xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: if_stge.c,v 1.6 2001/07/30 20:12:10 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include "bpfilter.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/callout.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56 #include <sys/queue.h>
57 
58 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_ether.h>
64 
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68 
69 #include <machine/bus.h>
70 #include <machine/intr.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 #include <dev/mii/mii_bitbang.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_stgereg.h>
81 
82 /*
83  * Transmit descriptor list size.
84  */
85 #define	STGE_NTXDESC		256
86 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
87 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
88 
89 /*
90  * Receive descriptor list size.
91  */
92 #define	STGE_NRXDESC		256
93 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
94 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
95 
96 /*
97  * Only interrupt every N frames.  Must be a power-of-two.
98  */
99 #define	STGE_TXINTR_SPACING	16
100 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
101 
102 /*
103  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
104  * a single clump that maps to a single DMA segment to make several things
105  * easier.
106  */
107 struct stge_control_data {
108 	/*
109 	 * The transmit descriptors.
110 	 */
111 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
112 
113 	/*
114 	 * The receive descriptors.
115 	 */
116 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
117 };
118 
119 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
120 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
121 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
122 
123 /*
124  * Software state for transmit and receive jobs.
125  */
126 struct stge_descsoft {
127 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
128 	bus_dmamap_t ds_dmamap;		/* our DMA map */
129 };
130 
131 /*
132  * Software state per device.
133  */
134 struct stge_softc {
135 	struct device sc_dev;		/* generic device information */
136 	bus_space_tag_t sc_st;		/* bus space tag */
137 	bus_space_handle_t sc_sh;	/* bus space handle */
138 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
139 	struct ethercom sc_ethercom;	/* ethernet common data */
140 	void *sc_sdhook;		/* shutdown hook */
141 	int sc_rev;			/* silicon revision */
142 
143 	void *sc_ih;			/* interrupt cookie */
144 
145 	struct mii_data sc_mii;		/* MII/media information */
146 
147 	struct callout sc_tick_ch;	/* tick callout */
148 
149 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
150 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
151 
152 	/*
153 	 * Software state for transmit and receive descriptors.
154 	 */
155 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
156 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
157 
158 	/*
159 	 * Control data structures.
160 	 */
161 	struct stge_control_data *sc_control_data;
162 #define	sc_txdescs	sc_control_data->scd_txdescs
163 #define	sc_rxdescs	sc_control_data->scd_rxdescs
164 
165 #ifdef STGE_EVENT_COUNTERS
166 	/*
167 	 * Event counters.
168 	 */
169 	struct evcnt sc_ev_txstall;	/* Tx stalled */
170 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
171 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
172 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
173 
174 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
175 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
176 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
177 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
178 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
179 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
180 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
181 
182 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
183 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
184 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
185 
186 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
187 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
188 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
189 #endif /* STGE_EVENT_COUNTERS */
190 
191 	int	sc_txpending;		/* number of Tx requests pending */
192 	int	sc_txdirty;		/* first dirty Tx descriptor */
193 	int	sc_txlast;		/* last used Tx descriptor */
194 
195 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
196 	int	sc_rxdiscard;
197 	int	sc_rxlen;
198 	struct mbuf *sc_rxhead;
199 	struct mbuf *sc_rxtail;
200 	struct mbuf **sc_rxtailp;
201 
202 	int	sc_txthresh;		/* Tx threshold */
203 	int	sc_usefiber;		/* if we're fiber */
204 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
205 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
206 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
207 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
208 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
209 };
210 
211 #define	STGE_RXCHAIN_RESET(sc)						\
212 do {									\
213 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
214 	*(sc)->sc_rxtailp = NULL;					\
215 	(sc)->sc_rxlen = 0;						\
216 } while (/*CONSTCOND*/0)
217 
218 #define	STGE_RXCHAIN_LINK(sc, m)					\
219 do {									\
220 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
221 	(sc)->sc_rxtailp = &(m)->m_next;				\
222 } while (/*CONSTCOND*/0)
223 
224 #ifdef STGE_EVENT_COUNTERS
225 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
226 #else
227 #define	STGE_EVCNT_INCR(ev)	/* nothing */
228 #endif
229 
230 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
231 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
232 
233 #define	STGE_CDTXSYNC(sc, x, ops)					\
234 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
235 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
236 
237 #define	STGE_CDRXSYNC(sc, x, ops)					\
238 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
239 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
240 
241 #define	STGE_INIT_RXDESC(sc, x)						\
242 do {									\
243 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
244 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
245 									\
246 	/*								\
247 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
248 	 * so that the payload after the Ethernet header is aligned	\
249 	 * to a 4-byte boundary.					\
250 	 */								\
251 	__rfd->rfd_frag.frag_word0 =					\
252 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
253 	    FRAG_LEN(MCLBYTES - 2));					\
254 	__rfd->rfd_next =						\
255 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
256 	__rfd->rfd_status = 0;						\
257 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
258 } while (/*CONSTCOND*/0)
259 
260 #define STGE_TIMEOUT 1000
261 
262 void	stge_start(struct ifnet *);
263 void	stge_watchdog(struct ifnet *);
264 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
265 int	stge_init(struct ifnet *);
266 void	stge_stop(struct ifnet *, int);
267 
268 void	stge_shutdown(void *);
269 
270 void	stge_reset(struct stge_softc *);
271 void	stge_rxdrain(struct stge_softc *);
272 int	stge_add_rxbuf(struct stge_softc *, int);
273 #if 0
274 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
275 #endif
276 void	stge_tick(void *);
277 
278 void	stge_stats_update(struct stge_softc *);
279 
280 void	stge_set_filter(struct stge_softc *);
281 
282 int	stge_intr(void *);
283 void	stge_txintr(struct stge_softc *);
284 void	stge_rxintr(struct stge_softc *);
285 
286 int	stge_mii_readreg(struct device *, int, int);
287 void	stge_mii_writereg(struct device *, int, int, int);
288 void	stge_mii_statchg(struct device *);
289 
290 int	stge_mediachange(struct ifnet *);
291 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
292 
293 int	stge_match(struct device *, struct cfdata *, void *);
294 void	stge_attach(struct device *, struct device *, void *);
295 
296 int	stge_copy_small = 0;
297 
298 struct cfattach stge_ca = {
299 	sizeof(struct stge_softc), stge_match, stge_attach,
300 };
301 
302 uint32_t stge_mii_bitbang_read(struct device *);
303 void	stge_mii_bitbang_write(struct device *, uint32_t);
304 
305 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
306 	stge_mii_bitbang_read,
307 	stge_mii_bitbang_write,
308 	{
309 		PC_MgmtData,		/* MII_BIT_MDO */
310 		PC_MgmtData,		/* MII_BIT_MDI */
311 		PC_MgmtClk,		/* MII_BIT_MDC */
312 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
313 		0,			/* MII_BIT_DIR_PHY_HOST */
314 	}
315 };
316 
317 /*
318  * Devices supported by this driver.
