xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_stge.c,v 1.48 2009/09/14 12:02:48 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.48 2009/09/14 12:02:48 tsutsui Exp $");
39 
40 #include "bpfilter.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53 
54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64 
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/if_stgereg.h>
77 
78 /* #define	STGE_CU_BUG			1 */
79 #define	STGE_VLAN_UNTAG			1
80 /* #define	STGE_VLAN_CFI		1 */
81 
82 /*
83  * Transmit descriptor list size.
84  */
85 #define	STGE_NTXDESC		256
86 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
87 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
88 
89 /*
90  * Receive descriptor list size.
91  */
92 #define	STGE_NRXDESC		256
93 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
94 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
95 
96 /*
97  * Only interrupt every N frames.  Must be a power-of-two.
98  */
99 #define	STGE_TXINTR_SPACING	16
100 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
101 
102 /*
103  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
104  * a single clump that maps to a single DMA segment to make several things
105  * easier.
106  */
107 struct stge_control_data {
108 	/*
109 	 * The transmit descriptors.
110 	 */
111 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
112 
113 	/*
114 	 * The receive descriptors.
115 	 */
116 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
117 };
118 
119 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
120 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
121 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
122 
123 /*
124  * Software state for transmit and receive jobs.
125  */
126 struct stge_descsoft {
127 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
128 	bus_dmamap_t ds_dmamap;		/* our DMA map */
129 };
130 
131 /*
132  * Software state per device.
133  */
134 struct stge_softc {
135 	device_t sc_dev;		/* generic device information */
136 	bus_space_tag_t sc_st;		/* bus space tag */
137 	bus_space_handle_t sc_sh;	/* bus space handle */
138 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
139 	struct ethercom sc_ethercom;	/* ethernet common data */
140 	int sc_rev;			/* silicon revision */
141 
142 	void *sc_ih;			/* interrupt cookie */
143 
144 	struct mii_data sc_mii;		/* MII/media information */
145 
146 	callout_t sc_tick_ch;		/* tick callout */
147 
148 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
149 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
150 
151 	/*
152 	 * Software state for transmit and receive descriptors.
153 	 */
154 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
155 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
156 
157 	/*
158 	 * Control data structures.
159 	 */
160 	struct stge_control_data *sc_control_data;
161 #define	sc_txdescs	sc_control_data->scd_txdescs
162 #define	sc_rxdescs	sc_control_data->scd_rxdescs
163 
164 #ifdef STGE_EVENT_COUNTERS
165 	/*
166 	 * Event counters.
167 	 */
168 	struct evcnt sc_ev_txstall;	/* Tx stalled */
169 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
170 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
171 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
172 
173 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
174 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
175 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
176 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
177 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
178 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
179 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
180 
181 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
182 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
183 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
184 
185 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
186 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
187 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
188 #endif /* STGE_EVENT_COUNTERS */
189 
190 	int	sc_txpending;		/* number of Tx requests pending */
191 	int	sc_txdirty;		/* first dirty Tx descriptor */
192 	int	sc_txlast;		/* last used Tx descriptor */
193 
194 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
195 	int	sc_rxdiscard;
196 	int	sc_rxlen;
197 	struct mbuf *sc_rxhead;
198 	struct mbuf *sc_rxtail;
199 	struct mbuf **sc_rxtailp;
200 
201 	int	sc_txthresh;		/* Tx threshold */
202 	uint32_t sc_usefiber:1;		/* if we're fiber */
203 	uint32_t sc_stge1023:1;		/* are we a 1023 */
204 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
205 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
206 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
207 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
208 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
209 };
210 
211 #define	STGE_RXCHAIN_RESET(sc)						\
212 do {									\
213 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
214 	*(sc)->sc_rxtailp = NULL;					\
215 	(sc)->sc_rxlen = 0;						\
216 } while (/*CONSTCOND*/0)
217 
218 #define	STGE_RXCHAIN_LINK(sc, m)					\
219 do {									\
220 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
221 	(sc)->sc_rxtailp = &(m)->m_next;				\
222 } while (/*CONSTCOND*/0)
223 
224 #ifdef STGE_EVENT_COUNTERS
225 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
226 #else
227 #define	STGE_EVCNT_INCR(ev)	/* nothing */
228 #endif
229 
230 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
231 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
232 
233 #define	STGE_CDTXSYNC(sc, x, ops)					\
234 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
235 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
236 
237 #define	STGE_CDRXSYNC(sc, x, ops)					\
238 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
239 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
240 
241 #define	STGE_INIT_RXDESC(sc, x)						\
242 do {									\
243 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
244 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
245 									\
246 	/*								\
247 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
248 	 * so that the payload after the Ethernet header is aligned	\
249 	 * to a 4-byte boundary.					\
250 	 */								\
251 	__rfd->rfd_frag.frag_word0 =					\
252 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
253 	    FRAG_LEN(MCLBYTES - 2));					\
254 	__rfd->rfd_next =						\
255 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
256 	__rfd->rfd_status = 0;						\
257 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
258 } while (/*CONSTCOND*/0)
259 
260 #define STGE_TIMEOUT 1000
261 
262 static void	stge_start(struct ifnet *);
263 static void	stge_watchdog(struct ifnet *);
264 static int	stge_ioctl(struct ifnet *, u_long, void *);
265 static int	stge_init(struct ifnet *);
266 static void	stge_stop(struct ifnet *, int);
267 
268 static bool	stge_shutdown(device_t, int);
269 
270 static void	stge_reset(struct stge_softc *);
271 static void	stge_rxdrain(struct stge_softc *);
272 static int	stge_add_rxbuf(struct stge_softc *, int);
273 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
274 static void	stge_tick(void *);
275 
276 static void	stge_stats_update(struct stge_softc *);
277 
278 static void	stge_set_filter(struct stge_softc *);
279 
280 static int	stge_intr(void *);
281 static void	stge_txintr(struct stge_softc *);
282 static void	stge_rxintr(struct stge_softc *);
283 
284 static int	stge_mii_readreg(device_t, int, int);
285 static void	stge_mii_writereg(device_t, int, int, int);
286 static void	stge_mii_statchg(device_t);
287 
288 static int	stge_match(device_t, cfdata_t, void *);
289 static void	stge_attach(device_t, device_t, void *);
290 
291 int	stge_copy_small = 0;
292 
293 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
294     stge_match, stge_attach, NULL, NULL);
295 
296 static uint32_t stge_mii_bitbang_read(device_t);
297 static void	stge_mii_bitbang_write(device_t, uint32_t);
298 
299 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
300 	stge_mii_bitbang_read,
301 	stge_mii_bitbang_write,
302 	{
303 		PC_MgmtData,		/* MII_BIT_MDO */
304 		PC_MgmtData,		/* MII_BIT_MDI */
305 		PC_MgmtClk,		/* MII_BIT_MDC */
306 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
307 		0,			/* MII_BIT_DIR_PHY_HOST */
308 	}
309 };
310 
311 /*
312  * Devices supported by this driver.
