xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: if_stge.c,v 1.22 2004/10/30 18:09:22 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.22 2004/10/30 18:09:22 thorpej Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stgereg.h>
84 
85 /* #define	STGE_CU_BUG			1 */
86 #define	STGE_VLAN_UNTAG			1
87 /* #define	STGE_VLAN_CFI		1 */
88 
89 /*
90  * Transmit descriptor list size.
91  */
92 #define	STGE_NTXDESC		256
93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
95 
96 /*
97  * Receive descriptor list size.
98  */
99 #define	STGE_NRXDESC		256
100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
102 
103 /*
104  * Only interrupt every N frames.  Must be a power-of-two.
105  */
106 #define	STGE_TXINTR_SPACING	16
107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108 
109 /*
110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
111  * a single clump that maps to a single DMA segment to make several things
112  * easier.
113  */
114 struct stge_control_data {
115 	/*
116 	 * The transmit descriptors.
117 	 */
118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
119 
120 	/*
121 	 * The receive descriptors.
122 	 */
123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125 
126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
129 
130 /*
131  * Software state for transmit and receive jobs.
132  */
133 struct stge_descsoft {
134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
136 };
137 
138 /*
139  * Software state per device.
140  */
141 struct stge_softc {
142 	struct device sc_dev;		/* generic device information */
143 	bus_space_tag_t sc_st;		/* bus space tag */
144 	bus_space_handle_t sc_sh;	/* bus space handle */
145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
146 	struct ethercom sc_ethercom;	/* ethernet common data */
147 	void *sc_sdhook;		/* shutdown hook */
148 	int sc_rev;			/* silicon revision */
149 
150 	void *sc_ih;			/* interrupt cookie */
151 
152 	struct mii_data sc_mii;		/* MII/media information */
153 
154 	struct callout sc_tick_ch;	/* tick callout */
155 
156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
158 
159 	/*
160 	 * Software state for transmit and receive descriptors.
161 	 */
162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164 
165 	/*
166 	 * Control data structures.
167 	 */
168 	struct stge_control_data *sc_control_data;
169 #define	sc_txdescs	sc_control_data->scd_txdescs
170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
171 
172 #ifdef STGE_EVENT_COUNTERS
173 	/*
174 	 * Event counters.
175 	 */
176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
180 
181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
188 
189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
192 
193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197 
198 	int	sc_txpending;		/* number of Tx requests pending */
199 	int	sc_txdirty;		/* first dirty Tx descriptor */
200 	int	sc_txlast;		/* last used Tx descriptor */
201 
202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
203 	int	sc_rxdiscard;
204 	int	sc_rxlen;
205 	struct mbuf *sc_rxhead;
206 	struct mbuf *sc_rxtail;
207 	struct mbuf **sc_rxtailp;
208 
209 	int	sc_txthresh;		/* Tx threshold */
210 	int	sc_usefiber;		/* if we're fiber */
211 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
212 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
213 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
214 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
215 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
216 };
217 
218 #define	STGE_RXCHAIN_RESET(sc)						\
219 do {									\
220 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
221 	*(sc)->sc_rxtailp = NULL;					\
222 	(sc)->sc_rxlen = 0;						\
223 } while (/*CONSTCOND*/0)
224 
225 #define	STGE_RXCHAIN_LINK(sc, m)					\
226 do {									\
227 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
228 	(sc)->sc_rxtailp = &(m)->m_next;				\
229 } while (/*CONSTCOND*/0)
230 
231 #ifdef STGE_EVENT_COUNTERS
232 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
233 #else
234 #define	STGE_EVCNT_INCR(ev)	/* nothing */
235 #endif
236 
237 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
238 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
239 
240 #define	STGE_CDTXSYNC(sc, x, ops)					\
241 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
242 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
243 
244 #define	STGE_CDRXSYNC(sc, x, ops)					\
245 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
246 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
247 
248 #define	STGE_INIT_RXDESC(sc, x)						\
249 do {									\
250 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
251 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
252 									\
253 	/*								\
254 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
255 	 * so that the payload after the Ethernet header is aligned	\
256 	 * to a 4-byte boundary.					\
257 	 */								\
258 	__rfd->rfd_frag.frag_word0 =					\
259 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
260 	    FRAG_LEN(MCLBYTES - 2));					\
261 	__rfd->rfd_next =						\
262 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
263 	__rfd->rfd_status = 0;						\
264 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
265 } while (/*CONSTCOND*/0)
266 
267 #define STGE_TIMEOUT 1000
268 
269 static void	stge_start(struct ifnet *);
270 static void	stge_watchdog(struct ifnet *);
271 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
272 static int	stge_init(struct ifnet *);
273 static void	stge_stop(struct ifnet *, int);
274 
275 static void	stge_shutdown(void *);
276 
277 static void	stge_reset(struct stge_softc *);
278 static void	stge_rxdrain(struct stge_softc *);
279 static int	stge_add_rxbuf(struct stge_softc *, int);
280 #if 0
281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 #endif
283 static void	stge_tick(void *);
284 
285 static void	stge_stats_update(struct stge_softc *);
286 
287 static void	stge_set_filter(struct stge_softc *);
288 
289 static int	stge_intr(void *);
290 static void	stge_txintr(struct stge_softc *);
291 static void	stge_rxintr(struct stge_softc *);
292 
293 static int	stge_mii_readreg(struct device *, int, int);
294 static void	stge_mii_writereg(struct device *, int, int, int);
295 static void	stge_mii_statchg(struct device *);
296 
297 static int	stge_mediachange(struct ifnet *);
298 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
299 
300 static int	stge_match(struct device *, struct cfdata *, void *);
301 static void	stge_attach(struct device *, struct device *, void *);
302 
303 int	stge_copy_small = 0;
304 
305 CFATTACH_DECL(stge, sizeof(struct stge_softc),
306     stge_match, stge_attach, NULL, NULL);
307 
308 static uint32_t stge_mii_bitbang_read(struct device *);
309 static void	stge_mii_bitbang_write(struct device *, uint32_t);
310 
311 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
312 	stge_mii_bitbang_read,
313 	stge_mii_bitbang_write,
314 	{
315 		PC_MgmtData,		/* MII_BIT_MDO */
316 		PC_MgmtData,		/* MII_BIT_MDI */
317 		PC_MgmtClk,		/* MII_BIT_MDC */
318 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
319 		0,			/* MII_BIT_DIR_PHY_HOST */
320 	}
321 };
322 
323 /*
324  * Devices supported by this driver.
325  */
326 static const struct stge_product {
327 	pci_vendor_id_t		stge_vendor;
328 	pci_product_id_t	stge_product;
329 	const char		*stge_name;
330 } stge_products[] = {
331 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
332 	  "Sundance ST-2021 Gigabit Ethernet" },
333 
334 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
335 	  "Tamarack TC9021 Gigabit Ethernet" },
336 
337 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
338 	  "Tamarack TC9021 Gigabit Ethernet" },
339 
340 	/*
341 	 * The Sundance sample boards use the Sundance vendor ID,
342 	 * but the Tamarack product ID.
