1 /* $NetBSD: if_stge.c,v 1.19 2003/03/01 19:49:45 mjacob Exp $ */ 2 3 /*- 4 * Copyright (c) 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Device driver for the Sundance Tech. TC9021 10/100/1000 41 * Ethernet controller. 42 */ 43 44 #include <sys/cdefs.h> 45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.19 2003/03/01 19:49:45 mjacob Exp $"); 46 47 #include "bpfilter.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/kernel.h> 55 #include <sys/socket.h> 56 #include <sys/ioctl.h> 57 #include <sys/errno.h> 58 #include <sys/device.h> 59 #include <sys/queue.h> 60 61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 62 63 #include <net/if.h> 64 #include <net/if_dl.h> 65 #include <net/if_media.h> 66 #include <net/if_ether.h> 67 68 #if NBPFILTER > 0 69 #include <net/bpf.h> 70 #endif 71 72 #include <machine/bus.h> 73 #include <machine/intr.h> 74 75 #include <dev/mii/mii.h> 76 #include <dev/mii/miivar.h> 77 #include <dev/mii/mii_bitbang.h> 78 79 #include <dev/pci/pcireg.h> 80 #include <dev/pci/pcivar.h> 81 #include <dev/pci/pcidevs.h> 82 83 #include <dev/pci/if_stgereg.h> 84 85 /* #define STGE_CU_BUG 1 */ 86 #define STGE_VLAN_UNTAG 1 87 /* #define STGE_VLAN_CFI 1 */ 88 89 /* 90 * Transmit descriptor list size. 91 */ 92 #define STGE_NTXDESC 256 93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1) 94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK) 95 96 /* 97 * Receive descriptor list size. 98 */ 99 #define STGE_NRXDESC 256 100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1) 101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK) 102 103 /* 104 * Only interrupt every N frames. Must be a power-of-two. 105 */ 106 #define STGE_TXINTR_SPACING 16 107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1) 108 109 /* 110 * Control structures are DMA'd to the TC9021 chip. We allocate them in 111 * a single clump that maps to a single DMA segment to make several things 112 * easier. 113 */ 114 struct stge_control_data { 115 /* 116 * The transmit descriptors. 117 */ 118 struct stge_tfd scd_txdescs[STGE_NTXDESC]; 119 120 /* 121 * The receive descriptors. 122 */ 123 struct stge_rfd scd_rxdescs[STGE_NRXDESC]; 124 }; 125 126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x) 127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)]) 128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)]) 129 130 /* 131 * Software state for transmit and receive jobs. 132 */ 133 struct stge_descsoft { 134 struct mbuf *ds_mbuf; /* head of our mbuf chain */ 135 bus_dmamap_t ds_dmamap; /* our DMA map */ 136 }; 137 138 /* 139 * Software state per device. 140 */ 141 struct stge_softc { 142 struct device sc_dev; /* generic device information */ 143 bus_space_tag_t sc_st; /* bus space tag */ 144 bus_space_handle_t sc_sh; /* bus space handle */ 145 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 146 struct ethercom sc_ethercom; /* ethernet common data */ 147 void *sc_sdhook; /* shutdown hook */ 148 int sc_rev; /* silicon revision */ 149 150 void *sc_ih; /* interrupt cookie */ 151 152 struct mii_data sc_mii; /* MII/media information */ 153 154 struct callout sc_tick_ch; /* tick callout */ 155 156 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 158 159 /* 160 * Software state for transmit and receive descriptors. 161 */ 162 struct stge_descsoft sc_txsoft[STGE_NTXDESC]; 163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC]; 164 165 /* 166 * Control data structures. 167 */ 168 struct stge_control_data *sc_control_data; 169 #define sc_txdescs sc_control_data->scd_txdescs 170 #define sc_rxdescs sc_control_data->scd_rxdescs 171 172 #ifdef STGE_EVENT_COUNTERS 173 /* 174 * Event counters. 175 */ 176 struct evcnt sc_ev_txstall; /* Tx stalled */ 177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */ 178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */ 179 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 180 181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */ 182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */ 183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */ 184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */ 185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */ 186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */ 187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */ 188 189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */ 192 193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 196 #endif /* STGE_EVENT_COUNTERS */ 197 198 int sc_txpending; /* number of Tx requests pending */ 199 int sc_txdirty; /* first dirty Tx descriptor */ 200 int sc_txlast; /* last used Tx descriptor */ 201 202 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 203 int sc_rxdiscard; 204 int sc_rxlen; 205 struct mbuf *sc_rxhead; 206 struct mbuf *sc_rxtail; 207 struct mbuf **sc_rxtailp; 208 209 int sc_txthresh; /* Tx threshold */ 210 int sc_usefiber; /* if we're fiber */ 211 uint32_t sc_DMACtrl; /* prototype DMACtrl register */ 212 uint32_t sc_MACCtrl; /* prototype MacCtrl register */ 213 uint16_t sc_IntEnable; /* prototype IntEnable register */ 214 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */ 215 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */ 216 }; 217 218 #define STGE_RXCHAIN_RESET(sc) \ 219 do { \ 220 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \ 221 *(sc)->sc_rxtailp = NULL; \ 222 (sc)->sc_rxlen = 0; \ 223 } while (/*CONSTCOND*/0) 224 225 #define STGE_RXCHAIN_LINK(sc, m) \ 226 do { \ 227 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \ 228 (sc)->sc_rxtailp = &(m)->m_next; \ 229 } while (/*CONSTCOND*/0) 230 231 #ifdef STGE_EVENT_COUNTERS 232 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++ 233 #else 234 #define STGE_EVCNT_INCR(ev) /* nothing */ 235 #endif 236 237 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x))) 238 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x))) 239 240 #define STGE_CDTXSYNC(sc, x, ops) \ 241 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 242 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops)) 243 244 #define STGE_CDRXSYNC(sc, x, ops) \ 245 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 246 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops)) 247 248 #define STGE_INIT_RXDESC(sc, x) \ 249 do { \ 250 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \ 251 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \ 252 \ 253 /* \ 254 * Note: We scoot the packet forward 2 bytes in the buffer \ 255 * so that the payload after the Ethernet header is aligned \ 256 * to a 4-byte boundary. \ 257 */ \ 258 __rfd->rfd_frag.frag_word0 = \ 259 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\ 260 FRAG_LEN(MCLBYTES - 2)); \ 261 __rfd->rfd_next = \ 262 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \ 263 __rfd->rfd_status = 0; \ 264 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ 265 } while (/*CONSTCOND*/0) 266 267 #define STGE_TIMEOUT 1000 268 269 void stge_start(struct ifnet *); 270 void stge_watchdog(struct ifnet *); 271 int