313  */
314 static const struct stge_product {
315 	pci_vendor_id_t		stge_vendor;
316 	pci_product_id_t	stge_product;
317 	const char		*stge_name;
318 } stge_products[] = {
319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
320 	  "Sundance ST-1023 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
323 	  "Sundance ST-2021 Gigabit Ethernet" },
324 
325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
326 	  "Tamarack TC9021 Gigabit Ethernet" },
327 
328 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
329 	  "Tamarack TC9021 Gigabit Ethernet" },
330 
331 	/*
332 	 * The Sundance sample boards use the Sundance vendor ID,
333 	 * but the Tamarack product ID.
334 	 */
335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
336 	  "Sundance TC9021 Gigabit Ethernet" },
337 
338 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
339 	  "Sundance TC9021 Gigabit Ethernet" },
340 
341 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
342 	  "D-Link DL-4000 Gigabit Ethernet" },
343 
344 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
345 	  "Antares Gigabit Ethernet" },
346 
347 	{ 0,				0,
348 	  NULL },
349 };
350 
351 static const struct stge_product *
352 stge_lookup(const struct pci_attach_args *pa)
353 {
354 	const struct stge_product *sp;
355 
356 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
357 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
358 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
359 			return (sp);
360 	}
361 	return (NULL);
362 }
363 
364 static int
365 stge_match(device_t parent, cfdata_t cf, void *aux)
366 {
367 	struct pci_attach_args *pa = aux;
368 
369 	if (stge_lookup(pa) != NULL)
370 		return (1);
371 
372 	return (0);
373 }
374 
375 static void
376 stge_attach(device_t parent, device_t self, void *aux)
377 {
378 	struct stge_softc *sc = device_private(self);
379 	struct pci_attach_args *pa = aux;
380 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
381 	pci_chipset_tag_t pc = pa->pa_pc;
382 	pci_intr_handle_t ih;
383 	const char *intrstr = NULL;
384 	bus_space_tag_t iot, memt;
385 	bus_space_handle_t ioh, memh;
386 	bus_dma_segment_t seg;
387 	int ioh_valid, memh_valid;
388 	int i, rseg, error;
389 	const struct stge_product *sp;
390 	uint8_t enaddr[ETHER_ADDR_LEN];
391 
392 	callout_init(&sc->sc_tick_ch, 0);
393 
394 	sp = stge_lookup(pa);
395 	if (sp == NULL) {
396 		printf("\n");
397 		panic("ste_attach: impossible");
398 	}
399 
400 	sc->sc_rev = PCI_REVISION(pa->pa_class);
401 
402 	aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
403 
404 	/*
405 	 * Map the device.
406 	 */
407 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
408 	    PCI_MAPREG_TYPE_IO, 0,
409 	    &iot, &ioh, NULL, NULL) == 0);
410 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
411 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
412 	    &memt, &memh, NULL, NULL) == 0);
413 
414 	if (memh_valid) {
415 		sc->sc_st = memt;
416 		sc->sc_sh = memh;
417 	} else if (ioh_valid) {
418 		sc->sc_st = iot;
419 		sc->sc_sh = ioh;
420 	} else {
421 		aprint_error_dev(self, "unable to map device registers\n");
422 		return;
423 	}
424 
425 	sc->sc_dmat = pa->pa_dmat;
426 
427 	/* Enable bus mastering. */
428 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
429 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
430 	    PCI_COMMAND_MASTER_ENABLE);
431 
432 	/* power up chip */
433 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
434 	    error != EOPNOTSUPP) {
435 		aprint_error_dev(self, "cannot activate %d\n",
436 		    error);
437 		return;
438 	}
439 	/*
440 	 * Map and establish our interrupt.
441 	 */
442 	if (pci_intr_map(pa, &ih)) {
443 		aprint_error_dev(self, "unable to map interrupt\n");
444 		return;
445 	}
446 	intrstr = pci_intr_string(pc, ih);
447 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
448 	if (sc->sc_ih == NULL) {
449 		aprint_error_dev(self, "unable to establish interrupt");
450 		if (intrstr != NULL)
451 			aprint_error(" at %s", intrstr);
452 		aprint_error("\n");
453 		return;
454 	}
455 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
456 
457 	/*
458 	 * Allocate the control data structures, and create and load the
459 	 * DMA map for it.
460 	 */
461 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
462 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
463 	    0)) != 0) {
464 		aprint_error_dev(self,
465 		    "unable to allocate control data, error = %d\n",
466 		    error);
467 		goto fail_0;
468 	}
469 
470 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
471 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
472 	    BUS_DMA_COHERENT)) != 0) {
473 		aprint_error_dev(self,
474 		    "unable to map control data, error = %d\n",
475 		    error);
476 		goto fail_1;
477 	}
478 
479 	if ((error = bus_dmamap_create(sc->sc_dmat,
480 	    sizeof(struct stge_control_data), 1,
481 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
482 		aprint_error_dev(self,
483 		    "unable to create control data DMA map, error = %d\n",
484 		    error);
485 		goto fail_2;
486 	}
487 
488 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
489 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
490 	    0)) != 0) {
491 		aprint_error_dev(self,
492 		    "unable to load control data DMA map, error = %d\n",
493 		    error);
494 		goto fail_3;
495 	}
496 
497 	/*
498 	 * Create the transmit buffer DMA maps.  Note that rev B.3
499 	 * and earlier seem to have a bug regarding multi-fragment
500 	 * packets.  We need to limit the number of Tx segments on
501 	 * such chips to 1.
502 	 */
503 	for (i = 0; i < STGE_NTXDESC; i++) {
504 		if ((error = bus_dmamap_create(sc->sc_dmat,
505 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
506 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
507 			aprint_error_dev(self,
508 			    "unable to create tx DMA map %d, error = %d\n",
509 			    i, error);
510 			goto fail_4;
511 		}
512 	}
513 
514 	/*
515 	 * Create the receive buffer DMA maps.
516 	 */
517 	for (i = 0; i < STGE_NRXDESC; i++) {
518 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
519 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
520 			aprint_error_dev(self,
521 			    "unable to create rx DMA map %d, error = %d\n",
522 			    i, error);
523 			goto fail_5;
524 		}
525 		sc->sc_rxsoft[i].ds_mbuf = NULL;
526 	}
527 
528 	/*
529 	 * Determine if we're copper or fiber.  It affects how we
530 	 * reset the card.
531 	 */
532 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
533 	    AC_PhyMedia)
534 		sc->sc_usefiber = 1;
535 	else
536 		sc->sc_usefiber = 0;
537 
538 	/*
539 	 * Reset the chip to a known state.
540 	 */
541 	stge_reset(sc);
542 
543 	/*
544 	 * Reading the station address from the EEPROM doesn't seem
545 	 * to work, at least on my sample boards.  Instead, since
546 	 * the reset sequence does AutoInit, read it from the station
547 	 * address registers. For Sundance 1023 you can only read it
548 	 * from EEPROM.