319  */
320 const struct stge_product {
321 	pci_vendor_id_t		stge_vendor;
322 	pci_product_id_t	stge_product;
323 	const char		*stge_name;
324 } stge_products[] = {
325 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
326 	  "Sundance ST-2021 Gigabit Ethernet" },
327 
328 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
329 	  "Tamarack TC9021 Gigabit Ethernet" },
330 
331 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
332 	  "Tamarack TC9021 Gigabit Ethernet" },
333 
334 	/*
335 	 * The Sundance sample boards use the Sundance vendor ID,
336 	 * but the Tamarack product ID.
337 	 */
338 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
339 	  "Sundance TC9021 Gigabit Ethernet" },
340 
341 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
342 	  "Sundance TC9021 Gigabit Ethernet" },
343 
344 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
345 	  "D-Link DL-4000 Gigabit Ethernet" },
346 
347 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
348 	  "Antares Gigabit Ethernet" },
349 
350 	{ 0,				0,
351 	  NULL },
352 };
353 
354 static const struct stge_product *
355 stge_lookup(const struct pci_attach_args *pa)
356 {
357 	const struct stge_product *sp;
358 
359 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
360 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
361 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
362 			return (sp);
363 	}
364 	return (NULL);
365 }
366 
367 int
368 stge_match(struct device *parent, struct cfdata *cf, void *aux)
369 {
370 	struct pci_attach_args *pa = aux;
371 
372 	if (stge_lookup(pa) != NULL)
373 		return (1);
374 
375 	return (0);
376 }
377 
378 void
379 stge_attach(struct device *parent, struct device *self, void *aux)
380 {
381 	struct stge_softc *sc = (struct stge_softc *) self;
382 	struct pci_attach_args *pa = aux;
383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384 	pci_chipset_tag_t pc = pa->pa_pc;
385 	pci_intr_handle_t ih;
386 	const char *intrstr = NULL;
387 	bus_space_tag_t iot, memt;
388 	bus_space_handle_t ioh, memh;
389 	bus_dma_segment_t seg;
390 	int ioh_valid, memh_valid;
391 	int i, rseg, error;
392 	const struct stge_product *sp;
393 	pcireg_t pmode;
394 	uint8_t enaddr[ETHER_ADDR_LEN];
395 	int pmreg;
396 
397 	callout_init(&sc->sc_tick_ch);
398 
399 	sp = stge_lookup(pa);
400 	if (sp == NULL) {
401 		printf("\n");
402 		panic("ste_attach: impossible");
403 	}
404 
405 	sc->sc_rev = PCI_REVISION(pa->pa_class);
406 
407 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
408 
409 	/*
410 	 * Map the device.
411 	 */
412 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
413 	    PCI_MAPREG_TYPE_IO, 0,
414 	    &iot, &ioh, NULL, NULL) == 0);
415 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
416 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
417 	    &memt, &memh, NULL, NULL) == 0);
418 
419 	if (memh_valid) {
420 		sc->sc_st = memt;
421 		sc->sc_sh = memh;
422 	} else if (ioh_valid) {
423 		sc->sc_st = iot;
424 		sc->sc_sh = ioh;
425 	} else {
426 		printf("%s: unable to map device registers\n",
427 		    sc->sc_dev.dv_xname);
428 		return;
429 	}
430 
431 	sc->sc_dmat = pa->pa_dmat;
432 
433 	/* Enable bus mastering. */
434 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
435 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
436 	    PCI_COMMAND_MASTER_ENABLE);
437 
438 	/* Get it out of power save mode if needed. */
439 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
440 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
441 		if (pmode == 3) {
442 			/*
443 			 * The card has lost all configuration data in
444 			 * this state, so punt.
445 			 */
446 			printf("%s: unable to wake up from power state D3\n",
447 			    sc->sc_dev.dv_xname);
448 			return;
449 		}
450 		if (pmode != 0) {
451 			printf("%s: waking up from power state D%d\n",
452 			    sc->sc_dev.dv_xname, pmode);
453 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
454 		}
455 	}
456 
457 	/*
458 	 * Map and establish our interrupt.
459 	 */
460 	if (pci_intr_map(pa, &ih)) {
461 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
462 		return;
463 	}
464 	intrstr = pci_intr_string(pc, ih);
465 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
466 	if (sc->sc_ih == NULL) {
467 		printf("%s: unable to establish interrupt",
468 		    sc->sc_dev.dv_xname);
469 		if (intrstr != NULL)
470 			printf(" at %s", intrstr);
471 		printf("\n");
472 		return;
473 	}
474 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
475 
476 	/*
477 	 * Allocate the control data structures, and create and load the
478 	 * DMA map for it.
479 	 */
480 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
481 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
482 	    0)) != 0) {
483 		printf("%s: unable to allocate control data, error = %d\n",
484 		    sc->sc_dev.dv_xname, error);
485 		goto fail_0;
486 	}
487 
488 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
489 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
490 	    BUS_DMA_COHERENT)) != 0) {
491 		printf("%s: unable to map control data, error = %d\n",
492 		    sc->sc_dev.dv_xname, error);
493 		goto fail_1;
494 	}
495 
496 	if ((error = bus_dmamap_create(sc->sc_dmat,
497 	    sizeof(struct stge_control_data), 1,
498 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
499 		printf("%s: unable to create control data DMA map, "
500 		    "error = %d\n", sc->sc_dev.dv_xname, error);
501 		goto fail_2;
502 	}
503 
504 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
505 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
506 	    0)) != 0) {
507 		printf("%s: unable to load control data DMA map, error = %d\n",
508 		    sc->sc_dev.dv_xname, error);
509 		goto fail_3;
510 	}
511 
512 	/*
513 	 * Create the transmit buffer DMA maps.  Note that rev B.3
514 	 * and earlier seem to have a bug regarding multi-fragment
515 	 * packets.  We need to limit the number of Tx segments on
516 	 * such chips to 1.
517 	 */
518 	for (i = 0; i < STGE_NTXDESC; i++) {
519 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
520 		    STGE_NTXFRAGS, MCLBYTES, 0, 0,
521 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
522 			printf("%s: unable to create tx DMA map %d, "
523 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
524 			goto fail_4;
525 		}
526 	}
527 
528 	/*
529 	 * Create the receive buffer DMA maps.
530 	 */
531 	for (i = 0; i < STGE_NRXDESC; i++) {
532 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
533 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
534 			printf("%s: unable to create rx DMA map %d, "
535 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
536 			goto fail_5;
537 		}
538 		sc->sc_rxsoft[i].ds_mbuf = NULL;
539 	}
540 
541 	/*
542 	 * Determine if we're copper or fiber.  It affects how we
543 	 * reset the card.