343 	 */
344 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
345 	  "Sundance TC9021 Gigabit Ethernet" },
346 
347 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
348 	  "Sundance TC9021 Gigabit Ethernet" },
349 
350 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
351 	  "D-Link DL-4000 Gigabit Ethernet" },
352 
353 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
354 	  "Antares Gigabit Ethernet" },
355 
356 	{ 0,				0,
357 	  NULL },
358 };
359 
360 static const struct stge_product *
361 stge_lookup(const struct pci_attach_args *pa)
362 {
363 	const struct stge_product *sp;
364 
365 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
366 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
367 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
368 			return (sp);
369 	}
370 	return (NULL);
371 }
372 
373 static int
374 stge_match(struct device *parent, struct cfdata *cf, void *aux)
375 {
376 	struct pci_attach_args *pa = aux;
377 
378 	if (stge_lookup(pa) != NULL)
379 		return (1);
380 
381 	return (0);
382 }
383 
384 static void
385 stge_attach(struct device *parent, struct device *self, void *aux)
386 {
387 	struct stge_softc *sc = (struct stge_softc *) self;
388 	struct pci_attach_args *pa = aux;
389 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
390 	pci_chipset_tag_t pc = pa->pa_pc;
391 	pci_intr_handle_t ih;
392 	const char *intrstr = NULL;
393 	bus_space_tag_t iot, memt;
394 	bus_space_handle_t ioh, memh;
395 	bus_dma_segment_t seg;
396 	int ioh_valid, memh_valid;
397 	int i, rseg, error;
398 	const struct stge_product *sp;
399 	pcireg_t pmode;
400 	uint8_t enaddr[ETHER_ADDR_LEN];
401 	int pmreg;
402 
403 	callout_init(&sc->sc_tick_ch);
404 
405 	sp = stge_lookup(pa);
406 	if (sp == NULL) {
407 		printf("\n");
408 		panic("ste_attach: impossible");
409 	}
410 
411 	sc->sc_rev = PCI_REVISION(pa->pa_class);
412 
413 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
414 
415 	/*
416 	 * Map the device.
417 	 */
418 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
419 	    PCI_MAPREG_TYPE_IO, 0,
420 	    &iot, &ioh, NULL, NULL) == 0);
421 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
422 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
423 	    &memt, &memh, NULL, NULL) == 0);
424 
425 	if (memh_valid) {
426 		sc->sc_st = memt;
427 		sc->sc_sh = memh;
428 	} else if (ioh_valid) {
429 		sc->sc_st = iot;
430 		sc->sc_sh = ioh;
431 	} else {
432 		printf("%s: unable to map device registers\n",
433 		    sc->sc_dev.dv_xname);
434 		return;
435 	}
436 
437 	sc->sc_dmat = pa->pa_dmat;
438 
439 	/* Enable bus mastering. */
440 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
441 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
442 	    PCI_COMMAND_MASTER_ENABLE);
443 
444 	/* Get it out of power save mode if needed. */
445 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
446 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
447 		    PCI_PMCSR_STATE_MASK;
448 		if (pmode == PCI_PMCSR_STATE_D3) {
449 			/*
450 			 * The card has lost all configuration data in
451 			 * this state, so punt.
452 			 */
453 			printf("%s: unable to wake up from power state D3\n",
454 			    sc->sc_dev.dv_xname);
455 			return;
456 		}
457 		if (pmode != 0) {
458 			printf("%s: waking up from power state D%d\n",
459 			    sc->sc_dev.dv_xname, pmode);
460 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
461 			    PCI_PMCSR_STATE_D0);
462 		}
463 	}
464 
465 	/*
466 	 * Map and establish our interrupt.
467 	 */
468 	if (pci_intr_map(pa, &ih)) {
469 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
470 		return;
471 	}
472 	intrstr = pci_intr_string(pc, ih);
473 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
474 	if (sc->sc_ih == NULL) {
475 		printf("%s: unable to establish interrupt",
476 		    sc->sc_dev.dv_xname);
477 		if (intrstr != NULL)
478 			printf(" at %s", intrstr);
479 		printf("\n");
480 		return;
481 	}
482 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
483 
484 	/*
485 	 * Allocate the control data structures, and create and load the
486 	 * DMA map for it.
487 	 */
488 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
489 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
490 	    0)) != 0) {
491 		printf("%s: unable to allocate control data, error = %d\n",
492 		    sc->sc_dev.dv_xname, error);
493 		goto fail_0;
494 	}
495 
496 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
497 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
498 	    BUS_DMA_COHERENT)) != 0) {
499 		printf("%s: unable to map control data, error = %d\n",
500 		    sc->sc_dev.dv_xname, error);
501 		goto fail_1;
502 	}
503 
504 	if ((error = bus_dmamap_create(sc->sc_dmat,
505 	    sizeof(struct stge_control_data), 1,
506 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
507 		printf("%s: unable to create control data DMA map, "
508 		    "error = %d\n", sc->sc_dev.dv_xname, error);
509 		goto fail_2;
510 	}
511 
512 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
513 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
514 	    0)) != 0) {
515 		printf("%s: unable to load control data DMA map, error = %d\n",
516 		    sc->sc_dev.dv_xname, error);
517 		goto fail_3;
518 	}
519 
520 	/*
521 	 * Create the transmit buffer DMA maps.  Note that rev B.3
522 	 * and earlier seem to have a bug regarding multi-fragment
523 	 * packets.  We need to limit the number of Tx segments on
524 	 * such chips to 1.
525 	 */
526 	for (i = 0; i < STGE_NTXDESC; i++) {
527 		if ((error = bus_dmamap_create(sc->sc_dmat,
528 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
529 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
530 			printf("%s: unable to create tx DMA map %d, "
531 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
532 			goto fail_4;
533 		}
534 	}
535 
536 	/*
537 	 * Create the receive buffer DMA maps.
538 	 */
539 	for (i = 0; i < STGE_NRXDESC; i++) {
540 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
541 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
542 			printf("%s: unable to create rx DMA map %d, "
543 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
544 			goto fail_5;
545 		}
546 		sc->sc_rxsoft[i].ds_mbuf = NULL;
547 	}
548 
549 	/*
550 	 * Determine if we're copper or fiber.  It affects how we
551 	 * reset the card.
552 	 */
553 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
554 	    AC_PhyMedia)
555 		sc->sc_usefiber = 1;
556 	else
557 		sc->sc_usefiber = 0;
558 
559 	/*
560 	 * Reset the chip to a known state.
561 	 */
562 	stge_reset(sc);
563 
564 	/*
565 	 * Reading the station address from the EEPROM doesn't seem
566 	 * to work, at least on my sample boards.  Instread, since
567 	 * the reset sequence does AutoInit, read it from the station
568 	 * address registers.
