xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: if_stge.c,v 1.57 2014/03/29 19:28:25 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.57 2014/03/29 19:28:25 christos Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stgereg.h>
72 
73 #include <prop/proplib.h>
74 
75 /* #define	STGE_CU_BUG			1 */
76 #define	STGE_VLAN_UNTAG			1
77 /* #define	STGE_VLAN_CFI		1 */
78 
79 /*
80  * Transmit descriptor list size.
81  */
82 #define	STGE_NTXDESC		256
83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
85 
86 /*
87  * Receive descriptor list size.
88  */
89 #define	STGE_NRXDESC		256
90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
92 
93 /*
94  * Only interrupt every N frames.  Must be a power-of-two.
95  */
96 #define	STGE_TXINTR_SPACING	16
97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98 
99 /*
100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct stge_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115 
116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct stge_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct stge_softc {
132 	device_t sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	int sc_rev;			/* silicon revision */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct stge_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 #ifdef STGE_EVENT_COUNTERS
162 	/*
163 	 * Event counters.
164 	 */
165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
169 
170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
177 
178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
181 
182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186 
187 	int	sc_txpending;		/* number of Tx requests pending */
188 	int	sc_txdirty;		/* first dirty Tx descriptor */
189 	int	sc_txlast;		/* last used Tx descriptor */
190 
191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
192 	int	sc_rxdiscard;
193 	int	sc_rxlen;
194 	struct mbuf *sc_rxhead;
195 	struct mbuf *sc_rxtail;
196 	struct mbuf **sc_rxtailp;
197 
198 	int	sc_txthresh;		/* Tx threshold */
199 	uint32_t sc_usefiber:1;		/* if we're fiber */
200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
206 };
207 
208 #define	STGE_RXCHAIN_RESET(sc)						\
209 do {									\
210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
211 	*(sc)->sc_rxtailp = NULL;					\
212 	(sc)->sc_rxlen = 0;						\
213 } while (/*CONSTCOND*/0)
214 
215 #define	STGE_RXCHAIN_LINK(sc, m)					\
216 do {									\
217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
218 	(sc)->sc_rxtailp = &(m)->m_next;				\
219 } while (/*CONSTCOND*/0)
220 
221 #ifdef STGE_EVENT_COUNTERS
222 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
223 #else
224 #define	STGE_EVCNT_INCR(ev)	/* nothing */
225 #endif
226 
227 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
229 
230 #define	STGE_CDTXSYNC(sc, x, ops)					\
231 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
232 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233 
234 #define	STGE_CDRXSYNC(sc, x, ops)					\
235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237 
238 #define	STGE_INIT_RXDESC(sc, x)						\
239 do {									\
240 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
241 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
242 									\
243 	/*								\
244 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
245 	 * so that the payload after the Ethernet header is aligned	\
246 	 * to a 4-byte boundary.					\
247 	 */								\
248 	__rfd->rfd_frag.frag_word0 =					\
249 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 	    FRAG_LEN(MCLBYTES - 2));					\
251 	__rfd->rfd_next =						\
252 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
253 	__rfd->rfd_status = 0;						\
254 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256 
257 #define STGE_TIMEOUT 1000
258 
259 static void	stge_start(struct ifnet *);
260 static void	stge_watchdog(struct ifnet *);
261 static int	stge_ioctl(struct ifnet *, u_long, void *);
262 static int	stge_init(struct ifnet *);
263 static void	stge_stop(struct ifnet *, int);
264 
265 static bool	stge_shutdown(device_t, int);
266 
267 static void	stge_reset(struct stge_softc *);
268 static void	stge_rxdrain(struct stge_softc *);
269 static int	stge_add_rxbuf(struct stge_softc *, int);
270 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void	stge_tick(void *);
272 
273 static void	stge_stats_update(struct stge_softc *);
274 
275 static void	stge_set_filter(struct stge_softc *);
276 
277 static int	stge_intr(void *);
278 static void	stge_txintr(struct stge_softc *);
279 static void	stge_rxintr(struct stge_softc *);
280 
281 static int	stge_mii_readreg(device_t, int, int);
282 static void	stge_mii_writereg(device_t, int, int, int);
283 static void	stge_mii_statchg(struct ifnet *);
284 
285 static int	stge_match(device_t, cfdata_t, void *);
286 static void	stge_attach(device_t, device_t, void *);
287 
288 int	stge_copy_small = 0;
289 
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291     stge_match, stge_attach, NULL, NULL);
292 
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void	stge_mii_bitbang_write(device_t, uint32_t);
295 
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 	stge_mii_bitbang_read,
298 	stge_mii_bitbang_write,
299 	{
300 		PC_MgmtData,		/* MII_BIT_MDO */
301 		PC_MgmtData,		/* MII_BIT_MDI */
302 		PC_MgmtClk,		/* MII_BIT_MDC */
303 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
304 		0,			/* MII_BIT_DIR_PHY_HOST */
305 	}
306 };
307 
308 /*
309  * Devices supported by this driver.
310  */
311 static const struct stge_product {
312 	pci_vendor_id_t		stge_vendor;
313 	pci_product_id_t	stge_product;
314 	const char		*stge_name;
315 } stge_products[] = {
316 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
317 	  "Sundance ST-1023 Gigabit Ethernet" },
318 
319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
320 	  "Sundance ST-2021 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
323 	  "Tamarack TC9021 Gigabit Ethernet" },
324 
325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 	  "Tamarack TC9021 Gigabit Ethernet" },
327 
328 	/*
329 	 * The Sundance sample boards use the Sundance vendor ID,
330 	 * but the Tamarack product ID.
331 	 */
332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
333 	  "Sundance TC9021 Gigabit Ethernet" },
334 
335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 	  "Sundance TC9021 Gigabit Ethernet" },
337 
338 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
339 	  "D-Link DL-4000 Gigabit Ethernet" },
340 
341 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
342 	  "Antares Gigabit Ethernet" },
343 
344 	{ 0,				0,
345 	  NULL },
346 };
347 
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 	const struct stge_product *sp;
352 
353 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 			return (sp);
357 	}
358 	return (NULL);
359 }
360 
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 	struct pci_attach_args *pa = aux;
365 
366 	if (stge_lookup(pa) != NULL)
367 		return (1);
368 
369 	return (0);
370 }
371 
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 	struct stge_softc *sc = device_private(self);
376 	struct pci_attach_args *pa = aux;
377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 	pci_chipset_tag_t pc = pa->pa_pc;
379 	pci_intr_handle_t ih;
380 	const char *intrstr = NULL;
381 	bus_space_tag_t iot, memt;
382 	bus_space_handle_t ioh, memh;
383 	bus_dma_segment_t seg;
384 	prop_data_t data;
385 	int ioh_valid, memh_valid;
386 	int i, rseg, error;
387 	const struct stge_product *sp;
388 	uint8_t enaddr[ETHER_ADDR_LEN];
389 	char intrbuf[PCI_INTRSTR_LEN];
390 
391 	callout_init(&sc->sc_tick_ch, 0);
392 
393 	sp = stge_lookup(pa);
394 	if (sp == NULL) {
395 		printf("\n");
396 		panic("ste_attach: impossible");
397 	}
398 
399 	sc->sc_rev = PCI_REVISION(pa->pa_class);
400 
401 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
402 
403 	/*
404 	 * Map the device.