stge_ioctl(struct ifnet *, u_long, caddr_t); 272 int stge_init(struct ifnet *); 273 void stge_stop(struct ifnet *, int); 274 275 void stge_shutdown(void *); 276 277 void stge_reset(struct stge_softc *); 278 void stge_rxdrain(struct stge_softc *); 279 int stge_add_rxbuf(struct stge_softc *, int); 280 #if 0 281 void stge_read_eeprom(struct stge_softc *, int, uint16_t *); 282 #endif 283 void stge_tick(void *); 284 285 void stge_stats_update(struct stge_softc *); 286 287 void stge_set_filter(struct stge_softc *); 288 289 int stge_intr(void *); 290 void stge_txintr(struct stge_softc *); 291 void stge_rxintr(struct stge_softc *); 292 293 int stge_mii_readreg(struct device *, int, int); 294 void stge_mii_writereg(struct device *, int, int, int); 295 void stge_mii_statchg(struct device *); 296 297 int stge_mediachange(struct ifnet *); 298 void stge_mediastatus(struct ifnet *, struct ifmediareq *); 299 300 int stge_match(struct device *, struct cfdata *, void *); 301 void stge_attach(struct device *, struct device *, void *); 302 303 int stge_copy_small = 0; 304 305 CFATTACH_DECL(stge, sizeof(struct stge_softc), 306 stge_match, stge_attach, NULL, NULL); 307 308 uint32_t stge_mii_bitbang_read(struct device *); 309 void stge_mii_bitbang_write(struct device *, uint32_t); 310 311 const struct mii_bitbang_ops stge_mii_bitbang_ops = { 312 stge_mii_bitbang_read, 313 stge_mii_bitbang_write, 314 { 315 PC_MgmtData, /* MII_BIT_MDO */ 316 PC_MgmtData, /* MII_BIT_MDI */ 317 PC_MgmtClk, /* MII_BIT_MDC */ 318 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */ 319 0, /* MII_BIT_DIR_PHY_HOST */ 320 } 321 }; 322 323 /* 324 * Devices supported by this driver. 325 */ 326 const struct stge_product { 327 pci_vendor_id_t stge_vendor; 328 pci_product_id_t stge_product; 329 const char *stge_name; 330 } stge_products[] = { 331 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021, 332 "Sundance ST-2021 Gigabit Ethernet" }, 333 334 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021, 335 "Tamarack TC9021 Gigabit Ethernet" }, 336 337 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT, 338 "Tamarack TC9021 Gigabit Ethernet" }, 339 340 /* 341 * The Sundance sample boards use the Sundance vendor ID, 342 * but the Tamarack product ID. 343 */ 344 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021, 345 "Sundance TC9021 Gigabit Ethernet" }, 346 347 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT, 348 "Sundance TC9021 Gigabit Ethernet" }, 349 350 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000, 351 "D-Link DL-4000 Gigabit Ethernet" }, 352 353 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021, 354 "Antares Gigabit Ethernet" }, 355 356 { 0, 0, 357 NULL }, 358 }; 359 360 static const struct stge_product * 361 stge_lookup(const struct pci_attach_args *pa) 362 { 363 const struct stge_product *sp; 364 365 for (sp = stge_products; sp->stge_name != NULL; sp++) { 366 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor && 367 PCI_PRODUCT(pa->pa_id) == sp->stge_product) 368 return (sp); 369 } 370 return (NULL); 371 } 372 373 int 374 stge_match(struct device *parent, struct cfdata *cf, void *aux) 375 { 376 struct pci_attach_args *pa = aux; 377 378 if (stge_lookup(pa) != NULL) 379 return (1); 380 381 return (0); 382 } 383 384 void 385 stge_attach(struct device *parent, struct device *self, void *aux) 386 { 387 struct stge_softc *sc = (struct stge_softc *) self; 388 struct pci_attach_args *pa = aux; 389 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 390 pci_chipset_tag_t pc = pa->pa_pc; 391 pci_intr_handle_t ih; 392 const char *intrstr = NULL; 393 bus_space_tag_t iot, memt; 394 bus_space_handle_t ioh, memh; 395 bus_dma_segment_t seg; 396 int ioh_valid, memh_valid; 397 int i, rseg, error; 398 const struct stge_product *sp; 399 pcireg_t pmode; 400 uint8_t enaddr[ETHER_ADDR_LEN]; 401 int pmreg; 402 403 callout_init(&sc->sc_tick_ch); 404 405 sp = stge_lookup(pa); 406 if (sp == NULL) { 407 printf("\n"); 408 panic("ste_attach: impossible"); 409 } 410 411 sc->sc_rev = PCI_REVISION(pa->pa_class); 412 413 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev); 414 415 /* 416 * Map the device. 417 */ 418 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA, 419 PCI_MAPREG_TYPE_IO, 0, 420 &iot, &ioh, NULL, NULL) == 0); 421 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA, 422 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 423 &memt, &memh, NULL, NULL) == 0); 424 425 if (memh_valid) { 426 sc->sc_st = memt; 427 sc->sc_sh = memh; 428 } else if (ioh_valid) { 429 sc->sc_st = iot; 430 sc->sc_sh = ioh; 431 } else { 432 printf("%s: unable to map device registers\n", 433 sc->sc_dev.dv_xname); 434 return; 435 } 436 437 sc->sc_dmat = pa->pa_dmat; 438 439 /* Enable bus mastering. */ 440 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 441 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 442 PCI_COMMAND_MASTER_ENABLE); 443 444 /* Get it out of power save mode if needed. */ 445 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { 446 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) & 447 PCI_PMCSR_STATE_MASK; 448 if (pmode == PCI_PMCSR_STATE_D3) { 449 /* 450 * The card has lost all configuration data in 451 * this state, so punt. 452 */ 453 printf("%s: unable to wake up from power state D3\n", 454 sc->sc_dev.dv_xname); 455 return; 456 } 457 if (pmode != 0) { 458 printf("%s: waking up from power state D%d\n", 459 sc->sc_dev.dv_xname, pmode); 460 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, 461 PCI_PMCSR_STATE_D0); 462 } 463 } 464 465 /* 466 * Map and establish our interrupt. 467 */ 468 if (pci_intr_map(pa, &ih)) { 469 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); 470 return; 471 } 472 intrstr = pci_intr_string(pc, ih); 473 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc); 474 if (sc->sc_ih == NULL) { 475 printf("%s: unable to establish interrupt", 476 sc->sc_dev.dv_xname); 477 if (intrstr != NULL) 478 printf(" at %s", intrstr); 479 printf("\n"); 480 return; 481 } 482 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 483 484 /* 485 * Allocate the control data structures, and create and load the 486 * DMA map for it. 487 */ 488 if ((error = bus_dmamem_alloc(sc->sc_dmat, 489 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 490 0)) != 0) { 491 printf("%s: unable to allocate control data, error = %d\n", 492 sc->sc_dev.dv_xname, error); 493 goto fail_0; 494 } 495 496 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 497 sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data, 498 BUS_DMA_COHERENT)) != 0) { 499 printf("%s: unable to map control data, error = %d\n", 500 sc->sc_dev.dv_xname, error); 501 goto fail_1; 502 } 503 504 if ((error = bus_dmamap_create(sc->sc_dmat, 505 sizeof(struct stge_control_data), 1, 506 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 507 printf("%s: unable to create control data DMA map, " 508 "error = %d\n", sc->sc_dev.dv_xname, error); 509 goto fail_2; 510 } 511 512 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 513 sc->sc_control_data, sizeof(struct stge_control_data), NULL, 514 0)) != 0) { 515 printf("%s: unable to load control data DMA map, error = %d\n", 516 sc->sc_dev.dv_xname, error); 517 goto fail_3; 518 } 519 520 /* 521 * Create the transmit buffer DMA maps. Note that rev B.3 522 * and earlier seem to have a bug regarding multi-fragment 523 * packets. We need to limit the number of Tx segments on 524 * such chips to 1. 