xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: if_stge.c,v 1.39 2007/10/19 12:00:48 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.39 2007/10/19 12:00:48 ad Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stgereg.h>
84 
85 /* #define	STGE_CU_BUG			1 */
86 #define	STGE_VLAN_UNTAG			1
87 /* #define	STGE_VLAN_CFI		1 */
88 
89 /*
90  * Transmit descriptor list size.
91  */
92 #define	STGE_NTXDESC		256
93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
95 
96 /*
97  * Receive descriptor list size.
98  */
99 #define	STGE_NRXDESC		256
100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
102 
103 /*
104  * Only interrupt every N frames.  Must be a power-of-two.
105  */
106 #define	STGE_TXINTR_SPACING	16
107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108 
109 /*
110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
111  * a single clump that maps to a single DMA segment to make several things
112  * easier.
113  */
114 struct stge_control_data {
115 	/*
116 	 * The transmit descriptors.
117 	 */
118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
119 
120 	/*
121 	 * The receive descriptors.
122 	 */
123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125 
126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
129 
130 /*
131  * Software state for transmit and receive jobs.
132  */
133 struct stge_descsoft {
134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
136 };
137 
138 /*
139  * Software state per device.
140  */
141 struct stge_softc {
142 	struct device sc_dev;		/* generic device information */
143 	bus_space_tag_t sc_st;		/* bus space tag */
144 	bus_space_handle_t sc_sh;	/* bus space handle */
145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
146 	struct ethercom sc_ethercom;	/* ethernet common data */
147 	void *sc_sdhook;		/* shutdown hook */
148 	int sc_rev;			/* silicon revision */
149 
150 	void *sc_ih;			/* interrupt cookie */
151 
152 	struct mii_data sc_mii;		/* MII/media information */
153 
154 	callout_t sc_tick_ch;		/* tick callout */
155 
156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
158 
159 	/*
160 	 * Software state for transmit and receive descriptors.
161 	 */
162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164 
165 	/*
166 	 * Control data structures.
167 	 */
168 	struct stge_control_data *sc_control_data;
169 #define	sc_txdescs	sc_control_data->scd_txdescs
170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
171 
172 #ifdef STGE_EVENT_COUNTERS
173 	/*
174 	 * Event counters.
175 	 */
176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
180 
181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
188 
189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
192 
193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197 
198 	int	sc_txpending;		/* number of Tx requests pending */
199 	int	sc_txdirty;		/* first dirty Tx descriptor */
200 	int	sc_txlast;		/* last used Tx descriptor */
201 
202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
203 	int	sc_rxdiscard;
204 	int	sc_rxlen;
205 	struct mbuf *sc_rxhead;
206 	struct mbuf *sc_rxtail;
207 	struct mbuf **sc_rxtailp;
208 
209 	int	sc_txthresh;		/* Tx threshold */
210 	uint32_t sc_usefiber:1;		/* if we're fiber */
211 	uint32_t sc_stge1023:1;		/* are we a 1023 */
212 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
213 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
214 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
215 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
216 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
217 };
218 
219 #define	STGE_RXCHAIN_RESET(sc)						\
220 do {									\
221 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
222 	*(sc)->sc_rxtailp = NULL;					\
223 	(sc)->sc_rxlen = 0;						\
224 } while (/*CONSTCOND*/0)
225 
226 #define	STGE_RXCHAIN_LINK(sc, m)					\
227 do {									\
228 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
229 	(sc)->sc_rxtailp = &(m)->m_next;				\
230 } while (/*CONSTCOND*/0)
231 
232 #ifdef STGE_EVENT_COUNTERS
233 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
234 #else
235 #define	STGE_EVCNT_INCR(ev)	/* nothing */
236 #endif
237 
238 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
240 
241 #define	STGE_CDTXSYNC(sc, x, ops)					\
242 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
243 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244 
245 #define	STGE_CDRXSYNC(sc, x, ops)					\
246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
247 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248 
249 #define	STGE_INIT_RXDESC(sc, x)						\
250 do {									\
251 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
252 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
253 									\
254 	/*								\
255 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
256 	 * so that the payload after the Ethernet header is aligned	\
257 	 * to a 4-byte boundary.					\
258 	 */								\
259 	__rfd->rfd_frag.frag_word0 =					\
260 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 	    FRAG_LEN(MCLBYTES - 2));					\
262 	__rfd->rfd_next =						\
263 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
264 	__rfd->rfd_status = 0;						\
265 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267 
268 #define STGE_TIMEOUT 1000
269 
270 static void	stge_start(struct ifnet *);
271 static void	stge_watchdog(struct ifnet *);
272 static int	stge_ioctl(struct ifnet *, u_long, void *);
273 static int	stge_init(struct ifnet *);
274 static void	stge_stop(struct ifnet *, int);
275 
276 static void	stge_shutdown(void *);
277 
278 static void	stge_reset(struct stge_softc *);
279 static void	stge_rxdrain(struct stge_softc *);
280 static int	stge_add_rxbuf(struct stge_softc *, int);
281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void	stge_tick(void *);
283 
284 static void	stge_stats_update(struct stge_softc *);
285 
286 static void	stge_set_filter(struct stge_softc *);
287 
288 static int	stge_intr(void *);
289 static void	stge_txintr(struct stge_softc *);
290 static void	stge_rxintr(struct stge_softc *);
291 
292 static int	stge_mii_readreg(struct device *, int, int);
293 static void	stge_mii_writereg(struct device *, int, int, int);
294 static void	stge_mii_statchg(struct device *);
295 
296 static int	stge_mediachange(struct ifnet *);
297 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
298 
299 static int	stge_match(struct device *, struct cfdata *, void *);
300 static void	stge_attach(struct device *, struct device *, void *);
301 
302 int	stge_copy_small = 0;
303 
304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
305     stge_match, stge_attach, NULL, NULL);
306 
307 static uint32_t stge_mii_bitbang_read(struct device *);
308 static void	stge_mii_bitbang_write(struct device *, uint32_t);
309 
310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
311 	stge_mii_bitbang_read,
312 	stge_mii_bitbang_write,
313 	{
314 		PC_MgmtData,		/* MII_BIT_MDO */
315 		PC_MgmtData,		/* MII_BIT_MDI */
316 		PC_MgmtClk,		/* MII_BIT_MDC */
317 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
318 		0,			/* MII_BIT_DIR_PHY_HOST */
319 	}
320 };
321 
322 /*
323  * Devices supported by this driver.
324  */
325 static const struct stge_product {
326 	pci_vendor_id_t		stge_vendor;
327 	pci_product_id_t	stge_product;
328 	const char		*stge_name;
329 } stge_products[] = {
330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
331 	  "Sundance ST-1023 Gigabit Ethernet" },
332 
333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
334 	  "Sundance ST-2021 Gigabit Ethernet" },
335 
336 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
337 	  "Tamarack TC9021 Gigabit Ethernet" },
338 
339 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 	  "Tamarack TC9021 Gigabit Ethernet" },
341 
342 	/*
343 	 * The Sundance sample boards use the Sundance vendor ID,
344 	 * but the Tamarack product ID.