405 	 */
406 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
407 	    PCI_MAPREG_TYPE_IO, 0,
408 	    &iot, &ioh, NULL, NULL) == 0);
409 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
410 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
411 	    &memt, &memh, NULL, NULL) == 0);
412 
413 	if (memh_valid) {
414 		sc->sc_st = memt;
415 		sc->sc_sh = memh;
416 	} else if (ioh_valid) {
417 		sc->sc_st = iot;
418 		sc->sc_sh = ioh;
419 	} else {
420 		aprint_error_dev(self, "unable to map device registers\n");
421 		return;
422 	}
423 
424 	sc->sc_dmat = pa->pa_dmat;
425 
426 	/* Enable bus mastering. */
427 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
428 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
429 	    PCI_COMMAND_MASTER_ENABLE);
430 
431 	/* power up chip */
432 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
433 	    error != EOPNOTSUPP) {
434 		aprint_error_dev(self, "cannot activate %d\n",
435 		    error);
436 		return;
437 	}
438 	/*
439 	 * Map and establish our interrupt.
440 	 */
441 	if (pci_intr_map(pa, &ih)) {
442 		aprint_error_dev(self, "unable to map interrupt\n");
443 		return;
444 	}
445 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
446 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
447 	if (sc->sc_ih == NULL) {
448 		aprint_error_dev(self, "unable to establish interrupt");
449 		if (intrstr != NULL)
450 			aprint_error(" at %s", intrstr);
451 		aprint_error("\n");
452 		return;
453 	}
454 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
455 
456 	/*
457 	 * Allocate the control data structures, and create and load the
458 	 * DMA map for it.
459 	 */
460 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
461 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
462 	    0)) != 0) {
463 		aprint_error_dev(self,
464 		    "unable to allocate control data, error = %d\n",
465 		    error);
466 		goto fail_0;
467 	}
468 
469 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
470 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
471 	    BUS_DMA_COHERENT)) != 0) {
472 		aprint_error_dev(self,
473 		    "unable to map control data, error = %d\n",
474 		    error);
475 		goto fail_1;
476 	}
477 
478 	if ((error = bus_dmamap_create(sc->sc_dmat,
479 	    sizeof(struct stge_control_data), 1,
480 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
481 		aprint_error_dev(self,
482 		    "unable to create control data DMA map, error = %d\n",
483 		    error);
484 		goto fail_2;
485 	}
486 
487 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
488 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
489 	    0)) != 0) {
490 		aprint_error_dev(self,
491 		    "unable to load control data DMA map, error = %d\n",
492 		    error);
493 		goto fail_3;
494 	}
495 
496 	/*
497 	 * Create the transmit buffer DMA maps.  Note that rev B.3
498 	 * and earlier seem to have a bug regarding multi-fragment
499 	 * packets.  We need to limit the number of Tx segments on
500 	 * such chips to 1.
501 	 */
502 	for (i = 0; i < STGE_NTXDESC; i++) {
503 		if ((error = bus_dmamap_create(sc->sc_dmat,
504 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
505 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
506 			aprint_error_dev(self,
507 			    "unable to create tx DMA map %d, error = %d\n",
508 			    i, error);
509 			goto fail_4;
510 		}
511 	}
512 
513 	/*
514 	 * Create the receive buffer DMA maps.
515 	 */
516 	for (i = 0; i < STGE_NRXDESC; i++) {
517 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
518 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
519 			aprint_error_dev(self,
520 			    "unable to create rx DMA map %d, error = %d\n",
521 			    i, error);
522 			goto fail_5;
523 		}
524 		sc->sc_rxsoft[i].ds_mbuf = NULL;
525 	}
526 
527 	/*
528 	 * Determine if we're copper or fiber.  It affects how we
529 	 * reset the card.
530 	 */
531 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
532 	    AC_PhyMedia)
533 		sc->sc_usefiber = 1;
534 	else
535 		sc->sc_usefiber = 0;
536 
537 	/*
538 	 * Reset the chip to a known state.
539 	 */
540 	stge_reset(sc);
541 
542 	/*
543 	 * Reading the station address from the EEPROM doesn't seem
544 	 * to work, at least on my sample boards.  Instead, since
545 	 * the reset sequence does AutoInit, read it from the station
546 	 * address registers. For Sundance 1023 you can only read it
547 	 * from EEPROM.
548 	 */
549 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
550 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
551 		    STGE_StationAddress0) & 0xff;
552 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
553 		    STGE_StationAddress0) >> 8;
554 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
555 		    STGE_StationAddress1) & 0xff;
556 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 		    STGE_StationAddress1) >> 8;
558 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 		    STGE_StationAddress2) & 0xff;
560 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
561 		    STGE_StationAddress2) >> 8;
562 		sc->sc_stge1023 = 0;
563 	} else {
564 		data = prop_dictionary_get(device_properties(self),
565 		    "mac-address");
566 		if (data != NULL) {
567 			/*
568 			 * Try to get the station address from device
569 			 * properties first, in case the EEPROM is missing.
570 			 */
571 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
572 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
573 			(void)memcpy(enaddr, prop_data_data_nocopy(data),
574 			    ETHER_ADDR_LEN);
575 		} else {
576 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
577 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
578 				stge_read_eeprom(sc,
579 				    STGE_EEPROM_StationAddress0 + i,
580 				    &myaddr[i]);
581 				myaddr[i] = le16toh(myaddr[i]);
582 			}
583 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
584 		}
585 		sc->sc_stge1023 = 1;
586 	}
587 
588 	aprint_normal_dev(self, "Ethernet address %s\n",
589 	    ether_sprintf(enaddr));
590 
591 	/*
592 	 * Read some important bits from the PhyCtrl register.
593 	 */
594 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
595 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
596 
597 	/*
598 	 * Initialize our media structures and probe the MII.