525 */ 526 for (i = 0; i < STGE_NTXDESC; i++) { 527 if ((error = bus_dmamap_create(sc->sc_dmat, 528 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0, 529 &sc->sc_txsoft[i].ds_dmamap)) != 0) { 530 printf("%s: unable to create tx DMA map %d, " 531 "error = %d\n", sc->sc_dev.dv_xname, i, error); 532 goto fail_4; 533 } 534 } 535 536 /* 537 * Create the receive buffer DMA maps. 538 */ 539 for (i = 0; i < STGE_NRXDESC; i++) { 540 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 541 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) { 542 printf("%s: unable to create rx DMA map %d, " 543 "error = %d\n", sc->sc_dev.dv_xname, i, error); 544 goto fail_5; 545 } 546 sc->sc_rxsoft[i].ds_mbuf = NULL; 547 } 548 549 /* 550 * Determine if we're copper or fiber. It affects how we 551 * reset the card. 552 */ 553 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) & 554 AC_PhyMedia) 555 sc->sc_usefiber = 1; 556 else 557 sc->sc_usefiber = 0; 558 559 /* 560 * Reset the chip to a known state. 561 */ 562 stge_reset(sc); 563 564 /* 565 * Reading the station address from the EEPROM doesn't seem 566 * to work, at least on my sample boards. Instread, since 567 * the reset sequence does AutoInit, read it from the station 568 * address registers. 569 */ 570 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh, 571 STGE_StationAddress0) & 0xff; 572 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh, 573 STGE_StationAddress0) >> 8; 574 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh, 575 STGE_StationAddress1) & 0xff; 576 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh, 577 STGE_StationAddress1) >> 8; 578 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh, 579 STGE_StationAddress2) & 0xff; 580 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh, 581 STGE_StationAddress2) >> 8; 582 583 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 584 ether_sprintf(enaddr)); 585 586 /* 587 * Read some important bits from the PhyCtrl register. 588 */ 589 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh, 590 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity); 591 592 /* 593 * Initialize our media structures and probe the MII. 594 */ 595 sc->sc_mii.mii_ifp = ifp; 596 sc->sc_mii.mii_readreg = stge_mii_readreg; 597 sc->sc_mii.mii_writereg = stge_mii_writereg; 598 sc->sc_mii.mii_statchg = stge_mii_statchg; 599 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange, 600 stge_mediastatus); 601 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 602 MII_OFFSET_ANY, MIIF_DOPAUSE); 603 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 604 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 605 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 606 } else 607 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 608 609 ifp = &sc->sc_ethercom.ec_if; 610 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 611 ifp->if_softc = sc; 612 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 613 ifp->if_ioctl = stge_ioctl; 614 ifp->if_start = stge_start; 615 ifp->if_watchdog = stge_watchdog; 616 ifp->if_init = stge_init; 617 ifp->if_stop = stge_stop; 618 IFQ_SET_READY(&ifp->if_snd); 619 620 /* 621 * The manual recommends disabling early transmit, so we 622 * do. It's disabled anyway, if using IP checksumming, 623 * since the entire packet must be in the FIFO in order 624 * for the chip to perform the checksum. 625 */ 626 sc->sc_txthresh = 0x0fff; 627 628 /* 629 * Disable MWI if the PCI layer tells us to. 630 */ 631 sc->sc_DMACtrl = 0; 632 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0) 633 sc->sc_DMACtrl |= DMAC_MWIDisable; 634 635 /* 636 * We can support 802.1Q VLAN-sized frames and jumbo 637 * Ethernet frames. 638 * 639 * XXX Figure out how to do hw-assisted VLAN tagging in 640 * XXX a reasonable way on this chip. 641 */ 642 sc->sc_ethercom.ec_capabilities |= 643 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */ 644 ETHERCAP_VLAN_HWTAGGING; 645 646 /* 647 * We can do IPv4/TCPv4/UDPv4 checksums in hardware. 648 */ 649 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 | 650 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; 651 652 /* 653 * Attach the interface. 654 */ 655 if_attach(ifp); 656 ether_ifattach(ifp, enaddr); 657 658 #ifdef STGE_EVENT_COUNTERS 659 /* 660 * Attach event counters. 661 */ 662 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC, 663 NULL, sc->sc_dev.dv_xname, "txstall"); 664 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR, 665 NULL, sc->sc_dev.dv_xname, "txdmaintr"); 666 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR, 667 NULL, sc->sc_dev.dv_xname, "txindintr"); 668 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 669 NULL, sc->sc_dev.dv_xname, "rxintr"); 670 671 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC, 672 NULL, sc->sc_dev.dv_xname, "txseg1"); 673 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC, 674 NULL, sc->sc_dev.dv_xname, "txseg2"); 675 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC, 676 NULL, sc->sc_dev.dv_xname, "txseg3"); 677 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC, 678 NULL, sc->sc_dev.dv_xname, "txseg4"); 679 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC, 680 NULL, sc->sc_dev.dv_xname, "txseg5"); 681 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC, 682 NULL, sc->sc_dev.dv_xname, "txsegmore"); 683 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC, 684 NULL, sc->sc_dev.dv_xname, "txcopy"); 685 686 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 687 NULL, sc->sc_dev.dv_xname, "rxipsum"); 688 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 689 NULL, sc->sc_dev.dv_xname, "rxtcpsum"); 690 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 691 NULL, sc->sc_dev.dv_xname, "rxudpsum"); 692 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 693 NULL, sc->sc_dev.dv_xname, "txipsum"); 694 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 695 NULL, sc->sc_dev.dv_xname, "txtcpsum"); 696 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 697 NULL, sc->sc_dev.dv_xname, "txudpsum"); 698 #endif /* STGE_EVENT_COUNTERS */ 699 700 /* 701 * Make sure the interface is shutdown during reboot. 702 */ 703 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc); 704 if (sc->sc_sdhook == NULL) 705 printf("%s: WARNING: unable to establish shutdown hook\n", 706 sc->sc_dev.dv_xname); 707 return; 708 709 /* 710 * Free any resources we've allocated during the failed attach 711 * attempt. Do this in reverse order and fall through. 