569 	 */
570 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
571 	    STGE_StationAddress0) & 0xff;
572 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
573 	    STGE_StationAddress0) >> 8;
574 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 	    STGE_StationAddress1) & 0xff;
576 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
577 	    STGE_StationAddress1) >> 8;
578 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
579 	    STGE_StationAddress2) & 0xff;
580 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
581 	    STGE_StationAddress2) >> 8;
582 
583 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
584 	    ether_sprintf(enaddr));
585 
586 	/*
587 	 * Read some important bits from the PhyCtrl register.
588 	 */
589 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
590 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
591 
592 	/*
593 	 * Initialize our media structures and probe the MII.
594 	 */
595 	sc->sc_mii.mii_ifp = ifp;
596 	sc->sc_mii.mii_readreg = stge_mii_readreg;
597 	sc->sc_mii.mii_writereg = stge_mii_writereg;
598 	sc->sc_mii.mii_statchg = stge_mii_statchg;
599 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
600 	    stge_mediastatus);
601 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
602 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
603 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
604 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
605 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
606 	} else
607 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
608 
609 	ifp = &sc->sc_ethercom.ec_if;
610 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
611 	ifp->if_softc = sc;
612 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
613 	ifp->if_ioctl = stge_ioctl;
614 	ifp->if_start = stge_start;
615 	ifp->if_watchdog = stge_watchdog;
616 	ifp->if_init = stge_init;
617 	ifp->if_stop = stge_stop;
618 	IFQ_SET_READY(&ifp->if_snd);
619 
620 	/*
621 	 * The manual recommends disabling early transmit, so we
622 	 * do.  It's disabled anyway, if using IP checksumming,
623 	 * since the entire packet must be in the FIFO in order
624 	 * for the chip to perform the checksum.
625 	 */
626 	sc->sc_txthresh = 0x0fff;
627 
628 	/*
629 	 * Disable MWI if the PCI layer tells us to.
630 	 */
631 	sc->sc_DMACtrl = 0;
632 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
633 		sc->sc_DMACtrl |= DMAC_MWIDisable;
634 
635 	/*
636 	 * We can support 802.1Q VLAN-sized frames and jumbo
637 	 * Ethernet frames.
638 	 *
639 	 * XXX Figure out how to do hw-assisted VLAN tagging in
640 	 * XXX a reasonable way on this chip.
641 	 */
642 	sc->sc_ethercom.ec_capabilities |=
643 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
644 	    ETHERCAP_VLAN_HWTAGGING;
645 
646 	/*
647 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
648 	 */
649 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
650 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
651 
652 	/*
653 	 * Attach the interface.
654 	 */
655 	if_attach(ifp);
656 	ether_ifattach(ifp, enaddr);
657 
658 #ifdef STGE_EVENT_COUNTERS
659 	/*
660 	 * Attach event counters.
661 	 */
662 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
663 	    NULL, sc->sc_dev.dv_xname, "txstall");
664 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
665 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
666 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
667 	    NULL, sc->sc_dev.dv_xname, "txindintr");
668 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
669 	    NULL, sc->sc_dev.dv_xname, "rxintr");
670 
671 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
672 	    NULL, sc->sc_dev.dv_xname, "txseg1");
673 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
674 	    NULL, sc->sc_dev.dv_xname, "txseg2");
675 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
676 	    NULL, sc->sc_dev.dv_xname, "txseg3");
677 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
678 	    NULL, sc->sc_dev.dv_xname, "txseg4");
679 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
680 	    NULL, sc->sc_dev.dv_xname, "txseg5");
681 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
682 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
683 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
684 	    NULL, sc->sc_dev.dv_xname, "txcopy");
685 
686 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
687 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
688 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
689 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
690 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
691 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
692 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
693 	    NULL, sc->sc_dev.dv_xname, "txipsum");
694 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
695 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
696 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
697 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
698 #endif /* STGE_EVENT_COUNTERS */
699 
700 	/*
701 	 * Make sure the interface is shutdown during reboot.
702 	 */
703 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
704 	if (sc->sc_sdhook == NULL)
705 		printf("%s: WARNING: unable to establish shutdown hook\n",
706 		    sc->sc_dev.dv_xname);
707 	return;
708 
709 	/*
710 	 * Free any resources we've allocated during the failed attach
711 	 * attempt.  Do this in reverse order and fall through.
712 	 */
713  fail_5:
714 	for (i = 0; i < STGE_NRXDESC; i++) {
715 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
716 			bus_dmamap_destroy(sc->sc_dmat,
717 			    sc->sc_rxsoft[i].ds_dmamap);
718 	}
719  fail_4:
720 	for (i = 0; i < STGE_NTXDESC; i++) {
721 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
722 			bus_dmamap_destroy(sc->sc_dmat,
723 			    sc->sc_txsoft[i].ds_dmamap);
724 	}
725 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
726  fail_3:
727 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
728  fail_2:
729 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
730 	    sizeof(struct stge_control_data));
731  fail_1:
732 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
733  fail_0:
734 	return;
735 }
736 
737 /*
738  * stge_shutdown:
739  *
740  *	Make sure the interface is stopped at reboot time.
741  */
742 static void
743 stge_shutdown(void *arg)
744 {
745 	struct stge_softc *sc = arg;
746 
747 	stge_stop(&sc->sc_ethercom.ec_if, 1);
748 }
749 
750 static void
751 stge_dma_wait(struct stge_softc *sc)
752 {
753 	int i;
754 
755 	for (i = 0; i < STGE_TIMEOUT; i++) {
756 		delay(2);
757 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
758 		     DMAC_TxDMAInProg) == 0)
759 			break;
760 	}
761 
762 	if (i == STGE_TIMEOUT)
763 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
764 }
765 
766 /*
767  * stge_start:		[ifnet interface function]
768  *
769  *	Start packet transmission on the interface.
770  */
771 static void
772 stge_start(struct ifnet *ifp)
773 {
774 	struct stge_softc *sc = ifp->if_softc;
775 	struct mbuf *m0;
776 	struct stge_descsoft *ds;
777 	struct stge_tfd *tfd;
778 	bus_dmamap_t dmamap;
779 	int error, firsttx, nexttx, opending, seg, totlen;
780 	uint64_t csum_flags;
781 
782 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
783 		return;
784 
785 	/*
786 	 * Remember the previous number of pending transmissions
787 	 * and the first descriptor we will use.
788 	 */
789 	opending = sc->sc_txpending;
790 	firsttx = STGE_NEXTTX(sc->sc_txlast);
791 
792 	/*
793 	 * Loop through the send queue, setting up transmit descriptors
794 	 * until we drain the queue, or use up all available transmit
795 	 * descriptors.