599 	 */
600 	sc->sc_mii.mii_ifp = ifp;
601 	sc->sc_mii.mii_readreg = stge_mii_readreg;
602 	sc->sc_mii.mii_writereg = stge_mii_writereg;
603 	sc->sc_mii.mii_statchg = stge_mii_statchg;
604 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
605 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
606 	    ether_mediastatus);
607 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
608 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
609 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
610 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
611 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
612 	} else
613 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
614 
615 	ifp = &sc->sc_ethercom.ec_if;
616 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
617 	ifp->if_softc = sc;
618 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
619 	ifp->if_ioctl = stge_ioctl;
620 	ifp->if_start = stge_start;
621 	ifp->if_watchdog = stge_watchdog;
622 	ifp->if_init = stge_init;
623 	ifp->if_stop = stge_stop;
624 	IFQ_SET_READY(&ifp->if_snd);
625 
626 	/*
627 	 * The manual recommends disabling early transmit, so we
628 	 * do.  It's disabled anyway, if using IP checksumming,
629 	 * since the entire packet must be in the FIFO in order
630 	 * for the chip to perform the checksum.
631 	 */
632 	sc->sc_txthresh = 0x0fff;
633 
634 	/*
635 	 * Disable MWI if the PCI layer tells us to.
636 	 */
637 	sc->sc_DMACtrl = 0;
638 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
639 		sc->sc_DMACtrl |= DMAC_MWIDisable;
640 
641 	/*
642 	 * We can support 802.1Q VLAN-sized frames and jumbo
643 	 * Ethernet frames.
644 	 *
645 	 * XXX Figure out how to do hw-assisted VLAN tagging in
646 	 * XXX a reasonable way on this chip.
647 	 */
648 	sc->sc_ethercom.ec_capabilities |=
649 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
650 	    ETHERCAP_VLAN_HWTAGGING;
651 
652 	/*
653 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
654 	 */
655 	sc->sc_ethercom.ec_if.if_capabilities |=
656 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
657 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
658 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
659 
660 	/*
661 	 * Attach the interface.
662 	 */
663 	if_attach(ifp);
664 	ether_ifattach(ifp, enaddr);
665 
666 #ifdef STGE_EVENT_COUNTERS
667 	/*
668 	 * Attach event counters.
669 	 */
670 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
671 	    NULL, device_xname(self), "txstall");
672 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
673 	    NULL, device_xname(self), "txdmaintr");
674 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
675 	    NULL, device_xname(self), "txindintr");
676 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
677 	    NULL, device_xname(self), "rxintr");
678 
679 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
680 	    NULL, device_xname(self), "txseg1");
681 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
682 	    NULL, device_xname(self), "txseg2");
683 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
684 	    NULL, device_xname(self), "txseg3");
685 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
686 	    NULL, device_xname(self), "txseg4");
687 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
688 	    NULL, device_xname(self), "txseg5");
689 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
690 	    NULL, device_xname(self), "txsegmore");
691 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
692 	    NULL, device_xname(self), "txcopy");
693 
694 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
695 	    NULL, device_xname(self), "rxipsum");
696 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
697 	    NULL, device_xname(self), "rxtcpsum");
698 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
699 	    NULL, device_xname(self), "rxudpsum");
700 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
701 	    NULL, device_xname(self), "txipsum");
702 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
703 	    NULL, device_xname(self), "txtcpsum");
704 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
705 	    NULL, device_xname(self), "txudpsum");
706 #endif /* STGE_EVENT_COUNTERS */
707 
708 	/*
709 	 * Make sure the interface is shutdown during reboot.
710 	 */
711 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
712 		pmf_class_network_register(self, ifp);
713 	else
714 		aprint_error_dev(self, "couldn't establish power handler\n");
715 
716 	return;
717 
718 	/*
719 	 * Free any resources we've allocated during the failed attach
720 	 * attempt.  Do this in reverse order and fall through.
721 	 */
722  fail_5:
723 	for (i = 0; i < STGE_NRXDESC; i++) {
724 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
725 			bus_dmamap_destroy(sc->sc_dmat,
726 			    sc->sc_rxsoft[i].ds_dmamap);
727 	}
728  fail_4:
729 	for (i = 0; i < STGE_NTXDESC; i++) {
730 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
731 			bus_dmamap_destroy(sc->sc_dmat,
732 			    sc->sc_txsoft[i].ds_dmamap);
733 	}
734 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
735  fail_3:
736 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
737  fail_2:
738 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
739 	    sizeof(struct stge_control_data));
740  fail_1:
741 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
742  fail_0:
743 	return;
744 }
745 
746 /*
747  * stge_shutdown:
748  *
749  *	Make sure the interface is stopped at reboot time.
750  */
751 static bool
752 stge_shutdown(device_t self, int howto)
753 {
754 	struct stge_softc *sc = device_private(self);
755 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
756 
757 	stge_stop(ifp, 1);
758 	stge_reset(sc);
759 	return true;
760 }
761 
762 static void
763 stge_dma_wait(struct stge_softc *sc)
764 {
765 	int i;
766 
767 	for (i = 0; i < STGE_TIMEOUT; i++) {
768 		delay(2);
769 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
770 		     DMAC_TxDMAInProg) == 0)
771 			break;
772 	}
773 
774 	if (i == STGE_TIMEOUT)
775 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
776 }
777 
778 /*
779  * stge_start:		[ifnet interface function]
780  *
781  *	Start packet transmission on the interface.
782  */
783 static void
784 stge_start(struct ifnet *ifp)
785 {
786 	struct stge_softc *sc = ifp->if_softc;
787 	struct mbuf *m0;
788 	struct stge_descsoft *ds;
789 	struct stge_tfd *tfd;
790 	bus_dmamap_t dmamap;
791 	int error, firsttx, nexttx, opending, seg, totlen;
792 	uint64_t csum_flags;
793 
794 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
795 		return;
796 
797 	/*
798 	 * Remember the previous number of pending transmissions
799 	 * and the first descriptor we will use.
800 	 */
801 	opending = sc->sc_txpending;
802 	firsttx = STGE_NEXTTX(sc->sc_txlast);
803 
804 	/*
805 	 * Loop through the send queue, setting up transmit descriptors
806 	 * until we drain the queue, or use up all available transmit
807 	 * descriptors.
808 	 */
809 	for (;;) {
810 		struct m_tag *mtag;
811 		uint64_t tfc;
812 
813 		/*
814 		 * Grab a packet off the queue.
815 		 */
816 		IFQ_POLL(&ifp->if_snd, m0);
817 		if (m0 == NULL)
818 			break;
819 
820 		/*
821 		 * Leave one unused descriptor at the end of the
822 		 * list to prevent wrapping completely around.
823 		 */
824 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
825 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
826 			break;
827 		}
828 
829 		/*
830 		 * See if we have any VLAN stuff.