345 	 */
346 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
347 	  "Sundance TC9021 Gigabit Ethernet" },
348 
349 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
350 	  "Sundance TC9021 Gigabit Ethernet" },
351 
352 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
353 	  "D-Link DL-4000 Gigabit Ethernet" },
354 
355 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
356 	  "Antares Gigabit Ethernet" },
357 
358 	{ 0,				0,
359 	  NULL },
360 };
361 
362 static const struct stge_product *
363 stge_lookup(const struct pci_attach_args *pa)
364 {
365 	const struct stge_product *sp;
366 
367 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
368 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
369 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
370 			return (sp);
371 	}
372 	return (NULL);
373 }
374 
375 static int
376 stge_match(struct device *parent, struct cfdata *cf,
377     void *aux)
378 {
379 	struct pci_attach_args *pa = aux;
380 
381 	if (stge_lookup(pa) != NULL)
382 		return (1);
383 
384 	return (0);
385 }
386 
387 static void
388 stge_attach(struct device *parent, struct device *self, void *aux)
389 {
390 	struct stge_softc *sc = (struct stge_softc *) self;
391 	struct pci_attach_args *pa = aux;
392 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
393 	pci_chipset_tag_t pc = pa->pa_pc;
394 	pci_intr_handle_t ih;
395 	const char *intrstr = NULL;
396 	bus_space_tag_t iot, memt;
397 	bus_space_handle_t ioh, memh;
398 	bus_dma_segment_t seg;
399 	int ioh_valid, memh_valid;
400 	int i, rseg, error;
401 	const struct stge_product *sp;
402 	uint8_t enaddr[ETHER_ADDR_LEN];
403 
404 	callout_init(&sc->sc_tick_ch, 0);
405 
406 	sp = stge_lookup(pa);
407 	if (sp == NULL) {
408 		printf("\n");
409 		panic("ste_attach: impossible");
410 	}
411 
412 	sc->sc_rev = PCI_REVISION(pa->pa_class);
413 
414 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
415 
416 	/*
417 	 * Map the device.
418 	 */
419 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
420 	    PCI_MAPREG_TYPE_IO, 0,
421 	    &iot, &ioh, NULL, NULL) == 0);
422 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
423 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
424 	    &memt, &memh, NULL, NULL) == 0);
425 
426 	if (memh_valid) {
427 		sc->sc_st = memt;
428 		sc->sc_sh = memh;
429 	} else if (ioh_valid) {
430 		sc->sc_st = iot;
431 		sc->sc_sh = ioh;
432 	} else {
433 		printf("%s: unable to map device registers\n",
434 		    sc->sc_dev.dv_xname);
435 		return;
436 	}
437 
438 	sc->sc_dmat = pa->pa_dmat;
439 
440 	/* Enable bus mastering. */
441 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
442 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
443 	    PCI_COMMAND_MASTER_ENABLE);
444 
445 	/* power up chip */
446 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
447 	    NULL)) && error != EOPNOTSUPP) {
448 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
449 		    error);
450 		return;
451 	}
452 	/*
453 	 * Map and establish our interrupt.
454 	 */
455 	if (pci_intr_map(pa, &ih)) {
456 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
457 		return;
458 	}
459 	intrstr = pci_intr_string(pc, ih);
460 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
461 	if (sc->sc_ih == NULL) {
462 		printf("%s: unable to establish interrupt",
463 		    sc->sc_dev.dv_xname);
464 		if (intrstr != NULL)
465 			printf(" at %s", intrstr);
466 		printf("\n");
467 		return;
468 	}
469 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
470 
471 	/*
472 	 * Allocate the control data structures, and create and load the
473 	 * DMA map for it.
474 	 */
475 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
476 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
477 	    0)) != 0) {
478 		printf("%s: unable to allocate control data, error = %d\n",
479 		    sc->sc_dev.dv_xname, error);
480 		goto fail_0;
481 	}
482 
483 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
484 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
485 	    BUS_DMA_COHERENT)) != 0) {
486 		printf("%s: unable to map control data, error = %d\n",
487 		    sc->sc_dev.dv_xname, error);
488 		goto fail_1;
489 	}
490 
491 	if ((error = bus_dmamap_create(sc->sc_dmat,
492 	    sizeof(struct stge_control_data), 1,
493 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
494 		printf("%s: unable to create control data DMA map, "
495 		    "error = %d\n", sc->sc_dev.dv_xname, error);
496 		goto fail_2;
497 	}
498 
499 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
500 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
501 	    0)) != 0) {
502 		printf("%s: unable to load control data DMA map, error = %d\n",
503 		    sc->sc_dev.dv_xname, error);
504 		goto fail_3;
505 	}
506 
507 	/*
508 	 * Create the transmit buffer DMA maps.  Note that rev B.3
509 	 * and earlier seem to have a bug regarding multi-fragment
510 	 * packets.  We need to limit the number of Tx segments on
511 	 * such chips to 1.
512 	 */
513 	for (i = 0; i < STGE_NTXDESC; i++) {
514 		if ((error = bus_dmamap_create(sc->sc_dmat,
515 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
516 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
517 			printf("%s: unable to create tx DMA map %d, "
518 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
519 			goto fail_4;
520 		}
521 	}
522 
523 	/*
524 	 * Create the receive buffer DMA maps.
525 	 */
526 	for (i = 0; i < STGE_NRXDESC; i++) {
527 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
528 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
529 			printf("%s: unable to create rx DMA map %d, "
530 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
531 			goto fail_5;
532 		}
533 		sc->sc_rxsoft[i].ds_mbuf = NULL;
534 	}
535 
536 	/*
537 	 * Determine if we're copper or fiber.  It affects how we
538 	 * reset the card.
539 	 */
540 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
541 	    AC_PhyMedia)
542 		sc->sc_usefiber = 1;
543 	else
544 		sc->sc_usefiber = 0;
545 
546 	/*
547 	 * Reset the chip to a known state.
548 	 */
549 	stge_reset(sc);
550 
551 	/*
552 	 * Reading the station address from the EEPROM doesn't seem
553 	 * to work, at least on my sample boards.  Instead, since
554 	 * the reset sequence does AutoInit, read it from the station
555 	 * address registers. For Sundance 1023 you can only read it
556 	 * from EEPROM.
557 	 */
558 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
559 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 		    STGE_StationAddress0) & 0xff;
561 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
562 		    STGE_StationAddress0) >> 8;
563 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
564 		    STGE_StationAddress1) & 0xff;
565 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
566 		    STGE_StationAddress1) >> 8;
567 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
568 		    STGE_StationAddress2) & 0xff;
569 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
570 		    STGE_StationAddress2) >> 8;
571 		sc->sc_stge1023 = 0;
572 	} else {
573 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
574 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
575 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
576 			    &myaddr[i]);
577 			myaddr[i] = le16toh(myaddr[i]);
578 		}
579 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
580 		sc->sc_stge1023 = 1;
581 	}
582 
583 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
584 	    ether_sprintf(enaddr));
585 
586 	/*
587 	 * Read some important bits from the PhyCtrl register.
