xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_stge.c,v 1.56 2013/03/30 03:21:07 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.56 2013/03/30 03:21:07 christos Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stgereg.h>
72 
73 #include <prop/proplib.h>
74 
75 /* #define	STGE_CU_BUG			1 */
76 #define	STGE_VLAN_UNTAG			1
77 /* #define	STGE_VLAN_CFI		1 */
78 
79 /*
80  * Transmit descriptor list size.
81  */
82 #define	STGE_NTXDESC		256
83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
85 
86 /*
87  * Receive descriptor list size.
88  */
89 #define	STGE_NRXDESC		256
90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
92 
93 /*
94  * Only interrupt every N frames.  Must be a power-of-two.
95  */
96 #define	STGE_TXINTR_SPACING	16
97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98 
99 /*
100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct stge_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115 
116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct stge_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct stge_softc {
132 	device_t sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	int sc_rev;			/* silicon revision */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct stge_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 #ifdef STGE_EVENT_COUNTERS
162 	/*
163 	 * Event counters.
164 	 */
165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
169 
170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
177 
178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
181 
182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186 
187 	int	sc_txpending;		/* number of Tx requests pending */
188 	int	sc_txdirty;		/* first dirty Tx descriptor */
189 	int	sc_txlast;		/* last used Tx descriptor */
190 
191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
192 	int	sc_rxdiscard;
193 	int	sc_rxlen;
194 	struct mbuf *sc_rxhead;
195 	struct mbuf *sc_rxtail;
196 	struct mbuf **sc_rxtailp;
197 
198 	int	sc_txthresh;		/* Tx threshold */
199 	uint32_t sc_usefiber:1;		/* if we're fiber */
200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
206 };
207 
208 #define	STGE_RXCHAIN_RESET(sc)						\
209 do {									\
210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
211 	*(sc)->sc_rxtailp = NULL;					\
212 	(sc)->sc_rxlen = 0;						\
213 } while (/*CONSTCOND*/0)
214 
215 #define	STGE_RXCHAIN_LINK(sc, m)					\
216 do {									\
217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
218 	(sc)->sc_rxtailp = &(m)->m_next;				\
219 } while (/*CONSTCOND*/0)
220 
221 #ifdef STGE_EVENT_COUNTERS
222 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
223 #else
224 #define	STGE_EVCNT_INCR(ev)	/* nothing */
225 #endif
226 
227 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
229 
230 #define	STGE_CDTXSYNC(sc, x, ops)					\
231 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
232 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233 
234 #define	STGE_CDRXSYNC(sc, x, ops)					\
235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237 
238 #define	STGE_INIT_RXDESC(sc, x)						\
239 do {									\
240 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
241 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
242 									\
243 	/*								\
244 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
245 	 * so that the payload after the Ethernet header is aligned	\
246 	 * to a 4-byte boundary.					\
247 	 */								\
248 	__rfd->rfd_frag.frag_word0 =					\
249 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 	    FRAG_LEN(MCLBYTES - 2));					\
251 	__rfd->rfd_next =						\
252 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
253 	__rfd->rfd_status = 0;						\
254 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256 
257 #define STGE_TIMEOUT 1000
258 
259 static void	stge_start(struct ifnet *);
260 static void	stge_watchdog(struct ifnet *);
261 static int	stge_ioctl(struct ifnet *, u_long, void *);
262 static int	stge_init(struct ifnet *);
263 static void	stge_stop(struct ifnet *, int);
264 
265 static bool	stge_shutdown(device_t, int);
266 
267 static void	stge_reset(struct stge_softc *);
268 static void	stge_rxdrain(struct stge_softc *);
269 static int	stge_add_rxbuf(struct stge_softc *, int);
270 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void	stge_tick(void *);
272 
273 static void	stge_stats_update(struct stge_softc *);
274 
275 static void	stge_set_filter(struct stge_softc *);
276 
277 static int	stge_intr(void *);
278 static void	stge_txintr(struct stge_softc *);
279 static void	stge_rxintr(struct stge_softc *);
280 
281 static int	stge_mii_readreg(device_t, int, int);
282 static void	stge_mii_writereg(device_t, int, int, int);
283 static void	stge_mii_statchg(struct ifnet *);
284 
285 static int	stge_match(device_t, cfdata_t, void *);
286 static void	stge_attach(device_t, device_t, void *);
287 
288 int	stge_copy_small = 0;
289 
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291     stge_match, stge_attach, NULL, NULL);
292 
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void	stge_mii_bitbang_write(device_t, uint32_t);
295 
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 	stge_mii_bitbang_read,
298 	stge_mii_bitbang_write,
299 	{
300 		PC_MgmtData,		/* MII_BIT_MDO */
301 		PC_MgmtData,		/* MII_BIT_MDI */
302 		PC_MgmtClk,		/* MII_BIT_MDC */
303 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
304 		0,			/* MII_BIT_DIR_PHY_HOST */
305 	}
306 };
307 
308 /*
309  * Devices supported by this driver.
310  */
311 static const struct stge_product {
312 	pci_vendor_id_t		stge_vendor;
313 	pci_product_id_t	stge_product;
314 	const char		*stge_name;
315 } stge_products[] = {
316 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
317 	  "Sundance ST-1023 Gigabit Ethernet" },
318 
319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
320 	  "Sundance ST-2021 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
323 	  "Tamarack TC9021 Gigabit Ethernet" },
324 
325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 	  "Tamarack TC9021 Gigabit Ethernet" },
327 
328 	/*
329 	 * The Sundance sample boards use the Sundance vendor ID,
330 	 * but the Tamarack product ID.
331 	 */
332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
333 	  "Sundance TC9021 Gigabit Ethernet" },
334 
335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 	  "Sundance TC9021 Gigabit Ethernet" },
337 
338 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
339 	  "D-Link DL-4000 Gigabit Ethernet" },
340 
341 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
342 	  "Antares Gigabit Ethernet" },
343 
344 	{ 0,				0,
345 	  NULL },
346 };
347 
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 	const struct stge_product *sp;
352 
353 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 			return (sp);
357 	}
358 	return (NULL);
359 }
360 
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 	struct pci_attach_args *pa = aux;
365 
366 	if (stge_lookup(pa) != NULL)
367 		return (1);
368 
369 	return (0);
370 }
371 
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 	struct stge_softc *sc = device_private(self);
376 	struct pci_attach_args *pa = aux;
377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 	pci_chipset_tag_t pc = pa->pa_pc;
379 	pci_intr_handle_t ih;
380 	const char *intrstr = NULL;
381 	bus_space_tag_t iot, memt;
382 	bus_space_handle_t ioh, memh;
383 	bus_dma_segment_t seg;
384 	prop_data_t data;
385 	int ioh_valid, memh_valid;
386 	int i, rseg, error;
387 	const struct stge_product *sp;
388 	uint8_t enaddr[ETHER_ADDR_LEN];
389 
390 	callout_init(&sc->sc_tick_ch, 0);
391 
392 	sp = stge_lookup(pa);
393 	if (sp == NULL) {
394 		printf("\n");
395 		panic("ste_attach: impossible");
396 	}
397 
398 	sc->sc_rev = PCI_REVISION(pa->pa_class);
399 
400 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
401 
402 	/*
403 	 * Map the device.