549 	 */
550 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
551 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 		    STGE_StationAddress0) & 0xff;
553 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 		    STGE_StationAddress0) >> 8;
555 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 		    STGE_StationAddress1) & 0xff;
557 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 		    STGE_StationAddress1) >> 8;
559 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 		    STGE_StationAddress2) & 0xff;
561 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
562 		    STGE_StationAddress2) >> 8;
563 		sc->sc_stge1023 = 0;
564 	} else {
565 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
566 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
567 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
568 			    &myaddr[i]);
569 			myaddr[i] = le16toh(myaddr[i]);
570 		}
571 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
572 		sc->sc_stge1023 = 1;
573 	}
574 
575 	aprint_normal_dev(self, "Ethernet address %s\n",
576 	    ether_sprintf(enaddr));
577 
578 	/*
579 	 * Read some important bits from the PhyCtrl register.
580 	 */
581 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
582 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
583 
584 	/*
585 	 * Initialize our media structures and probe the MII.
586 	 */
587 	sc->sc_mii.mii_ifp = ifp;
588 	sc->sc_mii.mii_readreg = stge_mii_readreg;
589 	sc->sc_mii.mii_writereg = stge_mii_writereg;
590 	sc->sc_mii.mii_statchg = stge_mii_statchg;
591 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
592 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
593 	    ether_mediastatus);
594 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
595 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
596 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
597 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
598 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
599 	} else
600 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
601 
602 	ifp = &sc->sc_ethercom.ec_if;
603 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
604 	ifp->if_softc = sc;
605 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606 	ifp->if_ioctl = stge_ioctl;
607 	ifp->if_start = stge_start;
608 	ifp->if_watchdog = stge_watchdog;
609 	ifp->if_init = stge_init;
610 	ifp->if_stop = stge_stop;
611 	IFQ_SET_READY(&ifp->if_snd);
612 
613 	/*
614 	 * The manual recommends disabling early transmit, so we
615 	 * do.  It's disabled anyway, if using IP checksumming,
616 	 * since the entire packet must be in the FIFO in order
617 	 * for the chip to perform the checksum.
618 	 */
619 	sc->sc_txthresh = 0x0fff;
620 
621 	/*
622 	 * Disable MWI if the PCI layer tells us to.
623 	 */
624 	sc->sc_DMACtrl = 0;
625 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
626 		sc->sc_DMACtrl |= DMAC_MWIDisable;
627 
628 	/*
629 	 * We can support 802.1Q VLAN-sized frames and jumbo
630 	 * Ethernet frames.
631 	 *
632 	 * XXX Figure out how to do hw-assisted VLAN tagging in
633 	 * XXX a reasonable way on this chip.
634 	 */
635 	sc->sc_ethercom.ec_capabilities |=
636 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
637 	    ETHERCAP_VLAN_HWTAGGING;
638 
639 	/*
640 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
641 	 */
642 	sc->sc_ethercom.ec_if.if_capabilities |=
643 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
644 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
645 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
646 
647 	/*
648 	 * Attach the interface.
649 	 */
650 	if_attach(ifp);
651 	ether_ifattach(ifp, enaddr);
652 
653 #ifdef STGE_EVENT_COUNTERS
654 	/*
655 	 * Attach event counters.
656 	 */
657 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
658 	    NULL, device_xname(self), "txstall");
659 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
660 	    NULL, device_xname(self), "txdmaintr");
661 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
662 	    NULL, device_xname(self), "txindintr");
663 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
664 	    NULL, device_xname(self), "rxintr");
665 
666 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
667 	    NULL, device_xname(self), "txseg1");
668 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
669 	    NULL, device_xname(self), "txseg2");
670 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
671 	    NULL, device_xname(self), "txseg3");
672 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
673 	    NULL, device_xname(self), "txseg4");
674 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
675 	    NULL, device_xname(self), "txseg5");
676 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
677 	    NULL, device_xname(self), "txsegmore");
678 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
679 	    NULL, device_xname(self), "txcopy");
680 
681 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
682 	    NULL, device_xname(self), "rxipsum");
683 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
684 	    NULL, device_xname(self), "rxtcpsum");
685 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
686 	    NULL, device_xname(self), "rxudpsum");
687 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
688 	    NULL, device_xname(self), "txipsum");
689 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
690 	    NULL, device_xname(self), "txtcpsum");
691 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
692 	    NULL, device_xname(self), "txudpsum");
693 #endif /* STGE_EVENT_COUNTERS */
694 
695 	/*
696 	 * Make sure the interface is shutdown during reboot.
697 	 */
698 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
699 		pmf_class_network_register(self, ifp);
700 	else
701 		aprint_error_dev(self, "couldn't establish power handler\n");
702 
703 	return;
704 
705 	/*
706 	 * Free any resources we've allocated during the failed attach
707 	 * attempt.  Do this in reverse order and fall through.
708 	 */
709  fail_5:
710 	for (i = 0; i < STGE_NRXDESC; i++) {
711 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
712 			bus_dmamap_destroy(sc->sc_dmat,
713 			    sc->sc_rxsoft[i].ds_dmamap);
714 	}
715  fail_4:
716 	for (i = 0; i < STGE_NTXDESC; i++) {
717 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
718 			bus_dmamap_destroy(sc->sc_dmat,
719 			    sc->sc_txsoft[i].ds_dmamap);
720 	}
721 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
722  fail_3:
723 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
724  fail_2:
725 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
726 	    sizeof(struct stge_control_data));
727  fail_1:
728 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
729  fail_0:
730 	return;
731 }
732 
733 /*
734  * stge_shutdown:
735  *
736  *	Make sure the interface is stopped at reboot time.
737  */
738 static bool
739 stge_shutdown(device_t self, int howto)
740 {
741 	struct stge_softc *sc = device_private(self);
742 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
743 
744 	stge_stop(ifp, 1);
745 
746 	return true;
747 }
748 
749 static void
750 stge_dma_wait(struct stge_softc *sc)
751 {
752 	int i;
753 
754 	for (i = 0; i < STGE_TIMEOUT; i++) {
755 		delay(2);
756 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
757 		     DMAC_TxDMAInProg) == 0)
758 			break;
759 	}
760 
761 	if (i == STGE_TIMEOUT)
762 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
763 }
764 
765 /*
766  * stge_start:		[ifnet interface function]
767  *
768  *	Start packet transmission on the interface.
769  */
770 static void
771 stge_start(struct ifnet *ifp)
772 {
773 	struct stge_softc *sc = ifp->if_softc;
774 	struct mbuf *m0;
775 	struct stge_descsoft *ds;
776 	struct stge_tfd *tfd;
777 	bus_dmamap_t dmamap;
778 	int error, firsttx, nexttx, opending, seg, totlen;
779 	uint64_t csum_flags;
780 
781 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
782 		return;
783 
784 	/*
785 	 * Remember the previous number of pending transmissions
786 	 * and the first descriptor we will use.