588 	 */
589 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
590 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
591 
592 	/*
593 	 * Initialize our media structures and probe the MII.
594 	 */
595 	sc->sc_mii.mii_ifp = ifp;
596 	sc->sc_mii.mii_readreg = stge_mii_readreg;
597 	sc->sc_mii.mii_writereg = stge_mii_writereg;
598 	sc->sc_mii.mii_statchg = stge_mii_statchg;
599 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
600 	    stge_mediastatus);
601 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
602 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
603 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
604 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
605 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
606 	} else
607 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
608 
609 	ifp = &sc->sc_ethercom.ec_if;
610 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
611 	ifp->if_softc = sc;
612 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
613 	ifp->if_ioctl = stge_ioctl;
614 	ifp->if_start = stge_start;
615 	ifp->if_watchdog = stge_watchdog;
616 	ifp->if_init = stge_init;
617 	ifp->if_stop = stge_stop;
618 	IFQ_SET_READY(&ifp->if_snd);
619 
620 	/*
621 	 * The manual recommends disabling early transmit, so we
622 	 * do.  It's disabled anyway, if using IP checksumming,
623 	 * since the entire packet must be in the FIFO in order
624 	 * for the chip to perform the checksum.
625 	 */
626 	sc->sc_txthresh = 0x0fff;
627 
628 	/*
629 	 * Disable MWI if the PCI layer tells us to.
630 	 */
631 	sc->sc_DMACtrl = 0;
632 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
633 		sc->sc_DMACtrl |= DMAC_MWIDisable;
634 
635 	/*
636 	 * We can support 802.1Q VLAN-sized frames and jumbo
637 	 * Ethernet frames.
638 	 *
639 	 * XXX Figure out how to do hw-assisted VLAN tagging in
640 	 * XXX a reasonable way on this chip.
641 	 */
642 	sc->sc_ethercom.ec_capabilities |=
643 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
644 	    ETHERCAP_VLAN_HWTAGGING;
645 
646 	/*
647 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
648 	 */
649 	sc->sc_ethercom.ec_if.if_capabilities |=
650 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
651 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
652 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
653 
654 	/*
655 	 * Attach the interface.
656 	 */
657 	if_attach(ifp);
658 	ether_ifattach(ifp, enaddr);
659 
660 #ifdef STGE_EVENT_COUNTERS
661 	/*
662 	 * Attach event counters.
663 	 */
664 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
665 	    NULL, sc->sc_dev.dv_xname, "txstall");
666 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
667 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
668 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
669 	    NULL, sc->sc_dev.dv_xname, "txindintr");
670 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
671 	    NULL, sc->sc_dev.dv_xname, "rxintr");
672 
673 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
674 	    NULL, sc->sc_dev.dv_xname, "txseg1");
675 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
676 	    NULL, sc->sc_dev.dv_xname, "txseg2");
677 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
678 	    NULL, sc->sc_dev.dv_xname, "txseg3");
679 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
680 	    NULL, sc->sc_dev.dv_xname, "txseg4");
681 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
682 	    NULL, sc->sc_dev.dv_xname, "txseg5");
683 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
684 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
685 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
686 	    NULL, sc->sc_dev.dv_xname, "txcopy");
687 
688 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
689 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
690 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
691 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
692 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
693 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
694 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
695 	    NULL, sc->sc_dev.dv_xname, "txipsum");
696 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
697 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
698 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
699 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
700 #endif /* STGE_EVENT_COUNTERS */
701 
702 	/*
703 	 * Make sure the interface is shutdown during reboot.
704 	 */
705 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
706 	if (sc->sc_sdhook == NULL)
707 		printf("%s: WARNING: unable to establish shutdown hook\n",
708 		    sc->sc_dev.dv_xname);
709 	return;
710 
711 	/*
712 	 * Free any resources we've allocated during the failed attach
713 	 * attempt.  Do this in reverse order and fall through.
714 	 */
715  fail_5:
716 	for (i = 0; i < STGE_NRXDESC; i++) {
717 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
718 			bus_dmamap_destroy(sc->sc_dmat,
719 			    sc->sc_rxsoft[i].ds_dmamap);
720 	}
721  fail_4:
722 	for (i = 0; i < STGE_NTXDESC; i++) {
723 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
724 			bus_dmamap_destroy(sc->sc_dmat,
725 			    sc->sc_txsoft[i].ds_dmamap);
726 	}
727 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
728  fail_3:
729 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
730  fail_2:
731 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
732 	    sizeof(struct stge_control_data));
733  fail_1:
734 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
735  fail_0:
736 	return;
737 }
738 
739 /*
740  * stge_shutdown:
741  *
742  *	Make sure the interface is stopped at reboot time.
743  */
744 static void
745 stge_shutdown(void *arg)
746 {
747 	struct stge_softc *sc = arg;
748 
749 	stge_stop(&sc->sc_ethercom.ec_if, 1);
750 }
751 
752 static void
753 stge_dma_wait(struct stge_softc *sc)
754 {
755 	int i;
756 
757 	for (i = 0; i < STGE_TIMEOUT; i++) {
758 		delay(2);
759 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
760 		     DMAC_TxDMAInProg) == 0)
761 			break;
762 	}
763 
764 	if (i == STGE_TIMEOUT)
765 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
766 }
767 
768 /*
769  * stge_start:		[ifnet interface function]
770  *
771  *	Start packet transmission on the interface.
772  */
773 static void
774 stge_start(struct ifnet *ifp)
775 {
776 	struct stge_softc *sc = ifp->if_softc;
777 	struct mbuf *m0;
778 	struct stge_descsoft *ds;
779 	struct stge_tfd *tfd;
780 	bus_dmamap_t dmamap;
781 	int error, firsttx, nexttx, opending, seg, totlen;
782 	uint64_t csum_flags;
783 
784 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
785 		return;
786 
787 	/*
788 	 * Remember the previous number of pending transmissions
789 	 * and the first descriptor we will use.
790 	 */
791 	opending = sc->sc_txpending;
792 	firsttx = STGE_NEXTTX(sc->sc_txlast);
793 
794 	/*
795 	 * Loop through the send queue, setting up transmit descriptors
796 	 * until we drain the queue, or use up all available transmit
797 	 * descriptors.
798 	 */
799 	for (;;) {
800 		struct m_tag *mtag;
801 		uint64_t tfc;
802 
803 		/*
804 		 * Grab a packet off the queue.
805 		 */
806 		IFQ_POLL(&ifp->if_snd, m0);
807 		if (m0 == NULL)
808 			break;
809 
810 		/*
811 		 * Leave one unused descriptor at the end of the
812 		 * list to prevent wrapping completely around.
