435 		    sc->sc_dev.dv_xname);
436 		return;
437 	}
438 
439 	sc->sc_dmat = pa->pa_dmat;
440 
441 	/* Enable bus mastering. */
442 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
443 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
444 	    PCI_COMMAND_MASTER_ENABLE);
445 
446 	/* Get it out of power save mode if needed. */
447 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
448 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
449 		    PCI_PMCSR_STATE_MASK;
450 		if (pmode == PCI_PMCSR_STATE_D3) {
451 			/*
452 			 * The card has lost all configuration data in
453 			 * this state, so punt.
454 			 */
455 			printf("%s: unable to wake up from power state D3\n",
456 			    sc->sc_dev.dv_xname);
457 			return;
458 		}
459 		if (pmode != 0) {
460 			printf("%s: waking up from power state D%d\n",
461 			    sc->sc_dev.dv_xname, pmode);
462 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
463 			    PCI_PMCSR_STATE_D0);
464 		}
465 	}
466 
467 	/*
468 	 * Map and establish our interrupt.
469 	 */
470 	if (pci_intr_map(pa, &ih)) {
471 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
472 		return;
473 	}
474 	intrstr = pci_intr_string(pc, ih);
475 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
476 	if (sc->sc_ih == NULL) {
477 		printf("%s: unable to establish interrupt",
478 		    sc->sc_dev.dv_xname);
479 		if (intrstr != NULL)
480 			printf(" at %s", intrstr);
481 		printf("\n");
482 		return;
483 	}
484 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
485 
486 	/*
487 	 * Allocate the control data structures, and create and load the
488 	 * DMA map for it.
489 	 */
490 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
491 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
492 	    0)) != 0) {
493 		printf("%s: unable to allocate control data, error = %d\n",
494 		    sc->sc_dev.dv_xname, error);
495 		goto fail_0;
496 	}
497 
498 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
499 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
500 	    BUS_DMA_COHERENT)) != 0) {
501 		printf("%s: unable to map control data, error = %d\n",
502 		    sc->sc_dev.dv_xname, error);
503 		goto fail_1;
504 	}
505 
506 	if ((error = bus_dmamap_create(sc->sc_dmat,
507 	    sizeof(struct stge_control_data), 1,
508 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
509 		printf("%s: unable to create control data DMA map, "
510 		    "error = %d\n", sc->sc_dev.dv_xname, error);
511 		goto fail_2;
512 	}
513 
514 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
515 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
516 	    0)) != 0) {
517 		printf("%s: unable to load control data DMA map, error = %d\n",
518 		    sc->sc_dev.dv_xname, error);
519 		goto fail_3;
520 	}
521 
522 	/*
523 	 * Create the transmit buffer DMA maps.  Note that rev B.3
524 	 * and earlier seem to have a bug regarding multi-fragment
525 	 * packets.  We need to limit the number of Tx segments on
526 	 * such chips to 1.
527 	 */
528 	for (i = 0; i < STGE_NTXDESC; i++) {
529 		if ((error = bus_dmamap_create(sc->sc_dmat,
530 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
531 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
532 			printf("%s: unable to create tx DMA map %d, "
533 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
534 			goto fail_4;
535 		}
536 	}
537 
538 	/*
539 	 * Create the receive buffer DMA maps.
540 	 */
541 	for (i = 0; i < STGE_NRXDESC; i++) {
542 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
543 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
544 			printf("%s: unable to create rx DMA map %d, "
545 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
546 			goto fail_5;
547 		}
548 		sc->sc_rxsoft[i].ds_mbuf = NULL;
549 	}
550 
551 	/*
552 	 * Determine if we're copper or fiber.  It affects how we
553 	 * reset the card.
554 	 */
555 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
556 	    AC_PhyMedia)
557 		sc->sc_usefiber = 1;
558 	else
559 		sc->sc_usefiber = 0;
560 
561 	/*
562 	 * Reset the chip to a known state.
563 	 */
564 	stge_reset(sc);
565 
566 	/*
567 	 * Reading the station address from the EEPROM doesn't seem
568 	 * to work, at least on my sample boards.  Instead, since
569 	 * the reset sequence does AutoInit, read it from the station
570 	 * address registers. For Sundance 1023 you can only read it
571 	 * from EEPROM.
572 	 */
573 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
574 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 		    STGE_StationAddress0) & 0xff;
576 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
577 		    STGE_StationAddress0) >> 8;
578 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
579 		    STGE_StationAddress1) & 0xff;
580 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
581 		    STGE_StationAddress1) >> 8;
582 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
583 		    STGE_StationAddress2) & 0xff;
584 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
585 		    STGE_StationAddress2) >> 8;
586 		sc->sc_stge1023 = 0;
587 	} else {
588 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
589 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
590 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
591 			    &myaddr[i]);
592 			myaddr[i] = le16toh(myaddr[i]);
593 		}
594 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
595 		sc->sc_stge1023 = 1;
596 	}
597 
598 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
599 	    ether_sprintf(enaddr));
600 
601 	/*
602 	 * Read some important bits from the PhyCtrl register.
603 	 */
604 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
605 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
606 
607 	/*
608 	 * Initialize our media structures and probe the MII.
609 	 */
610 	sc->sc_mii.mii_ifp = ifp;
611 	sc->sc_mii.mii_readreg = stge_mii_readreg;
612 	sc->sc_mii.mii_writereg = stge_mii_writereg;
613 	sc->sc_mii.mii_statchg = stge_mii_statchg;
614 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
615 	    stge_mediastatus);
616 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
617 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
618 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
619 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
620 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
621 	} else
622 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
623 
624 	ifp = &sc->sc_ethercom.ec_if;
625 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
626 	ifp->if_softc = sc;
627 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
628 	ifp->if_ioctl = stge_ioctl;
629 	ifp->if_start = stge_start;
630 	ifp->if_watchdog = stge_watchdog;
631 	ifp->if_init = stge_init;
632 	ifp->if_stop = stge_stop;
633 	IFQ_SET_READY(&ifp->if_snd);
634 
635 	/*
636 	 * The manual recommends disabling early transmit, so we
637 	 * do.  It's disabled anyway, if using IP checksumming,
638 	 * since the entire packet must be in the FIFO in order
639 	 * for the chip to perform the checksum.