787 	 */
788 	opending = sc->sc_txpending;
789 	firsttx = STGE_NEXTTX(sc->sc_txlast);
790 
791 	/*
792 	 * Loop through the send queue, setting up transmit descriptors
793 	 * until we drain the queue, or use up all available transmit
794 	 * descriptors.
795 	 */
796 	for (;;) {
797 		struct m_tag *mtag;
798 		uint64_t tfc;
799 
800 		/*
801 		 * Grab a packet off the queue.
802 		 */
803 		IFQ_POLL(&ifp->if_snd, m0);
804 		if (m0 == NULL)
805 			break;
806 
807 		/*
808 		 * Leave one unused descriptor at the end of the
809 		 * list to prevent wrapping completely around.
810 		 */
811 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
812 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
813 			break;
814 		}
815 
816 		/*
817 		 * See if we have any VLAN stuff.
818 		 */
819 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
820 
821 		/*
822 		 * Get the last and next available transmit descriptor.
823 		 */
824 		nexttx = STGE_NEXTTX(sc->sc_txlast);
825 		tfd = &sc->sc_txdescs[nexttx];
826 		ds = &sc->sc_txsoft[nexttx];
827 
828 		dmamap = ds->ds_dmamap;
829 
830 		/*
831 		 * Load the DMA map.  If this fails, the packet either
832 		 * didn't fit in the alloted number of segments, or we
833 		 * were short on resources.  For the too-many-segments
834 		 * case, we simply report an error and drop the packet,
835 		 * since we can't sanely copy a jumbo packet to a single
836 		 * buffer.
837 		 */
838 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
839 		    BUS_DMA_NOWAIT);
840 		if (error) {
841 			if (error == EFBIG) {
842 				printf("%s: Tx packet consumes too many "
843 				    "DMA segments, dropping...\n",
844 				    device_xname(sc->sc_dev));
845 				IFQ_DEQUEUE(&ifp->if_snd, m0);
846 				m_freem(m0);
847 				continue;
848 			}
849 			/*
850 			 * Short on resources, just stop for now.
851 			 */
852 			break;
853 		}
854 
855 		IFQ_DEQUEUE(&ifp->if_snd, m0);
856 
857 		/*
858 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
859 		 */
860 
861 		/* Sync the DMA map. */
862 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
863 		    BUS_DMASYNC_PREWRITE);
864 
865 		/* Initialize the fragment list. */
866 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
867 			tfd->tfd_frags[seg].frag_word0 =
868 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
869 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
870 			totlen += dmamap->dm_segs[seg].ds_len;
871 		}
872 
873 #ifdef STGE_EVENT_COUNTERS
874 		switch (dmamap->dm_nsegs) {
875 		case 1:
876 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
877 			break;
878 		case 2:
879 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
880 			break;
881 		case 3:
882 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
883 			break;
884 		case 4:
885 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
886 			break;
887 		case 5:
888 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
889 			break;
890 		default:
891 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
892 			break;
893 		}
894 #endif /* STGE_EVENT_COUNTERS */
895 
896 		/*
897 		 * Initialize checksumming flags in the descriptor.
898 		 * Byte-swap constants so the compiler can optimize.
899 		 */
900 		csum_flags = 0;
901 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
902 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
903 			csum_flags |= TFD_IPChecksumEnable;
904 		}
905 
906 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
907 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
908 			csum_flags |= TFD_TCPChecksumEnable;
909 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
910 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
911 			csum_flags |= TFD_UDPChecksumEnable;
912 		}
913 
914 		/*
915 		 * Initialize the descriptor and give it to the chip.
916 		 * Check to see if we have a VLAN tag to insert.
917 		 */
918 
919 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
920 		    TFD_FragCount(seg) | csum_flags |
921 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
922 			TFD_TxDMAIndicate : 0);
923 		if (mtag) {
924 #if	0
925 			struct ether_header *eh =
926 			    mtod(m0, struct ether_header *);
927 			u_int16_t etype = ntohs(eh->ether_type);
928 			printf("%s: xmit (tag %d) etype %x\n",
929 			   ifp->if_xname, *mtod(n, int *), etype);
930 #endif
931 			tfc |= TFD_VLANTagInsert |
932 #ifdef	STGE_VLAN_CFI
933 			    TFD_CFI |
934 #endif
935 			    TFD_VID(VLAN_TAG_VALUE(mtag));
936 		}
937 		tfd->tfd_control = htole64(tfc);
938 
939 		/* Sync the descriptor. */
940 		STGE_CDTXSYNC(sc, nexttx,
941 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
942 
943 		/*
944 		 * Kick the transmit DMA logic.
945 		 */
946 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
947 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
948 
949 		/*
950 		 * Store a pointer to the packet so we can free it later.
951 		 */
952 		ds->ds_mbuf = m0;
953 
954 		/* Advance the tx pointer. */
955 		sc->sc_txpending++;
956 		sc->sc_txlast = nexttx;
957 
958 #if NBPFILTER > 0
959 		/*
960 		 * Pass the packet to any BPF listeners.
961 		 */
962 		if (ifp->if_bpf)
963 			bpf_mtap(ifp->if_bpf, m0);
964 #endif /* NBPFILTER > 0 */
965 	}
966 
967 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
968 		/* No more slots left; notify upper layer. */
969 		ifp->if_flags |= IFF_OACTIVE;
970 	}
971 
972 	if (sc->sc_txpending != opending) {
973 		/*
974 		 * We enqueued packets.  If the transmitter was idle,
975 		 * reset the txdirty pointer.
976 		 */
977 		if (opending == 0)
978 			sc->sc_txdirty = firsttx;
979 
980 		/* Set a watchdog timer in case the chip flakes out. */
981 		ifp->if_timer = 5;
982 	}
983 }
984 
985 /*
986  * stge_watchdog:	[ifnet interface function]
987  *
988  *	Watchdog timer handler.
989  */
990 static void
991 stge_watchdog(struct ifnet *ifp)
992 {
993 	struct stge_softc *sc = ifp->if_softc;
994 
995 	/*
996 	 * Sweep up first, since we don't interrupt every frame.
997 	 */
998 	stge_txintr(sc);
999 	if (sc->sc_txpending != 0) {
1000 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1001 		ifp->if_oerrors++;
1002 
1003 		(void) stge_init(ifp);
1004 
1005 		/* Try to get more packets going. */
1006 		stge_start(ifp);
1007 	}
1008 }
1009 
1010 /*
1011  * stge_ioctl:		[ifnet interface function]
1012  *
1013  *	Handle control requests from the operator.