404 	 */
405 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
406 	    PCI_MAPREG_TYPE_IO, 0,
407 	    &iot, &ioh, NULL, NULL) == 0);
408 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
409 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
410 	    &memt, &memh, NULL, NULL) == 0);
411 
412 	if (memh_valid) {
413 		sc->sc_st = memt;
414 		sc->sc_sh = memh;
415 	} else if (ioh_valid) {
416 		sc->sc_st = iot;
417 		sc->sc_sh = ioh;
418 	} else {
419 		aprint_error_dev(self, "unable to map device registers\n");
420 		return;
421 	}
422 
423 	sc->sc_dmat = pa->pa_dmat;
424 
425 	/* Enable bus mastering. */
426 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
427 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
428 	    PCI_COMMAND_MASTER_ENABLE);
429 
430 	/* power up chip */
431 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
432 	    error != EOPNOTSUPP) {
433 		aprint_error_dev(self, "cannot activate %d\n",
434 		    error);
435 		return;
436 	}
437 	/*
438 	 * Map and establish our interrupt.
439 	 */
440 	if (pci_intr_map(pa, &ih)) {
441 		aprint_error_dev(self, "unable to map interrupt\n");
442 		return;
443 	}
444 	intrstr = pci_intr_string(pc, ih);
445 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
446 	if (sc->sc_ih == NULL) {
447 		aprint_error_dev(self, "unable to establish interrupt");
448 		if (intrstr != NULL)
449 			aprint_error(" at %s", intrstr);
450 		aprint_error("\n");
451 		return;
452 	}
453 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
454 
455 	/*
456 	 * Allocate the control data structures, and create and load the
457 	 * DMA map for it.
458 	 */
459 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
460 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
461 	    0)) != 0) {
462 		aprint_error_dev(self,
463 		    "unable to allocate control data, error = %d\n",
464 		    error);
465 		goto fail_0;
466 	}
467 
468 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
469 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
470 	    BUS_DMA_COHERENT)) != 0) {
471 		aprint_error_dev(self,
472 		    "unable to map control data, error = %d\n",
473 		    error);
474 		goto fail_1;
475 	}
476 
477 	if ((error = bus_dmamap_create(sc->sc_dmat,
478 	    sizeof(struct stge_control_data), 1,
479 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
480 		aprint_error_dev(self,
481 		    "unable to create control data DMA map, error = %d\n",
482 		    error);
483 		goto fail_2;
484 	}
485 
486 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
487 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
488 	    0)) != 0) {
489 		aprint_error_dev(self,
490 		    "unable to load control data DMA map, error = %d\n",
491 		    error);
492 		goto fail_3;
493 	}
494 
495 	/*
496 	 * Create the transmit buffer DMA maps.  Note that rev B.3
497 	 * and earlier seem to have a bug regarding multi-fragment
498 	 * packets.  We need to limit the number of Tx segments on
499 	 * such chips to 1.
500 	 */
501 	for (i = 0; i < STGE_NTXDESC; i++) {
502 		if ((error = bus_dmamap_create(sc->sc_dmat,
503 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
504 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
505 			aprint_error_dev(self,
506 			    "unable to create tx DMA map %d, error = %d\n",
507 			    i, error);
508 			goto fail_4;
509 		}
510 	}
511 
512 	/*
513 	 * Create the receive buffer DMA maps.
514 	 */
515 	for (i = 0; i < STGE_NRXDESC; i++) {
516 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
517 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
518 			aprint_error_dev(self,
519 			    "unable to create rx DMA map %d, error = %d\n",
520 			    i, error);
521 			goto fail_5;
522 		}
523 		sc->sc_rxsoft[i].ds_mbuf = NULL;
524 	}
525 
526 	/*
527 	 * Determine if we're copper or fiber.  It affects how we
528 	 * reset the card.
529 	 */
530 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
531 	    AC_PhyMedia)
532 		sc->sc_usefiber = 1;
533 	else
534 		sc->sc_usefiber = 0;
535 
536 	/*
537 	 * Reset the chip to a known state.
538 	 */
539 	stge_reset(sc);
540 
541 	/*
542 	 * Reading the station address from the EEPROM doesn't seem
543 	 * to work, at least on my sample boards.  Instead, since
544 	 * the reset sequence does AutoInit, read it from the station
545 	 * address registers. For Sundance 1023 you can only read it
546 	 * from EEPROM.
547 	 */
548 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
549 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550 		    STGE_StationAddress0) & 0xff;
551 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 		    STGE_StationAddress0) >> 8;
553 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 		    STGE_StationAddress1) & 0xff;
555 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 		    STGE_StationAddress1) >> 8;
557 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 		    STGE_StationAddress2) & 0xff;
559 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 		    STGE_StationAddress2) >> 8;
561 		sc->sc_stge1023 = 0;
562 	} else {
563 		data = prop_dictionary_get(device_properties(self),
564 		    "mac-address");
565 		if (data != NULL) {
566 			/*
567 			 * Try to get the station address from device
568 			 * properties first, in case the EEPROM is missing.
569 			 */
570 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
571 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
572 			(void)memcpy(enaddr, prop_data_data_nocopy(data),
573 			    ETHER_ADDR_LEN);
574 		} else {
575 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
576 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
577 				stge_read_eeprom(sc,
578 				    STGE_EEPROM_StationAddress0 + i,
579 				    &myaddr[i]);
580 				myaddr[i] = le16toh(myaddr[i]);
581 			}
582 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
583 		}
584 		sc->sc_stge1023 = 1;
585 	}
586 
587 	aprint_normal_dev(self, "Ethernet address %s\n",
588 	    ether_sprintf(enaddr));
589 
590 	/*
591 	 * Read some important bits from the PhyCtrl register.
592 	 */
593 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
594 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595 
596 	/*
597 	 * Initialize our media structures and probe the MII.