544 	 */
545 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
546 	    AC_PhyMedia)
547 		sc->sc_usefiber = 1;
548 	else
549 		sc->sc_usefiber = 0;
550 
551 	/*
552 	 * Reset the chip to a known state.
553 	 */
554 	stge_reset(sc);
555 
556 	/*
557 	 * Reading the station address from the EEPROM doesn't seem
558 	 * to work, at least on my sample boards.  Instread, since
559 	 * the reset sequence does AutoInit, read it from the station
560 	 * address registers.
561 	 */
562 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
563 	    STGE_StationAddress0) & 0xff;
564 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
565 	    STGE_StationAddress0) >> 8;
566 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
567 	    STGE_StationAddress1) & 0xff;
568 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
569 	    STGE_StationAddress1) >> 8;
570 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
571 	    STGE_StationAddress2) & 0xff;
572 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
573 	    STGE_StationAddress2) >> 8;
574 
575 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
576 	    ether_sprintf(enaddr));
577 
578 	/*
579 	 * Read some important bits from the PhyCtrl register.
580 	 */
581 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
582 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
583 
584 	/*
585 	 * Initialize our media structures and probe the MII.
586 	 */
587 	sc->sc_mii.mii_ifp = ifp;
588 	sc->sc_mii.mii_readreg = stge_mii_readreg;
589 	sc->sc_mii.mii_writereg = stge_mii_writereg;
590 	sc->sc_mii.mii_statchg = stge_mii_statchg;
591 	ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
592 	    stge_mediastatus);
593 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
594 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
595 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
596 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
597 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
598 	} else
599 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
600 
601 	ifp = &sc->sc_ethercom.ec_if;
602 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
603 	ifp->if_softc = sc;
604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 	ifp->if_ioctl = stge_ioctl;
606 	ifp->if_start = stge_start;
607 	ifp->if_watchdog = stge_watchdog;
608 	ifp->if_init = stge_init;
609 	ifp->if_stop = stge_stop;
610 	IFQ_SET_READY(&ifp->if_snd);
611 
612 	/*
613 	 * The manual recommends disabling early transmit, so we
614 	 * do.  It's disabled anyway, if using IP checksumming,
615 	 * since the entire packet must be in the FIFO in order
616 	 * for the chip to perform the checksum.
617 	 */
618 	sc->sc_txthresh = 0x0fff;
619 
620 	/*
621 	 * Disable MWI if the PCI layer tells us to.
622 	 */
623 	sc->sc_DMACtrl = 0;
624 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
625 		sc->sc_DMACtrl |= DMAC_MWIDisable;
626 
627 	/*
628 	 * We can support 802.1Q VLAN-sized frames and jumbo
629 	 * Ethernet frames.
630 	 *
631 	 * XXX Figure out how to do hw-assisted VLAN tagging in
632 	 * XXX a reasonable way on this chip.
633 	 */
634 	sc->sc_ethercom.ec_capabilities |=
635 	    ETHERCAP_VLAN_MTU /* XXX | ETHERCAP_JUMBO_MTU */;
636 
637 	/*
638 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
639 	 */
640 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
641 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
642 
643 	/*
644 	 * Attach the interface.
645 	 */
646 	if_attach(ifp);
647 	ether_ifattach(ifp, enaddr);
648 
649 #ifdef STGE_EVENT_COUNTERS
650 	/*
651 	 * Attach event counters.
652 	 */
653 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
654 	    NULL, sc->sc_dev.dv_xname, "txstall");
655 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
656 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
657 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
658 	    NULL, sc->sc_dev.dv_xname, "txindintr");
659 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
660 	    NULL, sc->sc_dev.dv_xname, "rxintr");
661 
662 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
663 	    NULL, sc->sc_dev.dv_xname, "txseg1");
664 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
665 	    NULL, sc->sc_dev.dv_xname, "txseg2");
666 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
667 	    NULL, sc->sc_dev.dv_xname, "txseg3");
668 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
669 	    NULL, sc->sc_dev.dv_xname, "txseg4");
670 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
671 	    NULL, sc->sc_dev.dv_xname, "txseg5");
672 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
673 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
674 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
675 	    NULL, sc->sc_dev.dv_xname, "txcopy");
676 
677 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
678 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
679 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
680 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
681 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
682 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
683 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
684 	    NULL, sc->sc_dev.dv_xname, "txipsum");
685 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
686 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
687 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
688 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
689 #endif /* STGE_EVENT_COUNTERS */
690 
691 	/*
692 	 * Make sure the interface is shutdown during reboot.
693 	 */
694 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
695 	if (sc->sc_sdhook == NULL)
696 		printf("%s: WARNING: unable to establish shutdown hook\n",
697 		    sc->sc_dev.dv_xname);
698 	return;
699 
700 	/*
701 	 * Free any resources we've allocated during the failed attach
702 	 * attempt.  Do this in reverse order and fall through.
703 	 */
704  fail_5:
705 	for (i = 0; i < STGE_NRXDESC; i++) {
706 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
707 			bus_dmamap_destroy(sc->sc_dmat,
708 			    sc->sc_rxsoft[i].ds_dmamap);
709 	}
710  fail_4:
711 	for (i = 0; i < STGE_NTXDESC; i++) {
712 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
713 			bus_dmamap_destroy(sc->sc_dmat,
714 			    sc->sc_txsoft[i].ds_dmamap);
715 	}
716 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
717  fail_3:
718 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
719  fail_2:
720 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
721 	    sizeof(struct stge_control_data));
722  fail_1:
723 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
724  fail_0:
725 	return;
726 }
727 
728 /*
729  * stge_shutdown:
730  *
731  *	Make sure the interface is stopped at reboot time.
732  */
733 void
734 stge_shutdown(void *arg)
735 {
736 	struct stge_softc *sc = arg;
737 
738 	stge_stop(&sc->sc_ethercom.ec_if, 1);
739 }
740 
741 static void
742 stge_dma_wait(struct stge_softc *sc)
743 {
744 	int i;
745 
746 	for (i = 0; i < STGE_TIMEOUT; i++) {
747 		delay(2);
748 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
749 		     DMAC_TxDMAInProg) == 0)
750 			break;
751 	}
752 
753 	if (i == STGE_TIMEOUT)
754 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
755 }
756 
757 /*
758  * stge_start:		[ifnet interface function]
759  *
760  *	Start packet transmission on the interface.
761  */
762 void
763 stge_start(struct ifnet *ifp)
764 {
765 	struct stge_softc *sc = ifp->if_softc;
766 	struct mbuf *m0;
767 	struct stge_descsoft *ds;
768 	struct stge_tfd *tfd;
769 	bus_dmamap_t dmamap;
770 	int error, firsttx, nexttx, opending, seg, totlen;
771 	uint64_t csum_flags;
772 
773 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
774 		return;
775 
776 	/*
777 	 * Remember the previous number of pending transmissions
778 	 * and the first descriptor we will use.