796 	 */
797 	for (;;) {
798 		struct m_tag *mtag;
799 		uint64_t tfc;
800 
801 		/*
802 		 * Grab a packet off the queue.
803 		 */
804 		IFQ_POLL(&ifp->if_snd, m0);
805 		if (m0 == NULL)
806 			break;
807 
808 		/*
809 		 * Leave one unused descriptor at the end of the
810 		 * list to prevent wrapping completely around.
811 		 */
812 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
813 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
814 			break;
815 		}
816 
817 		/*
818 		 * See if we have any VLAN stuff.
819 		 */
820 		mtag = sc->sc_ethercom.ec_nvlans ?
821 		    m_tag_find(m0, PACKET_TAG_VLAN, NULL) : NULL;
822 
823 		/*
824 		 * Get the last and next available transmit descriptor.
825 		 */
826 		nexttx = STGE_NEXTTX(sc->sc_txlast);
827 		tfd = &sc->sc_txdescs[nexttx];
828 		ds = &sc->sc_txsoft[nexttx];
829 
830 		dmamap = ds->ds_dmamap;
831 
832 		/*
833 		 * Load the DMA map.  If this fails, the packet either
834 		 * didn't fit in the alloted number of segments, or we
835 		 * were short on resources.  For the too-many-segments
836 		 * case, we simply report an error and drop the packet,
837 		 * since we can't sanely copy a jumbo packet to a single
838 		 * buffer.
839 		 */
840 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
841 		    BUS_DMA_NOWAIT);
842 		if (error) {
843 			if (error == EFBIG) {
844 				printf("%s: Tx packet consumes too many "
845 				    "DMA segments, dropping...\n",
846 				    sc->sc_dev.dv_xname);
847 				IFQ_DEQUEUE(&ifp->if_snd, m0);
848 				m_freem(m0);
849 				continue;
850 			}
851 			/*
852 			 * Short on resources, just stop for now.
853 			 */
854 			break;
855 		}
856 
857 		IFQ_DEQUEUE(&ifp->if_snd, m0);
858 
859 		/*
860 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
861 		 */
862 
863 		/* Sync the DMA map. */
864 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
865 		    BUS_DMASYNC_PREWRITE);
866 
867 		/* Initialize the fragment list. */
868 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
869 			tfd->tfd_frags[seg].frag_word0 =
870 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
871 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
872 			totlen += dmamap->dm_segs[seg].ds_len;
873 		}
874 
875 #ifdef STGE_EVENT_COUNTERS
876 		switch (dmamap->dm_nsegs) {
877 		case 1:
878 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
879 			break;
880 		case 2:
881 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
882 			break;
883 		case 3:
884 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
885 			break;
886 		case 4:
887 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
888 			break;
889 		case 5:
890 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
891 			break;
892 		default:
893 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
894 			break;
895 		}
896 #endif /* STGE_EVENT_COUNTERS */
897 
898 		/*
899 		 * Initialize checksumming flags in the descriptor.
900 		 * Byte-swap constants so the compiler can optimize.
901 		 */
902 		csum_flags = 0;
903 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
904 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
905 			csum_flags |= htole64(TFD_IPChecksumEnable);
906 		}
907 
908 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
909 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
910 			csum_flags |= htole64(TFD_TCPChecksumEnable);
911 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
912 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
913 			csum_flags |= htole64(TFD_UDPChecksumEnable);
914 		}
915 
916 		/*
917 		 * Initialize the descriptor and give it to the chip.
918 		 * Check to see if we have a VLAN tag to insert.
919 		 */
920 
921 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
922 		    TFD_FragCount(seg) | csum_flags |
923 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
924 			TFD_TxDMAIndicate : 0);
925 		if (mtag) {
926 #if	0
927 			struct ether_header *eh =
928 			    mtod(m0, struct ether_header *);
929 			u_int16_t etype = ntohs(eh->ether_type);
930 			printf("%s: xmit (tag %d) etype %x\n",
931 			   ifp->if_xname, *mtod(n, int *), etype);
932 #endif
933 			tfc |= TFD_VLANTagInsert |
934 #ifdef	STGE_VLAN_CFI
935 			    TFD_CFI |
936 #endif
937 			    TFD_VID((*(u_int *)(mtag + 1)));
938 		}
939 		tfd->tfd_control = htole64(tfc);
940 
941 		/* Sync the descriptor. */
942 		STGE_CDTXSYNC(sc, nexttx,
943 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
944 
945 		/*
946 		 * Kick the transmit DMA logic.
947 		 */
948 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
949 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
950 
951 		/*
952 		 * Store a pointer to the packet so we can free it later.
953 		 */
954 		ds->ds_mbuf = m0;
955 
956 		/* Advance the tx pointer. */
957 		sc->sc_txpending++;
958 		sc->sc_txlast = nexttx;
959 
960 #if NBPFILTER > 0
961 		/*
962 		 * Pass the packet to any BPF listeners.
963 		 */
964 		if (ifp->if_bpf)
965 			bpf_mtap(ifp->if_bpf, m0);
966 #endif /* NBPFILTER > 0 */
967 	}
968 
969 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
970 		/* No more slots left; notify upper layer. */
971 		ifp->if_flags |= IFF_OACTIVE;
972 	}
973 
974 	if (sc->sc_txpending != opending) {
975 		/*
976 		 * We enqueued packets.  If the transmitter was idle,
977 		 * reset the txdirty pointer.
978 		 */
979 		if (opending == 0)
980 			sc->sc_txdirty = firsttx;
981 
982 		/* Set a watchdog timer in case the chip flakes out. */
983 		ifp->if_timer = 5;
984 	}
985 }
986 
987 /*
988  * stge_watchdog:	[ifnet interface function]
989  *
990  *	Watchdog timer handler.
991  */
992 static void
993 stge_watchdog(struct ifnet *ifp)
994 {
995 	struct stge_softc *sc = ifp->if_softc;
996 
997 	/*
998 	 * Sweep up first, since we don't interrupt every frame.
999 	 */
1000 	stge_txintr(sc);
1001 	if (sc->sc_txpending != 0) {
1002 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1003 		ifp->if_oerrors++;
1004 
1005 		(void) stge_init(ifp);
1006 
1007 		/* Try to get more packets going. */
1008 		stge_start(ifp);
1009 	}
1010 }
1011 
1012 /*
1013  * stge_ioctl:		[ifnet interface function]
1014  *
1015  *	Handle control requests from the operator.
1016  */
1017 static int
1018 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1019 {
1020 	struct stge_softc *sc = ifp->if_softc;
1021 	struct ifreq *ifr = (struct ifreq *)data;
1022 	int s, error;
1023 
1024 	s = splnet();
1025 
1026 	switch (cmd) {
1027 	case SIOCSIFMEDIA:
1028 	case SIOCGIFMEDIA:
1029 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1030 		break;
1031 
1032 	default:
1033 		error = ether_ioctl(ifp, cmd, data);
1034 		if (error == ENETRESET) {
1035 			/*
1036 			 * Multicast list has changed; set the hardware filter
1037 			 * accordingly.