598 	 */
599 	sc->sc_mii.mii_ifp = ifp;
600 	sc->sc_mii.mii_readreg = stge_mii_readreg;
601 	sc->sc_mii.mii_writereg = stge_mii_writereg;
602 	sc->sc_mii.mii_statchg = stge_mii_statchg;
603 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
604 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
605 	    ether_mediastatus);
606 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
607 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
608 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
609 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
610 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
611 	} else
612 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
613 
614 	ifp = &sc->sc_ethercom.ec_if;
615 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
616 	ifp->if_softc = sc;
617 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618 	ifp->if_ioctl = stge_ioctl;
619 	ifp->if_start = stge_start;
620 	ifp->if_watchdog = stge_watchdog;
621 	ifp->if_init = stge_init;
622 	ifp->if_stop = stge_stop;
623 	IFQ_SET_READY(&ifp->if_snd);
624 
625 	/*
626 	 * The manual recommends disabling early transmit, so we
627 	 * do.  It's disabled anyway, if using IP checksumming,
628 	 * since the entire packet must be in the FIFO in order
629 	 * for the chip to perform the checksum.
630 	 */
631 	sc->sc_txthresh = 0x0fff;
632 
633 	/*
634 	 * Disable MWI if the PCI layer tells us to.
635 	 */
636 	sc->sc_DMACtrl = 0;
637 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
638 		sc->sc_DMACtrl |= DMAC_MWIDisable;
639 
640 	/*
641 	 * We can support 802.1Q VLAN-sized frames and jumbo
642 	 * Ethernet frames.
643 	 *
644 	 * XXX Figure out how to do hw-assisted VLAN tagging in
645 	 * XXX a reasonable way on this chip.
646 	 */
647 	sc->sc_ethercom.ec_capabilities |=
648 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
649 	    ETHERCAP_VLAN_HWTAGGING;
650 
651 	/*
652 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
653 	 */
654 	sc->sc_ethercom.ec_if.if_capabilities |=
655 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
656 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
657 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
658 
659 	/*
660 	 * Attach the interface.
661 	 */
662 	if_attach(ifp);
663 	ether_ifattach(ifp, enaddr);
664 
665 #ifdef STGE_EVENT_COUNTERS
666 	/*
667 	 * Attach event counters.
668 	 */
669 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
670 	    NULL, device_xname(self), "txstall");
671 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
672 	    NULL, device_xname(self), "txdmaintr");
673 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
674 	    NULL, device_xname(self), "txindintr");
675 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
676 	    NULL, device_xname(self), "rxintr");
677 
678 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
679 	    NULL, device_xname(self), "txseg1");
680 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
681 	    NULL, device_xname(self), "txseg2");
682 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
683 	    NULL, device_xname(self), "txseg3");
684 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
685 	    NULL, device_xname(self), "txseg4");
686 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
687 	    NULL, device_xname(self), "txseg5");
688 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
689 	    NULL, device_xname(self), "txsegmore");
690 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
691 	    NULL, device_xname(self), "txcopy");
692 
693 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
694 	    NULL, device_xname(self), "rxipsum");
695 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
696 	    NULL, device_xname(self), "rxtcpsum");
697 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
698 	    NULL, device_xname(self), "rxudpsum");
699 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
700 	    NULL, device_xname(self), "txipsum");
701 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
702 	    NULL, device_xname(self), "txtcpsum");
703 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
704 	    NULL, device_xname(self), "txudpsum");
705 #endif /* STGE_EVENT_COUNTERS */
706 
707 	/*
708 	 * Make sure the interface is shutdown during reboot.
709 	 */
710 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
711 		pmf_class_network_register(self, ifp);
712 	else
713 		aprint_error_dev(self, "couldn't establish power handler\n");
714 
715 	return;
716 
717 	/*
718 	 * Free any resources we've allocated during the failed attach
719 	 * attempt.  Do this in reverse order and fall through.
720 	 */
721  fail_5:
722 	for (i = 0; i < STGE_NRXDESC; i++) {
723 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
724 			bus_dmamap_destroy(sc->sc_dmat,
725 			    sc->sc_rxsoft[i].ds_dmamap);
726 	}
727  fail_4:
728 	for (i = 0; i < STGE_NTXDESC; i++) {
729 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
730 			bus_dmamap_destroy(sc->sc_dmat,
731 			    sc->sc_txsoft[i].ds_dmamap);
732 	}
733 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
734  fail_3:
735 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
736  fail_2:
737 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
738 	    sizeof(struct stge_control_data));
739  fail_1:
740 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
741  fail_0:
742 	return;
743 }
744 
745 /*
746  * stge_shutdown:
747  *
748  *	Make sure the interface is stopped at reboot time.
749  */
750 static bool
751 stge_shutdown(device_t self, int howto)
752 {
753 	struct stge_softc *sc = device_private(self);
754 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
755 
756 	stge_stop(ifp, 1);
757 	stge_reset(sc);
758 	return true;
759 }
760 
761 static void
762 stge_dma_wait(struct stge_softc *sc)
763 {
764 	int i;
765 
766 	for (i = 0; i < STGE_TIMEOUT; i++) {
767 		delay(2);
768 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
769 		     DMAC_TxDMAInProg) == 0)
770 			break;
771 	}
772 
773 	if (i == STGE_TIMEOUT)
774 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
775 }
776 
777 /*
778  * stge_start:		[ifnet interface function]
779  *
780  *	Start packet transmission on the interface.
781  */
782 static void
783 stge_start(struct ifnet *ifp)
784 {
785 	struct stge_softc *sc = ifp->if_softc;
786 	struct mbuf *m0;
787 	struct stge_descsoft *ds;
788 	struct stge_tfd *tfd;
789 	bus_dmamap_t dmamap;
790 	int error, firsttx, nexttx, opending, seg, totlen;
791 	uint64_t csum_flags;
792 
793 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
794 		return;
795 
796 	/*
797 	 * Remember the previous number of pending transmissions
798 	 * and the first descriptor we will use.
799 	 */
800 	opending = sc->sc_txpending;
801 	firsttx = STGE_NEXTTX(sc->sc_txlast);
802 
803 	/*
804 	 * Loop through the send queue, setting up transmit descriptors
805 	 * until we drain the queue, or use up all available transmit
806 	 * descriptors.
807 	 */
808 	for (;;) {
809 		struct m_tag *mtag;
810 		uint64_t tfc;
811 
812 		/*
813 		 * Grab a packet off the queue.
814 		 */
815 		IFQ_POLL(&ifp->if_snd, m0);
816 		if (m0 == NULL)
817 			break;
818 
819 		/*
820 		 * Leave one unused descriptor at the end of the
821 		 * list to prevent wrapping completely around.
822 		 */
823 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
824 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
825 			break;
826 		}
827 
828 		/*
829 		 * See if we have any VLAN stuff.