779 	 */
780 	opending = sc->sc_txpending;
781 	firsttx = STGE_NEXTTX(sc->sc_txlast);
782 
783 	/*
784 	 * Loop through the send queue, setting up transmit descriptors
785 	 * until we drain the queue, or use up all available transmit
786 	 * descriptors.
787 	 */
788 	for (;;) {
789 		/*
790 		 * Grab a packet off the queue.
791 		 */
792 		IFQ_POLL(&ifp->if_snd, m0);
793 		if (m0 == NULL)
794 			break;
795 
796 		/*
797 		 * Leave one unused descriptor at the end of the
798 		 * list to prevent wrapping completely around.
799 		 */
800 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
801 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
802 			break;
803 		}
804 
805 		/*
806 		 * Get the last and next available transmit descriptor.
807 		 */
808 		nexttx = STGE_NEXTTX(sc->sc_txlast);
809 		tfd = &sc->sc_txdescs[nexttx];
810 		ds = &sc->sc_txsoft[nexttx];
811 
812 		dmamap = ds->ds_dmamap;
813 
814 		/*
815 		 * Load the DMA map.  If this fails, the packet either
816 		 * didn't fit in the alloted number of segments, or we
817 		 * were short on resources.  For the too-may-segments
818 		 * case, we simply report an error and drop the packet,
819 		 * since we can't sanely copy a jumbo packet to a single
820 		 * buffer.
821 		 */
822 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
823 		    BUS_DMA_NOWAIT);
824 		if (error) {
825 			if (error == EFBIG) {
826 				printf("%s: Tx packet consumes too many "
827 				    "DMA segments, dropping...\n",
828 				    sc->sc_dev.dv_xname);
829 				IFQ_DEQUEUE(&ifp->if_snd, m0);
830 				m_freem(m0);
831 				continue;
832 			}
833 			/*
834 			 * Short on resources, just stop for now.
835 			 */
836 			break;
837 		}
838 
839 		IFQ_DEQUEUE(&ifp->if_snd, m0);
840 
841 		/*
842 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
843 		 */
844 
845 		/* Sync the DMA map. */
846 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
847 		    BUS_DMASYNC_PREWRITE);
848 
849 		/* Initialize the fragment list. */
850 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
851 			tfd->tfd_frags[seg].frag_word0 =
852 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
853 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
854 			totlen += dmamap->dm_segs[seg].ds_len;
855 		}
856 
857 #ifdef STGE_EVENT_COUNTERS
858 		switch (dmamap->dm_nsegs) {
859 		case 1:
860 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
861 			break;
862 		case 2:
863 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
864 			break;
865 		case 3:
866 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
867 			break;
868 		case 4:
869 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
870 			break;
871 		case 5:
872 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
873 			break;
874 		default:
875 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
876 			break;
877 		}
878 #endif /* STGE_EVENT_COUNTERS */
879 
880 		/*
881 		 * Initialize checksumming flags in the descriptor.
882 		 * Byte-swap constants so the compiler can optimize.
883 		 */
884 		csum_flags = 0;
885 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
886 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
887 			csum_flags |= htole64(TFD_IPChecksumEnable);
888 		}
889 
890 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
891 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
892 			csum_flags |= htole64(TFD_TCPChecksumEnable);
893 		}
894 		else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
895 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
896 			csum_flags |= htole64(TFD_UDPChecksumEnable);
897 		}
898 
899 		/*
900 		 * Initialize the descriptor and give it to the chip.
901 		 */
902 		tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
903 		    TFD_WordAlign(/*totlen & */3) |
904 		    TFD_FragCount(seg) | csum_flags |
905 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
906 		     TFD_TxDMAIndicate : 0));
907 
908 		/* Sync the descriptor. */
909 		STGE_CDTXSYNC(sc, nexttx,
910 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
911 
912 		/*
913 		 * Kick the transmit DMA logic.
914 		 */
915 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
916 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
917 
918 		/*
919 		 * Store a pointer to the packet so we can free it later.
920 		 */
921 		ds->ds_mbuf = m0;
922 
923 		/* Advance the tx pointer. */
924 		sc->sc_txpending++;
925 		sc->sc_txlast = nexttx;
926 
927 #if NBPFILTER > 0
928 		/*
929 		 * Pass the packet to any BPF listeners.
930 		 */
931 		if (ifp->if_bpf)
932 			bpf_mtap(ifp->if_bpf, m0);
933 #endif /* NBPFILTER > 0 */
934 	}
935 
936 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
937 		/* No more slots left; notify upper layer. */
938 		ifp->if_flags |= IFF_OACTIVE;
939 	}
940 
941 	if (sc->sc_txpending != opending) {
942 		/*
943 		 * We enqueued packets.  If the transmitter was idle,
944 		 * reset the txdirty pointer.
945 		 */
946 		if (opending == 0)
947 			sc->sc_txdirty = firsttx;
948 
949 		/* Set a watchdog timer in case the chip flakes out. */
950 		ifp->if_timer = 5;
951 	}
952 }
953 
954 /*
955  * stge_watchdog:	[ifnet interface function]
956  *
957  *	Watchdog timer handler.
958  */
959 void
960 stge_watchdog(struct ifnet *ifp)
961 {
962 	struct stge_softc *sc = ifp->if_softc;
963 
964 	/*
965 	 * Sweep up first, since we don't interrupt every frame.
966 	 */
967 	stge_txintr(sc);
968 	if (sc->sc_txpending != 0) {
969 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
970 		ifp->if_oerrors++;
971 
972 		(void) stge_init(ifp);
973 
974 		/* Try to get more packets going. */
975 		stge_start(ifp);
976 	}
977 }
978 
979 /*
980  * stge_ioctl:		[ifnet interface function]
981  *
982  *	Handle control requests from the operator.
983  */
984 int
985 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
986 {
987 	struct stge_softc *sc = ifp->if_softc;
988 	struct ifreq *ifr = (struct ifreq *)data;
989 	int s, error;
990 
991 	s = splnet();
992 
993 	switch (cmd) {
994 	case SIOCSIFMEDIA:
995 	case SIOCGIFMEDIA:
996 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
997 		break;
998 
999 	default:
1000 		error = ether_ioctl(ifp, cmd, data);
1001 		if (error == ENETRESET) {
1002 			/*
1003 			 * Multicast list has changed; set the hardware filter
1004 			 * accordingly.