712 */ 713 fail_5: 714 for (i = 0; i < STGE_NRXDESC; i++) { 715 if (sc->sc_rxsoft[i].ds_dmamap != NULL) 716 bus_dmamap_destroy(sc->sc_dmat, 717 sc->sc_rxsoft[i].ds_dmamap); 718 } 719 fail_4: 720 for (i = 0; i < STGE_NTXDESC; i++) { 721 if (sc->sc_txsoft[i].ds_dmamap != NULL) 722 bus_dmamap_destroy(sc->sc_dmat, 723 sc->sc_txsoft[i].ds_dmamap); 724 } 725 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 726 fail_3: 727 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 728 fail_2: 729 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, 730 sizeof(struct stge_control_data)); 731 fail_1: 732 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 733 fail_0: 734 return; 735 } 736 737 /* 738 * stge_shutdown: 739 * 740 * Make sure the interface is stopped at reboot time. 741 */ 742 void 743 stge_shutdown(void *arg) 744 { 745 struct stge_softc *sc = arg; 746 747 stge_stop(&sc->sc_ethercom.ec_if, 1); 748 } 749 750 static void 751 stge_dma_wait(struct stge_softc *sc) 752 { 753 int i; 754 755 for (i = 0; i < STGE_TIMEOUT; i++) { 756 delay(2); 757 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) & 758 DMAC_TxDMAInProg) == 0) 759 break; 760 } 761 762 if (i == STGE_TIMEOUT) 763 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname); 764 } 765 766 /* 767 * stge_start: [ifnet interface function] 768 * 769 * Start packet transmission on the interface. 770 */ 771 void 772 stge_start(struct ifnet *ifp) 773 { 774 struct stge_softc *sc = ifp->if_softc; 775 struct mbuf *m0; 776 struct stge_descsoft *ds; 777 struct stge_tfd *tfd; 778 bus_dmamap_t dmamap; 779 int error, firsttx, nexttx, opending, seg, totlen; 780 uint64_t csum_flags; 781 782 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 783 return; 784 785 /* 786 * Remember the previous number of pending transmissions 787 * and the first descriptor we will use. 788 */ 789 opending = sc->sc_txpending; 790 firsttx = STGE_NEXTTX(sc->sc_txlast); 791 792 /* 793 * Loop through the send queue, setting up transmit descriptors 794 * until we drain the queue, or use up all available transmit 795 * descriptors. 796 */ 797 for (;;) { 798 struct m_tag *mtag; 799 uint64_t tfc; 800 801 /* 802 * Grab a packet off the queue. 803 */ 804 IFQ_POLL(&ifp->if_snd, m0); 805 if (m0 == NULL) 806 break; 807 808 /* 809 * Leave one unused descriptor at the end of the 810 * list to prevent wrapping completely around. 811 */ 812 if (sc->sc_txpending == (STGE_NTXDESC - 1)) { 813 STGE_EVCNT_INCR(&sc->sc_ev_txstall); 814 break; 815 } 816 817 /* 818 * See if we have any VLAN stuff. 819 */ 820 mtag = sc->sc_ethercom.ec_nvlans ? 821 m_tag_find(m0, PACKET_TAG_VLAN, NULL) : NULL; 822 823 /* 824 * Get the last and next available transmit descriptor. 825 */ 826 nexttx = STGE_NEXTTX(sc->sc_txlast); 827 tfd = &sc->sc_txdescs[nexttx]; 828 ds = &sc->sc_txsoft[nexttx]; 829 830 dmamap = ds->ds_dmamap; 831 832 /* 833 * Load the DMA map. If this fails, the packet either 834 * didn't fit in the alloted number of segments, or we 835 * were short on resources. For the too-may-segments 836 * case, we simply report an error and drop the packet, 837 * since we can't sanely copy a jumbo packet to a single 838 * buffer. 839 */ 840 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 841 BUS_DMA_NOWAIT); 842 if (error) { 843 if (error == EFBIG) { 844 printf("%s: Tx packet consumes too many " 845 "DMA segments, dropping...\n", 846 sc->sc_dev.dv_xname); 847 IFQ_DEQUEUE(&ifp->if_snd, m0); 848 m_freem(m0); 849 continue; 850 } 851 /* 852 * Short on resources, just stop for now. 853 */ 854 break; 855 } 856 857 IFQ_DEQUEUE(&ifp->if_snd, m0); 858 859 /* 860 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 861 */ 862 863 /* Sync the DMA map. */ 864 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 865 BUS_DMASYNC_PREWRITE); 866 867 /* Initialize the fragment list. */ 868 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) { 869 tfd->tfd_frags[seg].frag_word0 = 870 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) | 871 FRAG_LEN(dmamap->dm_segs[seg].ds_len)); 872 totlen += dmamap->dm_segs[seg].ds_len; 873 } 874 875 #ifdef STGE_EVENT_COUNTERS 876 switch (dmamap->dm_nsegs) { 877 case 1: 878 STGE_EVCNT_INCR(&sc->sc_ev_txseg1); 879 break; 880 case 2: 881 STGE_EVCNT_INCR(&sc->sc_ev_txseg2); 882 break; 883 case 3: 884 STGE_EVCNT_INCR(&sc->sc_ev_txseg3); 885 break; 886 case 4: 887 STGE_EVCNT_INCR(&sc->sc_ev_txseg4); 888 break; 889 case 5: 890 STGE_EVCNT_INCR(&sc->sc_ev_txseg5); 891 break; 892 default: 893 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore); 894 break; 895 } 896 #endif /* STGE_EVENT_COUNTERS */ 897 898 /* 899 * Initialize checksumming flags in the descriptor. 900 * Byte-swap constants so the compiler can optimize. 901 */ 902 csum_flags = 0; 903 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 904 STGE_EVCNT_INCR(&sc->sc_ev_txipsum); 905 csum_flags |= htole64(TFD_IPChecksumEnable); 906 } 907 908 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 909 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum); 910 csum_flags |= htole64(TFD_TCPChecksumEnable); 911 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 912 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum); 913 csum_flags |= htole64(TFD_UDPChecksumEnable); 914 } 915 916 /* 917 * Initialize the descriptor and give it to the chip. 918 * Check to see if we have a VLAN tag to insert. 919 */ 920 921 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) | 922 TFD_FragCount(seg) | csum_flags | 923 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ? 924 TFD_TxDMAIndicate : 0); 925 if (mtag) { 926 #if 0 927 struct ether_header *eh = 928 mtod(m0, struct ether_header *); 929 u_int16_t etype = ntohs(eh->ether_type); 930 printf("%s: xmit (tag %d) etype %x\n", 931 ifp->if_xname, *mtod(n, int *), etype); 932 #endif 933 tfc |= TFD_VLANTagInsert | 934 #ifdef STGE_VLAN_CFI 935 TFD_CFI | 936 #endif 937 TFD_VID((*(u_int *)(mtag + 1))); 938 } 939 tfd->tfd_control = htole64(tfc); 940 941 /* Sync the descriptor. */ 942 STGE_CDTXSYNC(sc, nexttx, 943 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 944 945 /* 946 * Kick the transmit DMA logic. 947 */ 948 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl, 949 sc->sc_DMACtrl | DMAC_TxDMAPollNow); 950 951 /* 952 * Store a pointer to the packet so we can free it later. 953 */ 954 ds->ds_mbuf = m0; 955 956 /* Advance the tx pointer. */ 957 sc->sc_txpending++; 958 sc->sc_txlast = nexttx; 959 960 #if NBPFILTER > 0 961 /* 962 * Pass the packet to any BPF listeners. 963 */ 964 if (ifp->if_bpf) 965 bpf_mtap(ifp->if_bpf, m0); 966 #endif /* NBPFILTER > 0 */ 967 } 968 969 if (sc->sc_txpending == (STGE_NTXDESC - 1)) { 970 /* No more slots left; notify upper layer. */ 971 ifp->if_flags |= IFF_OACTIVE; 972 } 973 974 if (sc->sc_txpending != opending) { 975 /* 976 * We enqueued packets. If the transmitter was idle, 977 * reset the txdirty pointer. 978 */ 979 if (opending == 0) 980 sc->sc_txdirty = firsttx; 981 982 /* Set a watchdog timer in case the chip flakes out. */ 983 ifp->if_timer = 5; 984 } 985 } 986 987 /* 988 * stge_watchdog: [ifnet interface function] 989 * 990 * Watchdog timer handler. 