1014  */
1015 static int
1016 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1017 {
1018 	struct stge_softc *sc = ifp->if_softc;
1019 	int s, error;
1020 
1021 	s = splnet();
1022 
1023 	error = ether_ioctl(ifp, cmd, data);
1024 	if (error == ENETRESET) {
1025 		error = 0;
1026 
1027 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1028 			;
1029 		else if (ifp->if_flags & IFF_RUNNING) {
1030 			/*
1031 			 * Multicast list has changed; set the hardware filter
1032 			 * accordingly.
1033 			 */
1034 			stge_set_filter(sc);
1035 		}
1036 	}
1037 
1038 	/* Try to get more packets going. */
1039 	stge_start(ifp);
1040 
1041 	splx(s);
1042 	return (error);
1043 }
1044 
1045 /*
1046  * stge_intr:
1047  *
1048  *	Interrupt service routine.
1049  */
1050 static int
1051 stge_intr(void *arg)
1052 {
1053 	struct stge_softc *sc = arg;
1054 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1055 	uint32_t txstat;
1056 	int wantinit;
1057 	uint16_t isr;
1058 
1059 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1060 	     IS_InterruptStatus) == 0)
1061 		return (0);
1062 
1063 	for (wantinit = 0; wantinit == 0;) {
1064 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1065 		if ((isr & sc->sc_IntEnable) == 0)
1066 			break;
1067 
1068 		/* Host interface errors. */
1069 		if (isr & IS_HostError) {
1070 			printf("%s: Host interface error\n",
1071 			    device_xname(sc->sc_dev));
1072 			wantinit = 1;
1073 			continue;
1074 		}
1075 
1076 		/* Receive interrupts. */
1077 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1078 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1079 			stge_rxintr(sc);
1080 			if (isr & IS_RFDListEnd) {
1081 				printf("%s: receive ring overflow\n",
1082 				    device_xname(sc->sc_dev));
1083 				/*
1084 				 * XXX Should try to recover from this
1085 				 * XXX more gracefully.
1086 				 */
1087 				wantinit = 1;
1088 			}
1089 		}
1090 
1091 		/* Transmit interrupts. */
1092 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1093 #ifdef STGE_EVENT_COUNTERS
1094 			if (isr & IS_TxDMAComplete)
1095 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1096 #endif
1097 			stge_txintr(sc);
1098 		}
1099 
1100 		/* Statistics overflow. */
1101 		if (isr & IS_UpdateStats)
1102 			stge_stats_update(sc);
1103 
1104 		/* Transmission errors. */
1105 		if (isr & IS_TxComplete) {
1106 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1107 			for (;;) {
1108 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1109 				    STGE_TxStatus);
1110 				if ((txstat & TS_TxComplete) == 0)
1111 					break;
1112 				if (txstat & TS_TxUnderrun) {
1113 					sc->sc_txthresh++;
1114 					if (sc->sc_txthresh > 0x0fff)
1115 						sc->sc_txthresh = 0x0fff;
1116 					printf("%s: transmit underrun, new "
1117 					    "threshold: %d bytes\n",
1118 					    device_xname(sc->sc_dev),
1119 					    sc->sc_txthresh << 5);
1120 				}
1121 				if (txstat & TS_MaxCollisions)
1122 					printf("%s: excessive collisions\n",
1123 					    device_xname(sc->sc_dev));
1124 			}
1125 			wantinit = 1;
1126 		}
1127 
1128 	}
1129 
1130 	if (wantinit)
1131 		stge_init(ifp);
1132 
1133 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1134 	    sc->sc_IntEnable);
1135 
1136 	/* Try to get more packets going. */
1137 	stge_start(ifp);
1138 
1139 	return (1);
1140 }
1141 
1142 /*
1143  * stge_txintr:
1144  *
1145  *	Helper; handle transmit interrupts.
1146  */
1147 static void
1148 stge_txintr(struct stge_softc *sc)
1149 {
1150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1151 	struct stge_descsoft *ds;
1152 	uint64_t control;
1153 	int i;
1154 
1155 	ifp->if_flags &= ~IFF_OACTIVE;
1156 
1157 	/*
1158 	 * Go through our Tx list and free mbufs for those
1159 	 * frames which have been transmitted.
1160 	 */
1161 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1162 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1163 		ds = &sc->sc_txsoft[i];
1164 
1165 		STGE_CDTXSYNC(sc, i,
1166 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1167 
1168 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1169 		if ((control & TFD_TFDDone) == 0)
1170 			break;
1171 
1172 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1173 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1174 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1175 		m_freem(ds->ds_mbuf);
1176 		ds->ds_mbuf = NULL;
1177 	}
1178 
1179 	/* Update the dirty transmit buffer pointer. */
1180 	sc->sc_txdirty = i;
1181 
1182 	/*
1183 	 * If there are no more pending transmissions, cancel the watchdog
1184 	 * timer.
1185 	 */
1186 	if (sc->sc_txpending == 0)
1187 		ifp->if_timer = 0;
1188 }
1189 
1190 /*
1191  * stge_rxintr:
1192  *
1193  *	Helper; handle receive interrupts.
1194  */
1195 static void
1196 stge_rxintr(struct stge_softc *sc)
1197 {
1198 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 	struct stge_descsoft *ds;
1200 	struct mbuf *m, *tailm;
1201 	uint64_t status;
1202 	int i, len;
1203 
1204 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1205 		ds = &sc->sc_rxsoft[i];
1206 
1207 		STGE_CDRXSYNC(sc, i,
1208 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1209 
1210 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1211 
1212 		if ((status & RFD_RFDDone) == 0)
1213 			break;
1214 
1215 		if (__predict_false(sc->sc_rxdiscard)) {
1216 			STGE_INIT_RXDESC(sc, i);
1217 			if (status & RFD_FrameEnd) {
1218 				/* Reset our state. */
1219 				sc->sc_rxdiscard = 0;
1220 			}
1221 			continue;
1222 		}
1223 
1224 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1225 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1226 
1227 		m = ds->ds_mbuf;
1228 
1229 		/*
1230 		 * Add a new receive buffer to the ring.
1231 		 */
1232 		if (stge_add_rxbuf(sc, i) != 0) {
1233 			/*
1234 			 * Failed, throw away what we've done so
1235 			 * far, and discard the rest of the packet.
1236 			 */
1237 			ifp->if_ierrors++;
1238 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1239 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1240 			STGE_INIT_RXDESC(sc, i);
1241 			if ((status & RFD_FrameEnd) == 0)
1242 				sc->sc_rxdiscard = 1;
1243 			if (sc->sc_rxhead != NULL)
1244 				m_freem(sc->sc_rxhead);
1245 			STGE_RXCHAIN_RESET(sc);
1246 			continue;
1247 		}
1248 
1249 #ifdef DIAGNOSTIC
1250 		if (status & RFD_FrameStart) {
1251 			KASSERT(sc->sc_rxhead == NULL);
1252 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1253 		}
1254 #endif
1255 
1256 		STGE_RXCHAIN_LINK(sc, m);
1257 
1258 		/*
1259 		 * If this is not the end of the packet, keep
1260 		 * looking.