640 	 */
641 	sc->sc_txthresh = 0x0fff;
642 
643 	/*
644 	 * Disable MWI if the PCI layer tells us to.
645 	 */
646 	sc->sc_DMACtrl = 0;
647 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
648 		sc->sc_DMACtrl |= DMAC_MWIDisable;
649 
650 	/*
651 	 * We can support 802.1Q VLAN-sized frames and jumbo
652 	 * Ethernet frames.
653 	 *
654 	 * XXX Figure out how to do hw-assisted VLAN tagging in
655 	 * XXX a reasonable way on this chip.
656 	 */
657 	sc->sc_ethercom.ec_capabilities |=
658 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
659 	    ETHERCAP_VLAN_HWTAGGING;
660 
661 	/*
662 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
663 	 */
664 	sc->sc_ethercom.ec_if.if_capabilities |=
665 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
666 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
667 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
668 
669 	/*
670 	 * Attach the interface.
671 	 */
672 	if_attach(ifp);
673 	ether_ifattach(ifp, enaddr);
674 
675 #ifdef STGE_EVENT_COUNTERS
676 	/*
677 	 * Attach event counters.
678 	 */
679 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
680 	    NULL, sc->sc_dev.dv_xname, "txstall");
681 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
682 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
683 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
684 	    NULL, sc->sc_dev.dv_xname, "txindintr");
685 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
686 	    NULL, sc->sc_dev.dv_xname, "rxintr");
687 
688 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
689 	    NULL, sc->sc_dev.dv_xname, "txseg1");
690 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
691 	    NULL, sc->sc_dev.dv_xname, "txseg2");
692 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
693 	    NULL, sc->sc_dev.dv_xname, "txseg3");
694 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
695 	    NULL, sc->sc_dev.dv_xname, "txseg4");
696 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
697 	    NULL, sc->sc_dev.dv_xname, "txseg5");
698 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
699 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
700 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
701 	    NULL, sc->sc_dev.dv_xname, "txcopy");
702 
703 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
704 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
705 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
706 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
707 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
708 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
709 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
710 	    NULL, sc->sc_dev.dv_xname, "txipsum");
711 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
712 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
713 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
714 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
715 #endif /* STGE_EVENT_COUNTERS */
716 
717 	/*
718 	 * Make sure the interface is shutdown during reboot.
719 	 */
720 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
721 	if (sc->sc_sdhook == NULL)
722 		printf("%s: WARNING: unable to establish shutdown hook\n",
723 		    sc->sc_dev.dv_xname);
724 	return;
725 
726 	/*
727 	 * Free any resources we've allocated during the failed attach
728 	 * attempt.  Do this in reverse order and fall through.
729 	 */
730  fail_5:
731 	for (i = 0; i < STGE_NRXDESC; i++) {
732 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
733 			bus_dmamap_destroy(sc->sc_dmat,
734 			    sc->sc_rxsoft[i].ds_dmamap);
735 	}
736  fail_4:
737 	for (i = 0; i < STGE_NTXDESC; i++) {
738 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
739 			bus_dmamap_destroy(sc->sc_dmat,
740 			    sc->sc_txsoft[i].ds_dmamap);
741 	}
742 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
743  fail_3:
744 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
745  fail_2:
746 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
747 	    sizeof(struct stge_control_data));
748  fail_1:
749 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
750  fail_0:
751 	return;
752 }
753 
754 /*
755  * stge_shutdown:
756  *
757  *	Make sure the interface is stopped at reboot time.
758  */
759 static void
760 stge_shutdown(void *arg)
761 {
762 	struct stge_softc *sc = arg;
763 
764 	stge_stop(&sc->sc_ethercom.ec_if, 1);
765 }
766 
767 static void
768 stge_dma_wait(struct stge_softc *sc)
769 {
770 	int i;
771 
772 	for (i = 0; i < STGE_TIMEOUT; i++) {
773 		delay(2);
774 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
775 		     DMAC_TxDMAInProg) == 0)
776 			break;
777 	}
778 
779 	if (i == STGE_TIMEOUT)
780 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
781 }
782 
783 /*
784  * stge_start:		[ifnet interface function]
785  *
786  *	Start packet transmission on the interface.
787  */
788 static void
789 stge_start(struct ifnet *ifp)
790 {
791 	struct stge_softc *sc = ifp->if_softc;
792 	struct mbuf *m0;
793 	struct stge_descsoft *ds;
794 	struct stge_tfd *tfd;
795 	bus_dmamap_t dmamap;
796 	int error, firsttx, nexttx, opending, seg, totlen;
797 	uint64_t csum_flags;
798 
799 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
800 		return;
801 
802 	/*
803 	 * Remember the previous number of pending transmissions
804 	 * and the first descriptor we will use.
805 	 */
806 	opending = sc->sc_txpending;
807 	firsttx = STGE_NEXTTX(sc->sc_txlast);
808 
809 	/*
810 	 * Loop through the send queue, setting up transmit descriptors
811 	 * until we drain the queue, or use up all available transmit
812 	 * descriptors.
813 	 */
814 	for (;;) {
815 		struct m_tag *mtag;
816 		uint64_t tfc;
817 
818 		/*
819 		 * Grab a packet off the queue.