813 		 */
814 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
815 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
816 			break;
817 		}
818 
819 		/*
820 		 * See if we have any VLAN stuff.
821 		 */
822 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
823 
824 		/*
825 		 * Get the last and next available transmit descriptor.
826 		 */
827 		nexttx = STGE_NEXTTX(sc->sc_txlast);
828 		tfd = &sc->sc_txdescs[nexttx];
829 		ds = &sc->sc_txsoft[nexttx];
830 
831 		dmamap = ds->ds_dmamap;
832 
833 		/*
834 		 * Load the DMA map.  If this fails, the packet either
835 		 * didn't fit in the alloted number of segments, or we
836 		 * were short on resources.  For the too-many-segments
837 		 * case, we simply report an error and drop the packet,
838 		 * since we can't sanely copy a jumbo packet to a single
839 		 * buffer.
840 		 */
841 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
842 		    BUS_DMA_NOWAIT);
843 		if (error) {
844 			if (error == EFBIG) {
845 				printf("%s: Tx packet consumes too many "
846 				    "DMA segments, dropping...\n",
847 				    sc->sc_dev.dv_xname);
848 				IFQ_DEQUEUE(&ifp->if_snd, m0);
849 				m_freem(m0);
850 				continue;
851 			}
852 			/*
853 			 * Short on resources, just stop for now.
854 			 */
855 			break;
856 		}
857 
858 		IFQ_DEQUEUE(&ifp->if_snd, m0);
859 
860 		/*
861 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
862 		 */
863 
864 		/* Sync the DMA map. */
865 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
866 		    BUS_DMASYNC_PREWRITE);
867 
868 		/* Initialize the fragment list. */
869 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
870 			tfd->tfd_frags[seg].frag_word0 =
871 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
872 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
873 			totlen += dmamap->dm_segs[seg].ds_len;
874 		}
875 
876 #ifdef STGE_EVENT_COUNTERS
877 		switch (dmamap->dm_nsegs) {
878 		case 1:
879 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
880 			break;
881 		case 2:
882 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
883 			break;
884 		case 3:
885 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
886 			break;
887 		case 4:
888 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
889 			break;
890 		case 5:
891 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
892 			break;
893 		default:
894 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
895 			break;
896 		}
897 #endif /* STGE_EVENT_COUNTERS */
898 
899 		/*
900 		 * Initialize checksumming flags in the descriptor.
901 		 * Byte-swap constants so the compiler can optimize.
902 		 */
903 		csum_flags = 0;
904 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
905 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
906 			csum_flags |= TFD_IPChecksumEnable;
907 		}
908 
909 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
910 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
911 			csum_flags |= TFD_TCPChecksumEnable;
912 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
913 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
914 			csum_flags |= TFD_UDPChecksumEnable;
915 		}
916 
917 		/*
918 		 * Initialize the descriptor and give it to the chip.
919 		 * Check to see if we have a VLAN tag to insert.
920 		 */
921 
922 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
923 		    TFD_FragCount(seg) | csum_flags |
924 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
925 			TFD_TxDMAIndicate : 0);
926 		if (mtag) {
927 #if	0
928 			struct ether_header *eh =
929 			    mtod(m0, struct ether_header *);
930 			u_int16_t etype = ntohs(eh->ether_type);
931 			printf("%s: xmit (tag %d) etype %x\n",
932 			   ifp->if_xname, *mtod(n, int *), etype);
933 #endif
934 			tfc |= TFD_VLANTagInsert |
935 #ifdef	STGE_VLAN_CFI
936 			    TFD_CFI |
937 #endif
938 			    TFD_VID(VLAN_TAG_VALUE(mtag));
939 		}
940 		tfd->tfd_control = htole64(tfc);
941 
942 		/* Sync the descriptor. */
943 		STGE_CDTXSYNC(sc, nexttx,
944 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
945 
946 		/*
947 		 * Kick the transmit DMA logic.
948 		 */
949 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
950 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
951 
952 		/*
953 		 * Store a pointer to the packet so we can free it later.
954 		 */
955 		ds->ds_mbuf = m0;
956 
957 		/* Advance the tx pointer. */
958 		sc->sc_txpending++;
959 		sc->sc_txlast = nexttx;
960 
961 #if NBPFILTER > 0
962 		/*
963 		 * Pass the packet to any BPF listeners.
964 		 */
965 		if (ifp->if_bpf)
966 			bpf_mtap(ifp->if_bpf, m0);
967 #endif /* NBPFILTER > 0 */
968 	}
969 
970 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
971 		/* No more slots left; notify upper layer. */
972 		ifp->if_flags |= IFF_OACTIVE;
973 	}
974 
975 	if (sc->sc_txpending != opending) {
976 		/*
977 		 * We enqueued packets.  If the transmitter was idle,
978 		 * reset the txdirty pointer.
979 		 */
980 		if (opending == 0)
981 			sc->sc_txdirty = firsttx;
982 
983 		/* Set a watchdog timer in case the chip flakes out. */
984 		ifp->if_timer = 5;
985 	}
986 }
987 
988 /*
989  * stge_watchdog:	[ifnet interface function]
990  *
991  *	Watchdog timer handler.
992  */
993 static void
994 stge_watchdog(struct ifnet *ifp)
995 {
996 	struct stge_softc *sc = ifp->if_softc;
997 
998 	/*
999 	 * Sweep up first, since we don't interrupt every frame.
1000 	 */
1001 	stge_txintr(sc);
1002 	if (sc->sc_txpending != 0) {
1003 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1004 		ifp->if_oerrors++;
1005 
1006 		(void) stge_init(ifp);
1007 
1008 		/* Try to get more packets going. */
1009 		stge_start(ifp);
1010 	}
1011 }
1012 
1013 /*
1014  * stge_ioctl:		[ifnet interface function]
1015  *
1016  *	Handle control requests from the operator.
1017  */
1018 static int
1019 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1020 {
1021 	struct stge_softc *sc = ifp->if_softc;
1022 	struct ifreq *ifr = (struct ifreq *)data;
1023 	int s, error;
1024 
1025 	s = splnet();
1026 
1027 	switch (cmd) {
1028 	case SIOCSIFMEDIA:
1029 	case SIOCGIFMEDIA:
1030 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1031 		break;
1032 
1033 	default:
1034 		error = ether_ioctl(ifp, cmd, data);
1035 		if (error == ENETRESET) {
1036 			/*
1037 			 * Multicast list has changed; set the hardware filter
1038 			 * accordingly.
1039 			 */
1040 			if (ifp->if_flags & IFF_RUNNING)
1041 				stge_set_filter(sc);
1042 			error = 0;
1043 		}
1044 		break;
1045 	}
1046 
1047 	/* Try to get more packets going. */
1048 	stge_start(ifp);
1049 
1050 	splx(s);
1051 	return (error);
1052 }
1053 
1054 /*
1055  * stge_intr:
1056  *
1057  *	Interrupt service routine.