831 		 */
832 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
833 
834 		/*
835 		 * Get the last and next available transmit descriptor.
836 		 */
837 		nexttx = STGE_NEXTTX(sc->sc_txlast);
838 		tfd = &sc->sc_txdescs[nexttx];
839 		ds = &sc->sc_txsoft[nexttx];
840 
841 		dmamap = ds->ds_dmamap;
842 
843 		/*
844 		 * Load the DMA map.  If this fails, the packet either
845 		 * didn't fit in the alloted number of segments, or we
846 		 * were short on resources.  For the too-many-segments
847 		 * case, we simply report an error and drop the packet,
848 		 * since we can't sanely copy a jumbo packet to a single
849 		 * buffer.
850 		 */
851 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
852 		    BUS_DMA_NOWAIT);
853 		if (error) {
854 			if (error == EFBIG) {
855 				printf("%s: Tx packet consumes too many "
856 				    "DMA segments, dropping...\n",
857 				    device_xname(sc->sc_dev));
858 				IFQ_DEQUEUE(&ifp->if_snd, m0);
859 				m_freem(m0);
860 				continue;
861 			}
862 			/*
863 			 * Short on resources, just stop for now.
864 			 */
865 			break;
866 		}
867 
868 		IFQ_DEQUEUE(&ifp->if_snd, m0);
869 
870 		/*
871 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
872 		 */
873 
874 		/* Sync the DMA map. */
875 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
876 		    BUS_DMASYNC_PREWRITE);
877 
878 		/* Initialize the fragment list. */
879 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
880 			tfd->tfd_frags[seg].frag_word0 =
881 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
882 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
883 			totlen += dmamap->dm_segs[seg].ds_len;
884 		}
885 
886 #ifdef STGE_EVENT_COUNTERS
887 		switch (dmamap->dm_nsegs) {
888 		case 1:
889 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
890 			break;
891 		case 2:
892 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
893 			break;
894 		case 3:
895 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
896 			break;
897 		case 4:
898 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
899 			break;
900 		case 5:
901 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
902 			break;
903 		default:
904 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
905 			break;
906 		}
907 #endif /* STGE_EVENT_COUNTERS */
908 
909 		/*
910 		 * Initialize checksumming flags in the descriptor.
911 		 * Byte-swap constants so the compiler can optimize.
912 		 */
913 		csum_flags = 0;
914 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
915 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
916 			csum_flags |= TFD_IPChecksumEnable;
917 		}
918 
919 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
920 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
921 			csum_flags |= TFD_TCPChecksumEnable;
922 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
923 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
924 			csum_flags |= TFD_UDPChecksumEnable;
925 		}
926 
927 		/*
928 		 * Initialize the descriptor and give it to the chip.
929 		 * Check to see if we have a VLAN tag to insert.
930 		 */
931 
932 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
933 		    TFD_FragCount(seg) | csum_flags |
934 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
935 			TFD_TxDMAIndicate : 0);
936 		if (mtag) {
937 #if	0
938 			struct ether_header *eh =
939 			    mtod(m0, struct ether_header *);
940 			u_int16_t etype = ntohs(eh->ether_type);
941 			printf("%s: xmit (tag %d) etype %x\n",
942 			   ifp->if_xname, *mtod(n, int *), etype);
943 #endif
944 			tfc |= TFD_VLANTagInsert |
945 #ifdef	STGE_VLAN_CFI
946 			    TFD_CFI |
947 #endif
948 			    TFD_VID(VLAN_TAG_VALUE(mtag));
949 		}
950 		tfd->tfd_control = htole64(tfc);
951 
952 		/* Sync the descriptor. */
953 		STGE_CDTXSYNC(sc, nexttx,
954 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
955 
956 		/*
957 		 * Kick the transmit DMA logic.
958 		 */
959 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
960 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
961 
962 		/*
963 		 * Store a pointer to the packet so we can free it later.
964 		 */
965 		ds->ds_mbuf = m0;
966 
967 		/* Advance the tx pointer. */
968 		sc->sc_txpending++;
969 		sc->sc_txlast = nexttx;
970 
971 		/*
972 		 * Pass the packet to any BPF listeners.
973 		 */
974 		bpf_mtap(ifp, m0);
975 	}
976 
977 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
978 		/* No more slots left; notify upper layer. */
979 		ifp->if_flags |= IFF_OACTIVE;
980 	}
981 
982 	if (sc->sc_txpending != opending) {
983 		/*
984 		 * We enqueued packets.  If the transmitter was idle,
985 		 * reset the txdirty pointer.
986 		 */
987 		if (opending == 0)
988 			sc->sc_txdirty = firsttx;
989 
990 		/* Set a watchdog timer in case the chip flakes out. */
991 		ifp->if_timer = 5;
992 	}
993 }
994 
995 /*
996  * stge_watchdog:	[ifnet interface function]
997  *
998  *	Watchdog timer handler.
999  */
1000 static void
1001 stge_watchdog(struct ifnet *ifp)
1002 {
1003 	struct stge_softc *sc = ifp->if_softc;
1004 
1005 	/*
1006 	 * Sweep up first, since we don't interrupt every frame.
1007 	 */
1008 	stge_txintr(sc);
1009 	if (sc->sc_txpending != 0) {
1010 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1011 		ifp->if_oerrors++;
1012 
1013 		(void) stge_init(ifp);
1014 
1015 		/* Try to get more packets going. */
1016 		stge_start(ifp);
1017 	}
1018 }
1019 
1020 /*
1021  * stge_ioctl:		[ifnet interface function]
1022  *
1023  *	Handle control requests from the operator.
1024  */
1025 static int
1026 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1027 {
1028 	struct stge_softc *sc = ifp->if_softc;
1029 	int s, error;
1030 
1031 	s = splnet();
1032 
1033 	error = ether_ioctl(ifp, cmd, data);
1034 	if (error == ENETRESET) {
1035 		error = 0;
1036 
1037 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1038 			;
1039 		else if (ifp->if_flags & IFF_RUNNING) {
1040 			/*
1041 			 * Multicast list has changed; set the hardware filter
1042 			 * accordingly.
1043 			 */
1044 			stge_set_filter(sc);
1045 		}
1046 	}
1047 
1048 	/* Try to get more packets going. */
1049 	stge_start(ifp);
1050 
1051 	splx(s);
1052 	return (error);
1053 }
1054 
1055 /*
1056  * stge_intr:
1057  *
1058  *	Interrupt service routine.