1261 		 */
1262 		if ((status & RFD_FrameEnd) == 0) {
1263 			sc->sc_rxlen += m->m_len;
1264 			continue;
1265 		}
1266 
1267 		/*
1268 		 * Okay, we have the entire packet now...
1269 		 */
1270 		*sc->sc_rxtailp = NULL;
1271 		m = sc->sc_rxhead;
1272 		tailm = sc->sc_rxtail;
1273 
1274 		STGE_RXCHAIN_RESET(sc);
1275 
1276 		/*
1277 		 * If the packet had an error, drop it.  Note we
1278 		 * count the error later in the periodic stats update.
1279 		 */
1280 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1281 			      RFD_RxAlignmentError | RFD_RxFCSError |
1282 			      RFD_RxLengthError)) {
1283 			m_freem(m);
1284 			continue;
1285 		}
1286 
1287 		/*
1288 		 * No errors.
1289 		 *
1290 		 * Note we have configured the chip to not include
1291 		 * the CRC at the end of the packet.
1292 		 */
1293 		len = RFD_RxDMAFrameLen(status);
1294 		tailm->m_len = len - sc->sc_rxlen;
1295 
1296 		/*
1297 		 * If the packet is small enough to fit in a
1298 		 * single header mbuf, allocate one and copy
1299 		 * the data into it.  This greatly reduces
1300 		 * memory consumption when we receive lots
1301 		 * of small packets.
1302 		 */
1303 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1304 			struct mbuf *nm;
1305 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1306 			if (nm == NULL) {
1307 				ifp->if_ierrors++;
1308 				m_freem(m);
1309 				continue;
1310 			}
1311 			nm->m_data += 2;
1312 			nm->m_pkthdr.len = nm->m_len = len;
1313 			m_copydata(m, 0, len, mtod(nm, void *));
1314 			m_freem(m);
1315 			m = nm;
1316 		}
1317 
1318 		/*
1319 		 * Set the incoming checksum information for the packet.
1320 		 */
1321 		if (status & RFD_IPDetected) {
1322 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1323 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1324 			if (status & RFD_IPError)
1325 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1326 			if (status & RFD_TCPDetected) {
1327 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1328 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1329 				if (status & RFD_TCPError)
1330 					m->m_pkthdr.csum_flags |=
1331 					    M_CSUM_TCP_UDP_BAD;
1332 			} else if (status & RFD_UDPDetected) {
1333 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1334 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1335 				if (status & RFD_UDPError)
1336 					m->m_pkthdr.csum_flags |=
1337 					    M_CSUM_TCP_UDP_BAD;
1338 			}
1339 		}
1340 
1341 		m->m_pkthdr.rcvif = ifp;
1342 		m->m_pkthdr.len = len;
1343 
1344 #if NBPFILTER > 0
1345 		/*
1346 		 * Pass this up to any BPF listeners, but only
1347 		 * pass if up the stack if it's for us.
1348 		 */
1349 		if (ifp->if_bpf)
1350 			bpf_mtap(ifp->if_bpf, m);
1351 #endif /* NBPFILTER > 0 */
1352 #ifdef	STGE_VLAN_UNTAG
1353 		/*
1354 		 * Check for VLAN tagged packets
1355 		 */
1356 		if (status & RFD_VLANDetected)
1357 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1358 
1359 #endif
1360 #if	0
1361 		if (status & RFD_VLANDetected) {
1362 			struct ether_header *eh;
1363 			u_int16_t etype;
1364 
1365 			eh = mtod(m, struct ether_header *);
1366 			etype = ntohs(eh->ether_type);
1367 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1368 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1369 			    etype);
1370 		}
1371 #endif
1372 		/* Pass it on. */
1373 		(*ifp->if_input)(ifp, m);
1374 	}
1375 
1376 	/* Update the receive pointer. */
1377 	sc->sc_rxptr = i;
1378 }
1379 
1380 /*
1381  * stge_tick:
1382  *
1383  *	One second timer, used to tick the MII.
1384  */
1385 static void
1386 stge_tick(void *arg)
1387 {
1388 	struct stge_softc *sc = arg;
1389 	int s;
1390 
1391 	s = splnet();
1392 	mii_tick(&sc->sc_mii);
1393 	stge_stats_update(sc);
1394 	splx(s);
1395 
1396 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1397 }
1398 
1399 /*
1400  * stge_stats_update:
1401  *
1402  *	Read the TC9021 statistics counters.
1403  */
1404 static void
1405 stge_stats_update(struct stge_softc *sc)
1406 {
1407 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1408 	bus_space_tag_t st = sc->sc_st;
1409 	bus_space_handle_t sh = sc->sc_sh;
1410 
1411 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1412 
1413 	ifp->if_ipackets +=
1414 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1415 
1416 	ifp->if_ierrors +=
1417 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1418 
1419 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1420 
1421 	ifp->if_opackets +=
1422 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1423 
1424 	ifp->if_collisions +=
1425 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1426 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1427 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1428 
1429 	ifp->if_oerrors +=
1430 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1431 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1432 }
1433 
1434 /*
1435  * stge_reset:
1436  *
1437  *	Perform a soft reset on the TC9021.
1438  */
1439 static void
1440 stge_reset(struct stge_softc *sc)
1441 {
1442 	uint32_t ac;
1443 	int i;
1444 
1445 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1446 
1447 	/*
1448 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1449 	 * to be present in order for the reset to complete on fiber
1450 	 * cards.
1451 	 */
1452 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1453 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1454 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1455 	    (sc->sc_usefiber ? AC_RstOut : 0));
1456 
1457 	delay(50000);
1458 
1459 	for (i = 0; i < STGE_TIMEOUT; i++) {
1460 		delay(5000);
1461 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1462 		     AC_ResetBusy) == 0)
1463 			break;
1464 	}
1465 
1466 	if (i == STGE_TIMEOUT)
1467 		printf("%s: reset failed to complete\n",
1468 		    device_xname(sc->sc_dev));
1469 
1470 	delay(1000);
1471 }
1472 
1473 /*
1474  * stge_init:		[ ifnet interface function ]
1475  *
1476  *	Initialize the interface.  Must be called at splnet().
1477  */
1478 static int
1479 stge_init(struct ifnet *ifp)
1480 {
1481 	struct stge_softc *sc = ifp->if_softc;
1482 	bus_space_tag_t st = sc->sc_st;
1483 	bus_space_handle_t sh = sc->sc_sh;
1484 	struct stge_descsoft *ds;
1485 	int i, error = 0;
1486 
1487 	/*
1488 	 * Cancel any pending I/O.
1489 	 */
1490 	stge_stop(ifp, 0);
1491 
1492 	/*
1493 	 * Reset the chip to a known state.
1494 	 */
1495 	stge_reset(sc);
1496 
1497 	/*
1498 	 * Initialize the transmit descriptor ring.