830 		 */
831 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
832 
833 		/*
834 		 * Get the last and next available transmit descriptor.
835 		 */
836 		nexttx = STGE_NEXTTX(sc->sc_txlast);
837 		tfd = &sc->sc_txdescs[nexttx];
838 		ds = &sc->sc_txsoft[nexttx];
839 
840 		dmamap = ds->ds_dmamap;
841 
842 		/*
843 		 * Load the DMA map.  If this fails, the packet either
844 		 * didn't fit in the alloted number of segments, or we
845 		 * were short on resources.  For the too-many-segments
846 		 * case, we simply report an error and drop the packet,
847 		 * since we can't sanely copy a jumbo packet to a single
848 		 * buffer.
849 		 */
850 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
851 		    BUS_DMA_NOWAIT);
852 		if (error) {
853 			if (error == EFBIG) {
854 				printf("%s: Tx packet consumes too many "
855 				    "DMA segments, dropping...\n",
856 				    device_xname(sc->sc_dev));
857 				IFQ_DEQUEUE(&ifp->if_snd, m0);
858 				m_freem(m0);
859 				continue;
860 			}
861 			/*
862 			 * Short on resources, just stop for now.
863 			 */
864 			break;
865 		}
866 
867 		IFQ_DEQUEUE(&ifp->if_snd, m0);
868 
869 		/*
870 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
871 		 */
872 
873 		/* Sync the DMA map. */
874 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
875 		    BUS_DMASYNC_PREWRITE);
876 
877 		/* Initialize the fragment list. */
878 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
879 			tfd->tfd_frags[seg].frag_word0 =
880 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
881 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
882 			totlen += dmamap->dm_segs[seg].ds_len;
883 		}
884 
885 #ifdef STGE_EVENT_COUNTERS
886 		switch (dmamap->dm_nsegs) {
887 		case 1:
888 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
889 			break;
890 		case 2:
891 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
892 			break;
893 		case 3:
894 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
895 			break;
896 		case 4:
897 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
898 			break;
899 		case 5:
900 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
901 			break;
902 		default:
903 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
904 			break;
905 		}
906 #endif /* STGE_EVENT_COUNTERS */
907 
908 		/*
909 		 * Initialize checksumming flags in the descriptor.
910 		 * Byte-swap constants so the compiler can optimize.
911 		 */
912 		csum_flags = 0;
913 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
914 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
915 			csum_flags |= TFD_IPChecksumEnable;
916 		}
917 
918 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
919 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
920 			csum_flags |= TFD_TCPChecksumEnable;
921 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
922 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
923 			csum_flags |= TFD_UDPChecksumEnable;
924 		}
925 
926 		/*
927 		 * Initialize the descriptor and give it to the chip.
928 		 * Check to see if we have a VLAN tag to insert.
929 		 */
930 
931 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
932 		    TFD_FragCount(seg) | csum_flags |
933 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
934 			TFD_TxDMAIndicate : 0);
935 		if (mtag) {
936 #if	0
937 			struct ether_header *eh =
938 			    mtod(m0, struct ether_header *);
939 			u_int16_t etype = ntohs(eh->ether_type);
940 			printf("%s: xmit (tag %d) etype %x\n",
941 			   ifp->if_xname, *mtod(n, int *), etype);
942 #endif
943 			tfc |= TFD_VLANTagInsert |
944 #ifdef	STGE_VLAN_CFI
945 			    TFD_CFI |
946 #endif
947 			    TFD_VID(VLAN_TAG_VALUE(mtag));
948 		}
949 		tfd->tfd_control = htole64(tfc);
950 
951 		/* Sync the descriptor. */
952 		STGE_CDTXSYNC(sc, nexttx,
953 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
954 
955 		/*
956 		 * Kick the transmit DMA logic.
957 		 */
958 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
959 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
960 
961 		/*
962 		 * Store a pointer to the packet so we can free it later.
963 		 */
964 		ds->ds_mbuf = m0;
965 
966 		/* Advance the tx pointer. */
967 		sc->sc_txpending++;
968 		sc->sc_txlast = nexttx;
969 
970 		/*
971 		 * Pass the packet to any BPF listeners.
972 		 */
973 		bpf_mtap(ifp, m0);
974 	}
975 
976 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
977 		/* No more slots left; notify upper layer. */
978 		ifp->if_flags |= IFF_OACTIVE;
979 	}
980 
981 	if (sc->sc_txpending != opending) {
982 		/*
983 		 * We enqueued packets.  If the transmitter was idle,
984 		 * reset the txdirty pointer.
985 		 */
986 		if (opending == 0)
987 			sc->sc_txdirty = firsttx;
988 
989 		/* Set a watchdog timer in case the chip flakes out. */
990 		ifp->if_timer = 5;
991 	}
992 }
993 
994 /*
995  * stge_watchdog:	[ifnet interface function]
996  *
997  *	Watchdog timer handler.
998  */
999 static void
1000 stge_watchdog(struct ifnet *ifp)
1001 {
1002 	struct stge_softc *sc = ifp->if_softc;
1003 
1004 	/*
1005 	 * Sweep up first, since we don't interrupt every frame.
1006 	 */
1007 	stge_txintr(sc);
1008 	if (sc->sc_txpending != 0) {
1009 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1010 		ifp->if_oerrors++;
1011 
1012 		(void) stge_init(ifp);
1013 
1014 		/* Try to get more packets going. */
1015 		stge_start(ifp);
1016 	}
1017 }
1018 
1019 /*
1020  * stge_ioctl:		[ifnet interface function]
1021  *
1022  *	Handle control requests from the operator.
1023  */
1024 static int
1025 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1026 {
1027 	struct stge_softc *sc = ifp->if_softc;
1028 	int s, error;
1029 
1030 	s = splnet();
1031 
1032 	error = ether_ioctl(ifp, cmd, data);
1033 	if (error == ENETRESET) {
1034 		error = 0;
1035 
1036 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1037 			;
1038 		else if (ifp->if_flags & IFF_RUNNING) {
1039 			/*
1040 			 * Multicast list has changed; set the hardware filter
1041 			 * accordingly.
1042 			 */
1043 			stge_set_filter(sc);
1044 		}
1045 	}
1046 
1047 	/* Try to get more packets going. */
1048 	stge_start(ifp);
1049 
1050 	splx(s);
1051 	return (error);
1052 }
1053 
1054 /*
1055  * stge_intr:
1056  *
1057  *	Interrupt service routine.