1058  */
1059 static int
1060 stge_intr(void *arg)
1061 {
1062 	struct stge_softc *sc = arg;
1063 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1064 	uint32_t txstat;
1065 	int wantinit;
1066 	uint16_t isr;
1067 
1068 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1069 	     IS_InterruptStatus) == 0)
1070 		return (0);
1071 
1072 	for (wantinit = 0; wantinit == 0;) {
1073 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1074 		if ((isr & sc->sc_IntEnable) == 0)
1075 			break;
1076 
1077 		/* Host interface errors. */
1078 		if (isr & IS_HostError) {
1079 			printf("%s: Host interface error\n",
1080 			    sc->sc_dev.dv_xname);
1081 			wantinit = 1;
1082 			continue;
1083 		}
1084 
1085 		/* Receive interrupts. */
1086 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1087 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1088 			stge_rxintr(sc);
1089 			if (isr & IS_RFDListEnd) {
1090 				printf("%s: receive ring overflow\n",
1091 				    sc->sc_dev.dv_xname);
1092 				/*
1093 				 * XXX Should try to recover from this
1094 				 * XXX more gracefully.
1095 				 */
1096 				wantinit = 1;
1097 			}
1098 		}
1099 
1100 		/* Transmit interrupts. */
1101 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1102 #ifdef STGE_EVENT_COUNTERS
1103 			if (isr & IS_TxDMAComplete)
1104 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1105 #endif
1106 			stge_txintr(sc);
1107 		}
1108 
1109 		/* Statistics overflow. */
1110 		if (isr & IS_UpdateStats)
1111 			stge_stats_update(sc);
1112 
1113 		/* Transmission errors. */
1114 		if (isr & IS_TxComplete) {
1115 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1116 			for (;;) {
1117 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1118 				    STGE_TxStatus);
1119 				if ((txstat & TS_TxComplete) == 0)
1120 					break;
1121 				if (txstat & TS_TxUnderrun) {
1122 					sc->sc_txthresh++;
1123 					if (sc->sc_txthresh > 0x0fff)
1124 						sc->sc_txthresh = 0x0fff;
1125 					printf("%s: transmit underrun, new "
1126 					    "threshold: %d bytes\n",
1127 					    sc->sc_dev.dv_xname,
1128 					    sc->sc_txthresh << 5);
1129 				}
1130 				if (txstat & TS_MaxCollisions)
1131 					printf("%s: excessive collisions\n",
1132 					    sc->sc_dev.dv_xname);
1133 			}
1134 			wantinit = 1;
1135 		}
1136 
1137 	}
1138 
1139 	if (wantinit)
1140 		stge_init(ifp);
1141 
1142 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1143 	    sc->sc_IntEnable);
1144 
1145 	/* Try to get more packets going. */
1146 	stge_start(ifp);
1147 
1148 	return (1);
1149 }
1150 
1151 /*
1152  * stge_txintr:
1153  *
1154  *	Helper; handle transmit interrupts.
1155  */
1156 static void
1157 stge_txintr(struct stge_softc *sc)
1158 {
1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160 	struct stge_descsoft *ds;
1161 	uint64_t control;
1162 	int i;
1163 
1164 	ifp->if_flags &= ~IFF_OACTIVE;
1165 
1166 	/*
1167 	 * Go through our Tx list and free mbufs for those
1168 	 * frames which have been transmitted.
1169 	 */
1170 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1171 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1172 		ds = &sc->sc_txsoft[i];
1173 
1174 		STGE_CDTXSYNC(sc, i,
1175 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1176 
1177 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1178 		if ((control & TFD_TFDDone) == 0)
1179 			break;
1180 
1181 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1182 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1183 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1184 		m_freem(ds->ds_mbuf);
1185 		ds->ds_mbuf = NULL;
1186 	}
1187 
1188 	/* Update the dirty transmit buffer pointer. */
1189 	sc->sc_txdirty = i;
1190 
1191 	/*
1192 	 * If there are no more pending transmissions, cancel the watchdog
1193 	 * timer.
1194 	 */
1195 	if (sc->sc_txpending == 0)
1196 		ifp->if_timer = 0;
1197 }
1198 
1199 /*
1200  * stge_rxintr:
1201  *
1202  *	Helper; handle receive interrupts.
1203  */
1204 static void
1205 stge_rxintr(struct stge_softc *sc)
1206 {
1207 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208 	struct stge_descsoft *ds;
1209 	struct mbuf *m, *tailm;
1210 	uint64_t status;
1211 	int i, len;
1212 
1213 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1214 		ds = &sc->sc_rxsoft[i];
1215 
1216 		STGE_CDRXSYNC(sc, i,
1217 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1218 
1219 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1220 
1221 		if ((status & RFD_RFDDone) == 0)
1222 			break;
1223 
1224 		if (__predict_false(sc->sc_rxdiscard)) {
1225 			STGE_INIT_RXDESC(sc, i);
1226 			if (status & RFD_FrameEnd) {
1227 				/* Reset our state. */
1228 				sc->sc_rxdiscard = 0;
1229 			}
1230 			continue;
1231 		}
1232 
1233 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1234 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1235 
1236 		m = ds->ds_mbuf;
1237 
1238 		/*
1239 		 * Add a new receive buffer to the ring.
1240 		 */
1241 		if (stge_add_rxbuf(sc, i) != 0) {
1242 			/*
1243 			 * Failed, throw away what we've done so
1244 			 * far, and discard the rest of the packet.
1245 			 */
1246 			ifp->if_ierrors++;
1247 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1248 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1249 			STGE_INIT_RXDESC(sc, i);
1250 			if ((status & RFD_FrameEnd) == 0)
1251 				sc->sc_rxdiscard = 1;
1252 			if (sc->sc_rxhead != NULL)
1253 				m_freem(sc->sc_rxhead);
1254 			STGE_RXCHAIN_RESET(sc);
1255 			continue;
1256 		}
1257 
1258 #ifdef DIAGNOSTIC
1259 		if (status & RFD_FrameStart) {
1260 			KASSERT(sc->sc_rxhead == NULL);
1261 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1262 		}
1263 #endif
1264 
1265 		STGE_RXCHAIN_LINK(sc, m);
1266 
1267 		/*
1268 		 * If this is not the end of the packet, keep
1269 		 * looking.
1270 		 */
1271 		if ((status & RFD_FrameEnd) == 0) {
1272 			sc->sc_rxlen += m->m_len;
1273 			continue;
1274 		}
1275 
1276 		/*
1277 		 * Okay, we have the entire packet now...
1278 		 */
1279 		*sc->sc_rxtailp = NULL;
1280 		m = sc->sc_rxhead;
1281 		tailm = sc->sc_rxtail;
1282 
1283 		STGE_RXCHAIN_RESET(sc);
1284 
1285 		/*
1286 		 * If the packet had an error, drop it.  Note we
1287 		 * count the error later in the periodic stats update.