1499 	 */
1500 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1501 	for (i = 0; i < STGE_NTXDESC; i++) {
1502 		sc->sc_txdescs[i].tfd_next = htole64(
1503 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1504 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1505 	}
1506 	sc->sc_txpending = 0;
1507 	sc->sc_txdirty = 0;
1508 	sc->sc_txlast = STGE_NTXDESC - 1;
1509 
1510 	/*
1511 	 * Initialize the receive descriptor and receive job
1512 	 * descriptor rings.
1513 	 */
1514 	for (i = 0; i < STGE_NRXDESC; i++) {
1515 		ds = &sc->sc_rxsoft[i];
1516 		if (ds->ds_mbuf == NULL) {
1517 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1518 				printf("%s: unable to allocate or map rx "
1519 				    "buffer %d, error = %d\n",
1520 				    device_xname(sc->sc_dev), i, error);
1521 				/*
1522 				 * XXX Should attempt to run with fewer receive
1523 				 * XXX buffers instead of just failing.
1524 				 */
1525 				stge_rxdrain(sc);
1526 				goto out;
1527 			}
1528 		} else
1529 			STGE_INIT_RXDESC(sc, i);
1530 	}
1531 	sc->sc_rxptr = 0;
1532 	sc->sc_rxdiscard = 0;
1533 	STGE_RXCHAIN_RESET(sc);
1534 
1535 	/* Set the station address. */
1536 	for (i = 0; i < 6; i++)
1537 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1538 		    CLLADDR(ifp->if_sadl)[i]);
1539 
1540 	/*
1541 	 * Set the statistics masks.  Disable all the RMON stats,
1542 	 * and disable selected stats in the non-RMON stats registers.
1543 	 */
1544 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1545 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1546 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1547 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1548 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1549 	    (1U << 21));
1550 
1551 	/* Set up the receive filter. */
1552 	stge_set_filter(sc);
1553 
1554 	/*
1555 	 * Give the transmit and receive ring to the chip.
1556 	 */
1557 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1558 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1559 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1560 
1561 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1562 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1563 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1564 
1565 	/*
1566 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1567 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1568 	 * transmit engine when there's actually a packet.
1569 	 */
1570 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1571 
1572 	/* ..and the Rx auto-poll period. */
1573 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1574 
1575 	/* Initialize the Tx start threshold. */
1576 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1577 
1578 	/* RX DMA thresholds, from linux */
1579 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1580 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1581 
1582 	/*
1583 	 * Initialize the Rx DMA interrupt control register.  We
1584 	 * request an interrupt after every incoming packet, but
1585 	 * defer it for 32us (64 * 512 ns).  When the number of
1586 	 * interrupts pending reaches 8, we stop deferring the
1587 	 * interrupt, and signal it immediately.
1588 	 */
1589 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1590 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1591 
1592 	/*
1593 	 * Initialize the interrupt mask.
1594 	 */
1595 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1596 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1597 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1598 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1599 
1600 	/*
1601 	 * Configure the DMA engine.
1602 	 * XXX Should auto-tune TxBurstLimit.
1603 	 */
1604 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1605 	    DMAC_TxBurstLimit(3));
1606 
1607 	/*
1608 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1609 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1610 	 * empty again.
1611 	 */
1612 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1613 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1614 
1615 	/*
1616 	 * Set the maximum frame size.
1617 	 */
1618 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1619 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1620 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1621 	     ETHER_VLAN_ENCAP_LEN : 0));
1622 
1623 	/*
1624 	 * Initialize MacCtrl -- do it before setting the media,
1625 	 * as setting the media will actually program the register.
1626 	 *
1627 	 * Note: We have to poke the IFS value before poking
1628 	 * anything else.
1629 	 */
1630 	sc->sc_MACCtrl = MC_IFSSelect(0);
1631 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1632 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1633 #ifdef	STGE_VLAN_UNTAG
1634 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1635 #endif
1636 
1637 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1638 		/* Multi-frag frame bug work-around. */
1639 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1640 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1641 
1642 		/* Tx Poll Now bug work-around. */
1643 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1644 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1645 		/* XXX ? from linux */
1646 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1647 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1648 	}
1649 
1650 	/*
1651 	 * Set the current media.
1652 	 */
1653 	if ((error = ether_mediachange(ifp)) != 0)
1654 		goto out;
1655 
1656 	/*
1657 	 * Start the one second MII clock.
1658 	 */
1659 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1660 
1661 	/*
1662 	 * ...all done!
1663 	 */
1664 	ifp->if_flags |= IFF_RUNNING;
1665 	ifp->if_flags &= ~IFF_OACTIVE;
1666 
1667  out:
1668 	if (error)
1669 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1670 	return (error);
1671 }
1672 
1673 /*
1674  * stge_drain:
1675  *
1676  *	Drain the receive queue.
1677  */
1678 static void
1679 stge_rxdrain(struct stge_softc *sc)
1680 {
1681 	struct stge_descsoft *ds;
1682 	int i;
1683 
1684 	for (i = 0; i < STGE_NRXDESC; i++) {
1685 		ds = &sc->sc_rxsoft[i];
1686 		if (ds->ds_mbuf != NULL) {
1687 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1688 			ds->ds_mbuf->m_next = NULL;
1689 			m_freem(ds->ds_mbuf);
1690 			ds->ds_mbuf = NULL;
1691 		}
1692 	}
1693 }
1694 
1695 /*
1696  * stge_stop:		[ ifnet interface function ]
1697  *
1698  *	Stop transmission on the interface.
1699  */
1700 static void
1701 stge_stop(struct ifnet *ifp, int disable)
1702 {
1703 	struct stge_softc *sc = ifp->if_softc;
1704 	struct stge_descsoft *ds;
1705 	int i;
1706 
1707 	/*
1708 	 * Stop the one second clock.
1709 	 */
1710 	callout_stop(&sc->sc_tick_ch);
1711 
1712 	/* Down the MII. */
1713 	mii_down(&sc->sc_mii);
1714 
1715 	/*
1716 	 * Disable interrupts.
1717 	 */
1718 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1719 
1720 	/*
1721 	 * Stop receiver, transmitter, and stats update.
1722 	 */
1723 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1724 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1725 
1726 	/*
1727 	 * Stop the transmit and receive DMA.
1728 	 */
1729 	stge_dma_wait(sc);
1730 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1731 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1732 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1733 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1734 
1735 	/*
1736 	 * Release any queued transmit buffers.
1737 	 */
1738 	for (i = 0; i < STGE_NTXDESC; i++) {
1739 		ds = &sc->sc_txsoft[i];
1740 		if (ds->ds_mbuf != NULL) {
1741 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1742 			m_freem(ds->ds_mbuf);
1743 			ds->ds_mbuf = NULL;
1744 		}
1745 	}
1746 
1747 	/*
1748 	 * Mark the interface down and cancel the watchdog timer.