820 		 */
821 		IFQ_POLL(&ifp->if_snd, m0);
822 		if (m0 == NULL)
823 			break;
824 
825 		/*
826 		 * Leave one unused descriptor at the end of the
827 		 * list to prevent wrapping completely around.
828 		 */
829 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
830 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
831 			break;
832 		}
833 
834 		/*
835 		 * See if we have any VLAN stuff.
836 		 */
837 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
838 
839 		/*
840 		 * Get the last and next available transmit descriptor.
841 		 */
842 		nexttx = STGE_NEXTTX(sc->sc_txlast);
843 		tfd = &sc->sc_txdescs[nexttx];
844 		ds = &sc->sc_txsoft[nexttx];
845 
846 		dmamap = ds->ds_dmamap;
847 
848 		/*
849 		 * Load the DMA map.  If this fails, the packet either
850 		 * didn't fit in the alloted number of segments, or we
851 		 * were short on resources.  For the too-many-segments
852 		 * case, we simply report an error and drop the packet,
853 		 * since we can't sanely copy a jumbo packet to a single
854 		 * buffer.
855 		 */
856 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
857 		    BUS_DMA_NOWAIT);
858 		if (error) {
859 			if (error == EFBIG) {
860 				printf("%s: Tx packet consumes too many "
861 				    "DMA segments, dropping...\n",
862 				    sc->sc_dev.dv_xname);
863 				IFQ_DEQUEUE(&ifp->if_snd, m0);
864 				m_freem(m0);
865 				continue;
866 			}
867 			/*
868 			 * Short on resources, just stop for now.
869 			 */
870 			break;
871 		}
872 
873 		IFQ_DEQUEUE(&ifp->if_snd, m0);
874 
875 		/*
876 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
877 		 */
878 
879 		/* Sync the DMA map. */
880 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
881 		    BUS_DMASYNC_PREWRITE);
882 
883 		/* Initialize the fragment list. */
884 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
885 			tfd->tfd_frags[seg].frag_word0 =
886 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
887 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
888 			totlen += dmamap->dm_segs[seg].ds_len;
889 		}
890 
891 #ifdef STGE_EVENT_COUNTERS
892 		switch (dmamap->dm_nsegs) {
893 		case 1:
894 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
895 			break;
896 		case 2:
897 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
898 			break;
899 		case 3:
900 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
901 			break;
902 		case 4:
903 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
904 			break;
905 		case 5:
906 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
907 			break;
908 		default:
909 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
910 			break;
911 		}
912 #endif /* STGE_EVENT_COUNTERS */
913 
914 		/*
915 		 * Initialize checksumming flags in the descriptor.
916 		 * Byte-swap constants so the compiler can optimize.
917 		 */
918 		csum_flags = 0;
919 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
920 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
921 			csum_flags |= TFD_IPChecksumEnable;
922 		}
923 
924 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
925 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
926 			csum_flags |= TFD_TCPChecksumEnable;
927 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
928 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
929 			csum_flags |= TFD_UDPChecksumEnable;
930 		}
931 
932 		/*
933 		 * Initialize the descriptor and give it to the chip.
934 		 * Check to see if we have a VLAN tag to insert.
935 		 */
936 
937 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
938 		    TFD_FragCount(seg) | csum_flags |
939 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
940 			TFD_TxDMAIndicate : 0);
941 		if (mtag) {
942 #if	0
943 			struct ether_header *eh =
944 			    mtod(m0, struct ether_header *);
945 			u_int16_t etype = ntohs(eh->ether_type);
946 			printf("%s: xmit (tag %d) etype %x\n",
947 			   ifp->if_xname, *mtod(n, int *), etype);
948 #endif
949 			tfc |= TFD_VLANTagInsert |
950 #ifdef	STGE_VLAN_CFI
951 			    TFD_CFI |
952 #endif
953 			    TFD_VID(VLAN_TAG_VALUE(mtag));
954 		}
955 		tfd->tfd_control = htole64(tfc);
956 
957 		/* Sync the descriptor. */
958 		STGE_CDTXSYNC(sc, nexttx,
959 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
960 
961 		/*
962 		 * Kick the transmit DMA logic.
963 		 */
964 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
965 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
966 
967 		/*
968 		 * Store a pointer to the packet so we can free it later.
969 		 */
970 		ds->ds_mbuf = m0;
971 
972 		/* Advance the tx pointer. */
973 		sc->sc_txpending++;
974 		sc->sc_txlast = nexttx;
975 
976 #if NBPFILTER > 0
977 		/*
978 		 * Pass the packet to any BPF listeners.
979 		 */
980 		if (ifp->if_bpf)
981 			bpf_mtap(ifp->if_bpf, m0);
982 #endif /* NBPFILTER > 0 */
983 	}
984 
985 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
986 		/* No more slots left; notify upper layer. */
987 		ifp->if_flags |= IFF_OACTIVE;
988 	}
989 
990 	if (sc->sc_txpending != opending) {
991 		/*
992 		 * We enqueued packets.  If the transmitter was idle,
993 		 * reset the txdirty pointer.
994 		 */
995 		if (opending == 0)
996 			sc->sc_txdirty = firsttx;
997 
998 		/* Set a watchdog timer in case the chip flakes out. */
999 		ifp->if_timer = 5;
1000 	}
1001 }
1002 
1003 /*
1004  * stge_watchdog:	[ifnet interface function]
1005  *
1006  *	Watchdog timer handler.
1007  */
1008 static void
1009 stge_watchdog(struct ifnet *ifp)
1010 {
1011 	struct stge_softc *sc = ifp->if_softc;
1012 
1013 	/*
1014 	 * Sweep up first, since we don't interrupt every frame.