1059  */
1060 static int
1061 stge_intr(void *arg)
1062 {
1063 	struct stge_softc *sc = arg;
1064 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1065 	uint32_t txstat;
1066 	int wantinit;
1067 	uint16_t isr;
1068 
1069 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1070 	     IS_InterruptStatus) == 0)
1071 		return (0);
1072 
1073 	for (wantinit = 0; wantinit == 0;) {
1074 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1075 		if ((isr & sc->sc_IntEnable) == 0)
1076 			break;
1077 
1078 		/* Host interface errors. */
1079 		if (isr & IS_HostError) {
1080 			printf("%s: Host interface error\n",
1081 			    device_xname(sc->sc_dev));
1082 			wantinit = 1;
1083 			continue;
1084 		}
1085 
1086 		/* Receive interrupts. */
1087 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1088 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1089 			stge_rxintr(sc);
1090 			if (isr & IS_RFDListEnd) {
1091 				printf("%s: receive ring overflow\n",
1092 				    device_xname(sc->sc_dev));
1093 				/*
1094 				 * XXX Should try to recover from this
1095 				 * XXX more gracefully.
1096 				 */
1097 				wantinit = 1;
1098 			}
1099 		}
1100 
1101 		/* Transmit interrupts. */
1102 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1103 #ifdef STGE_EVENT_COUNTERS
1104 			if (isr & IS_TxDMAComplete)
1105 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1106 #endif
1107 			stge_txintr(sc);
1108 		}
1109 
1110 		/* Statistics overflow. */
1111 		if (isr & IS_UpdateStats)
1112 			stge_stats_update(sc);
1113 
1114 		/* Transmission errors. */
1115 		if (isr & IS_TxComplete) {
1116 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1117 			for (;;) {
1118 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1119 				    STGE_TxStatus);
1120 				if ((txstat & TS_TxComplete) == 0)
1121 					break;
1122 				if (txstat & TS_TxUnderrun) {
1123 					sc->sc_txthresh++;
1124 					if (sc->sc_txthresh > 0x0fff)
1125 						sc->sc_txthresh = 0x0fff;
1126 					printf("%s: transmit underrun, new "
1127 					    "threshold: %d bytes\n",
1128 					    device_xname(sc->sc_dev),
1129 					    sc->sc_txthresh << 5);
1130 				}
1131 				if (txstat & TS_MaxCollisions)
1132 					printf("%s: excessive collisions\n",
1133 					    device_xname(sc->sc_dev));
1134 			}
1135 			wantinit = 1;
1136 		}
1137 
1138 	}
1139 
1140 	if (wantinit)
1141 		stge_init(ifp);
1142 
1143 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1144 	    sc->sc_IntEnable);
1145 
1146 	/* Try to get more packets going. */
1147 	stge_start(ifp);
1148 
1149 	return (1);
1150 }
1151 
1152 /*
1153  * stge_txintr:
1154  *
1155  *	Helper; handle transmit interrupts.
1156  */
1157 static void
1158 stge_txintr(struct stge_softc *sc)
1159 {
1160 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161 	struct stge_descsoft *ds;
1162 	uint64_t control;
1163 	int i;
1164 
1165 	ifp->if_flags &= ~IFF_OACTIVE;
1166 
1167 	/*
1168 	 * Go through our Tx list and free mbufs for those
1169 	 * frames which have been transmitted.
1170 	 */
1171 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1172 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1173 		ds = &sc->sc_txsoft[i];
1174 
1175 		STGE_CDTXSYNC(sc, i,
1176 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1177 
1178 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1179 		if ((control & TFD_TFDDone) == 0)
1180 			break;
1181 
1182 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1183 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1184 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1185 		m_freem(ds->ds_mbuf);
1186 		ds->ds_mbuf = NULL;
1187 	}
1188 
1189 	/* Update the dirty transmit buffer pointer. */
1190 	sc->sc_txdirty = i;
1191 
1192 	/*
1193 	 * If there are no more pending transmissions, cancel the watchdog
1194 	 * timer.
1195 	 */
1196 	if (sc->sc_txpending == 0)
1197 		ifp->if_timer = 0;
1198 }
1199 
1200 /*
1201  * stge_rxintr:
1202  *
1203  *	Helper; handle receive interrupts.
1204  */
1205 static void
1206 stge_rxintr(struct stge_softc *sc)
1207 {
1208 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1209 	struct stge_descsoft *ds;
1210 	struct mbuf *m, *tailm;
1211 	uint64_t status;
1212 	int i, len;
1213 
1214 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1215 		ds = &sc->sc_rxsoft[i];
1216 
1217 		STGE_CDRXSYNC(sc, i,
1218 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1219 
1220 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1221 
1222 		if ((status & RFD_RFDDone) == 0)
1223 			break;
1224 
1225 		if (__predict_false(sc->sc_rxdiscard)) {
1226 			STGE_INIT_RXDESC(sc, i);
1227 			if (status & RFD_FrameEnd) {
1228 				/* Reset our state. */
1229 				sc->sc_rxdiscard = 0;
1230 			}
1231 			continue;
1232 		}
1233 
1234 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1235 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1236 
1237 		m = ds->ds_mbuf;
1238 
1239 		/*
1240 		 * Add a new receive buffer to the ring.
1241 		 */
1242 		if (stge_add_rxbuf(sc, i) != 0) {
1243 			/*
1244 			 * Failed, throw away what we've done so
1245 			 * far, and discard the rest of the packet.
1246 			 */
1247 			ifp->if_ierrors++;
1248 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1249 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1250 			STGE_INIT_RXDESC(sc, i);
1251 			if ((status & RFD_FrameEnd) == 0)
1252 				sc->sc_rxdiscard = 1;
1253 			if (sc->sc_rxhead != NULL)
1254 				m_freem(sc->sc_rxhead);
1255 			STGE_RXCHAIN_RESET(sc);
1256 			continue;
1257 		}
1258 
1259 #ifdef DIAGNOSTIC
1260 		if (status & RFD_FrameStart) {
1261 			KASSERT(sc->sc_rxhead == NULL);
1262 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1263 		}
1264 #endif
1265 
1266 		STGE_RXCHAIN_LINK(sc, m);
1267 
1268 		/*
1269 		 * If this is not the end of the packet, keep
1270 		 * looking.
1271 		 */
1272 		if ((status & RFD_FrameEnd) == 0) {
1273 			sc->sc_rxlen += m->m_len;
1274 			continue;
1275 		}
1276 
1277 		/*
1278 		 * Okay, we have the entire packet now...
1279 		 */
1280 		*sc->sc_rxtailp = NULL;
1281 		m = sc->sc_rxhead;
1282 		tailm = sc->sc_rxtail;
1283 
1284 		STGE_RXCHAIN_RESET(sc);
1285 
1286 		/*
1287 		 * If the packet had an error, drop it.  Note we
1288 		 * count the error later in the periodic stats update.