1749 	 */
1750 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1751 	ifp->if_timer = 0;
1752 
1753 	if (disable)
1754 		stge_rxdrain(sc);
1755 }
1756 
1757 static int
1758 stge_eeprom_wait(struct stge_softc *sc)
1759 {
1760 	int i;
1761 
1762 	for (i = 0; i < STGE_TIMEOUT; i++) {
1763 		delay(1000);
1764 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1765 		     EC_EepromBusy) == 0)
1766 			return (0);
1767 	}
1768 	return (1);
1769 }
1770 
1771 /*
1772  * stge_read_eeprom:
1773  *
1774  *	Read data from the serial EEPROM.
1775  */
1776 static void
1777 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1778 {
1779 
1780 	if (stge_eeprom_wait(sc))
1781 		printf("%s: EEPROM failed to come ready\n",
1782 		    device_xname(sc->sc_dev));
1783 
1784 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1785 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1786 	if (stge_eeprom_wait(sc))
1787 		printf("%s: EEPROM read timed out\n",
1788 		    device_xname(sc->sc_dev));
1789 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1790 }
1791 
1792 /*
1793  * stge_add_rxbuf:
1794  *
1795  *	Add a receive buffer to the indicated descriptor.
1796  */
1797 static int
1798 stge_add_rxbuf(struct stge_softc *sc, int idx)
1799 {
1800 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1801 	struct mbuf *m;
1802 	int error;
1803 
1804 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1805 	if (m == NULL)
1806 		return (ENOBUFS);
1807 
1808 	MCLGET(m, M_DONTWAIT);
1809 	if ((m->m_flags & M_EXT) == 0) {
1810 		m_freem(m);
1811 		return (ENOBUFS);
1812 	}
1813 
1814 	m->m_data = m->m_ext.ext_buf + 2;
1815 	m->m_len = MCLBYTES - 2;
1816 
1817 	if (ds->ds_mbuf != NULL)
1818 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1819 
1820 	ds->ds_mbuf = m;
1821 
1822 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1823 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1824 	if (error) {
1825 		printf("%s: can't load rx DMA map %d, error = %d\n",
1826 		    device_xname(sc->sc_dev), idx, error);
1827 		panic("stge_add_rxbuf");	/* XXX */
1828 	}
1829 
1830 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1831 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1832 
1833 	STGE_INIT_RXDESC(sc, idx);
1834 
1835 	return (0);
1836 }
1837 
1838 /*
1839  * stge_set_filter:
1840  *
1841  *	Set up the receive filter.
1842  */
1843 static void
1844 stge_set_filter(struct stge_softc *sc)
1845 {
1846 	struct ethercom *ec = &sc->sc_ethercom;
1847 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1848 	struct ether_multi *enm;
1849 	struct ether_multistep step;
1850 	uint32_t crc;
1851 	uint32_t mchash[2];
1852 
1853 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1854 	if (ifp->if_flags & IFF_BROADCAST)
1855 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1856 
1857 	/* XXX: ST1023 only works in promiscuous mode */
1858 	if (sc->sc_stge1023)
1859 		ifp->if_flags |= IFF_PROMISC;
1860 
1861 	if (ifp->if_flags & IFF_PROMISC) {
1862 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1863 		goto allmulti;
1864 	}
1865 
1866 	/*
1867 	 * Set up the multicast address filter by passing all multicast
1868 	 * addresses through a CRC generator, and then using the low-order
1869 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1870 	 * high order bits select the register, while the rest of the bits
1871 	 * select the bit within the register.
1872 	 */
1873 
1874 	memset(mchash, 0, sizeof(mchash));
1875 
1876 	ETHER_FIRST_MULTI(step, ec, enm);
1877 	if (enm == NULL)
1878 		goto done;
1879 
1880 	while (enm != NULL) {
1881 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1882 			/*
1883 			 * We must listen to a range of multicast addresses.
1884 			 * For now, just accept all multicasts, rather than
1885 			 * trying to set only those filter bits needed to match
1886 			 * the range.  (At this time, the only use of address
1887 			 * ranges is for IP multicast routing, for which the
1888 			 * range is big enough to require all bits set.)
1889 			 */
1890 			goto allmulti;
1891 		}
1892 
1893 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1894 
1895 		/* Just want the 6 least significant bits. */
1896 		crc &= 0x3f;
1897 
1898 		/* Set the corresponding bit in the hash table. */
1899 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1900 
1901 		ETHER_NEXT_MULTI(step, enm);
1902 	}
1903 
1904 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1905 
1906 	ifp->if_flags &= ~IFF_ALLMULTI;
1907 	goto done;
1908 
1909  allmulti:
1910 	ifp->if_flags |= IFF_ALLMULTI;
1911 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1912 
1913  done:
1914 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1915 		/*
1916 		 * Program the multicast hash table.
1917 		 */
1918 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1919 		    mchash[0]);
1920 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1921 		    mchash[1]);
1922 	}
1923 
1924 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1925 	    sc->sc_ReceiveMode);
1926 }
1927 
1928 /*
1929  * stge_mii_readreg:	[mii interface function]
1930  *
1931  *	Read a PHY register on the MII of the TC9021.
1932  */
1933 static int
1934 stge_mii_readreg(device_t self, int phy, int reg)
1935 {
1936 
1937 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1938 }
1939 
1940 /*
1941  * stge_mii_writereg:	[mii interface function]
1942  *
1943  *	Write a PHY register on the MII of the TC9021.
1944  */
1945 static void
1946 stge_mii_writereg(device_t self, int phy, int reg, int val)
1947 {
1948 
1949 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1950 }
1951 
1952 /*
1953  * stge_mii_statchg:	[mii interface function]
1954  *
1955  *	Callback from MII layer when media changes.
1956  */
1957 static void
1958 stge_mii_statchg(device_t self)
1959 {
1960 	struct stge_softc *sc = device_private(self);
1961 
1962 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1963 		sc->sc_MACCtrl |= MC_DuplexSelect;
1964 	else
1965 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1966 
1967 	/* XXX 802.1x flow-control? */
1968 
1969 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1970 }
1971 
1972 /*
1973  * sste_mii_bitbang_read: [mii bit-bang interface function]
1974  *
1975  *	Read the MII serial port for the MII bit-bang module.
1976  */
1977 static uint32_t
1978 stge_mii_bitbang_read(device_t self)
1979 {
1980 	struct stge_softc *sc = device_private(self);
1981 
1982 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1983 }
1984 
1985 /*
1986  * stge_mii_bitbang_write: [mii big-bang interface function]
1987  *
1988  *	Write the MII serial port for the MII bit-bang module.
1989  */
1990 static void
1991 stge_mii_bitbang_write(device_t self, uint32_t val)
1992 {
1993 	struct stge_softc *sc = device_private(self);
1994 
1995 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1996 	    val | sc->sc_PhyCtrl);
1997 }
1998