1288 		 */
1289 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1290 			      RFD_RxAlignmentError | RFD_RxFCSError |
1291 			      RFD_RxLengthError)) {
1292 			m_freem(m);
1293 			continue;
1294 		}
1295 
1296 		/*
1297 		 * No errors.
1298 		 *
1299 		 * Note we have configured the chip to not include
1300 		 * the CRC at the end of the packet.
1301 		 */
1302 		len = RFD_RxDMAFrameLen(status);
1303 		tailm->m_len = len - sc->sc_rxlen;
1304 
1305 		/*
1306 		 * If the packet is small enough to fit in a
1307 		 * single header mbuf, allocate one and copy
1308 		 * the data into it.  This greatly reduces
1309 		 * memory consumption when we receive lots
1310 		 * of small packets.
1311 		 */
1312 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1313 			struct mbuf *nm;
1314 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1315 			if (nm == NULL) {
1316 				ifp->if_ierrors++;
1317 				m_freem(m);
1318 				continue;
1319 			}
1320 			nm->m_data += 2;
1321 			nm->m_pkthdr.len = nm->m_len = len;
1322 			m_copydata(m, 0, len, mtod(nm, void *));
1323 			m_freem(m);
1324 			m = nm;
1325 		}
1326 
1327 		/*
1328 		 * Set the incoming checksum information for the packet.
1329 		 */
1330 		if (status & RFD_IPDetected) {
1331 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1332 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1333 			if (status & RFD_IPError)
1334 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1335 			if (status & RFD_TCPDetected) {
1336 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1337 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1338 				if (status & RFD_TCPError)
1339 					m->m_pkthdr.csum_flags |=
1340 					    M_CSUM_TCP_UDP_BAD;
1341 			} else if (status & RFD_UDPDetected) {
1342 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1343 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1344 				if (status & RFD_UDPError)
1345 					m->m_pkthdr.csum_flags |=
1346 					    M_CSUM_TCP_UDP_BAD;
1347 			}
1348 		}
1349 
1350 		m->m_pkthdr.rcvif = ifp;
1351 		m->m_pkthdr.len = len;
1352 
1353 #if NBPFILTER > 0
1354 		/*
1355 		 * Pass this up to any BPF listeners, but only
1356 		 * pass if up the stack if it's for us.
1357 		 */
1358 		if (ifp->if_bpf)
1359 			bpf_mtap(ifp->if_bpf, m);
1360 #endif /* NBPFILTER > 0 */
1361 #ifdef	STGE_VLAN_UNTAG
1362 		/*
1363 		 * Check for VLAN tagged packets
1364 		 */
1365 		if (status & RFD_VLANDetected)
1366 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1367 
1368 #endif
1369 #if	0
1370 		if (status & RFD_VLANDetected) {
1371 			struct ether_header *eh;
1372 			u_int16_t etype;
1373 
1374 			eh = mtod(m, struct ether_header *);
1375 			etype = ntohs(eh->ether_type);
1376 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1377 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1378 			    etype);
1379 		}
1380 #endif
1381 		/* Pass it on. */
1382 		(*ifp->if_input)(ifp, m);
1383 	}
1384 
1385 	/* Update the receive pointer. */
1386 	sc->sc_rxptr = i;
1387 }
1388 
1389 /*
1390  * stge_tick:
1391  *
1392  *	One second timer, used to tick the MII.
1393  */
1394 static void
1395 stge_tick(void *arg)
1396 {
1397 	struct stge_softc *sc = arg;
1398 	int s;
1399 
1400 	s = splnet();
1401 	mii_tick(&sc->sc_mii);
1402 	stge_stats_update(sc);
1403 	splx(s);
1404 
1405 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1406 }
1407 
1408 /*
1409  * stge_stats_update:
1410  *
1411  *	Read the TC9021 statistics counters.
1412  */
1413 static void
1414 stge_stats_update(struct stge_softc *sc)
1415 {
1416 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1417 	bus_space_tag_t st = sc->sc_st;
1418 	bus_space_handle_t sh = sc->sc_sh;
1419 
1420 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1421 
1422 	ifp->if_ipackets +=
1423 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1424 
1425 	ifp->if_ierrors +=
1426 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1427 
1428 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1429 
1430 	ifp->if_opackets +=
1431 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1432 
1433 	ifp->if_collisions +=
1434 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1435 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1436 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1437 
1438 	ifp->if_oerrors +=
1439 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1440 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1441 }
1442 
1443 /*
1444  * stge_reset:
1445  *
1446  *	Perform a soft reset on the TC9021.
1447  */
1448 static void
1449 stge_reset(struct stge_softc *sc)
1450 {
1451 	uint32_t ac;
1452 	int i;
1453 
1454 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1455 
1456 	/*
1457 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1458 	 * to be present in order for the reset to complete on fiber
1459 	 * cards.
1460 	 */
1461 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1462 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1463 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1464 	    (sc->sc_usefiber ? AC_RstOut : 0));
1465 
1466 	delay(50000);
1467 
1468 	for (i = 0; i < STGE_TIMEOUT; i++) {
1469 		delay(5000);
1470 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1471 		     AC_ResetBusy) == 0)
1472 			break;
1473 	}
1474 
1475 	if (i == STGE_TIMEOUT)
1476 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1477 
1478 	delay(1000);
1479 }
1480 
1481 /*
1482  * stge_init:		[ ifnet interface function ]
1483  *
1484  *	Initialize the interface.  Must be called at splnet().
1485  */
1486 static int
1487 stge_init(struct ifnet *ifp)
1488 {
1489 	struct stge_softc *sc = ifp->if_softc;
1490 	bus_space_tag_t st = sc->sc_st;
1491 	bus_space_handle_t sh = sc->sc_sh;
1492 	struct stge_descsoft *ds;
1493 	int i, error = 0;
1494 
1495 	/*
1496 	 * Cancel any pending I/O.
1497 	 */
1498 	stge_stop(ifp, 0);
1499 
1500 	/*
1501 	 * Reset the chip to a known state.
1502 	 */
1503 	stge_reset(sc);
1504 
1505 	/*
1506 	 * Initialize the transmit descriptor ring.
1507 	 */
1508 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1509 	for (i = 0; i < STGE_NTXDESC; i++) {
1510 		sc->sc_txdescs[i].tfd_next = htole64(
1511 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1512 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1513 	}
1514 	sc->sc_txpending = 0;
1515 	sc->sc_txdirty = 0;
1516 	sc->sc_txlast = STGE_NTXDESC - 1;
1517 
1518 	/*
1519 	 * Initialize the receive descriptor and receive job
1520 	 * descriptor rings.