1289 		 */
1290 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1291 			      RFD_RxAlignmentError | RFD_RxFCSError |
1292 			      RFD_RxLengthError)) {
1293 			m_freem(m);
1294 			continue;
1295 		}
1296 
1297 		/*
1298 		 * No errors.
1299 		 *
1300 		 * Note we have configured the chip to not include
1301 		 * the CRC at the end of the packet.
1302 		 */
1303 		len = RFD_RxDMAFrameLen(status);
1304 		tailm->m_len = len - sc->sc_rxlen;
1305 
1306 		/*
1307 		 * If the packet is small enough to fit in a
1308 		 * single header mbuf, allocate one and copy
1309 		 * the data into it.  This greatly reduces
1310 		 * memory consumption when we receive lots
1311 		 * of small packets.
1312 		 */
1313 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1314 			struct mbuf *nm;
1315 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1316 			if (nm == NULL) {
1317 				ifp->if_ierrors++;
1318 				m_freem(m);
1319 				continue;
1320 			}
1321 			nm->m_data += 2;
1322 			nm->m_pkthdr.len = nm->m_len = len;
1323 			m_copydata(m, 0, len, mtod(nm, void *));
1324 			m_freem(m);
1325 			m = nm;
1326 		}
1327 
1328 		/*
1329 		 * Set the incoming checksum information for the packet.
1330 		 */
1331 		if (status & RFD_IPDetected) {
1332 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1333 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1334 			if (status & RFD_IPError)
1335 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1336 			if (status & RFD_TCPDetected) {
1337 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1338 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1339 				if (status & RFD_TCPError)
1340 					m->m_pkthdr.csum_flags |=
1341 					    M_CSUM_TCP_UDP_BAD;
1342 			} else if (status & RFD_UDPDetected) {
1343 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1344 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1345 				if (status & RFD_UDPError)
1346 					m->m_pkthdr.csum_flags |=
1347 					    M_CSUM_TCP_UDP_BAD;
1348 			}
1349 		}
1350 
1351 		m->m_pkthdr.rcvif = ifp;
1352 		m->m_pkthdr.len = len;
1353 
1354 		/*
1355 		 * Pass this up to any BPF listeners, but only
1356 		 * pass if up the stack if it's for us.
1357 		 */
1358 		bpf_mtap(ifp, m);
1359 #ifdef	STGE_VLAN_UNTAG
1360 		/*
1361 		 * Check for VLAN tagged packets
1362 		 */
1363 		if (status & RFD_VLANDetected)
1364 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1365 
1366 #endif
1367 #if	0
1368 		if (status & RFD_VLANDetected) {
1369 			struct ether_header *eh;
1370 			u_int16_t etype;
1371 
1372 			eh = mtod(m, struct ether_header *);
1373 			etype = ntohs(eh->ether_type);
1374 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1375 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1376 			    etype);
1377 		}
1378 #endif
1379 		/* Pass it on. */
1380 		(*ifp->if_input)(ifp, m);
1381 	}
1382 
1383 	/* Update the receive pointer. */
1384 	sc->sc_rxptr = i;
1385 }
1386 
1387 /*
1388  * stge_tick:
1389  *
1390  *	One second timer, used to tick the MII.
1391  */
1392 static void
1393 stge_tick(void *arg)
1394 {
1395 	struct stge_softc *sc = arg;
1396 	int s;
1397 
1398 	s = splnet();
1399 	mii_tick(&sc->sc_mii);
1400 	stge_stats_update(sc);
1401 	splx(s);
1402 
1403 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1404 }
1405 
1406 /*
1407  * stge_stats_update:
1408  *
1409  *	Read the TC9021 statistics counters.
1410  */
1411 static void
1412 stge_stats_update(struct stge_softc *sc)
1413 {
1414 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1415 	bus_space_tag_t st = sc->sc_st;
1416 	bus_space_handle_t sh = sc->sc_sh;
1417 
1418 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1419 
1420 	ifp->if_ipackets +=
1421 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1422 
1423 	ifp->if_ierrors +=
1424 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1425 
1426 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1427 
1428 	ifp->if_opackets +=
1429 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1430 
1431 	ifp->if_collisions +=
1432 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1433 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1434 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1435 
1436 	ifp->if_oerrors +=
1437 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1438 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1439 }
1440 
1441 /*
1442  * stge_reset:
1443  *
1444  *	Perform a soft reset on the TC9021.
1445  */
1446 static void
1447 stge_reset(struct stge_softc *sc)
1448 {
1449 	uint32_t ac;
1450 	int i;
1451 
1452 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1453 
1454 	/*
1455 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1456 	 * to be present in order for the reset to complete on fiber
1457 	 * cards.
1458 	 */
1459 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1460 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1461 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1462 	    (sc->sc_usefiber ? AC_RstOut : 0));
1463 
1464 	delay(50000);
1465 
1466 	for (i = 0; i < STGE_TIMEOUT; i++) {
1467 		delay(5000);
1468 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1469 		     AC_ResetBusy) == 0)
1470 			break;
1471 	}
1472 
1473 	if (i == STGE_TIMEOUT)
1474 		printf("%s: reset failed to complete\n",
1475 		    device_xname(sc->sc_dev));
1476 
1477 	delay(1000);
1478 }
1479 
1480 /*
1481  * stge_init:		[ ifnet interface function ]
1482  *
1483  *	Initialize the interface.  Must be called at splnet().
1484  */
1485 static int
1486 stge_init(struct ifnet *ifp)
1487 {
1488 	struct stge_softc *sc = ifp->if_softc;
1489 	bus_space_tag_t st = sc->sc_st;
1490 	bus_space_handle_t sh = sc->sc_sh;
1491 	struct stge_descsoft *ds;
1492 	int i, error = 0;
1493 
1494 	/*
1495 	 * Cancel any pending I/O.
1496 	 */
1497 	stge_stop(ifp, 0);
1498 
1499 	/*
1500 	 * Reset the chip to a known state.
1501 	 */
1502 	stge_reset(sc);
1503 
1504 	/*
1505 	 * Initialize the transmit descriptor ring.
1506 	 */
1507 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1508 	for (i = 0; i < STGE_NTXDESC; i++) {
1509 		sc->sc_txdescs[i].tfd_next = htole64(
1510 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1511 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1512 	}
1513 	sc->sc_txpending = 0;
1514 	sc->sc_txdirty = 0;
1515 	sc->sc_txlast = STGE_NTXDESC - 1;
1516 
1517 	/*
1518 	 * Initialize the receive descriptor and receive job
1519 	 * descriptor rings.