1038 			 */
1039 			if (ifp->if_flags & IFF_RUNNING)
1040 				stge_set_filter(sc);
1041 			error = 0;
1042 		}
1043 		break;
1044 	}
1045 
1046 	/* Try to get more packets going. */
1047 	stge_start(ifp);
1048 
1049 	splx(s);
1050 	return (error);
1051 }
1052 
1053 /*
1054  * stge_intr:
1055  *
1056  *	Interrupt service routine.
1057  */
1058 static int
1059 stge_intr(void *arg)
1060 {
1061 	struct stge_softc *sc = arg;
1062 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1063 	uint32_t txstat;
1064 	int wantinit;
1065 	uint16_t isr;
1066 
1067 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1068 	     IS_InterruptStatus) == 0)
1069 		return (0);
1070 
1071 	for (wantinit = 0; wantinit == 0;) {
1072 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1073 		if ((isr & sc->sc_IntEnable) == 0)
1074 			break;
1075 
1076 		/* Host interface errors. */
1077 		if (isr & IS_HostError) {
1078 			printf("%s: Host interface error\n",
1079 			    sc->sc_dev.dv_xname);
1080 			wantinit = 1;
1081 			continue;
1082 		}
1083 
1084 		/* Receive interrupts. */
1085 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1086 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1087 			stge_rxintr(sc);
1088 			if (isr & IS_RFDListEnd) {
1089 				printf("%s: receive ring overflow\n",
1090 				    sc->sc_dev.dv_xname);
1091 				/*
1092 				 * XXX Should try to recover from this
1093 				 * XXX more gracefully.
1094 				 */
1095 				wantinit = 1;
1096 			}
1097 		}
1098 
1099 		/* Transmit interrupts. */
1100 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1101 #ifdef STGE_EVENT_COUNTERS
1102 			if (isr & IS_TxDMAComplete)
1103 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1104 #endif
1105 			stge_txintr(sc);
1106 		}
1107 
1108 		/* Statistics overflow. */
1109 		if (isr & IS_UpdateStats)
1110 			stge_stats_update(sc);
1111 
1112 		/* Transmission errors. */
1113 		if (isr & IS_TxComplete) {
1114 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1115 			for (;;) {
1116 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1117 				    STGE_TxStatus);
1118 				if ((txstat & TS_TxComplete) == 0)
1119 					break;
1120 				if (txstat & TS_TxUnderrun) {
1121 					sc->sc_txthresh++;
1122 					if (sc->sc_txthresh > 0x0fff)
1123 						sc->sc_txthresh = 0x0fff;
1124 					printf("%s: transmit underrun, new "
1125 					    "threshold: %d bytes\n",
1126 					    sc->sc_dev.dv_xname,
1127 					    sc->sc_txthresh << 5);
1128 				}
1129 				if (txstat & TS_MaxCollisions)
1130 					printf("%s: excessive collisions\n",
1131 					    sc->sc_dev.dv_xname);
1132 			}
1133 			wantinit = 1;
1134 		}
1135 
1136 	}
1137 
1138 	if (wantinit)
1139 		stge_init(ifp);
1140 
1141 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1142 	    sc->sc_IntEnable);
1143 
1144 	/* Try to get more packets going. */
1145 	stge_start(ifp);
1146 
1147 	return (1);
1148 }
1149 
1150 /*
1151  * stge_txintr:
1152  *
1153  *	Helper; handle transmit interrupts.
1154  */
1155 static void
1156 stge_txintr(struct stge_softc *sc)
1157 {
1158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1159 	struct stge_descsoft *ds;
1160 	uint64_t control;
1161 	int i;
1162 
1163 	ifp->if_flags &= ~IFF_OACTIVE;
1164 
1165 	/*
1166 	 * Go through our Tx list and free mbufs for those
1167 	 * frames which have been transmitted.
1168 	 */
1169 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1170 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1171 		ds = &sc->sc_txsoft[i];
1172 
1173 		STGE_CDTXSYNC(sc, i,
1174 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1175 
1176 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1177 		if ((control & TFD_TFDDone) == 0)
1178 			break;
1179 
1180 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1181 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1182 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1183 		m_freem(ds->ds_mbuf);
1184 		ds->ds_mbuf = NULL;
1185 	}
1186 
1187 	/* Update the dirty transmit buffer pointer. */
1188 	sc->sc_txdirty = i;
1189 
1190 	/*
1191 	 * If there are no more pending transmissions, cancel the watchdog
1192 	 * timer.
1193 	 */
1194 	if (sc->sc_txpending == 0)
1195 		ifp->if_timer = 0;
1196 }
1197 
1198 /*
1199  * stge_rxintr:
1200  *
1201  *	Helper; handle receive interrupts.
1202  */
1203 static void
1204 stge_rxintr(struct stge_softc *sc)
1205 {
1206 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 	struct stge_descsoft *ds;
1208 	struct mbuf *m, *tailm;
1209 	uint64_t status;
1210 	int i, len;
1211 
1212 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1213 		ds = &sc->sc_rxsoft[i];
1214 
1215 		STGE_CDRXSYNC(sc, i,
1216 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1217 
1218 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1219 
1220 		if ((status & RFD_RFDDone) == 0)
1221 			break;
1222 
1223 		if (__predict_false(sc->sc_rxdiscard)) {
1224 			STGE_INIT_RXDESC(sc, i);
1225 			if (status & RFD_FrameEnd) {
1226 				/* Reset our state. */
1227 				sc->sc_rxdiscard = 0;
1228 			}
1229 			continue;
1230 		}
1231 
1232 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1233 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1234 
1235 		m = ds->ds_mbuf;
1236 
1237 		/*
1238 		 * Add a new receive buffer to the ring.
1239 		 */
1240 		if (stge_add_rxbuf(sc, i) != 0) {
1241 			/*
1242 			 * Failed, throw away what we've done so
1243 			 * far, and discard the rest of the packet.
1244 			 */
1245 			ifp->if_ierrors++;
1246 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1247 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1248 			STGE_INIT_RXDESC(sc, i);
1249 			if ((status & RFD_FrameEnd) == 0)
1250 				sc->sc_rxdiscard = 1;
1251 			if (sc->sc_rxhead != NULL)
1252 				m_freem(sc->sc_rxhead);
1253 			STGE_RXCHAIN_RESET(sc);
1254 			continue;
1255 		}
1256 
1257 #ifdef DIAGNOSTIC
1258 		if (status & RFD_FrameStart) {
1259 			KASSERT(sc->sc_rxhead == NULL);
1260 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1261 		}
1262 #endif
1263 
1264 		STGE_RXCHAIN_LINK(sc, m);
1265 
1266 		/*
1267 		 * If this is not the end of the packet, keep
1268 		 * looking.