1521 	 */
1522 	for (i = 0; i < STGE_NRXDESC; i++) {
1523 		ds = &sc->sc_rxsoft[i];
1524 		if (ds->ds_mbuf == NULL) {
1525 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1526 				printf("%s: unable to allocate or map rx "
1527 				    "buffer %d, error = %d\n",
1528 				    sc->sc_dev.dv_xname, i, error);
1529 				/*
1530 				 * XXX Should attempt to run with fewer receive
1531 				 * XXX buffers instead of just failing.
1532 				 */
1533 				stge_rxdrain(sc);
1534 				goto out;
1535 			}
1536 		} else
1537 			STGE_INIT_RXDESC(sc, i);
1538 	}
1539 	sc->sc_rxptr = 0;
1540 	sc->sc_rxdiscard = 0;
1541 	STGE_RXCHAIN_RESET(sc);
1542 
1543 	/* Set the station address. */
1544 	for (i = 0; i < 6; i++)
1545 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1546 		    CLLADDR(ifp->if_sadl)[i]);
1547 
1548 	/*
1549 	 * Set the statistics masks.  Disable all the RMON stats,
1550 	 * and disable selected stats in the non-RMON stats registers.
1551 	 */
1552 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1553 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1554 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1555 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1556 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1557 	    (1U << 21));
1558 
1559 	/* Set up the receive filter. */
1560 	stge_set_filter(sc);
1561 
1562 	/*
1563 	 * Give the transmit and receive ring to the chip.
1564 	 */
1565 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1566 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1567 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1568 
1569 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1570 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1571 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1572 
1573 	/*
1574 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1575 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1576 	 * transmit engine when there's actually a packet.
1577 	 */
1578 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1579 
1580 	/* ..and the Rx auto-poll period. */
1581 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1582 
1583 	/* Initialize the Tx start threshold. */
1584 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1585 
1586 	/* RX DMA thresholds, from linux */
1587 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1588 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1589 
1590 	/*
1591 	 * Initialize the Rx DMA interrupt control register.  We
1592 	 * request an interrupt after every incoming packet, but
1593 	 * defer it for 32us (64 * 512 ns).  When the number of
1594 	 * interrupts pending reaches 8, we stop deferring the
1595 	 * interrupt, and signal it immediately.
1596 	 */
1597 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1598 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1599 
1600 	/*
1601 	 * Initialize the interrupt mask.
1602 	 */
1603 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1604 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1605 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1606 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1607 
1608 	/*
1609 	 * Configure the DMA engine.
1610 	 * XXX Should auto-tune TxBurstLimit.
1611 	 */
1612 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1613 	    DMAC_TxBurstLimit(3));
1614 
1615 	/*
1616 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1617 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1618 	 * empty again.
1619 	 */
1620 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1621 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1622 
1623 	/*
1624 	 * Set the maximum frame size.
1625 	 */
1626 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1627 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1628 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1629 	     ETHER_VLAN_ENCAP_LEN : 0));
1630 
1631 	/*
1632 	 * Initialize MacCtrl -- do it before setting the media,
1633 	 * as setting the media will actually program the register.
1634 	 *
1635 	 * Note: We have to poke the IFS value before poking
1636 	 * anything else.
1637 	 */
1638 	sc->sc_MACCtrl = MC_IFSSelect(0);
1639 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1640 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1641 #ifdef	STGE_VLAN_UNTAG
1642 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1643 #endif
1644 
1645 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1646 		/* Multi-frag frame bug work-around. */
1647 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1648 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1649 
1650 		/* Tx Poll Now bug work-around. */
1651 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1652 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1653 		/* XXX ? from linux */
1654 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1655 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1656 	}
1657 
1658 	/*
1659 	 * Set the current media.
1660 	 */
1661 	mii_mediachg(&sc->sc_mii);
1662 
1663 	/*
1664 	 * Start the one second MII clock.
1665 	 */
1666 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1667 
1668 	/*
1669 	 * ...all done!
1670 	 */
1671 	ifp->if_flags |= IFF_RUNNING;
1672 	ifp->if_flags &= ~IFF_OACTIVE;
1673 
1674  out:
1675 	if (error)
1676 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1677 	return (error);
1678 }
1679 
1680 /*
1681  * stge_drain:
1682  *
1683  *	Drain the receive queue.
1684  */
1685 static void
1686 stge_rxdrain(struct stge_softc *sc)
1687 {
1688 	struct stge_descsoft *ds;
1689 	int i;
1690 
1691 	for (i = 0; i < STGE_NRXDESC; i++) {
1692 		ds = &sc->sc_rxsoft[i];
1693 		if (ds->ds_mbuf != NULL) {
1694 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1695 			ds->ds_mbuf->m_next = NULL;
1696 			m_freem(ds->ds_mbuf);
1697 			ds->ds_mbuf = NULL;
1698 		}
1699 	}
1700 }
1701 
1702 /*
1703  * stge_stop:		[ ifnet interface function ]
1704  *
1705  *	Stop transmission on the interface.
1706  */
1707 static void
1708 stge_stop(struct ifnet *ifp, int disable)
1709 {
1710 	struct stge_softc *sc = ifp->if_softc;
1711 	struct stge_descsoft *ds;
1712 	int i;
1713 
1714 	/*
1715 	 * Stop the one second clock.
1716 	 */
1717 	callout_stop(&sc->sc_tick_ch);
1718 
1719 	/* Down the MII. */
1720 	mii_down(&sc->sc_mii);
1721 
1722 	/*
1723 	 * Disable interrupts.
1724 	 */
1725 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1726 
1727 	/*
1728 	 * Stop receiver, transmitter, and stats update.
1729 	 */
1730 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1731 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1732 
1733 	/*
1734 	 * Stop the transmit and receive DMA.
1735 	 */
1736 	stge_dma_wait(sc);
1737 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1738 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1739 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1740 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1741 
1742 	/*
1743 	 * Release any queued transmit buffers.
1744 	 */
1745 	for (i = 0; i < STGE_NTXDESC; i++) {
1746 		ds = &sc->sc_txsoft[i];
1747 		if (ds->ds_mbuf != NULL) {
1748 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1749 			m_freem(ds->ds_mbuf);
1750 			ds->ds_mbuf = NULL;
1751 		}
1752 	}
1753 
1754 	if (disable)
1755 		stge_rxdrain(sc);
1756 
1757 	/*
1758 	 * Mark the interface down and cancel the watchdog timer.
1759 	 */
1760 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1761 	ifp->if_timer = 0;
1762 }
1763 
1764 static int
1765 stge_eeprom_wait(struct stge_softc *sc)
1766 {
1767 	int i;
1768 
1769 	for (i = 0; i < STGE_TIMEOUT; i++) {
1770 		delay(1000);
1771 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1772 		     EC_EepromBusy) == 0)
1773 			return (0);
1774 	}
1775 	return (1);
1776 }
1777 
1778 /*
1779  * stge_read_eeprom:
1780  *
1781  *	Read data from the serial EEPROM.