1520 	 */
1521 	for (i = 0; i < STGE_NRXDESC; i++) {
1522 		ds = &sc->sc_rxsoft[i];
1523 		if (ds->ds_mbuf == NULL) {
1524 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1525 				printf("%s: unable to allocate or map rx "
1526 				    "buffer %d, error = %d\n",
1527 				    device_xname(sc->sc_dev), i, error);
1528 				/*
1529 				 * XXX Should attempt to run with fewer receive
1530 				 * XXX buffers instead of just failing.
1531 				 */
1532 				stge_rxdrain(sc);
1533 				goto out;
1534 			}
1535 		} else
1536 			STGE_INIT_RXDESC(sc, i);
1537 	}
1538 	sc->sc_rxptr = 0;
1539 	sc->sc_rxdiscard = 0;
1540 	STGE_RXCHAIN_RESET(sc);
1541 
1542 	/* Set the station address. */
1543 	for (i = 0; i < 6; i++)
1544 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1545 		    CLLADDR(ifp->if_sadl)[i]);
1546 
1547 	/*
1548 	 * Set the statistics masks.  Disable all the RMON stats,
1549 	 * and disable selected stats in the non-RMON stats registers.
1550 	 */
1551 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1552 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1553 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1554 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1555 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1556 	    (1U << 21));
1557 
1558 	/* Set up the receive filter. */
1559 	stge_set_filter(sc);
1560 
1561 	/*
1562 	 * Give the transmit and receive ring to the chip.
1563 	 */
1564 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1565 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1566 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1567 
1568 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1569 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1570 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1571 
1572 	/*
1573 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1574 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1575 	 * transmit engine when there's actually a packet.
1576 	 */
1577 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1578 
1579 	/* ..and the Rx auto-poll period. */
1580 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1581 
1582 	/* Initialize the Tx start threshold. */
1583 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1584 
1585 	/* RX DMA thresholds, from linux */
1586 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1587 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1588 
1589 	/*
1590 	 * Initialize the Rx DMA interrupt control register.  We
1591 	 * request an interrupt after every incoming packet, but
1592 	 * defer it for 32us (64 * 512 ns).  When the number of
1593 	 * interrupts pending reaches 8, we stop deferring the
1594 	 * interrupt, and signal it immediately.
1595 	 */
1596 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1597 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1598 
1599 	/*
1600 	 * Initialize the interrupt mask.
1601 	 */
1602 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1603 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1604 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1605 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1606 
1607 	/*
1608 	 * Configure the DMA engine.
1609 	 * XXX Should auto-tune TxBurstLimit.
1610 	 */
1611 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1612 	    DMAC_TxBurstLimit(3));
1613 
1614 	/*
1615 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1616 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1617 	 * empty again.
1618 	 */
1619 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1620 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1621 
1622 	/*
1623 	 * Set the maximum frame size.
1624 	 */
1625 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1626 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1627 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1628 	     ETHER_VLAN_ENCAP_LEN : 0));
1629 
1630 	/*
1631 	 * Initialize MacCtrl -- do it before setting the media,
1632 	 * as setting the media will actually program the register.
1633 	 *
1634 	 * Note: We have to poke the IFS value before poking
1635 	 * anything else.
1636 	 */
1637 	sc->sc_MACCtrl = MC_IFSSelect(0);
1638 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1639 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1640 #ifdef	STGE_VLAN_UNTAG
1641 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1642 #endif
1643 
1644 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1645 		/* Multi-frag frame bug work-around. */
1646 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1647 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1648 
1649 		/* Tx Poll Now bug work-around. */
1650 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1651 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1652 		/* XXX ? from linux */
1653 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1654 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1655 	}
1656 
1657 	/*
1658 	 * Set the current media.
1659 	 */
1660 	if ((error = ether_mediachange(ifp)) != 0)
1661 		goto out;
1662 
1663 	/*
1664 	 * Start the one second MII clock.
1665 	 */
1666 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1667 
1668 	/*
1669 	 * ...all done!
1670 	 */
1671 	ifp->if_flags |= IFF_RUNNING;
1672 	ifp->if_flags &= ~IFF_OACTIVE;
1673 
1674  out:
1675 	if (error)
1676 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1677 	return (error);
1678 }
1679 
1680 /*
1681  * stge_drain:
1682  *
1683  *	Drain the receive queue.
1684  */
1685 static void
1686 stge_rxdrain(struct stge_softc *sc)
1687 {
1688 	struct stge_descsoft *ds;
1689 	int i;
1690 
1691 	for (i = 0; i < STGE_NRXDESC; i++) {
1692 		ds = &sc->sc_rxsoft[i];
1693 		if (ds->ds_mbuf != NULL) {
1694 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1695 			ds->ds_mbuf->m_next = NULL;
1696 			m_freem(ds->ds_mbuf);
1697 			ds->ds_mbuf = NULL;
1698 		}
1699 	}
1700 }
1701 
1702 /*
1703  * stge_stop:		[ ifnet interface function ]
1704  *
1705  *	Stop transmission on the interface.
1706  */
1707 static void
1708 stge_stop(struct ifnet *ifp, int disable)
1709 {
1710 	struct stge_softc *sc = ifp->if_softc;
1711 	struct stge_descsoft *ds;
1712 	int i;
1713 
1714 	/*
1715 	 * Stop the one second clock.
1716 	 */
1717 	callout_stop(&sc->sc_tick_ch);
1718 
1719 	/* Down the MII. */
1720 	mii_down(&sc->sc_mii);
1721 
1722 	/*
1723 	 * Disable interrupts.
1724 	 */
1725 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1726 
1727 	/*
1728 	 * Stop receiver, transmitter, and stats update.
1729 	 */
1730 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1731 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1732 
1733 	/*
1734 	 * Stop the transmit and receive DMA.
1735 	 */
1736 	stge_dma_wait(sc);
1737 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1738 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1739 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1740 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1741 
1742 	/*
1743 	 * Release any queued transmit buffers.
1744 	 */
1745 	for (i = 0; i < STGE_NTXDESC; i++) {
1746 		ds = &sc->sc_txsoft[i];
1747 		if (ds->ds_mbuf != NULL) {
1748 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1749 			m_freem(ds->ds_mbuf);
1750 			ds->ds_mbuf = NULL;
1751 		}
1752 	}
1753 
1754 	/*
1755 	 * Mark the interface down and cancel the watchdog timer.