1015 	 */
1016 	stge_txintr(sc);
1017 	if (sc->sc_txpending != 0) {
1018 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1019 		ifp->if_oerrors++;
1020 
1021 		(void) stge_init(ifp);
1022 
1023 		/* Try to get more packets going. */
1024 		stge_start(ifp);
1025 	}
1026 }
1027 
1028 /*
1029  * stge_ioctl:		[ifnet interface function]
1030  *
1031  *	Handle control requests from the operator.
1032  */
1033 static int
1034 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1035 {
1036 	struct stge_softc *sc = ifp->if_softc;
1037 	struct ifreq *ifr = (struct ifreq *)data;
1038 	int s, error;
1039 
1040 	s = splnet();
1041 
1042 	switch (cmd) {
1043 	case SIOCSIFMEDIA:
1044 	case SIOCGIFMEDIA:
1045 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1046 		break;
1047 
1048 	default:
1049 		error = ether_ioctl(ifp, cmd, data);
1050 		if (error == ENETRESET) {
1051 			/*
1052 			 * Multicast list has changed; set the hardware filter
1053 			 * accordingly.
1054 			 */
1055 			if (ifp->if_flags & IFF_RUNNING)
1056 				stge_set_filter(sc);
1057 			error = 0;
1058 		}
1059 		break;
1060 	}
1061 
1062 	/* Try to get more packets going. */
1063 	stge_start(ifp);
1064 
1065 	splx(s);
1066 	return (error);
1067 }
1068 
1069 /*
1070  * stge_intr:
1071  *
1072  *	Interrupt service routine.
1073  */
1074 static int
1075 stge_intr(void *arg)
1076 {
1077 	struct stge_softc *sc = arg;
1078 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1079 	uint32_t txstat;
1080 	int wantinit;
1081 	uint16_t isr;
1082 
1083 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1084 	     IS_InterruptStatus) == 0)
1085 		return (0);
1086 
1087 	for (wantinit = 0; wantinit == 0;) {
1088 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1089 		if ((isr & sc->sc_IntEnable) == 0)
1090 			break;
1091 
1092 		/* Host interface errors. */
1093 		if (isr & IS_HostError) {
1094 			printf("%s: Host interface error\n",
1095 			    sc->sc_dev.dv_xname);
1096 			wantinit = 1;
1097 			continue;
1098 		}
1099 
1100 		/* Receive interrupts. */
1101 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1102 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1103 			stge_rxintr(sc);
1104 			if (isr & IS_RFDListEnd) {
1105 				printf("%s: receive ring overflow\n",
1106 				    sc->sc_dev.dv_xname);
1107 				/*
1108 				 * XXX Should try to recover from this
1109 				 * XXX more gracefully.
1110 				 */
1111 				wantinit = 1;
1112 			}
1113 		}
1114 
1115 		/* Transmit interrupts. */
1116 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1117 #ifdef STGE_EVENT_COUNTERS
1118 			if (isr & IS_TxDMAComplete)
1119 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1120 #endif
1121 			stge_txintr(sc);
1122 		}
1123 
1124 		/* Statistics overflow. */
1125 		if (isr & IS_UpdateStats)
1126 			stge_stats_update(sc);
1127 
1128 		/* Transmission errors. */
1129 		if (isr & IS_TxComplete) {
1130 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1131 			for (;;) {
1132 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1133 				    STGE_TxStatus);
1134 				if ((txstat & TS_TxComplete) == 0)
1135 					break;
1136 				if (txstat & TS_TxUnderrun) {
1137 					sc->sc_txthresh++;
1138 					if (sc->sc_txthresh > 0x0fff)
1139 						sc->sc_txthresh = 0x0fff;
1140 					printf("%s: transmit underrun, new "
1141 					    "threshold: %d bytes\n",
1142 					    sc->sc_dev.dv_xname,
1143 					    sc->sc_txthresh << 5);
1144 				}
1145 				if (txstat & TS_MaxCollisions)
1146 					printf("%s: excessive collisions\n",
1147 					    sc->sc_dev.dv_xname);
1148 			}
1149 			wantinit = 1;
1150 		}
1151 
1152 	}
1153 
1154 	if (wantinit)
1155 		stge_init(ifp);
1156 
1157 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1158 	    sc->sc_IntEnable);
1159 
1160 	/* Try to get more packets going. */
1161 	stge_start(ifp);
1162 
1163 	return (1);
1164 }
1165 
1166 /*
1167  * stge_txintr:
1168  *
1169  *	Helper; handle transmit interrupts.
1170  */
1171 static void
1172 stge_txintr(struct stge_softc *sc)
1173 {
1174 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1175 	struct stge_descsoft *ds;
1176 	uint64_t control;
1177 	int i;
1178 
1179 	ifp->if_flags &= ~IFF_OACTIVE;
1180 
1181 	/*
1182 	 * Go through our Tx list and free mbufs for those
1183 	 * frames which have been transmitted.
1184 	 */
1185 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1186 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1187 		ds = &sc->sc_txsoft[i];
1188 
1189 		STGE_CDTXSYNC(sc, i,
1190 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1191 
1192 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1193 		if ((control & TFD_TFDDone) == 0)
1194 			break;
1195 
1196 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1197 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1198 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1199 		m_freem(ds->ds_mbuf);
1200 		ds->ds_mbuf = NULL;
1201 	}
1202 
1203 	/* Update the dirty transmit buffer pointer. */
1204 	sc->sc_txdirty = i;
1205 
1206 	/*
1207 	 * If there are no more pending transmissions, cancel the watchdog
1208 	 * timer.
1209 	 */
1210 	if (sc->sc_txpending == 0)
1211 		ifp->if_timer = 0;
1212 }
1213 
1214 /*
1215  * stge_rxintr:
1216  *
1217  *	Helper; handle receive interrupts.