1005 			 */
1006 			stge_set_filter(sc);
1007 			error = 0;
1008 		}
1009 		break;
1010 	}
1011 
1012 	/* Try to get more packets going. */
1013 	stge_start(ifp);
1014 
1015 	splx(s);
1016 	return (error);
1017 }
1018 
1019 /*
1020  * stge_intr:
1021  *
1022  *	Interrupt service routine.
1023  */
1024 int
1025 stge_intr(void *arg)
1026 {
1027 	struct stge_softc *sc = arg;
1028 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1029 	uint32_t txstat;
1030 	int wantinit;
1031 	uint16_t isr;
1032 
1033 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1034 	     IS_InterruptStatus) == 0)
1035 		return (0);
1036 
1037 	for (wantinit = 0; wantinit == 0;) {
1038 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1039 		if ((isr & sc->sc_IntEnable) == 0)
1040 			break;
1041 
1042 		/* Receive interrupts. */
1043 		if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
1044 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1045 			stge_rxintr(sc);
1046 			if (isr & IE_RFDListEnd) {
1047 				printf("%s: receive ring overflow\n",
1048 				    sc->sc_dev.dv_xname);
1049 				/*
1050 				 * XXX Should try to recover from this
1051 				 * XXX more gracefully.
1052 				 */
1053 				wantinit = 1;
1054 			}
1055 		}
1056 
1057 		/* Transmit interrupts. */
1058 		if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
1059 #ifdef STGE_EVENT_COUNTERS
1060 			if (isr & IE_TxDMAComplete)
1061 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1062 #endif
1063 			stge_txintr(sc);
1064 		}
1065 
1066 		/* Statistics overflow. */
1067 		if (isr & IE_UpdateStats)
1068 			stge_stats_update(sc);
1069 
1070 		/* Transmission errors. */
1071 		if (isr & IE_TxComplete) {
1072 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1073 			for (;;) {
1074 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1075 				    STGE_TxStatus);
1076 				if ((txstat & TS_TxComplete) == 0)
1077 					break;
1078 				if (txstat & TS_TxUnderrun) {
1079 					sc->sc_txthresh++;
1080 					if (sc->sc_txthresh > 0x0fff)
1081 						sc->sc_txthresh = 0x0fff;
1082 					printf("%s: transmit underrun, new "
1083 					    "threshold: %d bytes\n",
1084 					    sc->sc_dev.dv_xname,
1085 					    sc->sc_txthresh << 5);
1086 				}
1087 				if (txstat & TS_MaxCollisions)
1088 					printf("%s: excessive collisions\n",
1089 					    sc->sc_dev.dv_xname);
1090 			}
1091 			wantinit = 1;
1092 		}
1093 
1094 		/* Host interface errors. */
1095 		if (isr & IE_HostError) {
1096 			printf("%s: Host interface error\n",
1097 			    sc->sc_dev.dv_xname);
1098 			wantinit = 1;
1099 		}
1100 	}
1101 
1102 	if (wantinit)
1103 		stge_init(ifp);
1104 
1105 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1106 	    sc->sc_IntEnable);
1107 
1108 	/* Try to get more packets going. */
1109 	stge_start(ifp);
1110 
1111 	return (1);
1112 }
1113 
1114 /*
1115  * stge_txintr:
1116  *
1117  *	Helper; handle transmit interrupts.
1118  */
1119 void
1120 stge_txintr(struct stge_softc *sc)
1121 {
1122 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1123 	struct stge_descsoft *ds;
1124 	uint64_t control;
1125 	int i;
1126 
1127 	ifp->if_flags &= ~IFF_OACTIVE;
1128 
1129 	/*
1130 	 * Go through our Tx list and free mbufs for those
1131 	 * frames which have been transmitted.
1132 	 */
1133 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1134 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1135 		ds = &sc->sc_txsoft[i];
1136 
1137 		STGE_CDTXSYNC(sc, i,
1138 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1139 
1140 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1141 		if ((control & TFD_TFDDone) == 0)
1142 			break;
1143 
1144 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1145 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1146 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1147 		m_freem(ds->ds_mbuf);
1148 		ds->ds_mbuf = NULL;
1149 	}
1150 
1151 	/* Update the dirty transmit buffer pointer. */
1152 	sc->sc_txdirty = i;
1153 
1154 	/*
1155 	 * If there are no more pending transmissions, cancel the watchdog
1156 	 * timer.
1157 	 */
1158 	if (sc->sc_txpending == 0)
1159 		ifp->if_timer = 0;
1160 }
1161 
1162 /*
1163  * stge_rxintr:
1164  *
1165  *	Helper; handle receive interrupts.
1166  */
1167 void
1168 stge_rxintr(struct stge_softc *sc)
1169 {
1170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1171 	struct stge_descsoft *ds;
1172 	struct mbuf *m, *tailm;
1173 	uint64_t status;
1174 	int i, len;
1175 
1176 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1177 		ds = &sc->sc_rxsoft[i];
1178 
1179 		STGE_CDRXSYNC(sc, i,
1180 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1181 
1182 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1183 
1184 		if ((status & RFD_RFDDone) == 0)
1185 			break;
1186 
1187 		if (__predict_false(sc->sc_rxdiscard)) {
1188 			STGE_INIT_RXDESC(sc, i);
1189 			if (status & RFD_FrameEnd) {
1190 				/* Reset our state. */
1191 				sc->sc_rxdiscard = 0;
1192 			}
1193 			continue;
1194 		}
1195 
1196 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1197 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1198 
1199 		m = ds->ds_mbuf;
1200 
1201 		/*
1202 		 * Add a new receive buffer to the ring.
1203 		 */
1204 		if (stge_add_rxbuf(sc, i) != 0) {
1205 			/*
1206 			 * Failed, throw away what we've done so
1207 			 * far, and discard the rest of the packet.
1208 			 */
1209 			ifp->if_ierrors++;
1210 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1211 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1212 			STGE_INIT_RXDESC(sc, i);
1213 			if ((status & RFD_FrameEnd) == 0)
1214 				sc->sc_rxdiscard = 1;
1215 			if (sc->sc_rxhead != NULL)
1216 				m_freem(sc->sc_rxhead);
1217 			STGE_RXCHAIN_RESET(sc);
1218 			continue;
1219 		}
1220 
1221 #ifdef DIAGNOSTIC
1222 		if (status & RFD_FrameStart) {
1223 			KASSERT(sc->sc_rxhead == NULL);
1224 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1225 		}
1226 #endif
1227 
1228 		STGE_RXCHAIN_LINK(sc, m);
1229 
1230 		/*
1231 		 * If this is not the end of the packet, keep
1232 		 * looking.
1233 		 */
1234 		if ((status & RFD_FrameEnd) == 0) {
1235 			sc->sc_rxlen += m->m_len;
1236 			continue;
1237 		}
1238 
1239 		/*
1240 		 * Okay, we have the entire packet now...