991 */ 992 void 993 stge_watchdog(struct ifnet *ifp) 994 { 995 struct stge_softc *sc = ifp->if_softc; 996 997 /* 998 * Sweep up first, since we don't interrupt every frame. 999 */ 1000 stge_txintr(sc); 1001 if (sc->sc_txpending != 0) { 1002 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1003 ifp->if_oerrors++; 1004 1005 (void) stge_init(ifp); 1006 1007 /* Try to get more packets going. */ 1008 stge_start(ifp); 1009 } 1010 } 1011 1012 /* 1013 * stge_ioctl: [ifnet interface function] 1014 * 1015 * Handle control requests from the operator. 1016 */ 1017 int 1018 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1019 { 1020 struct stge_softc *sc = ifp->if_softc; 1021 struct ifreq *ifr = (struct ifreq *)data; 1022 int s, error; 1023 1024 s = splnet(); 1025 1026 switch (cmd) { 1027 case SIOCSIFMEDIA: 1028 case SIOCGIFMEDIA: 1029 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1030 break; 1031 1032 default: 1033 error = ether_ioctl(ifp, cmd, data); 1034 if (error == ENETRESET) { 1035 /* 1036 * Multicast list has changed; set the hardware filter 1037 * accordingly. 1038 */ 1039 stge_set_filter(sc); 1040 error = 0; 1041 } 1042 break; 1043 } 1044 1045 /* Try to get more packets going. */ 1046 stge_start(ifp); 1047 1048 splx(s); 1049 return (error); 1050 } 1051 1052 /* 1053 * stge_intr: 1054 * 1055 * Interrupt service routine. 1056 */ 1057 int 1058 stge_intr(void *arg) 1059 { 1060 struct stge_softc *sc = arg; 1061 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1062 uint32_t txstat; 1063 int wantinit; 1064 uint16_t isr; 1065 1066 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) & 1067 IS_InterruptStatus) == 0) 1068 return (0); 1069 1070 for (wantinit = 0; wantinit == 0;) { 1071 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck); 1072 if ((isr & sc->sc_IntEnable) == 0) 1073 break; 1074 1075 /* Host interface errors. */ 1076 if (isr & IS_HostError) { 1077 printf("%s: Host interface error\n", 1078 sc->sc_dev.dv_xname); 1079 wantinit = 1; 1080 continue; 1081 } 1082 1083 /* Receive interrupts. */ 1084 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) { 1085 STGE_EVCNT_INCR(&sc->sc_ev_rxintr); 1086 stge_rxintr(sc); 1087 if (isr & IS_RFDListEnd) { 1088 printf("%s: receive ring overflow\n", 1089 sc->sc_dev.dv_xname); 1090 /* 1091 * XXX Should try to recover from this 1092 * XXX more gracefully. 1093 */ 1094 wantinit = 1; 1095 } 1096 } 1097 1098 /* Transmit interrupts. */ 1099 if (isr & (IS_TxDMAComplete|IS_TxComplete)) { 1100 #ifdef STGE_EVENT_COUNTERS 1101 if (isr & IS_TxDMAComplete) 1102 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr); 1103 #endif 1104 stge_txintr(sc); 1105 } 1106 1107 /* Statistics overflow. */ 1108 if (isr & IS_UpdateStats) 1109 stge_stats_update(sc); 1110 1111 /* Transmission errors. */ 1112 if (isr & IS_TxComplete) { 1113 STGE_EVCNT_INCR(&sc->sc_ev_txindintr); 1114 for (;;) { 1115 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh, 1116 STGE_TxStatus); 1117 if ((txstat & TS_TxComplete) == 0) 1118 break; 1119 if (txstat & TS_TxUnderrun) { 1120 sc->sc_txthresh++; 1121 if (sc->sc_txthresh > 0x0fff) 1122 sc->sc_txthresh = 0x0fff; 1123 printf("%s: transmit underrun, new " 1124 "threshold: %d bytes\n", 1125 sc->sc_dev.dv_xname, 1126 sc->sc_txthresh << 5); 1127 } 1128 if (txstat & TS_MaxCollisions) 1129 printf("%s: excessive collisions\n", 1130 sc->sc_dev.dv_xname); 1131 } 1132 wantinit = 1; 1133 } 1134 1135 } 1136 1137 if (wantinit) 1138 stge_init(ifp); 1139 1140 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 1141 sc->sc_IntEnable); 1142 1143 /* Try to get more packets going. */ 1144 stge_start(ifp); 1145 1146 return (1); 1147 } 1148 1149 /* 1150 * stge_txintr: 1151 * 1152 * Helper; handle transmit interrupts. 1153 */ 1154 void 1155 stge_txintr(struct stge_softc *sc) 1156 { 1157 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1158 struct stge_descsoft *ds; 1159 uint64_t control; 1160 int i; 1161 1162 ifp->if_flags &= ~IFF_OACTIVE; 1163 1164 /* 1165 * Go through our Tx list and free mbufs for those 1166 * frames which have been transmitted. 1167 */ 1168 for (i = sc->sc_txdirty; sc->sc_txpending != 0; 1169 i = STGE_NEXTTX(i), sc->sc_txpending--) { 1170 ds = &sc->sc_txsoft[i]; 1171 1172 STGE_CDTXSYNC(sc, i, 1173 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1174 1175 control = le64toh(sc->sc_txdescs[i].tfd_control); 1176 if ((control & TFD_TFDDone) == 0) 1177 break; 1178 1179 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 1180 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1181 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1182 m_freem(ds->ds_mbuf); 1183 ds->ds_mbuf = NULL; 1184 } 1185 1186 /* Update the dirty transmit buffer pointer. */ 1187 sc->sc_txdirty = i; 1188 1189 /* 1190 * If there are no more pending transmissions, cancel the watchdog 1191 * timer. 1192 */ 1193 if (sc->sc_txpending == 0) 1194 ifp->if_timer = 0; 1195 } 1196 1197 /* 1198 * stge_rxintr: 1199 * 1200 * Helper; handle receive interrupts. 1201 */ 1202 void 1203 stge_rxintr(struct stge_softc *sc) 1204 { 1205 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1206 struct stge_descsoft *ds; 1207 struct mbuf *m, *tailm; 1208 uint64_t status; 1209 int i, len; 1210 1211 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) { 1212 ds = &sc->sc_rxsoft[i]; 1213 1214 STGE_CDRXSYNC(sc, i, 1215 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1216 1217 status = le64toh(sc->sc_rxdescs[i].rfd_status); 1218 1219 if ((status & RFD_RFDDone) == 0) 1220 break; 1221 1222 if (__predict_false(sc->sc_rxdiscard)) { 1223 STGE_INIT_RXDESC(sc, i); 1224 if (status & RFD_FrameEnd) { 1225 /* Reset our state. */ 1226 sc->sc_rxdiscard = 0; 1227 } 1228 continue; 1229 } 1230 1231 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 1232 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1233 1234 m = ds->ds_mbuf; 1235 1236 /* 1237 * Add a new receive buffer to the ring. 1238 */ 1239 if (stge_add_rxbuf(sc, i) != 0) { 1240 /* 1241 * Failed, throw away what we've done so 1242 * far, and discard the rest of the packet. 1243 */ 1244 ifp->if_ierrors++; 1245 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 1246 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1247 STGE_INIT_RXDESC(sc, i); 1248 if ((status & RFD_FrameEnd) == 0) 1249 sc->sc_rxdiscard = 1; 1250 if (sc->sc_rxhead != NULL) 1251 m_freem(sc->sc_rxhead); 1252 STGE_RXCHAIN_RESET(sc); 1253 continue; 1254 } 1255 1256 #ifdef DIAGNOSTIC 1257 if (status & RFD_FrameStart) { 1258 KASSERT(sc->sc_rxhead == NULL); 1259 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead); 1260 } 1261 #endif 1262 1263 STGE_RXCHAIN_LINK(sc, m); 1264 1265 /* 1266 * If this is not the end of the packet, keep 1267 * looking. 1268 */ 1269 if ((status & RFD_FrameEnd) == 0) { 1270 sc->sc_rxlen += m->m_len; 1271 continue; 1272 } 1273 1274 /* 1275 * Okay, we have the entire packet now... 1276 */ 1277 *sc->sc_rxtailp = NULL; 1278 m = sc->sc_rxhead; 1279 tailm = sc->sc_rxtail; 1280 1281 STGE_RXCHAIN_RESET(sc); 1282 1283 /* 1284 * If the packet had an error, drop it. Note we 1285 * count the error later in the periodic stats update. 