1218  */
1219 static void
1220 stge_rxintr(struct stge_softc *sc)
1221 {
1222 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1223 	struct stge_descsoft *ds;
1224 	struct mbuf *m, *tailm;
1225 	uint64_t status;
1226 	int i, len;
1227 
1228 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1229 		ds = &sc->sc_rxsoft[i];
1230 
1231 		STGE_CDRXSYNC(sc, i,
1232 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1233 
1234 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1235 
1236 		if ((status & RFD_RFDDone) == 0)
1237 			break;
1238 
1239 		if (__predict_false(sc->sc_rxdiscard)) {
1240 			STGE_INIT_RXDESC(sc, i);
1241 			if (status & RFD_FrameEnd) {
1242 				/* Reset our state. */
1243 				sc->sc_rxdiscard = 0;
1244 			}
1245 			continue;
1246 		}
1247 
1248 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1249 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1250 
1251 		m = ds->ds_mbuf;
1252 
1253 		/*
1254 		 * Add a new receive buffer to the ring.
1255 		 */
1256 		if (stge_add_rxbuf(sc, i) != 0) {
1257 			/*
1258 			 * Failed, throw away what we've done so
1259 			 * far, and discard the rest of the packet.
1260 			 */
1261 			ifp->if_ierrors++;
1262 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1263 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1264 			STGE_INIT_RXDESC(sc, i);
1265 			if ((status & RFD_FrameEnd) == 0)
1266 				sc->sc_rxdiscard = 1;
1267 			if (sc->sc_rxhead != NULL)
1268 				m_freem(sc->sc_rxhead);
1269 			STGE_RXCHAIN_RESET(sc);
1270 			continue;
1271 		}
1272 
1273 #ifdef DIAGNOSTIC
1274 		if (status & RFD_FrameStart) {
1275 			KASSERT(sc->sc_rxhead == NULL);
1276 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1277 		}
1278 #endif
1279 
1280 		STGE_RXCHAIN_LINK(sc, m);
1281 
1282 		/*
1283 		 * If this is not the end of the packet, keep
1284 		 * looking.
1285 		 */
1286 		if ((status & RFD_FrameEnd) == 0) {
1287 			sc->sc_rxlen += m->m_len;
1288 			continue;
1289 		}
1290 
1291 		/*
1292 		 * Okay, we have the entire packet now...
1293 		 */
1294 		*sc->sc_rxtailp = NULL;
1295 		m = sc->sc_rxhead;
1296 		tailm = sc->sc_rxtail;
1297 
1298 		STGE_RXCHAIN_RESET(sc);
1299 
1300 		/*
1301 		 * If the packet had an error, drop it.  Note we
1302 		 * count the error later in the periodic stats update.
1303 		 */
1304 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1305 			      RFD_RxAlignmentError | RFD_RxFCSError |
1306 			      RFD_RxLengthError)) {
1307 			m_freem(m);
1308 			continue;
1309 		}
1310 
1311 		/*
1312 		 * No errors.
1313 		 *
1314 		 * Note we have configured the chip to not include
1315 		 * the CRC at the end of the packet.
1316 		 */
1317 		len = RFD_RxDMAFrameLen(status);
1318 		tailm->m_len = len - sc->sc_rxlen;
1319 
1320 		/*
1321 		 * If the packet is small enough to fit in a
1322 		 * single header mbuf, allocate one and copy
1323 		 * the data into it.  This greatly reduces
1324 		 * memory consumption when we receive lots
1325 		 * of small packets.
1326 		 */
1327 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1328 			struct mbuf *nm;
1329 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1330 			if (nm == NULL) {
1331 				ifp->if_ierrors++;
1332 				m_freem(m);
1333 				continue;
1334 			}
1335 			nm->m_data += 2;
1336 			nm->m_pkthdr.len = nm->m_len = len;
1337 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1338 			m_freem(m);
1339 			m = nm;
1340 		}
1341 
1342 		/*
1343 		 * Set the incoming checksum information for the packet.
1344 		 */
1345 		if (status & RFD_IPDetected) {
1346 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1347 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1348 			if (status & RFD_IPError)
1349 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1350 			if (status & RFD_TCPDetected) {
1351 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1352 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1353 				if (status & RFD_TCPError)
1354 					m->m_pkthdr.csum_flags |=
1355 					    M_CSUM_TCP_UDP_BAD;
1356 			} else if (status & RFD_UDPDetected) {
1357 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1358 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1359 				if (status & RFD_UDPError)
1360 					m->m_pkthdr.csum_flags |=
1361 					    M_CSUM_TCP_UDP_BAD;
1362 			}
1363 		}
1364 
1365 		m->m_pkthdr.rcvif = ifp;
1366 		m->m_pkthdr.len = len;
1367 
1368 #if NBPFILTER > 0
1369 		/*
1370 		 * Pass this up to any BPF listeners, but only
1371 		 * pass if up the stack if it's for us.
1372 		 */
1373 		if (ifp->if_bpf)
1374 			bpf_mtap(ifp->if_bpf, m);
1375 #endif /* NBPFILTER > 0 */
1376 #ifdef	STGE_VLAN_UNTAG
1377 		/*
1378 		 * Check for VLAN tagged packets
1379 		 */
1380 		if (status & RFD_VLANDetected)
1381 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1382 
1383 #endif
1384 #if	0
1385 		if (status & RFD_VLANDetected) {
1386 			struct ether_header *eh;
1387 			u_int16_t etype;
1388 
1389 			eh = mtod(m, struct ether_header *);
1390 			etype = ntohs(eh->ether_type);
1391 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1392 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1393 			    etype);
1394 		}
1395 #endif
1396 		/* Pass it on. */
1397 		(*ifp->if_input)(ifp, m);
1398 	}
1399 
1400 	/* Update the receive pointer. */
1401 	sc->sc_rxptr = i;
1402 }
1403 
1404 /*
1405  * stge_tick:
1406  *
1407  *	One second timer, used to tick the MII.