1269 		 */
1270 		if ((status & RFD_FrameEnd) == 0) {
1271 			sc->sc_rxlen += m->m_len;
1272 			continue;
1273 		}
1274 
1275 		/*
1276 		 * Okay, we have the entire packet now...
1277 		 */
1278 		*sc->sc_rxtailp = NULL;
1279 		m = sc->sc_rxhead;
1280 		tailm = sc->sc_rxtail;
1281 
1282 		STGE_RXCHAIN_RESET(sc);
1283 
1284 		/*
1285 		 * If the packet had an error, drop it.  Note we
1286 		 * count the error later in the periodic stats update.
1287 		 */
1288 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1289 			      RFD_RxAlignmentError | RFD_RxFCSError |
1290 			      RFD_RxLengthError)) {
1291 			m_freem(m);
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * No errors.
1297 		 *
1298 		 * Note we have configured the chip to not include
1299 		 * the CRC at the end of the packet.
1300 		 */
1301 		len = RFD_RxDMAFrameLen(status);
1302 		tailm->m_len = len - sc->sc_rxlen;
1303 
1304 		/*
1305 		 * If the packet is small enough to fit in a
1306 		 * single header mbuf, allocate one and copy
1307 		 * the data into it.  This greatly reduces
1308 		 * memory consumption when we receive lots
1309 		 * of small packets.
1310 		 */
1311 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1312 			struct mbuf *nm;
1313 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1314 			if (nm == NULL) {
1315 				ifp->if_ierrors++;
1316 				m_freem(m);
1317 				continue;
1318 			}
1319 			nm->m_data += 2;
1320 			nm->m_pkthdr.len = nm->m_len = len;
1321 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1322 			m_freem(m);
1323 			m = nm;
1324 		}
1325 
1326 		/*
1327 		 * Set the incoming checksum information for the packet.
1328 		 */
1329 		if (status & RFD_IPDetected) {
1330 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1331 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1332 			if (status & RFD_IPError)
1333 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1334 			if (status & RFD_TCPDetected) {
1335 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1336 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1337 				if (status & RFD_TCPError)
1338 					m->m_pkthdr.csum_flags |=
1339 					    M_CSUM_TCP_UDP_BAD;
1340 			} else if (status & RFD_UDPDetected) {
1341 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1342 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1343 				if (status & RFD_UDPError)
1344 					m->m_pkthdr.csum_flags |=
1345 					    M_CSUM_TCP_UDP_BAD;
1346 			}
1347 		}
1348 
1349 		m->m_pkthdr.rcvif = ifp;
1350 		m->m_pkthdr.len = len;
1351 
1352 #if NBPFILTER > 0
1353 		/*
1354 		 * Pass this up to any BPF listeners, but only
1355 		 * pass if up the stack if it's for us.
1356 		 */
1357 		if (ifp->if_bpf)
1358 			bpf_mtap(ifp->if_bpf, m);
1359 #endif /* NBPFILTER > 0 */
1360 #ifdef	STGE_VLAN_UNTAG
1361 		/*
1362 		 * Check for VLAN tagged packets
1363 		 */
1364 		if (status & RFD_VLANDetected) {
1365 			struct m_tag *mtag =
1366 			    m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1367 			if (mtag == NULL) {
1368 				printf("%s: no mbuf for VLAN tag\n",
1369 				    ifp->if_xname);
1370 				m_freem(m);
1371 				continue;
1372 			}
1373 			*(u_int *)(mtag + 1) = RFD_TCI(status);
1374 			m_tag_prepend(m, mtag);
1375 		}
1376 #endif
1377 #if	0
1378 		if (status & RFD_VLANDetected) {
1379 			struct ether_header *eh;
1380 			u_int16_t etype;
1381 
1382 			eh = mtod(m, struct ether_header *);
1383 			etype = ntohs(eh->ether_type);
1384 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1385 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1386 			    etype);
1387 		}
1388 #endif
1389 		/* Pass it on. */
1390 		(*ifp->if_input)(ifp, m);
1391 	}
1392 
1393 	/* Update the receive pointer. */
1394 	sc->sc_rxptr = i;
1395 }
1396 
1397 /*
1398  * stge_tick:
1399  *
1400  *	One second timer, used to tick the MII.
1401  */
1402 static void
1403 stge_tick(void *arg)
1404 {
1405 	struct stge_softc *sc = arg;
1406 	int s;
1407 
1408 	s = splnet();
1409 	mii_tick(&sc->sc_mii);
1410 	stge_stats_update(sc);
1411 	splx(s);
1412 
1413 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1414 }
1415 
1416 /*
1417  * stge_stats_update:
1418  *
1419  *	Read the TC9021 statistics counters.
1420  */
1421 static void
1422 stge_stats_update(struct stge_softc *sc)
1423 {
1424 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1425 	bus_space_tag_t st = sc->sc_st;
1426 	bus_space_handle_t sh = sc->sc_sh;
1427 
1428 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1429 
1430 	ifp->if_ipackets +=
1431 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1432 
1433 	ifp->if_ierrors +=
1434 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1435 
1436 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1437 
1438 	ifp->if_opackets +=
1439 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1440 
1441 	ifp->if_collisions +=
1442 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1443 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1444 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1445 
1446 	ifp->if_oerrors +=
1447 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1448 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1449 }
1450 
1451 /*
1452  * stge_reset:
1453  *
1454  *	Perform a soft reset on the TC9021.
1455  */
1456 static void
1457 stge_reset(struct stge_softc *sc)
1458 {
1459 	uint32_t ac;
1460 	int i;
1461 
1462 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1463 
1464 	/*
1465 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1466 	 * to be present in order for the reset to complete on fiber
1467 	 * cards.
1468 	 */
1469 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1470 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1471 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1472 	    (sc->sc_usefiber ? AC_RstOut : 0));
1473 
1474 	delay(50000);
1475 
1476 	for (i = 0; i < STGE_TIMEOUT; i++) {
1477 		delay(5000);
1478 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1479 		     AC_ResetBusy) == 0)
1480 			break;
1481 	}
1482 
1483 	if (i == STGE_TIMEOUT)
1484 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1485 
1486 	delay(1000);
1487 }
1488 
1489 /*
1490  * stge_init:		[ ifnet interface function ]
1491  *
1492  *	Initialize the interface.  Must be called at splnet().
1493  */
1494 static int
1495 stge_init(struct ifnet *ifp)
1496 {
1497 	struct stge_softc *sc = ifp->if_softc;
1498 	bus_space_tag_t st = sc->sc_st;
1499 	bus_space_handle_t sh = sc->sc_sh;
1500 	struct stge_descsoft *ds;
1501 	int i, error = 0;
1502 
1503 	/*
1504 	 * Cancel any pending I/O.