1058  */
1059 static int
1060 stge_intr(void *arg)
1061 {
1062 	struct stge_softc *sc = arg;
1063 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1064 	uint32_t txstat;
1065 	int wantinit;
1066 	uint16_t isr;
1067 
1068 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1069 	     IS_InterruptStatus) == 0)
1070 		return (0);
1071 
1072 	for (wantinit = 0; wantinit == 0;) {
1073 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1074 		if ((isr & sc->sc_IntEnable) == 0)
1075 			break;
1076 
1077 		/* Host interface errors. */
1078 		if (isr & IS_HostError) {
1079 			printf("%s: Host interface error\n",
1080 			    device_xname(sc->sc_dev));
1081 			wantinit = 1;
1082 			continue;
1083 		}
1084 
1085 		/* Receive interrupts. */
1086 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1087 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1088 			stge_rxintr(sc);
1089 			if (isr & IS_RFDListEnd) {
1090 				printf("%s: receive ring overflow\n",
1091 				    device_xname(sc->sc_dev));
1092 				/*
1093 				 * XXX Should try to recover from this
1094 				 * XXX more gracefully.
1095 				 */
1096 				wantinit = 1;
1097 			}
1098 		}
1099 
1100 		/* Transmit interrupts. */
1101 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1102 #ifdef STGE_EVENT_COUNTERS
1103 			if (isr & IS_TxDMAComplete)
1104 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1105 #endif
1106 			stge_txintr(sc);
1107 		}
1108 
1109 		/* Statistics overflow. */
1110 		if (isr & IS_UpdateStats)
1111 			stge_stats_update(sc);
1112 
1113 		/* Transmission errors. */
1114 		if (isr & IS_TxComplete) {
1115 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1116 			for (;;) {
1117 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1118 				    STGE_TxStatus);
1119 				if ((txstat & TS_TxComplete) == 0)
1120 					break;
1121 				if (txstat & TS_TxUnderrun) {
1122 					sc->sc_txthresh++;
1123 					if (sc->sc_txthresh > 0x0fff)
1124 						sc->sc_txthresh = 0x0fff;
1125 					printf("%s: transmit underrun, new "
1126 					    "threshold: %d bytes\n",
1127 					    device_xname(sc->sc_dev),
1128 					    sc->sc_txthresh << 5);
1129 				}
1130 				if (txstat & TS_MaxCollisions)
1131 					printf("%s: excessive collisions\n",
1132 					    device_xname(sc->sc_dev));
1133 			}
1134 			wantinit = 1;
1135 		}
1136 
1137 	}
1138 
1139 	if (wantinit)
1140 		stge_init(ifp);
1141 
1142 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1143 	    sc->sc_IntEnable);
1144 
1145 	/* Try to get more packets going. */
1146 	stge_start(ifp);
1147 
1148 	return (1);
1149 }
1150 
1151 /*
1152  * stge_txintr:
1153  *
1154  *	Helper; handle transmit interrupts.
1155  */
1156 static void
1157 stge_txintr(struct stge_softc *sc)
1158 {
1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160 	struct stge_descsoft *ds;
1161 	uint64_t control;
1162 	int i;
1163 
1164 	ifp->if_flags &= ~IFF_OACTIVE;
1165 
1166 	/*
1167 	 * Go through our Tx list and free mbufs for those
1168 	 * frames which have been transmitted.
1169 	 */
1170 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1171 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1172 		ds = &sc->sc_txsoft[i];
1173 
1174 		STGE_CDTXSYNC(sc, i,
1175 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1176 
1177 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1178 		if ((control & TFD_TFDDone) == 0)
1179 			break;
1180 
1181 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1182 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1183 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1184 		m_freem(ds->ds_mbuf);
1185 		ds->ds_mbuf = NULL;
1186 	}
1187 
1188 	/* Update the dirty transmit buffer pointer. */
1189 	sc->sc_txdirty = i;
1190 
1191 	/*
1192 	 * If there are no more pending transmissions, cancel the watchdog
1193 	 * timer.
1194 	 */
1195 	if (sc->sc_txpending == 0)
1196 		ifp->if_timer = 0;
1197 }
1198 
1199 /*
1200  * stge_rxintr:
1201  *
1202  *	Helper; handle receive interrupts.
1203  */
1204 static void
1205 stge_rxintr(struct stge_softc *sc)
1206 {
1207 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208 	struct stge_descsoft *ds;
1209 	struct mbuf *m, *tailm;
1210 	uint64_t status;
1211 	int i, len;
1212 
1213 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1214 		ds = &sc->sc_rxsoft[i];
1215 
1216 		STGE_CDRXSYNC(sc, i,
1217 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1218 
1219 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1220 
1221 		if ((status & RFD_RFDDone) == 0)
1222 			break;
1223 
1224 		if (__predict_false(sc->sc_rxdiscard)) {
1225 			STGE_INIT_RXDESC(sc, i);
1226 			if (status & RFD_FrameEnd) {
1227 				/* Reset our state. */
1228 				sc->sc_rxdiscard = 0;
1229 			}
1230 			continue;
1231 		}
1232 
1233 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1234 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1235 
1236 		m = ds->ds_mbuf;
1237 
1238 		/*
1239 		 * Add a new receive buffer to the ring.
1240 		 */
1241 		if (stge_add_rxbuf(sc, i) != 0) {
1242 			/*
1243 			 * Failed, throw away what we've done so
1244 			 * far, and discard the rest of the packet.
1245 			 */
1246 			ifp->if_ierrors++;
1247 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1248 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1249 			STGE_INIT_RXDESC(sc, i);
1250 			if ((status & RFD_FrameEnd) == 0)
1251 				sc->sc_rxdiscard = 1;
1252 			if (sc->sc_rxhead != NULL)
1253 				m_freem(sc->sc_rxhead);
1254 			STGE_RXCHAIN_RESET(sc);
1255 			continue;
1256 		}
1257 
1258 #ifdef DIAGNOSTIC
1259 		if (status & RFD_FrameStart) {
1260 			KASSERT(sc->sc_rxhead == NULL);
1261 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1262 		}
1263 #endif
1264 
1265 		STGE_RXCHAIN_LINK(sc, m);
1266 
1267 		/*
1268 		 * If this is not the end of the packet, keep
1269 		 * looking.
1270 		 */
1271 		if ((status & RFD_FrameEnd) == 0) {
1272 			sc->sc_rxlen += m->m_len;
1273 			continue;
1274 		}
1275 
1276 		/*
1277 		 * Okay, we have the entire packet now...
1278 		 */
1279 		*sc->sc_rxtailp = NULL;
1280 		m = sc->sc_rxhead;
1281 		tailm = sc->sc_rxtail;
1282 
1283 		STGE_RXCHAIN_RESET(sc);
1284 
1285 		/*
1286 		 * If the packet had an error, drop it.  Note we
1287 		 * count the error later in the periodic stats update.