1408  */
1409 static void
1410 stge_tick(void *arg)
1411 {
1412 	struct stge_softc *sc = arg;
1413 	int s;
1414 
1415 	s = splnet();
1416 	mii_tick(&sc->sc_mii);
1417 	stge_stats_update(sc);
1418 	splx(s);
1419 
1420 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1421 }
1422 
1423 /*
1424  * stge_stats_update:
1425  *
1426  *	Read the TC9021 statistics counters.
1427  */
1428 static void
1429 stge_stats_update(struct stge_softc *sc)
1430 {
1431 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1432 	bus_space_tag_t st = sc->sc_st;
1433 	bus_space_handle_t sh = sc->sc_sh;
1434 
1435 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1436 
1437 	ifp->if_ipackets +=
1438 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1439 
1440 	ifp->if_ierrors +=
1441 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1442 
1443 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1444 
1445 	ifp->if_opackets +=
1446 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1447 
1448 	ifp->if_collisions +=
1449 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1450 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1451 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1452 
1453 	ifp->if_oerrors +=
1454 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1455 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1456 }
1457 
1458 /*
1459  * stge_reset:
1460  *
1461  *	Perform a soft reset on the TC9021.
1462  */
1463 static void
1464 stge_reset(struct stge_softc *sc)
1465 {
1466 	uint32_t ac;
1467 	int i;
1468 
1469 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1470 
1471 	/*
1472 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1473 	 * to be present in order for the reset to complete on fiber
1474 	 * cards.
1475 	 */
1476 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1477 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1478 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1479 	    (sc->sc_usefiber ? AC_RstOut : 0));
1480 
1481 	delay(50000);
1482 
1483 	for (i = 0; i < STGE_TIMEOUT; i++) {
1484 		delay(5000);
1485 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1486 		     AC_ResetBusy) == 0)
1487 			break;
1488 	}
1489 
1490 	if (i == STGE_TIMEOUT)
1491 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1492 
1493 	delay(1000);
1494 }
1495 
1496 /*
1497  * stge_init:		[ ifnet interface function ]
1498  *
1499  *	Initialize the interface.  Must be called at splnet().
1500  */
1501 static int
1502 stge_init(struct ifnet *ifp)
1503 {
1504 	struct stge_softc *sc = ifp->if_softc;
1505 	bus_space_tag_t st = sc->sc_st;
1506 	bus_space_handle_t sh = sc->sc_sh;
1507 	struct stge_descsoft *ds;
1508 	int i, error = 0;
1509 
1510 	/*
1511 	 * Cancel any pending I/O.
1512 	 */
1513 	stge_stop(ifp, 0);
1514 
1515 	/*
1516 	 * Reset the chip to a known state.
1517 	 */
1518 	stge_reset(sc);
1519 
1520 	/*
1521 	 * Initialize the transmit descriptor ring.
1522 	 */
1523 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1524 	for (i = 0; i < STGE_NTXDESC; i++) {
1525 		sc->sc_txdescs[i].tfd_next = htole64(
1526 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1527 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1528 	}
1529 	sc->sc_txpending = 0;
1530 	sc->sc_txdirty = 0;
1531 	sc->sc_txlast = STGE_NTXDESC - 1;
1532 
1533 	/*
1534 	 * Initialize the receive descriptor and receive job
1535 	 * descriptor rings.
1536 	 */
1537 	for (i = 0; i < STGE_NRXDESC; i++) {
1538 		ds = &sc->sc_rxsoft[i];
1539 		if (ds->ds_mbuf == NULL) {
1540 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1541 				printf("%s: unable to allocate or map rx "
1542 				    "buffer %d, error = %d\n",
1543 				    sc->sc_dev.dv_xname, i, error);
1544 				/*
1545 				 * XXX Should attempt to run with fewer receive
1546 				 * XXX buffers instead of just failing.
1547 				 */
1548 				stge_rxdrain(sc);
1549 				goto out;
1550 			}
1551 		} else
1552 			STGE_INIT_RXDESC(sc, i);
1553 	}
1554 	sc->sc_rxptr = 0;
1555 	sc->sc_rxdiscard = 0;
1556 	STGE_RXCHAIN_RESET(sc);
1557 
1558 	/* Set the station address. */
1559 	for (i = 0; i < 6; i++)
1560 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1561 		    LLADDR(ifp->if_sadl)[i]);
1562 
1563 	/*
1564 	 * Set the statistics masks.  Disable all the RMON stats,
1565 	 * and disable selected stats in the non-RMON stats registers.
1566 	 */
1567 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1568 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1569 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1570 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1571 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1572 	    (1U << 21));
1573 
1574 	/* Set up the receive filter. */
1575 	stge_set_filter(sc);
1576 
1577 	/*
1578 	 * Give the transmit and receive ring to the chip.
1579 	 */
1580 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1581 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1582 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1583 
1584 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1585 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1586 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1587 
1588 	/*
1589 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1590 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1591 	 * transmit engine when there's actually a packet.
1592 	 */
1593 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1594 
1595 	/* ..and the Rx auto-poll period. */
1596 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1597 
1598 	/* Initialize the Tx start threshold. */
1599 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1600 
1601 	/* RX DMA thresholds, from linux */
1602 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1603 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1604 
1605 	/*
1606 	 * Initialize the Rx DMA interrupt control register.  We
1607 	 * request an interrupt after every incoming packet, but
1608 	 * defer it for 32us (64 * 512 ns).  When the number of
1609 	 * interrupts pending reaches 8, we stop deferring the
1610 	 * interrupt, and signal it immediately.
1611 	 */
1612 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1613 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1614 
1615 	/*
1616 	 * Initialize the interrupt mask.
1617 	 */
1618 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1619 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1620 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1621 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1622 
1623 	/*
1624 	 * Configure the DMA engine.