1756 	 */
1757 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1758 	ifp->if_timer = 0;
1759 
1760 	if (disable)
1761 		stge_rxdrain(sc);
1762 }
1763 
1764 static int
1765 stge_eeprom_wait(struct stge_softc *sc)
1766 {
1767 	int i;
1768 
1769 	for (i = 0; i < STGE_TIMEOUT; i++) {
1770 		delay(1000);
1771 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1772 		     EC_EepromBusy) == 0)
1773 			return (0);
1774 	}
1775 	return (1);
1776 }
1777 
1778 /*
1779  * stge_read_eeprom:
1780  *
1781  *	Read data from the serial EEPROM.
1782  */
1783 static void
1784 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1785 {
1786 
1787 	if (stge_eeprom_wait(sc))
1788 		printf("%s: EEPROM failed to come ready\n",
1789 		    device_xname(sc->sc_dev));
1790 
1791 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1792 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1793 	if (stge_eeprom_wait(sc))
1794 		printf("%s: EEPROM read timed out\n",
1795 		    device_xname(sc->sc_dev));
1796 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1797 }
1798 
1799 /*
1800  * stge_add_rxbuf:
1801  *
1802  *	Add a receive buffer to the indicated descriptor.
1803  */
1804 static int
1805 stge_add_rxbuf(struct stge_softc *sc, int idx)
1806 {
1807 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1808 	struct mbuf *m;
1809 	int error;
1810 
1811 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1812 	if (m == NULL)
1813 		return (ENOBUFS);
1814 
1815 	MCLGET(m, M_DONTWAIT);
1816 	if ((m->m_flags & M_EXT) == 0) {
1817 		m_freem(m);
1818 		return (ENOBUFS);
1819 	}
1820 
1821 	m->m_data = m->m_ext.ext_buf + 2;
1822 	m->m_len = MCLBYTES - 2;
1823 
1824 	if (ds->ds_mbuf != NULL)
1825 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1826 
1827 	ds->ds_mbuf = m;
1828 
1829 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1830 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1831 	if (error) {
1832 		printf("%s: can't load rx DMA map %d, error = %d\n",
1833 		    device_xname(sc->sc_dev), idx, error);
1834 		panic("stge_add_rxbuf");	/* XXX */
1835 	}
1836 
1837 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1838 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1839 
1840 	STGE_INIT_RXDESC(sc, idx);
1841 
1842 	return (0);
1843 }
1844 
1845 /*
1846  * stge_set_filter:
1847  *
1848  *	Set up the receive filter.
1849  */
1850 static void
1851 stge_set_filter(struct stge_softc *sc)
1852 {
1853 	struct ethercom *ec = &sc->sc_ethercom;
1854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1855 	struct ether_multi *enm;
1856 	struct ether_multistep step;
1857 	uint32_t crc;
1858 	uint32_t mchash[2];
1859 
1860 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1861 	if (ifp->if_flags & IFF_BROADCAST)
1862 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1863 
1864 	/* XXX: ST1023 only works in promiscuous mode */
1865 	if (sc->sc_stge1023)
1866 		ifp->if_flags |= IFF_PROMISC;
1867 
1868 	if (ifp->if_flags & IFF_PROMISC) {
1869 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1870 		goto allmulti;
1871 	}
1872 
1873 	/*
1874 	 * Set up the multicast address filter by passing all multicast
1875 	 * addresses through a CRC generator, and then using the low-order
1876 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1877 	 * high order bits select the register, while the rest of the bits
1878 	 * select the bit within the register.
1879 	 */
1880 
1881 	memset(mchash, 0, sizeof(mchash));
1882 
1883 	ETHER_FIRST_MULTI(step, ec, enm);
1884 	if (enm == NULL)
1885 		goto done;
1886 
1887 	while (enm != NULL) {
1888 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1889 			/*
1890 			 * We must listen to a range of multicast addresses.
1891 			 * For now, just accept all multicasts, rather than
1892 			 * trying to set only those filter bits needed to match
1893 			 * the range.  (At this time, the only use of address
1894 			 * ranges is for IP multicast routing, for which the
1895 			 * range is big enough to require all bits set.)
1896 			 */
1897 			goto allmulti;
1898 		}
1899 
1900 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1901 
1902 		/* Just want the 6 least significant bits. */
1903 		crc &= 0x3f;
1904 
1905 		/* Set the corresponding bit in the hash table. */
1906 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1907 
1908 		ETHER_NEXT_MULTI(step, enm);
1909 	}
1910 
1911 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1912 
1913 	ifp->if_flags &= ~IFF_ALLMULTI;
1914 	goto done;
1915 
1916  allmulti:
1917 	ifp->if_flags |= IFF_ALLMULTI;
1918 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1919 
1920  done:
1921 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1922 		/*
1923 		 * Program the multicast hash table.
1924 		 */
1925 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1926 		    mchash[0]);
1927 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1928 		    mchash[1]);
1929 	}
1930 
1931 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1932 	    sc->sc_ReceiveMode);
1933 }
1934 
1935 /*
1936  * stge_mii_readreg:	[mii interface function]
1937  *
1938  *	Read a PHY register on the MII of the TC9021.
1939  */
1940 static int
1941 stge_mii_readreg(device_t self, int phy, int reg)
1942 {
1943 
1944 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1945 }
1946 
1947 /*
1948  * stge_mii_writereg:	[mii interface function]
1949  *
1950  *	Write a PHY register on the MII of the TC9021.
1951  */
1952 static void
1953 stge_mii_writereg(device_t self, int phy, int reg, int val)
1954 {
1955 
1956 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1957 }
1958 
1959 /*
1960  * stge_mii_statchg:	[mii interface function]
1961  *
1962  *	Callback from MII layer when media changes.
1963  */
1964 static void
1965 stge_mii_statchg(struct ifnet *ifp)
1966 {
1967 	struct stge_softc *sc = ifp->if_softc;
1968 
1969 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1970 		sc->sc_MACCtrl |= MC_DuplexSelect;
1971 	else
1972 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1973 
1974 	/* XXX 802.1x flow-control? */
1975 
1976 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1977 }
1978 
1979 /*
1980  * sste_mii_bitbang_read: [mii bit-bang interface function]
1981  *
1982  *	Read the MII serial port for the MII bit-bang module.
1983  */
1984 static uint32_t
1985 stge_mii_bitbang_read(device_t self)
1986 {
1987 	struct stge_softc *sc = device_private(self);
1988 
1989 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1990 }
1991 
1992 /*
1993  * stge_mii_bitbang_write: [mii big-bang interface function]
1994  *
1995  *	Write the MII serial port for the MII bit-bang module.
1996  */
1997 static void
1998 stge_mii_bitbang_write(device_t self, uint32_t val)
1999 {
2000 	struct stge_softc *sc = device_private(self);
2001 
2002 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2003 	    val | sc->sc_PhyCtrl);
2004 }
2005