1288 		 */
1289 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1290 			      RFD_RxAlignmentError | RFD_RxFCSError |
1291 			      RFD_RxLengthError)) {
1292 			m_freem(m);
1293 			continue;
1294 		}
1295 
1296 		/*
1297 		 * No errors.
1298 		 *
1299 		 * Note we have configured the chip to not include
1300 		 * the CRC at the end of the packet.
1301 		 */
1302 		len = RFD_RxDMAFrameLen(status);
1303 		tailm->m_len = len - sc->sc_rxlen;
1304 
1305 		/*
1306 		 * If the packet is small enough to fit in a
1307 		 * single header mbuf, allocate one and copy
1308 		 * the data into it.  This greatly reduces
1309 		 * memory consumption when we receive lots
1310 		 * of small packets.
1311 		 */
1312 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1313 			struct mbuf *nm;
1314 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1315 			if (nm == NULL) {
1316 				ifp->if_ierrors++;
1317 				m_freem(m);
1318 				continue;
1319 			}
1320 			nm->m_data += 2;
1321 			nm->m_pkthdr.len = nm->m_len = len;
1322 			m_copydata(m, 0, len, mtod(nm, void *));
1323 			m_freem(m);
1324 			m = nm;
1325 		}
1326 
1327 		/*
1328 		 * Set the incoming checksum information for the packet.
1329 		 */
1330 		if (status & RFD_IPDetected) {
1331 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1332 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1333 			if (status & RFD_IPError)
1334 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1335 			if (status & RFD_TCPDetected) {
1336 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1337 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1338 				if (status & RFD_TCPError)
1339 					m->m_pkthdr.csum_flags |=
1340 					    M_CSUM_TCP_UDP_BAD;
1341 			} else if (status & RFD_UDPDetected) {
1342 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1343 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1344 				if (status & RFD_UDPError)
1345 					m->m_pkthdr.csum_flags |=
1346 					    M_CSUM_TCP_UDP_BAD;
1347 			}
1348 		}
1349 
1350 		m->m_pkthdr.rcvif = ifp;
1351 		m->m_pkthdr.len = len;
1352 
1353 		/*
1354 		 * Pass this up to any BPF listeners, but only
1355 		 * pass if up the stack if it's for us.
1356 		 */
1357 		bpf_mtap(ifp, m);
1358 #ifdef	STGE_VLAN_UNTAG
1359 		/*
1360 		 * Check for VLAN tagged packets
1361 		 */
1362 		if (status & RFD_VLANDetected)
1363 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1364 
1365 #endif
1366 #if	0
1367 		if (status & RFD_VLANDetected) {
1368 			struct ether_header *eh;
1369 			u_int16_t etype;
1370 
1371 			eh = mtod(m, struct ether_header *);
1372 			etype = ntohs(eh->ether_type);
1373 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1374 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1375 			    etype);
1376 		}
1377 #endif
1378 		/* Pass it on. */
1379 		(*ifp->if_input)(ifp, m);
1380 	}
1381 
1382 	/* Update the receive pointer. */
1383 	sc->sc_rxptr = i;
1384 }
1385 
1386 /*
1387  * stge_tick:
1388  *
1389  *	One second timer, used to tick the MII.
1390  */
1391 static void
1392 stge_tick(void *arg)
1393 {
1394 	struct stge_softc *sc = arg;
1395 	int s;
1396 
1397 	s = splnet();
1398 	mii_tick(&sc->sc_mii);
1399 	stge_stats_update(sc);
1400 	splx(s);
1401 
1402 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1403 }
1404 
1405 /*
1406  * stge_stats_update:
1407  *
1408  *	Read the TC9021 statistics counters.
1409  */
1410 static void
1411 stge_stats_update(struct stge_softc *sc)
1412 {
1413 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1414 	bus_space_tag_t st = sc->sc_st;
1415 	bus_space_handle_t sh = sc->sc_sh;
1416 
1417 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1418 
1419 	ifp->if_ipackets +=
1420 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1421 
1422 	ifp->if_ierrors +=
1423 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1424 
1425 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1426 
1427 	ifp->if_opackets +=
1428 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1429 
1430 	ifp->if_collisions +=
1431 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1432 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1433 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1434 
1435 	ifp->if_oerrors +=
1436 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1437 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1438 }
1439 
1440 /*
1441  * stge_reset:
1442  *
1443  *	Perform a soft reset on the TC9021.
1444  */
1445 static void
1446 stge_reset(struct stge_softc *sc)
1447 {
1448 	uint32_t ac;
1449 	int i;
1450 
1451 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1452 
1453 	/*
1454 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1455 	 * to be present in order for the reset to complete on fiber
1456 	 * cards.
1457 	 */
1458 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1459 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1460 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1461 	    (sc->sc_usefiber ? AC_RstOut : 0));
1462 
1463 	delay(50000);
1464 
1465 	for (i = 0; i < STGE_TIMEOUT; i++) {
1466 		delay(5000);
1467 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1468 		     AC_ResetBusy) == 0)
1469 			break;
1470 	}
1471 
1472 	if (i == STGE_TIMEOUT)
1473 		printf("%s: reset failed to complete\n",
1474 		    device_xname(sc->sc_dev));
1475 
1476 	delay(1000);
1477 }
1478 
1479 /*
1480  * stge_init:		[ ifnet interface function ]
1481  *
1482  *	Initialize the interface.  Must be called at splnet().
1483  */
1484 static int
1485 stge_init(struct ifnet *ifp)
1486 {
1487 	struct stge_softc *sc = ifp->if_softc;
1488 	bus_space_tag_t st = sc->sc_st;
1489 	bus_space_handle_t sh = sc->sc_sh;
1490 	struct stge_descsoft *ds;
1491 	int i, error = 0;
1492 
1493 	/*
1494 	 * Cancel any pending I/O.
1495 	 */
1496 	stge_stop(ifp, 0);
1497 
1498 	/*
1499 	 * Reset the chip to a known state.
1500 	 */
1501 	stge_reset(sc);
1502 
1503 	/*
1504 	 * Initialize the transmit descriptor ring.
1505 	 */
1506 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1507 	for (i = 0; i < STGE_NTXDESC; i++) {
1508 		sc->sc_txdescs[i].tfd_next = htole64(
1509 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1510 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1511 	}
1512 	sc->sc_txpending = 0;
1513 	sc->sc_txdirty = 0;
1514 	sc->sc_txlast = STGE_NTXDESC - 1;
1515 
1516 	/*
1517 	 * Initialize the receive descriptor and receive job
1518 	 * descriptor rings.