1625 	 * XXX Should auto-tune TxBurstLimit.
1626 	 */
1627 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1628 	    DMAC_TxBurstLimit(3));
1629 
1630 	/*
1631 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1632 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1633 	 * empty again.
1634 	 */
1635 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1636 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1637 
1638 	/*
1639 	 * Set the maximum frame size.
1640 	 */
1641 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1642 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1643 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1644 	     ETHER_VLAN_ENCAP_LEN : 0));
1645 
1646 	/*
1647 	 * Initialize MacCtrl -- do it before setting the media,
1648 	 * as setting the media will actually program the register.
1649 	 *
1650 	 * Note: We have to poke the IFS value before poking
1651 	 * anything else.
1652 	 */
1653 	sc->sc_MACCtrl = MC_IFSSelect(0);
1654 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1655 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1656 #ifdef	STGE_VLAN_UNTAG
1657 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1658 #endif
1659 
1660 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1661 		/* Multi-frag frame bug work-around. */
1662 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1663 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1664 
1665 		/* Tx Poll Now bug work-around. */
1666 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1667 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1668 		/* XXX ? from linux */
1669 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1670 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1671 	}
1672 
1673 	/*
1674 	 * Set the current media.
1675 	 */
1676 	mii_mediachg(&sc->sc_mii);
1677 
1678 	/*
1679 	 * Start the one second MII clock.
1680 	 */
1681 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1682 
1683 	/*
1684 	 * ...all done!
1685 	 */
1686 	ifp->if_flags |= IFF_RUNNING;
1687 	ifp->if_flags &= ~IFF_OACTIVE;
1688 
1689  out:
1690 	if (error)
1691 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1692 	return (error);
1693 }
1694 
1695 /*
1696  * stge_drain:
1697  *
1698  *	Drain the receive queue.
1699  */
1700 static void
1701 stge_rxdrain(struct stge_softc *sc)
1702 {
1703 	struct stge_descsoft *ds;
1704 	int i;
1705 
1706 	for (i = 0; i < STGE_NRXDESC; i++) {
1707 		ds = &sc->sc_rxsoft[i];
1708 		if (ds->ds_mbuf != NULL) {
1709 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1710 			ds->ds_mbuf->m_next = NULL;
1711 			m_freem(ds->ds_mbuf);
1712 			ds->ds_mbuf = NULL;
1713 		}
1714 	}
1715 }
1716 
1717 /*
1718  * stge_stop:		[ ifnet interface function ]
1719  *
1720  *	Stop transmission on the interface.
1721  */
1722 static void
1723 stge_stop(struct ifnet *ifp, int disable)
1724 {
1725 	struct stge_softc *sc = ifp->if_softc;
1726 	struct stge_descsoft *ds;
1727 	int i;
1728 
1729 	/*
1730 	 * Stop the one second clock.
1731 	 */
1732 	callout_stop(&sc->sc_tick_ch);
1733 
1734 	/* Down the MII. */
1735 	mii_down(&sc->sc_mii);
1736 
1737 	/*
1738 	 * Disable interrupts.
1739 	 */
1740 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1741 
1742 	/*
1743 	 * Stop receiver, transmitter, and stats update.
1744 	 */
1745 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1746 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1747 
1748 	/*
1749 	 * Stop the transmit and receive DMA.
1750 	 */
1751 	stge_dma_wait(sc);
1752 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1753 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1754 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1755 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1756 
1757 	/*
1758 	 * Release any queued transmit buffers.
1759 	 */
1760 	for (i = 0; i < STGE_NTXDESC; i++) {
1761 		ds = &sc->sc_txsoft[i];
1762 		if (ds->ds_mbuf != NULL) {
1763 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1764 			m_freem(ds->ds_mbuf);
1765 			ds->ds_mbuf = NULL;
1766 		}
1767 	}
1768 
1769 	if (disable)
1770 		stge_rxdrain(sc);
1771 
1772 	/*
1773 	 * Mark the interface down and cancel the watchdog timer.
1774 	 */
1775 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1776 	ifp->if_timer = 0;
1777 }
1778 
1779 static int
1780 stge_eeprom_wait(struct stge_softc *sc)
1781 {
1782 	int i;
1783 
1784 	for (i = 0; i < STGE_TIMEOUT; i++) {
1785 		delay(1000);
1786 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1787 		     EC_EepromBusy) == 0)
1788 			return (0);
1789 	}
1790 	return (1);
1791 }
1792 
1793 /*
1794  * stge_read_eeprom:
1795  *
1796  *	Read data from the serial EEPROM.
1797  */
1798 static void
1799 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1800 {
1801 
1802 	if (stge_eeprom_wait(sc))
1803 		printf("%s: EEPROM failed to come ready\n",
1804 		    sc->sc_dev.dv_xname);
1805 
1806 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1807 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1808 	if (stge_eeprom_wait(sc))
1809 		printf("%s: EEPROM read timed out\n",
1810 		    sc->sc_dev.dv_xname);
1811 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1812 }
1813 
1814 /*
1815  * stge_add_rxbuf:
1816  *
1817  *	Add a receive buffer to the indicated descriptor.
1818  */
1819 static int
1820 stge_add_rxbuf(struct stge_softc *sc, int idx)
1821 {
1822 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1823 	struct mbuf *m;
1824 	int error;
1825 
1826 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1827 	if (m == NULL)
1828 		return (ENOBUFS);
1829 
1830 	MCLGET(m, M_DONTWAIT);
1831 	if ((m->m_flags & M_EXT) == 0) {
1832 		m_freem(m);
1833 		return (ENOBUFS);
1834 	}
1835 
1836 	m->m_data = m->m_ext.ext_buf + 2;
1837 	m->m_len = MCLBYTES - 2;
1838 
1839 	if (ds->ds_mbuf != NULL)
1840 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1841 
1842 	ds->ds_mbuf = m;
1843 
1844 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1845 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1846 	if (error) {
1847 		printf("%s: can't load rx DMA map %d, error = %d\n",
1848 		    sc->sc_dev.dv_xname, idx, error);
1849 		panic("stge_add_rxbuf");	/* XXX */
1850 	}
1851 
1852 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1853 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1854 
1855 	STGE_INIT_RXDESC(sc, idx);
1856 
1857 	return (0);
1858 }
1859 
1860 /*
1861  * stge_set_filter:
1862  *
1863  *	Set up the receive filter.