1241 		 */
1242 		*sc->sc_rxtailp = NULL;
1243 		m = sc->sc_rxhead;
1244 		tailm = sc->sc_rxtail;
1245 
1246 		STGE_RXCHAIN_RESET(sc);
1247 
1248 		/*
1249 		 * If the packet had an error, drop it.  Note we
1250 		 * count the error later in the periodic stats update.
1251 		 */
1252 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1253 			      RFD_RxAlignmentError | RFD_RxFCSError |
1254 			      RFD_RxLengthError)) {
1255 			m_freem(m);
1256 			continue;
1257 		}
1258 
1259 		/*
1260 		 * No errors.
1261 		 *
1262 		 * Note we have configured the chip to not include
1263 		 * the CRC at the end of the packet.
1264 		 */
1265 		len = RFD_RxDMAFrameLen(status);
1266 		tailm->m_len = len - sc->sc_rxlen;
1267 
1268 		/*
1269 		 * If the packet is small enough to fit in a
1270 		 * single header mbuf, allocate one and copy
1271 		 * the data into it.  This greatly reduces
1272 		 * memory consumption when we receive lots
1273 		 * of small packets.
1274 		 */
1275 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1276 			struct mbuf *nm;
1277 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1278 			if (nm == NULL) {
1279 				ifp->if_ierrors++;
1280 				m_freem(m);
1281 				continue;
1282 			}
1283 			nm->m_data += 2;
1284 			nm->m_pkthdr.len = nm->m_len = len;
1285 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1286 			m_freem(m);
1287 			m = nm;
1288 		}
1289 
1290 		/*
1291 		 * Set the incoming checksum information for the packet.
1292 		 */
1293 		if (status & RFD_IPDetected) {
1294 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1295 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1296 			if (status & RFD_IPError)
1297 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1298 			if (status & RFD_TCPDetected) {
1299 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1300 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1301 				if (status & RFD_TCPError)
1302 					m->m_pkthdr.csum_flags |=
1303 					    M_CSUM_TCP_UDP_BAD;
1304 			} else if (status & RFD_UDPDetected) {
1305 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1306 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1307 				if (status & RFD_UDPError)
1308 					m->m_pkthdr.csum_flags |=
1309 					    M_CSUM_TCP_UDP_BAD;
1310 			}
1311 		}
1312 
1313 		m->m_pkthdr.rcvif = ifp;
1314 		m->m_pkthdr.len = len;
1315 
1316 #if NBPFILTER > 0
1317 		/*
1318 		 * Pass this up to any BPF listeners, but only
1319 		 * pass if up the stack if it's for us.
1320 		 */
1321 		if (ifp->if_bpf)
1322 			bpf_mtap(ifp->if_bpf, m);
1323 #endif /* NBPFILTER > 0 */
1324 
1325 		/* Pass it on. */
1326 		(*ifp->if_input)(ifp, m);
1327 	}
1328 
1329 	/* Update the receive pointer. */
1330 	sc->sc_rxptr = i;
1331 }
1332 
1333 /*
1334  * stge_tick:
1335  *
1336  *	One second timer, used to tick the MII.
1337  */
1338 void
1339 stge_tick(void *arg)
1340 {
1341 	struct stge_softc *sc = arg;
1342 	int s;
1343 
1344 	s = splnet();
1345 	mii_tick(&sc->sc_mii);
1346 	stge_stats_update(sc);
1347 	splx(s);
1348 
1349 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1350 }
1351 
1352 /*
1353  * stge_stats_update:
1354  *
1355  *	Read the TC9021 statistics counters.
1356  */
1357 void
1358 stge_stats_update(struct stge_softc *sc)
1359 {
1360 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1361 	bus_space_tag_t st = sc->sc_st;
1362 	bus_space_handle_t sh = sc->sc_sh;
1363 
1364 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1365 
1366 	ifp->if_ipackets +=
1367 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1368 
1369 	ifp->if_ierrors +=
1370 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1371 
1372 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1373 
1374 	ifp->if_opackets +=
1375 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1376 
1377 	ifp->if_collisions +=
1378 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1379 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1380 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1381 
1382 	ifp->if_oerrors +=
1383 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1384 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1385 }
1386 
1387 /*
1388  * stge_reset:
1389  *
1390  *	Perform a soft reset on the TC9021.
1391  */
1392 void
1393 stge_reset(struct stge_softc *sc)
1394 {
1395 	uint32_t ac;
1396 	int i;
1397 
1398 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1399 
1400 	/*
1401 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1402 	 * to be present in order for the reset to complete on fiber
1403 	 * cards.
1404 	 */
1405 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1406 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1407 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1408 	    (sc->sc_usefiber ? AC_RstOut : 0));
1409 
1410 	delay(50000);
1411 
1412 	for (i = 0; i < STGE_TIMEOUT; i++) {
1413 		delay(5000);
1414 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1415 		     AC_ResetBusy) == 0)
1416 			break;
1417 	}
1418 
1419 	if (i == STGE_TIMEOUT)
1420 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1421 
1422 	delay(1000);
1423 }
1424 
1425 /*
1426  * stge_init:		[ ifnet interface function ]
1427  *
1428  *	Initialize the interface.  Must be called at splnet().
1429  */
1430 int
1431 stge_init(struct ifnet *ifp)
1432 {
1433 	struct stge_softc *sc = ifp->if_softc;
1434 	bus_space_tag_t st = sc->sc_st;
1435 	bus_space_handle_t sh = sc->sc_sh;
1436 	struct stge_descsoft *ds;
1437 	int i, error = 0;
1438 
1439 	/*
1440 	 * Cancel any pending I/O.
1441 	 */
1442 	stge_stop(ifp, 0);
1443 
1444 	/*
1445 	 * Reset the chip to a known state.
1446 	 */
1447 	stge_reset(sc);
1448 
1449 	/*
1450 	 * Initialize the transmit descriptor ring.
1451 	 */
1452 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1453 	for (i = 0; i < STGE_NTXDESC; i++) {
1454 		sc->sc_txdescs[i].tfd_next =
1455 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1456 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1457 	}
1458 	sc->sc_txpending = 0;
1459 	sc->sc_txdirty = 0;
1460 	sc->sc_txlast = STGE_NTXDESC - 1;
1461 
1462 	/*
1463 	 * Initialize the receive descriptor and receive job
1464 	 * descriptor rings.
1465 	 */
1466 	for (i = 0; i < STGE_NRXDESC; i++) {
1467 		ds = &sc->sc_rxsoft[i];
1468 		if (ds->ds_mbuf == NULL) {
1469 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1470 				printf("%s: unable to allocate or map rx "
1471 				    "buffer %d, error = %d\n",
1472 				    sc->sc_dev.dv_xname, i, error);
1473 				/*
1474 				 * XXX Should attempt to run with fewer receive
1475 				 * XXX buffers instead of just failing.