1519 	 */
1520 	for (i = 0; i < STGE_NRXDESC; i++) {
1521 		ds = &sc->sc_rxsoft[i];
1522 		if (ds->ds_mbuf == NULL) {
1523 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1524 				printf("%s: unable to allocate or map rx "
1525 				    "buffer %d, error = %d\n",
1526 				    device_xname(sc->sc_dev), i, error);
1527 				/*
1528 				 * XXX Should attempt to run with fewer receive
1529 				 * XXX buffers instead of just failing.
1530 				 */
1531 				stge_rxdrain(sc);
1532 				goto out;
1533 			}
1534 		} else
1535 			STGE_INIT_RXDESC(sc, i);
1536 	}
1537 	sc->sc_rxptr = 0;
1538 	sc->sc_rxdiscard = 0;
1539 	STGE_RXCHAIN_RESET(sc);
1540 
1541 	/* Set the station address. */
1542 	for (i = 0; i < 6; i++)
1543 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1544 		    CLLADDR(ifp->if_sadl)[i]);
1545 
1546 	/*
1547 	 * Set the statistics masks.  Disable all the RMON stats,
1548 	 * and disable selected stats in the non-RMON stats registers.
1549 	 */
1550 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1551 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1552 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1553 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1554 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1555 	    (1U << 21));
1556 
1557 	/* Set up the receive filter. */
1558 	stge_set_filter(sc);
1559 
1560 	/*
1561 	 * Give the transmit and receive ring to the chip.
1562 	 */
1563 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1564 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1565 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1566 
1567 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1568 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1569 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1570 
1571 	/*
1572 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1573 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1574 	 * transmit engine when there's actually a packet.
1575 	 */
1576 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1577 
1578 	/* ..and the Rx auto-poll period. */
1579 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1580 
1581 	/* Initialize the Tx start threshold. */
1582 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1583 
1584 	/* RX DMA thresholds, from linux */
1585 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1586 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1587 
1588 	/*
1589 	 * Initialize the Rx DMA interrupt control register.  We
1590 	 * request an interrupt after every incoming packet, but
1591 	 * defer it for 32us (64 * 512 ns).  When the number of
1592 	 * interrupts pending reaches 8, we stop deferring the
1593 	 * interrupt, and signal it immediately.
1594 	 */
1595 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1596 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1597 
1598 	/*
1599 	 * Initialize the interrupt mask.
1600 	 */
1601 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1602 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1603 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1604 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1605 
1606 	/*
1607 	 * Configure the DMA engine.
1608 	 * XXX Should auto-tune TxBurstLimit.
1609 	 */
1610 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1611 	    DMAC_TxBurstLimit(3));
1612 
1613 	/*
1614 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1615 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1616 	 * empty again.
1617 	 */
1618 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1619 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1620 
1621 	/*
1622 	 * Set the maximum frame size.
1623 	 */
1624 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1625 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1626 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1627 	     ETHER_VLAN_ENCAP_LEN : 0));
1628 
1629 	/*
1630 	 * Initialize MacCtrl -- do it before setting the media,
1631 	 * as setting the media will actually program the register.
1632 	 *
1633 	 * Note: We have to poke the IFS value before poking
1634 	 * anything else.
1635 	 */
1636 	sc->sc_MACCtrl = MC_IFSSelect(0);
1637 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1638 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1639 #ifdef	STGE_VLAN_UNTAG
1640 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1641 #endif
1642 
1643 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1644 		/* Multi-frag frame bug work-around. */
1645 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1646 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1647 
1648 		/* Tx Poll Now bug work-around. */
1649 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1650 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1651 		/* XXX ? from linux */
1652 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1653 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1654 	}
1655 
1656 	/*
1657 	 * Set the current media.
1658 	 */
1659 	if ((error = ether_mediachange(ifp)) != 0)
1660 		goto out;
1661 
1662 	/*
1663 	 * Start the one second MII clock.
1664 	 */
1665 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1666 
1667 	/*
1668 	 * ...all done!
1669 	 */
1670 	ifp->if_flags |= IFF_RUNNING;
1671 	ifp->if_flags &= ~IFF_OACTIVE;
1672 
1673  out:
1674 	if (error)
1675 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1676 	return (error);
1677 }
1678 
1679 /*
1680  * stge_drain:
1681  *
1682  *	Drain the receive queue.
1683  */
1684 static void
1685 stge_rxdrain(struct stge_softc *sc)
1686 {
1687 	struct stge_descsoft *ds;
1688 	int i;
1689 
1690 	for (i = 0; i < STGE_NRXDESC; i++) {
1691 		ds = &sc->sc_rxsoft[i];
1692 		if (ds->ds_mbuf != NULL) {
1693 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1694 			ds->ds_mbuf->m_next = NULL;
1695 			m_freem(ds->ds_mbuf);
1696 			ds->ds_mbuf = NULL;
1697 		}
1698 	}
1699 }
1700 
1701 /*
1702  * stge_stop:		[ ifnet interface function ]
1703  *
1704  *	Stop transmission on the interface.
1705  */
1706 static void
1707 stge_stop(struct ifnet *ifp, int disable)
1708 {
1709 	struct stge_softc *sc = ifp->if_softc;
1710 	struct stge_descsoft *ds;
1711 	int i;
1712 
1713 	/*
1714 	 * Stop the one second clock.
1715 	 */
1716 	callout_stop(&sc->sc_tick_ch);
1717 
1718 	/* Down the MII. */
1719 	mii_down(&sc->sc_mii);
1720 
1721 	/*
1722 	 * Disable interrupts.
1723 	 */
1724 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1725 
1726 	/*
1727 	 * Stop receiver, transmitter, and stats update.
1728 	 */
1729 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1730 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1731 
1732 	/*
1733 	 * Stop the transmit and receive DMA.
1734 	 */
1735 	stge_dma_wait(sc);
1736 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1737 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1738 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1739 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1740 
1741 	/*
1742 	 * Release any queued transmit buffers.
1743 	 */
1744 	for (i = 0; i < STGE_NTXDESC; i++) {
1745 		ds = &sc->sc_txsoft[i];
1746 		if (ds->ds_mbuf != NULL) {
1747 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1748 			m_freem(ds->ds_mbuf);
1749 			ds->ds_mbuf = NULL;
1750 		}
1751 	}
1752 
1753 	/*
1754 	 * Mark the interface down and cancel the watchdog timer.