1864  */
1865 static void
1866 stge_set_filter(struct stge_softc *sc)
1867 {
1868 	struct ethercom *ec = &sc->sc_ethercom;
1869 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1870 	struct ether_multi *enm;
1871 	struct ether_multistep step;
1872 	uint32_t crc;
1873 	uint32_t mchash[2];
1874 
1875 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1876 	if (ifp->if_flags & IFF_BROADCAST)
1877 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1878 
1879 	/* XXX: ST1023 only works in promiscuous mode */
1880 	if (sc->sc_stge1023)
1881 		ifp->if_flags |= IFF_PROMISC;
1882 
1883 	if (ifp->if_flags & IFF_PROMISC) {
1884 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1885 		goto allmulti;
1886 	}
1887 
1888 	/*
1889 	 * Set up the multicast address filter by passing all multicast
1890 	 * addresses through a CRC generator, and then using the low-order
1891 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1892 	 * high order bits select the register, while the rest of the bits
1893 	 * select the bit within the register.
1894 	 */
1895 
1896 	memset(mchash, 0, sizeof(mchash));
1897 
1898 	ETHER_FIRST_MULTI(step, ec, enm);
1899 	if (enm == NULL)
1900 		goto done;
1901 
1902 	while (enm != NULL) {
1903 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1904 			/*
1905 			 * We must listen to a range of multicast addresses.
1906 			 * For now, just accept all multicasts, rather than
1907 			 * trying to set only those filter bits needed to match
1908 			 * the range.  (At this time, the only use of address
1909 			 * ranges is for IP multicast routing, for which the
1910 			 * range is big enough to require all bits set.)
1911 			 */
1912 			goto allmulti;
1913 		}
1914 
1915 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1916 
1917 		/* Just want the 6 least significant bits. */
1918 		crc &= 0x3f;
1919 
1920 		/* Set the corresponding bit in the hash table. */
1921 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1922 
1923 		ETHER_NEXT_MULTI(step, enm);
1924 	}
1925 
1926 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1927 
1928 	ifp->if_flags &= ~IFF_ALLMULTI;
1929 	goto done;
1930 
1931  allmulti:
1932 	ifp->if_flags |= IFF_ALLMULTI;
1933 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1934 
1935  done:
1936 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1937 		/*
1938 		 * Program the multicast hash table.
1939 		 */
1940 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1941 		    mchash[0]);
1942 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1943 		    mchash[1]);
1944 	}
1945 
1946 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1947 	    sc->sc_ReceiveMode);
1948 }
1949 
1950 /*
1951  * stge_mii_readreg:	[mii interface function]
1952  *
1953  *	Read a PHY register on the MII of the TC9021.
1954  */
1955 static int
1956 stge_mii_readreg(struct device *self, int phy, int reg)
1957 {
1958 
1959 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1960 }
1961 
1962 /*
1963  * stge_mii_writereg:	[mii interface function]
1964  *
1965  *	Write a PHY register on the MII of the TC9021.
1966  */
1967 static void
1968 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1969 {
1970 
1971 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1972 }
1973 
1974 /*
1975  * stge_mii_statchg:	[mii interface function]
1976  *
1977  *	Callback from MII layer when media changes.
1978  */
1979 static void
1980 stge_mii_statchg(struct device *self)
1981 {
1982 	struct stge_softc *sc = (struct stge_softc *) self;
1983 
1984 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1985 		sc->sc_MACCtrl |= MC_DuplexSelect;
1986 	else
1987 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1988 
1989 	/* XXX 802.1x flow-control? */
1990 
1991 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1992 }
1993 
1994 /*
1995  * sste_mii_bitbang_read: [mii bit-bang interface function]
1996  *
1997  *	Read the MII serial port for the MII bit-bang module.
1998  */
1999 static uint32_t
2000 stge_mii_bitbang_read(struct device *self)
2001 {
2002 	struct stge_softc *sc = (void *) self;
2003 
2004 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
2005 }
2006 
2007 /*
2008  * stge_mii_bitbang_write: [mii big-bang interface function]
2009  *
2010  *	Write the MII serial port for the MII bit-bang module.
2011  */
2012 static void
2013 stge_mii_bitbang_write(struct device *self, uint32_t val)
2014 {
2015 	struct stge_softc *sc = (void *) self;
2016 
2017 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2018 	    val | sc->sc_PhyCtrl);
2019 }
2020 
2021 /*
2022  * stge_mediastatus:	[ifmedia interface function]
2023  *
2024  *	Get the current interface media status.
2025  */
2026 static void
2027 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2028 {
2029 	struct stge_softc *sc = ifp->if_softc;
2030 
2031 	mii_pollstat(&sc->sc_mii);
2032 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2033 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2034 }
2035 
2036 /*
2037  * stge_mediachange:	[ifmedia interface function]
2038  *
2039  *	Set hardware to newly-selected media.
2040  */
2041 static int
2042 stge_mediachange(struct ifnet *ifp)
2043 {
2044 	struct stge_softc *sc = ifp->if_softc;
2045 
2046 	if (ifp->if_flags & IFF_UP)
2047 		mii_mediachg(&sc->sc_mii);
2048 	return (0);
2049 }
2050