1286 */ 1287 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame | 1288 RFD_RxAlignmentError | RFD_RxFCSError | 1289 RFD_RxLengthError)) { 1290 m_freem(m); 1291 continue; 1292 } 1293 1294 /* 1295 * No errors. 1296 * 1297 * Note we have configured the chip to not include 1298 * the CRC at the end of the packet. 1299 */ 1300 len = RFD_RxDMAFrameLen(status); 1301 tailm->m_len = len - sc->sc_rxlen; 1302 1303 /* 1304 * If the packet is small enough to fit in a 1305 * single header mbuf, allocate one and copy 1306 * the data into it. This greatly reduces 1307 * memory consumption when we receive lots 1308 * of small packets. 1309 */ 1310 if (stge_copy_small != 0 && len <= (MHLEN - 2)) { 1311 struct mbuf *nm; 1312 MGETHDR(nm, M_DONTWAIT, MT_DATA); 1313 if (nm == NULL) { 1314 ifp->if_ierrors++; 1315 m_freem(m); 1316 continue; 1317 } 1318 nm->m_data += 2; 1319 nm->m_pkthdr.len = nm->m_len = len; 1320 m_copydata(m, 0, len, mtod(nm, caddr_t)); 1321 m_freem(m); 1322 m = nm; 1323 } 1324 1325 /* 1326 * Set the incoming checksum information for the packet. 1327 */ 1328 if (status & RFD_IPDetected) { 1329 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum); 1330 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1331 if (status & RFD_IPError) 1332 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1333 if (status & RFD_TCPDetected) { 1334 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 1335 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1336 if (status & RFD_TCPError) 1337 m->m_pkthdr.csum_flags |= 1338 M_CSUM_TCP_UDP_BAD; 1339 } else if (status & RFD_UDPDetected) { 1340 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum); 1341 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1342 if (status & RFD_UDPError) 1343 m->m_pkthdr.csum_flags |= 1344 M_CSUM_TCP_UDP_BAD; 1345 } 1346 } 1347 1348 m->m_pkthdr.rcvif = ifp; 1349 m->m_pkthdr.len = len; 1350 1351 #if NBPFILTER > 0 1352 /* 1353 * Pass this up to any BPF listeners, but only 1354 * pass if up the stack if it's for us. 1355 */ 1356 if (ifp->if_bpf) 1357 bpf_mtap(ifp->if_bpf, m); 1358 #endif /* NBPFILTER > 0 */ 1359 #ifdef STGE_VLAN_UNTAG 1360 /* 1361 * Check for VLAN tagged packets 1362 */ 1363 if (status & RFD_VLANDetected) { 1364 struct m_tag *mtag = 1365 m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT); 1366 if (mtag == NULL) { 1367 printf("%s: no mbuf for VLAN tag\n", 1368 ifp->if_xname); 1369 m_freem(m); 1370 continue; 1371 } 1372 *(u_int *)(mtag + 1) = RFD_TCI(status); 1373 m_tag_prepend(m, mtag); 1374 } 1375 #endif 1376 #if 0 1377 if (status & RFD_VLANDetected) { 1378 struct ether_header *eh; 1379 u_int16_t etype; 1380 1381 eh = mtod(m, struct ether_header *); 1382 etype = ntohs(eh->ether_type); 1383 printf("%s: VLANtag detected (TCI %d) etype %x\n", 1384 ifp->if_xname, (u_int16_t) RFD_TCI(status), 1385 etype); 1386 } 1387 #endif 1388 /* Pass it on. */ 1389 (*ifp->if_input)(ifp, m); 1390 } 1391 1392 /* Update the receive pointer. */ 1393 sc->sc_rxptr = i; 1394 } 1395 1396 /* 1397 * stge_tick: 1398 * 1399 * One second timer, used to tick the MII. 1400 */ 1401 void 1402 stge_tick(void *arg) 1403 { 1404 struct stge_softc *sc = arg; 1405 int s; 1406 1407 s = splnet(); 1408 mii_tick(&sc->sc_mii); 1409 stge_stats_update(sc); 1410 splx(s); 1411 1412 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc); 1413 } 1414 1415 /* 1416 * stge_stats_update: 1417 * 1418 * Read the TC9021 statistics counters. 1419 */ 1420 void 1421 stge_stats_update(struct stge_softc *sc) 1422 { 1423 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1424 bus_space_tag_t st = sc->sc_st; 1425 bus_space_handle_t sh = sc->sc_sh; 1426 1427 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk); 1428 1429 ifp->if_ipackets += 1430 bus_space_read_4(st, sh, STGE_FramesRcvdOk); 1431 1432 ifp->if_ierrors += 1433 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors); 1434 1435 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk); 1436 1437 ifp->if_opackets += 1438 bus_space_read_4(st, sh, STGE_FramesXmtdOk); 1439 1440 ifp->if_collisions += 1441 bus_space_read_4(st, sh, STGE_LateCollisions) + 1442 bus_space_read_4(st, sh, STGE_MultiColFrames) + 1443 bus_space_read_4(st, sh, STGE_SingleColFrames); 1444 1445 ifp->if_oerrors += 1446 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) + 1447 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal); 1448 } 1449 1450 /* 1451 * stge_reset: 1452 * 1453 * Perform a soft reset on the TC9021. 1454 */ 1455 void 1456 stge_reset(struct stge_softc *sc) 1457 { 1458 uint32_t ac; 1459 int i; 1460 1461 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl); 1462 1463 /* 1464 * Only assert RstOut if we're fiber. We need GMII clocks 1465 * to be present in order for the reset to complete on fiber 1466 * cards. 1467 */ 1468 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl, 1469 ac | AC_GlobalReset | AC_RxReset | AC_TxReset | 1470 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit | 1471 (sc->sc_usefiber ? AC_RstOut : 0)); 1472 1473 delay(50000); 1474 1475 for (i = 0; i < STGE_TIMEOUT; i++) { 1476 delay(5000); 1477 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) & 1478 AC_ResetBusy) == 0) 1479 break; 1480 } 1481 1482 if (i == STGE_TIMEOUT) 1483 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname); 1484 1485 delay(1000); 1486 } 1487 1488 /* 1489 * stge_init: [ ifnet interface function ] 1490 * 1491 * Initialize the interface. Must be called at splnet(). 1492 */ 1493 int 1494 stge_init(struct ifnet *ifp) 1495 { 1496 struct stge_softc *sc = ifp->if_softc; 1497 bus_space_tag_t st = sc->sc_st; 1498 bus_space_handle_t sh = sc->sc_sh; 1499 struct stge_descsoft *ds; 1500 int i, error = 0; 1501 1502 /* 1503 * Cancel any pending I/O. 1504 */ 1505 stge_stop(ifp, 0); 1506 1507 /* 1508 * Reset the chip to a known state. 1509 */ 1510 stge_reset(sc); 1511 1512 /* 1513 * Initialize the transmit descriptor ring. 1514 */ 1515 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1516 for (i = 0; i < STGE_NTXDESC; i++) { 1517 sc->sc_txdescs[i].tfd_next = 1518 (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i)); 1519 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone); 1520 } 1521 sc->sc_txpending = 0; 1522 sc->sc_txdirty = 0; 1523 sc->sc_txlast = STGE_NTXDESC - 1; 1524 1525 /* 1526 * Initialize the receive descriptor and receive job 1527 * descriptor rings. 1528 */ 1529 for (i = 0; i < STGE_NRXDESC; i++) { 1530 ds = &sc->sc_rxsoft[i]; 1531 if (ds->ds_mbuf == NULL) { 1532 if ((error = stge_add_rxbuf(sc, i)) != 0) { 1533 printf("%s: unable to allocate or map rx " 1534 "buffer %d, error = %d\n", 1535 sc->sc_dev.dv_xname, i, error); 1536 /* 1537 * XXX Should attempt to run with fewer receive 1538 * XXX buffers instead of just failing. 