1476 				 */
1477 				stge_rxdrain(sc);
1478 				goto out;
1479 			}
1480 		} else
1481 			STGE_INIT_RXDESC(sc, i);
1482 	}
1483 	sc->sc_rxptr = 0;
1484 	sc->sc_rxdiscard = 0;
1485 	STGE_RXCHAIN_RESET(sc);
1486 
1487 	/* Set the station address. */
1488 	bus_space_write_2(st, sh, STGE_StationAddress0,
1489 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1490 	bus_space_write_2(st, sh, STGE_StationAddress1,
1491 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1492 	bus_space_write_2(st, sh, STGE_StationAddress2,
1493 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1494 
1495 	/*
1496 	 * Set the statistics masks.  Disable all the RMON stats,
1497 	 * and disable selected stats in the non-RMON stats registers.
1498 	 */
1499 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1500 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1501 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1502 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1503 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1504 	    (1U << 21));
1505 
1506 	/* Set up the receive filter. */
1507 	stge_set_filter(sc);
1508 
1509 	/*
1510 	 * Give the transmit and receive ring to the chip.
1511 	 */
1512 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1513 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1514 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1515 
1516 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1517 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1518 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1519 
1520 	/*
1521 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1522 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1523 	 * transmit engine when there's actually a packet.
1524 	 */
1525 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1526 
1527 	/* ..and the Rx auto-poll period. */
1528 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1529 
1530 	/* Initialize the Tx start threshold. */
1531 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1532 
1533 	/*
1534 	 * Initialize the Rx DMA interrupt control register.  We
1535 	 * request an interrupt after every incoming packet, but
1536 	 * defer it for 32us (64 * 512 ns).  When the number of
1537 	 * interrupts pending reaches 8, we stop deferring the
1538 	 * interrupt, and signal it immediately.
1539 	 */
1540 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1541 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1542 
1543 	/*
1544 	 * Initialize the interrupt mask.
1545 	 */
1546 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1547 	    IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
1548 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1549 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1550 
1551 	/*
1552 	 * Configure the DMA engine.
1553 	 * XXX Should auto-tune TxBurstLimit.
1554 	 */
1555 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1556 	    DMAC_TxBurstLimit(3));
1557 
1558 	/*
1559 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1560 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1561 	 * empty again.
1562 	 */
1563 	bus_space_write_4(st, sh, STGE_FlowOnTresh, 29696 / 16);
1564 	bus_space_write_4(st, sh, STGE_FlowOffThresh, 0);
1565 
1566 	/*
1567 	 * Set the maximum frame size.
1568 	 */
1569 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1570 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1571 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1572 	     ETHER_VLAN_ENCAP_LEN : 0));
1573 
1574 	/*
1575 	 * Initialize MacCtrl -- do it before setting the media,
1576 	 * as setting the media will actually program the register.
1577 	 *
1578 	 * Note: We have to poke the IFS value before poking
1579 	 * anything else.
1580 	 */
1581 	sc->sc_MACCtrl = MC_IFSSelect(0);
1582 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1583 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1584 
1585 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1586 		/* Multi-frag frame bug work-around. */
1587 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1588 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1589 
1590 		/* Tx Poll Now bug work-around. */
1591 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1592 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1593 	}
1594 
1595 	/*
1596 	 * Set the current media.
1597 	 */
1598 	mii_mediachg(&sc->sc_mii);
1599 
1600 	/*
1601 	 * Start the one second MII clock.
1602 	 */
1603 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1604 
1605 	/*
1606 	 * ...all done!
1607 	 */
1608 	ifp->if_flags |= IFF_RUNNING;
1609 	ifp->if_flags &= ~IFF_OACTIVE;
1610 
1611  out:
1612 	if (error)
1613 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1614 	return (error);
1615 }
1616 
1617 /*
1618  * stge_drain:
1619  *
1620  *	Drain the receive queue.
1621  */
1622 void
1623 stge_rxdrain(struct stge_softc *sc)
1624 {
1625 	struct stge_descsoft *ds;
1626 	int i;
1627 
1628 	for (i = 0; i < STGE_NRXDESC; i++) {
1629 		ds = &sc->sc_rxsoft[i];
1630 		if (ds->ds_mbuf != NULL) {
1631 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1632 			ds->ds_mbuf->m_next = NULL;
1633 			m_freem(ds->ds_mbuf);
1634 			ds->ds_mbuf = NULL;
1635 		}
1636 	}
1637 }
1638 
1639 /*
1640  * stge_stop:		[ ifnet interface function ]
1641  *
1642  *	Stop transmission on the interface.
1643  */
1644 void
1645 stge_stop(struct ifnet *ifp, int disable)
1646 {
1647 	struct stge_softc *sc = ifp->if_softc;
1648 	struct stge_descsoft *ds;
1649 	int i;
1650 
1651 	/*
1652 	 * Stop the one second clock.
1653 	 */
1654 	callout_stop(&sc->sc_tick_ch);
1655 
1656 	/* Down the MII. */
1657 	mii_down(&sc->sc_mii);
1658 
1659 	/*
1660 	 * Disable interrupts.
1661 	 */
1662 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1663 
1664 	/*
1665 	 * Stop receiver, transmitter, and stats update.
1666 	 */
1667 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1668 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1669 
1670 	/*
1671 	 * Stop the transmit and receive DMA.
1672 	 */
1673 	stge_dma_wait(sc);
1674 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1675 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1676 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1677 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1678 
1679 	/*
1680 	 * Release any queued transmit buffers.
1681 	 */
1682 	for (i = 0; i < STGE_NTXDESC; i++) {
1683 		ds = &sc->sc_txsoft[i];
1684 		if (ds->ds_mbuf != NULL) {
1685 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1686 			m_freem(ds->ds_mbuf);
1687 			ds->ds_mbuf = NULL;
1688 		}
1689 	}
1690 
1691 	if (disable)
1692 		stge_rxdrain(sc);
1693 
1694 	/*
1695 	 * Mark the interface down and cancel the watchdog timer.
1696 	 */
1697 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1698 	ifp->if_timer = 0;
1699 }
1700 
1701 #if 0
1702 static int
1703 stge_eeprom_wait(struct stge_softc *sc)
1704 {
1705 	int i;
1706 
1707 	for (i = 0; i < STGE_TIMEOUT; i++) {
1708 		delay(1000);
1709 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1710 		     EC_EepromBusy) == 0)
1711 			return (0);
1712 	}
1713 	return (1);
1714 }
1715 
1716 /*
1717  * stge_read_eeprom:
1718  *
1719  *	Read data from the serial EEPROM.