1755 	 */
1756 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1757 	ifp->if_timer = 0;
1758 
1759 	if (disable)
1760 		stge_rxdrain(sc);
1761 }
1762 
1763 static int
1764 stge_eeprom_wait(struct stge_softc *sc)
1765 {
1766 	int i;
1767 
1768 	for (i = 0; i < STGE_TIMEOUT; i++) {
1769 		delay(1000);
1770 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1771 		     EC_EepromBusy) == 0)
1772 			return (0);
1773 	}
1774 	return (1);
1775 }
1776 
1777 /*
1778  * stge_read_eeprom:
1779  *
1780  *	Read data from the serial EEPROM.
1781  */
1782 static void
1783 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1784 {
1785 
1786 	if (stge_eeprom_wait(sc))
1787 		printf("%s: EEPROM failed to come ready\n",
1788 		    device_xname(sc->sc_dev));
1789 
1790 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1791 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1792 	if (stge_eeprom_wait(sc))
1793 		printf("%s: EEPROM read timed out\n",
1794 		    device_xname(sc->sc_dev));
1795 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1796 }
1797 
1798 /*
1799  * stge_add_rxbuf:
1800  *
1801  *	Add a receive buffer to the indicated descriptor.
1802  */
1803 static int
1804 stge_add_rxbuf(struct stge_softc *sc, int idx)
1805 {
1806 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1807 	struct mbuf *m;
1808 	int error;
1809 
1810 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1811 	if (m == NULL)
1812 		return (ENOBUFS);
1813 
1814 	MCLGET(m, M_DONTWAIT);
1815 	if ((m->m_flags & M_EXT) == 0) {
1816 		m_freem(m);
1817 		return (ENOBUFS);
1818 	}
1819 
1820 	m->m_data = m->m_ext.ext_buf + 2;
1821 	m->m_len = MCLBYTES - 2;
1822 
1823 	if (ds->ds_mbuf != NULL)
1824 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1825 
1826 	ds->ds_mbuf = m;
1827 
1828 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1829 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1830 	if (error) {
1831 		printf("%s: can't load rx DMA map %d, error = %d\n",
1832 		    device_xname(sc->sc_dev), idx, error);
1833 		panic("stge_add_rxbuf");	/* XXX */
1834 	}
1835 
1836 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1837 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1838 
1839 	STGE_INIT_RXDESC(sc, idx);
1840 
1841 	return (0);
1842 }
1843 
1844 /*
1845  * stge_set_filter:
1846  *
1847  *	Set up the receive filter.
1848  */
1849 static void
1850 stge_set_filter(struct stge_softc *sc)
1851 {
1852 	struct ethercom *ec = &sc->sc_ethercom;
1853 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1854 	struct ether_multi *enm;
1855 	struct ether_multistep step;
1856 	uint32_t crc;
1857 	uint32_t mchash[2];
1858 
1859 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1860 	if (ifp->if_flags & IFF_BROADCAST)
1861 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1862 
1863 	/* XXX: ST1023 only works in promiscuous mode */
1864 	if (sc->sc_stge1023)
1865 		ifp->if_flags |= IFF_PROMISC;
1866 
1867 	if (ifp->if_flags & IFF_PROMISC) {
1868 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1869 		goto allmulti;
1870 	}
1871 
1872 	/*
1873 	 * Set up the multicast address filter by passing all multicast
1874 	 * addresses through a CRC generator, and then using the low-order
1875 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1876 	 * high order bits select the register, while the rest of the bits
1877 	 * select the bit within the register.
1878 	 */
1879 
1880 	memset(mchash, 0, sizeof(mchash));
1881 
1882 	ETHER_FIRST_MULTI(step, ec, enm);
1883 	if (enm == NULL)
1884 		goto done;
1885 
1886 	while (enm != NULL) {
1887 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1888 			/*
1889 			 * We must listen to a range of multicast addresses.
1890 			 * For now, just accept all multicasts, rather than
1891 			 * trying to set only those filter bits needed to match
1892 			 * the range.  (At this time, the only use of address
1893 			 * ranges is for IP multicast routing, for which the
1894 			 * range is big enough to require all bits set.)
1895 			 */
1896 			goto allmulti;
1897 		}
1898 
1899 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1900 
1901 		/* Just want the 6 least significant bits. */
1902 		crc &= 0x3f;
1903 
1904 		/* Set the corresponding bit in the hash table. */
1905 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1906 
1907 		ETHER_NEXT_MULTI(step, enm);
1908 	}
1909 
1910 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1911 
1912 	ifp->if_flags &= ~IFF_ALLMULTI;
1913 	goto done;
1914 
1915  allmulti:
1916 	ifp->if_flags |= IFF_ALLMULTI;
1917 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1918 
1919  done:
1920 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1921 		/*
1922 		 * Program the multicast hash table.
1923 		 */
1924 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1925 		    mchash[0]);
1926 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1927 		    mchash[1]);
1928 	}
1929 
1930 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1931 	    sc->sc_ReceiveMode);
1932 }
1933 
1934 /*
1935  * stge_mii_readreg:	[mii interface function]
1936  *
1937  *	Read a PHY register on the MII of the TC9021.
1938  */
1939 static int
1940 stge_mii_readreg(device_t self, int phy, int reg)
1941 {
1942 
1943 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1944 }
1945 
1946 /*
1947  * stge_mii_writereg:	[mii interface function]
1948  *
1949  *	Write a PHY register on the MII of the TC9021.
1950  */
1951 static void
1952 stge_mii_writereg(device_t self, int phy, int reg, int val)
1953 {
1954 
1955 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1956 }
1957 
1958 /*
1959  * stge_mii_statchg:	[mii interface function]
1960  *
1961  *	Callback from MII layer when media changes.
1962  */
1963 static void
1964 stge_mii_statchg(struct ifnet *ifp)
1965 {
1966 	struct stge_softc *sc = ifp->if_softc;
1967 
1968 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1969 		sc->sc_MACCtrl |= MC_DuplexSelect;
1970 	else
1971 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1972 
1973 	/* XXX 802.1x flow-control? */
1974 
1975 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1976 }
1977 
1978 /*
1979  * sste_mii_bitbang_read: [mii bit-bang interface function]
1980  *
1981  *	Read the MII serial port for the MII bit-bang module.
1982  */
1983 static uint32_t
1984 stge_mii_bitbang_read(device_t self)
1985 {
1986 	struct stge_softc *sc = device_private(self);
1987 
1988 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1989 }
1990 
1991 /*
1992  * stge_mii_bitbang_write: [mii big-bang interface function]
1993  *
1994  *	Write the MII serial port for the MII bit-bang module.
1995  */
1996 static void
1997 stge_mii_bitbang_write(device_t self, uint32_t val)
1998 {
1999 	struct stge_softc *sc = device_private(self);
2000 
2001 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2002 	    val | sc->sc_PhyCtrl);
2003 }
2004