1539 */ 1540 stge_rxdrain(sc); 1541 goto out; 1542 } 1543 } else 1544 STGE_INIT_RXDESC(sc, i); 1545 } 1546 sc->sc_rxptr = 0; 1547 sc->sc_rxdiscard = 0; 1548 STGE_RXCHAIN_RESET(sc); 1549 1550 /* Set the station address. */ 1551 bus_space_write_2(st, sh, STGE_StationAddress0, 1552 LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8)); 1553 bus_space_write_2(st, sh, STGE_StationAddress1, 1554 LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8)); 1555 bus_space_write_2(st, sh, STGE_StationAddress2, 1556 LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8)); 1557 1558 /* 1559 * Set the statistics masks. Disable all the RMON stats, 1560 * and disable selected stats in the non-RMON stats registers. 1561 */ 1562 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff); 1563 bus_space_write_4(st, sh, STGE_StatisticsMask, 1564 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) | 1565 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) | 1566 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) | 1567 (1U << 21)); 1568 1569 /* Set up the receive filter. */ 1570 stge_set_filter(sc); 1571 1572 /* 1573 * Give the transmit and receive ring to the chip. 1574 */ 1575 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */ 1576 bus_space_write_4(st, sh, STGE_TFDListPtrLo, 1577 STGE_CDTXADDR(sc, sc->sc_txdirty)); 1578 1579 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */ 1580 bus_space_write_4(st, sh, STGE_RFDListPtrLo, 1581 STGE_CDRXADDR(sc, sc->sc_rxptr)); 1582 1583 /* 1584 * Initialize the Tx auto-poll period. It's OK to make this number 1585 * large (255 is the max, but we use 127) -- we explicitly kick the 1586 * transmit engine when there's actually a packet. 1587 */ 1588 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127); 1589 1590 /* ..and the Rx auto-poll period. */ 1591 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64); 1592 1593 /* Initialize the Tx start threshold. */ 1594 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh); 1595 1596 /* 1597 * Initialize the Rx DMA interrupt control register. We 1598 * request an interrupt after every incoming packet, but 1599 * defer it for 32us (64 * 512 ns). When the number of 1600 * interrupts pending reaches 8, we stop deferring the 1601 * interrupt, and signal it immediately. 1602 */ 1603 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl, 1604 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512)); 1605 1606 /* 1607 * Initialize the interrupt mask. 1608 */ 1609 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats | 1610 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd; 1611 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff); 1612 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable); 1613 1614 /* 1615 * Configure the DMA engine. 1616 * XXX Should auto-tune TxBurstLimit. 1617 */ 1618 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl | 1619 DMAC_TxBurstLimit(3)); 1620 1621 /* 1622 * Send a PAUSE frame when we reach 29,696 bytes in the Rx 1623 * FIFO, and send an un-PAUSE frame when the FIFO is totally 1624 * empty again. 1625 */ 1626 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16); 1627 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0); 1628 1629 /* 1630 * Set the maximum frame size. 1631 */ 1632 bus_space_write_2(st, sh, STGE_MaxFrameSize, 1633 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + 1634 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1635 ETHER_VLAN_ENCAP_LEN : 0)); 1636 1637 /* 1638 * Initialize MacCtrl -- do it before setting the media, 1639 * as setting the media will actually program the register. 1640 * 1641 * Note: We have to poke the IFS value before poking 1642 * anything else. 1643 */ 1644 sc->sc_MACCtrl = MC_IFSSelect(0); 1645 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl); 1646 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable; 1647 #ifdef STGE_VLAN_UNTAG 1648 sc->sc_MACCtrl |= MC_AutoVLANuntagging; 1649 #endif 1650 1651 if (sc->sc_rev >= 6) { /* >= B.2 */ 1652 /* Multi-frag frame bug work-around. */ 1653 bus_space_write_2(st, sh, STGE_DebugCtrl, 1654 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200); 1655 1656 /* Tx Poll Now bug work-around. */ 1657 bus_space_write_2(st, sh, STGE_DebugCtrl, 1658 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010); 1659 } 1660 1661 /* 1662 * Set the current media. 1663 */ 1664 mii_mediachg(&sc->sc_mii); 1665 1666 /* 1667 * Start the one second MII clock. 1668 */ 1669 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc); 1670 1671 /* 1672 * ...all done! 1673 */ 1674 ifp->if_flags |= IFF_RUNNING; 1675 ifp->if_flags &= ~IFF_OACTIVE; 1676 1677 out: 1678 if (error) 1679 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 1680 return (error); 1681 } 1682 1683 /* 1684 * stge_drain: 1685 * 1686 * Drain the receive queue. 1687 */ 1688 void 1689 stge_rxdrain(struct stge_softc *sc) 1690 { 1691 struct stge_descsoft *ds; 1692 int i; 1693 1694 for (i = 0; i < STGE_NRXDESC; i++) { 1695 ds = &sc->sc_rxsoft[i]; 1696 if (ds->ds_mbuf != NULL) { 1697 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1698 ds->ds_mbuf->m_next = NULL; 1699 m_freem(ds->ds_mbuf); 1700 ds->ds_mbuf = NULL; 1701 } 1702 } 1703 } 1704 1705 /* 1706 * stge_stop: [ ifnet interface function ] 1707 * 1708 * Stop transmission on the interface. 1709 */ 1710 void 1711 stge_stop(struct ifnet *ifp, int disable) 1712 { 1713 struct stge_softc *sc = ifp->if_softc; 1714 struct stge_descsoft *ds; 1715 int i; 1716 1717 /* 1718 * Stop the one second clock. 1719 */ 1720 callout_stop(&sc->sc_tick_ch); 1721 1722 /* Down the MII. */ 1723 mii_down(&sc->sc_mii); 1724 1725 /* 1726 * Disable interrupts. 1727 */ 1728 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0); 1729 1730 /* 1731 * Stop receiver, transmitter, and stats update. 1732 */ 1733 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, 1734 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable); 1735 1736 /* 1737 * Stop the transmit and receive DMA. 1738 */ 1739 stge_dma_wait(sc); 1740 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0); 1741 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0); 1742 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0); 1743 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0); 1744 1745 /* 1746 * Release any queued transmit buffers. 1747 */ 1748 for (i = 0; i < STGE_NTXDESC; i++) { 1749 ds = &sc->sc_txsoft[i]; 1750 if (ds->ds_mbuf != NULL) { 1751 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1752 m_freem(ds->ds_mbuf); 1753 ds->ds_mbuf = NULL; 1754 } 1755 } 1756 1757 if (disable) 1758 stge_rxdrain(sc); 1759 1760 /* 1761 * Mark the interface down and cancel the watchdog timer. 1762 */ 1763 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1764 ifp->if_timer = 0; 1765 } 1766 1767 #if 0 1768 static int 1769 stge_eeprom_wait(struct stge_softc *sc) 1770 { 1771 int i; 1772 1773 for (i = 0; i < STGE_TIMEOUT; i++) { 1774 delay(1000); 1775 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) & 1776 EC_EepromBusy) == 0) 1777 return (0); 1778 } 1779 return (1); 1780 } 1781 1782 /* 1783 * stge_read_eeprom: 1784 * 1785 * Read data from the serial EEPROM. 