1720  */
1721 void
1722 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1723 {
1724 
1725 	if (stge_eeprom_wait(sc))
1726 		printf("%s: EEPROM failed to come ready\n",
1727 		    sc->sc_dev.dv_xname);
1728 
1729 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1730 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1731 	if (stge_eeprom_wait(sc))
1732 		printf("%s: EEPROM read timed out\n",
1733 		    sc->sc_dev.dv_xname);
1734 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1735 }
1736 #endif /* 0 */
1737 
1738 /*
1739  * stge_add_rxbuf:
1740  *
1741  *	Add a receive buffer to the indicated descriptor.
1742  */
1743 int
1744 stge_add_rxbuf(struct stge_softc *sc, int idx)
1745 {
1746 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1747 	struct mbuf *m;
1748 	int error;
1749 
1750 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1751 	if (m == NULL)
1752 		return (ENOBUFS);
1753 
1754 	MCLGET(m, M_DONTWAIT);
1755 	if ((m->m_flags & M_EXT) == 0) {
1756 		m_freem(m);
1757 		return (ENOBUFS);
1758 	}
1759 
1760 	m->m_data = m->m_ext.ext_buf + 2;
1761 	m->m_len = MCLBYTES - 2;
1762 
1763 	if (ds->ds_mbuf != NULL)
1764 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1765 
1766 	ds->ds_mbuf = m;
1767 
1768 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1769 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1770 	if (error) {
1771 		printf("%s: can't load rx DMA map %d, error = %d\n",
1772 		    sc->sc_dev.dv_xname, idx, error);
1773 		panic("stge_add_rxbuf");	/* XXX */
1774 	}
1775 
1776 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1777 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1778 
1779 	STGE_INIT_RXDESC(sc, idx);
1780 
1781 	return (0);
1782 }
1783 
1784 /*
1785  * stge_set_filter:
1786  *
1787  *	Set up the receive filter.
1788  */
1789 void
1790 stge_set_filter(struct stge_softc *sc)
1791 {
1792 	struct ethercom *ec = &sc->sc_ethercom;
1793 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1794 	struct ether_multi *enm;
1795 	struct ether_multistep step;
1796 	uint32_t crc;
1797 	uint32_t mchash[2];
1798 
1799 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1800 	if (ifp->if_flags & IFF_BROADCAST)
1801 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1802 
1803 	if (ifp->if_flags & IFF_PROMISC) {
1804 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1805 		goto allmulti;
1806 	}
1807 
1808 	/*
1809 	 * Set up the multicast address filter by passing all multicast
1810 	 * addresses through a CRC generator, and then using the low-order
1811 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1812 	 * high order bits select the register, while the rest of the bits
1813 	 * select the bit within the register.
1814 	 */
1815 
1816 	memset(mchash, 0, sizeof(mchash));
1817 
1818 	ETHER_FIRST_MULTI(step, ec, enm);
1819 	if (enm == NULL)
1820 		goto done;
1821 
1822 	while (enm != NULL) {
1823 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1824 			/*
1825 			 * We must listen to a range of multicast addresses.
1826 			 * For now, just accept all multicasts, rather than
1827 			 * trying to set only those filter bits needed to match
1828 			 * the range.  (At this time, the only use of address
1829 			 * ranges is for IP multicast routing, for which the
1830 			 * range is big enough to require all bits set.)
1831 			 */
1832 			goto allmulti;
1833 		}
1834 
1835 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1836 
1837 		/* Just want the 6 least significant bits. */
1838 		crc &= 0x3f;
1839 
1840 		/* Set the corresponding bit in the hash table. */
1841 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1842 
1843 		ETHER_NEXT_MULTI(step, enm);
1844 	}
1845 
1846 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1847 
1848 	ifp->if_flags &= ~IFF_ALLMULTI;
1849 	goto done;
1850 
1851  allmulti:
1852 	ifp->if_flags |= IFF_ALLMULTI;
1853 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1854 
1855  done:
1856 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1857 		/*
1858 		 * Program the multicast hash table.
1859 		 */
1860 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1861 		    mchash[0]);
1862 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1863 		    mchash[1]);
1864 	}
1865 
1866 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1867 	    sc->sc_ReceiveMode);
1868 }
1869 
1870 /*
1871  * stge_mii_readreg:	[mii interface function]
1872  *
1873  *	Read a PHY register on the MII of the TC9021.
1874  */
1875 int
1876 stge_mii_readreg(struct device *self, int phy, int reg)
1877 {
1878 
1879 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1880 }
1881 
1882 /*
1883  * stge_mii_writereg:	[mii interface function]
1884  *
1885  *	Write a PHY register on the MII of the TC9021.
1886  */
1887 void
1888 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1889 {
1890 
1891 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1892 }
1893 
1894 /*
1895  * stge_mii_statchg:	[mii interface function]
1896  *
1897  *	Callback from MII layer when media changes.
1898  */
1899 void
1900 stge_mii_statchg(struct device *self)
1901 {
1902 	struct stge_softc *sc = (struct stge_softc *) self;
1903 
1904 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1905 		sc->sc_MACCtrl |= MC_DuplexSelect;
1906 	else
1907 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1908 
1909 	/* XXX 802.1x flow-control? */
1910 
1911 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1912 }
1913 
1914 /*
1915  * sste_mii_bitbang_read: [mii bit-bang interface function]
1916  *
1917  *	Read the MII serial port for the MII bit-bang module.
1918  */
1919 uint32_t
1920 stge_mii_bitbang_read(struct device *self)
1921 {
1922 	struct stge_softc *sc = (void *) self;
1923 
1924 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1925 }
1926 
1927 /*
1928  * stge_mii_bitbang_write: [mii big-bang interface function]
1929  *
1930  *	Write the MII serial port for the MII bit-bang module.
1931  */
1932 void
1933 stge_mii_bitbang_write(struct device *self, uint32_t val)
1934 {
1935 	struct stge_softc *sc = (void *) self;
1936 
1937 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1938 	    val | sc->sc_PhyCtrl);
1939 }
1940 
1941 /*
1942  * stge_mediastatus:	[ifmedia interface function]
1943  *
1944  *	Get the current interface media status.
1945  */
1946 void
1947 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1948 {
1949 	struct stge_softc *sc = ifp->if_softc;
1950 
1951 	mii_pollstat(&sc->sc_mii);
1952 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1953 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1954 }
1955 
1956 /*
1957  * stge_mediachange:	[ifmedia interface function]
1958  *
1959  *	Set hardware to newly-selected media.
1960  */
1961 int
1962 stge_mediachange(struct ifnet *ifp)
1963 {
1964 	struct stge_softc *sc = ifp->if_softc;
1965 
1966 	if (ifp->if_flags & IFF_UP)
1967 		mii_mediachg(&sc->sc_mii);
1968 	return (0);
1969 }
1970