1505 	 */
1506 	stge_stop(ifp, 0);
1507 
1508 	/*
1509 	 * Reset the chip to a known state.
1510 	 */
1511 	stge_reset(sc);
1512 
1513 	/*
1514 	 * Initialize the transmit descriptor ring.
1515 	 */
1516 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1517 	for (i = 0; i < STGE_NTXDESC; i++) {
1518 		sc->sc_txdescs[i].tfd_next =
1519 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1520 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1521 	}
1522 	sc->sc_txpending = 0;
1523 	sc->sc_txdirty = 0;
1524 	sc->sc_txlast = STGE_NTXDESC - 1;
1525 
1526 	/*
1527 	 * Initialize the receive descriptor and receive job
1528 	 * descriptor rings.
1529 	 */
1530 	for (i = 0; i < STGE_NRXDESC; i++) {
1531 		ds = &sc->sc_rxsoft[i];
1532 		if (ds->ds_mbuf == NULL) {
1533 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1534 				printf("%s: unable to allocate or map rx "
1535 				    "buffer %d, error = %d\n",
1536 				    sc->sc_dev.dv_xname, i, error);
1537 				/*
1538 				 * XXX Should attempt to run with fewer receive
1539 				 * XXX buffers instead of just failing.
1540 				 */
1541 				stge_rxdrain(sc);
1542 				goto out;
1543 			}
1544 		} else
1545 			STGE_INIT_RXDESC(sc, i);
1546 	}
1547 	sc->sc_rxptr = 0;
1548 	sc->sc_rxdiscard = 0;
1549 	STGE_RXCHAIN_RESET(sc);
1550 
1551 	/* Set the station address. */
1552 	bus_space_write_2(st, sh, STGE_StationAddress0,
1553 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1554 	bus_space_write_2(st, sh, STGE_StationAddress1,
1555 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1556 	bus_space_write_2(st, sh, STGE_StationAddress2,
1557 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1558 
1559 	/*
1560 	 * Set the statistics masks.  Disable all the RMON stats,
1561 	 * and disable selected stats in the non-RMON stats registers.
1562 	 */
1563 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1564 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1565 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1566 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1567 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1568 	    (1U << 21));
1569 
1570 	/* Set up the receive filter. */
1571 	stge_set_filter(sc);
1572 
1573 	/*
1574 	 * Give the transmit and receive ring to the chip.
1575 	 */
1576 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1577 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1578 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1579 
1580 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1581 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1582 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1583 
1584 	/*
1585 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1586 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1587 	 * transmit engine when there's actually a packet.
1588 	 */
1589 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1590 
1591 	/* ..and the Rx auto-poll period. */
1592 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1593 
1594 	/* Initialize the Tx start threshold. */
1595 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1596 
1597 	/*
1598 	 * Initialize the Rx DMA interrupt control register.  We
1599 	 * request an interrupt after every incoming packet, but
1600 	 * defer it for 32us (64 * 512 ns).  When the number of
1601 	 * interrupts pending reaches 8, we stop deferring the
1602 	 * interrupt, and signal it immediately.
1603 	 */
1604 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1605 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1606 
1607 	/*
1608 	 * Initialize the interrupt mask.
1609 	 */
1610 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1611 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1612 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1613 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1614 
1615 	/*
1616 	 * Configure the DMA engine.
1617 	 * XXX Should auto-tune TxBurstLimit.
1618 	 */
1619 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1620 	    DMAC_TxBurstLimit(3));
1621 
1622 	/*
1623 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1624 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1625 	 * empty again.
1626 	 */
1627 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1628 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1629 
1630 	/*
1631 	 * Set the maximum frame size.
1632 	 */
1633 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1634 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1635 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1636 	     ETHER_VLAN_ENCAP_LEN : 0));
1637 
1638 	/*
1639 	 * Initialize MacCtrl -- do it before setting the media,
1640 	 * as setting the media will actually program the register.
1641 	 *
1642 	 * Note: We have to poke the IFS value before poking
1643 	 * anything else.
1644 	 */
1645 	sc->sc_MACCtrl = MC_IFSSelect(0);
1646 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1647 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1648 #ifdef	STGE_VLAN_UNTAG
1649 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1650 #endif
1651 
1652 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1653 		/* Multi-frag frame bug work-around. */
1654 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1655 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1656 
1657 		/* Tx Poll Now bug work-around. */
1658 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1659 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1660 	}
1661 
1662 	/*
1663 	 * Set the current media.
1664 	 */
1665 	mii_mediachg(&sc->sc_mii);
1666 
1667 	/*
1668 	 * Start the one second MII clock.
1669 	 */
1670 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1671 
1672 	/*
1673 	 * ...all done!
1674 	 */
1675 	ifp->if_flags |= IFF_RUNNING;
1676 	ifp->if_flags &= ~IFF_OACTIVE;
1677 
1678  out:
1679 	if (error)
1680 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1681 	return (error);
1682 }
1683 
1684 /*
1685  * stge_drain:
1686  *
1687  *	Drain the receive queue.
1688  */
1689 static void
1690 stge_rxdrain(struct stge_softc *sc)
1691 {
1692 	struct stge_descsoft *ds;
1693 	int i;
1694 
1695 	for (i = 0; i < STGE_NRXDESC; i++) {
1696 		ds = &sc->sc_rxsoft[i];
1697 		if (ds->ds_mbuf != NULL) {
1698 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1699 			ds->ds_mbuf->m_next = NULL;
1700 			m_freem(ds->ds_mbuf);
1701 			ds->ds_mbuf = NULL;
1702 		}
1703 	}
1704 }
1705 
1706 /*
1707  * stge_stop:		[ ifnet interface function ]
1708  *
1709  *	Stop transmission on the interface.
1710  */
1711 static void
1712 stge_stop(struct ifnet *ifp, int disable)
1713 {
1714 	struct stge_softc *sc = ifp->if_softc;
1715 	struct stge_descsoft *ds;
1716 	int i;
1717 
1718 	/*
1719 	 * Stop the one second clock.
1720 	 */
1721 	callout_stop(&sc->sc_tick_ch);
1722 
1723 	/* Down the MII. */
1724 	mii_down(&sc->sc_mii);
1725 
1726 	/*
1727 	 * Disable interrupts.
1728 	 */
1729 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1730 
1731 	/*
1732 	 * Stop receiver, transmitter, and stats update.
1733 	 */
1734 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1735 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1736 
1737 	/*
1738 	 * Stop the transmit and receive DMA.
1739 	 */
1740 	stge_dma_wait(sc);
1741 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1742 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1743 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1744 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1745 
1746 	/*
1747 	 * Release any queued transmit buffers.