1786 */ 1787 void 1788 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data) 1789 { 1790 1791 if (stge_eeprom_wait(sc)) 1792 printf("%s: EEPROM failed to come ready\n", 1793 sc->sc_dev.dv_xname); 1794 1795 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl, 1796 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR)); 1797 if (stge_eeprom_wait(sc)) 1798 printf("%s: EEPROM read timed out\n", 1799 sc->sc_dev.dv_xname); 1800 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData); 1801 } 1802 #endif /* 0 */ 1803 1804 /* 1805 * stge_add_rxbuf: 1806 * 1807 * Add a receive buffer to the indicated descriptor. 1808 */ 1809 int 1810 stge_add_rxbuf(struct stge_softc *sc, int idx) 1811 { 1812 struct stge_descsoft *ds = &sc->sc_rxsoft[idx]; 1813 struct mbuf *m; 1814 int error; 1815 1816 MGETHDR(m, M_DONTWAIT, MT_DATA); 1817 if (m == NULL) 1818 return (ENOBUFS); 1819 1820 MCLGET(m, M_DONTWAIT); 1821 if ((m->m_flags & M_EXT) == 0) { 1822 m_freem(m); 1823 return (ENOBUFS); 1824 } 1825 1826 m->m_data = m->m_ext.ext_buf + 2; 1827 m->m_len = MCLBYTES - 2; 1828 1829 if (ds->ds_mbuf != NULL) 1830 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1831 1832 ds->ds_mbuf = m; 1833 1834 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap, 1835 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); 1836 if (error) { 1837 printf("%s: can't load rx DMA map %d, error = %d\n", 1838 sc->sc_dev.dv_xname, idx, error); 1839 panic("stge_add_rxbuf"); /* XXX */ 1840 } 1841 1842 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 1843 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1844 1845 STGE_INIT_RXDESC(sc, idx); 1846 1847 return (0); 1848 } 1849 1850 /* 1851 * stge_set_filter: 1852 * 1853 * Set up the receive filter. 1854 */ 1855 void 1856 stge_set_filter(struct stge_softc *sc) 1857 { 1858 struct ethercom *ec = &sc->sc_ethercom; 1859 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1860 struct ether_multi *enm; 1861 struct ether_multistep step; 1862 uint32_t crc; 1863 uint32_t mchash[2]; 1864 1865 sc->sc_ReceiveMode = RM_ReceiveUnicast; 1866 if (ifp->if_flags & IFF_BROADCAST) 1867 sc->sc_ReceiveMode |= RM_ReceiveBroadcast; 1868 1869 #ifdef STGE_CU_BUG 1870 /* 1871 * Some cards (Sundance TI, copper) only seem to work 1872 * right now if we put them into promiscuous mode. It 1873 * probably is the Marvell PHY stuff that isn't quite 1874 * right. 1875 */ 1876 ifp->if_flags |= IFF_PROMISC; 1877 #endif 1878 1879 if (ifp->if_flags & IFF_PROMISC) { 1880 sc->sc_ReceiveMode |= RM_ReceiveAllFrames; 1881 goto allmulti; 1882 } 1883 1884 /* 1885 * Set up the multicast address filter by passing all multicast 1886 * addresses through a CRC generator, and then using the low-order 1887 * 6 bits as an index into the 64 bit multicast hash table. The 1888 * high order bits select the register, while the rest of the bits 1889 * select the bit within the register. 1890 */ 1891 1892 memset(mchash, 0, sizeof(mchash)); 1893 1894 ETHER_FIRST_MULTI(step, ec, enm); 1895 if (enm == NULL) 1896 goto done; 1897 1898 while (enm != NULL) { 1899 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1900 /* 1901 * We must listen to a range of multicast addresses. 1902 * For now, just accept all multicasts, rather than 1903 * trying to set only those filter bits needed to match 1904 * the range. (At this time, the only use of address 1905 * ranges is for IP multicast routing, for which the 1906 * range is big enough to require all bits set.) 1907 */ 1908 goto allmulti; 1909 } 1910 1911 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 1912 1913 /* Just want the 6 least significant bits. */ 1914 crc &= 0x3f; 1915 1916 /* Set the corresponding bit in the hash table. */ 1917 mchash[crc >> 5] |= 1 << (crc & 0x1f); 1918 1919 ETHER_NEXT_MULTI(step, enm); 1920 } 1921 1922 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash; 1923 1924 ifp->if_flags &= ~IFF_ALLMULTI; 1925 goto done; 1926 1927 allmulti: 1928 ifp->if_flags |= IFF_ALLMULTI; 1929 sc->sc_ReceiveMode |= RM_ReceiveMulticast; 1930 1931 done: 1932 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1933 /* 1934 * Program the multicast hash table. 1935 */ 1936 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0, 1937 mchash[0]); 1938 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1, 1939 mchash[1]); 1940 } 1941 1942 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode, 1943 sc->sc_ReceiveMode); 1944 } 1945 1946 /* 1947 * stge_mii_readreg: [mii interface function] 1948 * 1949 * Read a PHY register on the MII of the TC9021. 1950 */ 1951 int 1952 stge_mii_readreg(struct device *self, int phy, int reg) 1953 { 1954 1955 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg)); 1956 } 1957 1958 /* 1959 * stge_mii_writereg: [mii interface function] 1960 * 1961 * Write a PHY register on the MII of the TC9021. 1962 */ 1963 void 1964 stge_mii_writereg(struct device *self, int phy, int reg, int val) 1965 { 1966 1967 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val); 1968 } 1969 1970 /* 1971 * stge_mii_statchg: [mii interface function] 1972 * 1973 * Callback from MII layer when media changes. 1974 */ 1975 void 1976 stge_mii_statchg(struct device *self) 1977 { 1978 struct stge_softc *sc = (struct stge_softc *) self; 1979 1980 if (sc->sc_mii.mii_media_active & IFM_FDX) 1981 sc->sc_MACCtrl |= MC_DuplexSelect; 1982 else 1983 sc->sc_MACCtrl &= ~MC_DuplexSelect; 1984 1985 /* XXX 802.1x flow-control? */ 1986 1987 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl); 1988 } 1989 1990 /* 1991 * sste_mii_bitbang_read: [mii bit-bang interface function] 1992 * 1993 * Read the MII serial port for the MII bit-bang module. 1994 */ 1995 uint32_t 1996 stge_mii_bitbang_read(struct device *self) 1997 { 1998 struct stge_softc *sc = (void *) self; 1999 2000 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl)); 2001 } 2002 2003 /* 2004 * stge_mii_bitbang_write: [mii big-bang interface function] 2005 * 2006 * Write the MII serial port for the MII bit-bang module. 2007 */ 2008 void 2009 stge_mii_bitbang_write(struct device *self, uint32_t val) 2010 { 2011 struct stge_softc *sc = (void *) self; 2012 2013 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl, 2014 val | sc->sc_PhyCtrl); 2015 } 2016 2017 /* 2018 * stge_mediastatus: [ifmedia interface function] 2019 * 2020 * Get the current interface media status. 2021 */ 2022 void 2023 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2024 { 2025 struct stge_softc *sc = ifp->if_softc; 2026 2027 mii_pollstat(&sc->sc_mii); 2028 ifmr->ifm_status = sc->sc_mii.mii_media_status; 2029 ifmr->ifm_active = sc->sc_mii.mii_media_active; 2030 } 2031 2032 /* 2033 * stge_mediachange: [ifmedia interface function] 2034 * 2035 * Set hardware to newly-selected media. 2036 */ 2037 int 2038 stge_mediachange(struct ifnet *ifp) 2039 { 2040 struct stge_softc *sc = ifp->if_softc; 2041 2042 if (ifp->if_flags & IFF_UP) 2043 mii_mediachg(&sc->sc_mii); 2044 return (0); 2045 } 2046