1782  */
1783 static void
1784 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1785 {
1786 
1787 	if (stge_eeprom_wait(sc))
1788 		printf("%s: EEPROM failed to come ready\n",
1789 		    sc->sc_dev.dv_xname);
1790 
1791 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1792 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1793 	if (stge_eeprom_wait(sc))
1794 		printf("%s: EEPROM read timed out\n",
1795 		    sc->sc_dev.dv_xname);
1796 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1797 }
1798 
1799 /*
1800  * stge_add_rxbuf:
1801  *
1802  *	Add a receive buffer to the indicated descriptor.
1803  */
1804 static int
1805 stge_add_rxbuf(struct stge_softc *sc, int idx)
1806 {
1807 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1808 	struct mbuf *m;
1809 	int error;
1810 
1811 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1812 	if (m == NULL)
1813 		return (ENOBUFS);
1814 
1815 	MCLGET(m, M_DONTWAIT);
1816 	if ((m->m_flags & M_EXT) == 0) {
1817 		m_freem(m);
1818 		return (ENOBUFS);
1819 	}
1820 
1821 	m->m_data = m->m_ext.ext_buf + 2;
1822 	m->m_len = MCLBYTES - 2;
1823 
1824 	if (ds->ds_mbuf != NULL)
1825 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1826 
1827 	ds->ds_mbuf = m;
1828 
1829 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1830 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1831 	if (error) {
1832 		printf("%s: can't load rx DMA map %d, error = %d\n",
1833 		    sc->sc_dev.dv_xname, idx, error);
1834 		panic("stge_add_rxbuf");	/* XXX */
1835 	}
1836 
1837 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1838 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1839 
1840 	STGE_INIT_RXDESC(sc, idx);
1841 
1842 	return (0);
1843 }
1844 
1845 /*
1846  * stge_set_filter:
1847  *
1848  *	Set up the receive filter.
1849  */
1850 static void
1851 stge_set_filter(struct stge_softc *sc)
1852 {
1853 	struct ethercom *ec = &sc->sc_ethercom;
1854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1855 	struct ether_multi *enm;
1856 	struct ether_multistep step;
1857 	uint32_t crc;
1858 	uint32_t mchash[2];
1859 
1860 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1861 	if (ifp->if_flags & IFF_BROADCAST)
1862 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1863 
1864 	/* XXX: ST1023 only works in promiscuous mode */
1865 	if (sc->sc_stge1023)
1866 		ifp->if_flags |= IFF_PROMISC;
1867 
1868 	if (ifp->if_flags & IFF_PROMISC) {
1869 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1870 		goto allmulti;
1871 	}
1872 
1873 	/*
1874 	 * Set up the multicast address filter by passing all multicast
1875 	 * addresses through a CRC generator, and then using the low-order
1876 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1877 	 * high order bits select the register, while the rest of the bits
1878 	 * select the bit within the register.
1879 	 */
1880 
1881 	memset(mchash, 0, sizeof(mchash));
1882 
1883 	ETHER_FIRST_MULTI(step, ec, enm);
1884 	if (enm == NULL)
1885 		goto done;
1886 
1887 	while (enm != NULL) {
1888 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1889 			/*
1890 			 * We must listen to a range of multicast addresses.
1891 			 * For now, just accept all multicasts, rather than
1892 			 * trying to set only those filter bits needed to match
1893 			 * the range.  (At this time, the only use of address
1894 			 * ranges is for IP multicast routing, for which the
1895 			 * range is big enough to require all bits set.)
1896 			 */
1897 			goto allmulti;
1898 		}
1899 
1900 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1901 
1902 		/* Just want the 6 least significant bits. */
1903 		crc &= 0x3f;
1904 
1905 		/* Set the corresponding bit in the hash table. */
1906 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1907 
1908 		ETHER_NEXT_MULTI(step, enm);
1909 	}
1910 
1911 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1912 
1913 	ifp->if_flags &= ~IFF_ALLMULTI;
1914 	goto done;
1915 
1916  allmulti:
1917 	ifp->if_flags |= IFF_ALLMULTI;
1918 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1919 
1920  done:
1921 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1922 		/*
1923 		 * Program the multicast hash table.
1924 		 */
1925 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1926 		    mchash[0]);
1927 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1928 		    mchash[1]);
1929 	}
1930 
1931 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1932 	    sc->sc_ReceiveMode);
1933 }
1934 
1935 /*
1936  * stge_mii_readreg:	[mii interface function]
1937  *
1938  *	Read a PHY register on the MII of the TC9021.
1939  */
1940 static int
1941 stge_mii_readreg(struct device *self, int phy, int reg)
1942 {
1943 
1944 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1945 }
1946 
1947 /*
1948  * stge_mii_writereg:	[mii interface function]
1949  *
1950  *	Write a PHY register on the MII of the TC9021.
1951  */
1952 static void
1953 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1954 {
1955 
1956 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1957 }
1958 
1959 /*
1960  * stge_mii_statchg:	[mii interface function]
1961  *
1962  *	Callback from MII layer when media changes.
1963  */
1964 static void
1965 stge_mii_statchg(struct device *self)
1966 {
1967 	struct stge_softc *sc = (struct stge_softc *) self;
1968 
1969 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1970 		sc->sc_MACCtrl |= MC_DuplexSelect;
1971 	else
1972 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1973 
1974 	/* XXX 802.1x flow-control? */
1975 
1976 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1977 }
1978 
1979 /*
1980  * sste_mii_bitbang_read: [mii bit-bang interface function]
1981  *
1982  *	Read the MII serial port for the MII bit-bang module.
1983  */
1984 static uint32_t
1985 stge_mii_bitbang_read(struct device *self)
1986 {
1987 	struct stge_softc *sc = (void *) self;
1988 
1989 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1990 }
1991 
1992 /*
1993  * stge_mii_bitbang_write: [mii big-bang interface function]
1994  *
1995  *	Write the MII serial port for the MII bit-bang module.
1996  */
1997 static void
1998 stge_mii_bitbang_write(struct device *self, uint32_t val)
1999 {
2000 	struct stge_softc *sc = (void *) self;
2001 
2002 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2003 	    val | sc->sc_PhyCtrl);
2004 }
2005 
2006 /*
2007  * stge_mediastatus:	[ifmedia interface function]
2008  *
2009  *	Get the current interface media status.
2010  */
2011 static void
2012 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2013 {
2014 	struct stge_softc *sc = ifp->if_softc;
2015 
2016 	mii_pollstat(&sc->sc_mii);
2017 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2018 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2019 }
2020 
2021 /*
2022  * stge_mediachange:	[ifmedia interface function]
2023  *
2024  *	Set hardware to newly-selected media.
2025  */
2026 static int
2027 stge_mediachange(struct ifnet *ifp)
2028 {
2029 	struct stge_softc *sc = ifp->if_softc;
2030 
2031 	if (ifp->if_flags & IFF_UP)
2032 		mii_mediachg(&sc->sc_mii);
2033 	return (0);
2034 }
2035