1748 	 */
1749 	for (i = 0; i < STGE_NTXDESC; i++) {
1750 		ds = &sc->sc_txsoft[i];
1751 		if (ds->ds_mbuf != NULL) {
1752 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1753 			m_freem(ds->ds_mbuf);
1754 			ds->ds_mbuf = NULL;
1755 		}
1756 	}
1757 
1758 	if (disable)
1759 		stge_rxdrain(sc);
1760 
1761 	/*
1762 	 * Mark the interface down and cancel the watchdog timer.
1763 	 */
1764 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1765 	ifp->if_timer = 0;
1766 }
1767 
1768 #if 0
1769 static int
1770 stge_eeprom_wait(struct stge_softc *sc)
1771 {
1772 	int i;
1773 
1774 	for (i = 0; i < STGE_TIMEOUT; i++) {
1775 		delay(1000);
1776 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1777 		     EC_EepromBusy) == 0)
1778 			return (0);
1779 	}
1780 	return (1);
1781 }
1782 
1783 /*
1784  * stge_read_eeprom:
1785  *
1786  *	Read data from the serial EEPROM.
1787  */
1788 static void
1789 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1790 {
1791 
1792 	if (stge_eeprom_wait(sc))
1793 		printf("%s: EEPROM failed to come ready\n",
1794 		    sc->sc_dev.dv_xname);
1795 
1796 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1797 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1798 	if (stge_eeprom_wait(sc))
1799 		printf("%s: EEPROM read timed out\n",
1800 		    sc->sc_dev.dv_xname);
1801 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1802 }
1803 #endif /* 0 */
1804 
1805 /*
1806  * stge_add_rxbuf:
1807  *
1808  *	Add a receive buffer to the indicated descriptor.
1809  */
1810 static int
1811 stge_add_rxbuf(struct stge_softc *sc, int idx)
1812 {
1813 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1814 	struct mbuf *m;
1815 	int error;
1816 
1817 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1818 	if (m == NULL)
1819 		return (ENOBUFS);
1820 
1821 	MCLGET(m, M_DONTWAIT);
1822 	if ((m->m_flags & M_EXT) == 0) {
1823 		m_freem(m);
1824 		return (ENOBUFS);
1825 	}
1826 
1827 	m->m_data = m->m_ext.ext_buf + 2;
1828 	m->m_len = MCLBYTES - 2;
1829 
1830 	if (ds->ds_mbuf != NULL)
1831 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1832 
1833 	ds->ds_mbuf = m;
1834 
1835 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1836 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1837 	if (error) {
1838 		printf("%s: can't load rx DMA map %d, error = %d\n",
1839 		    sc->sc_dev.dv_xname, idx, error);
1840 		panic("stge_add_rxbuf");	/* XXX */
1841 	}
1842 
1843 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1844 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1845 
1846 	STGE_INIT_RXDESC(sc, idx);
1847 
1848 	return (0);
1849 }
1850 
1851 /*
1852  * stge_set_filter:
1853  *
1854  *	Set up the receive filter.
1855  */
1856 static void
1857 stge_set_filter(struct stge_softc *sc)
1858 {
1859 	struct ethercom *ec = &sc->sc_ethercom;
1860 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1861 	struct ether_multi *enm;
1862 	struct ether_multistep step;
1863 	uint32_t crc;
1864 	uint32_t mchash[2];
1865 
1866 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1867 	if (ifp->if_flags & IFF_BROADCAST)
1868 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1869 
1870 #ifdef	STGE_CU_BUG
1871 	/*
1872 	 * Some cards (Sundance TI, copper) only seem to work
1873 	 * right now if we put them into promiscuous mode. It
1874 	 * probably is the Marvell PHY stuff that isn't quite
1875 	 * right.
1876 	 */
1877 	ifp->if_flags |= IFF_PROMISC;
1878 #endif
1879 
1880 	if (ifp->if_flags & IFF_PROMISC) {
1881 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1882 		goto allmulti;
1883 	}
1884 
1885 	/*
1886 	 * Set up the multicast address filter by passing all multicast
1887 	 * addresses through a CRC generator, and then using the low-order
1888 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1889 	 * high order bits select the register, while the rest of the bits
1890 	 * select the bit within the register.
1891 	 */
1892 
1893 	memset(mchash, 0, sizeof(mchash));
1894 
1895 	ETHER_FIRST_MULTI(step, ec, enm);
1896 	if (enm == NULL)
1897 		goto done;
1898 
1899 	while (enm != NULL) {
1900 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1901 			/*
1902 			 * We must listen to a range of multicast addresses.
1903 			 * For now, just accept all multicasts, rather than
1904 			 * trying to set only those filter bits needed to match
1905 			 * the range.  (At this time, the only use of address
1906 			 * ranges is for IP multicast routing, for which the
1907 			 * range is big enough to require all bits set.)
1908 			 */
1909 			goto allmulti;
1910 		}
1911 
1912 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1913 
1914 		/* Just want the 6 least significant bits. */
1915 		crc &= 0x3f;
1916 
1917 		/* Set the corresponding bit in the hash table. */
1918 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1919 
1920 		ETHER_NEXT_MULTI(step, enm);
1921 	}
1922 
1923 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1924 
1925 	ifp->if_flags &= ~IFF_ALLMULTI;
1926 	goto done;
1927 
1928  allmulti:
1929 	ifp->if_flags |= IFF_ALLMULTI;
1930 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1931 
1932  done:
1933 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1934 		/*
1935 		 * Program the multicast hash table.
1936 		 */
1937 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1938 		    mchash[0]);
1939 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1940 		    mchash[1]);
1941 	}
1942 
1943 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1944 	    sc->sc_ReceiveMode);
1945 }
1946 
1947 /*
1948  * stge_mii_readreg:	[mii interface function]
1949  *
1950  *	Read a PHY register on the MII of the TC9021.
1951  */
1952 static int
1953 stge_mii_readreg(struct device *self, int phy, int reg)
1954 {
1955 
1956 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1957 }
1958 
1959 /*
1960  * stge_mii_writereg:	[mii interface function]
1961  *
1962  *	Write a PHY register on the MII of the TC9021.
1963  */
1964 static void
1965 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1966 {
1967 
1968 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1969 }
1970 
1971 /*
1972  * stge_mii_statchg:	[mii interface function]
1973  *
1974  *	Callback from MII layer when media changes.
1975  */
1976 static void
1977 stge_mii_statchg(struct device *self)
1978 {
1979 	struct stge_softc *sc = (struct stge_softc *) self;
1980 
1981 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1982 		sc->sc_MACCtrl |= MC_DuplexSelect;
1983 	else
1984 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1985 
1986 	/* XXX 802.1x flow-control? */
1987 
1988 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1989 }
1990 
1991 /*
1992  * sste_mii_bitbang_read: [mii bit-bang interface function]
1993  *
1994  *	Read the MII serial port for the MII bit-bang module.
1995  */
1996 static uint32_t
1997 stge_mii_bitbang_read(struct device *self)
1998 {
1999 	struct stge_softc *sc = (void *) self;
2000 
2001 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
2002 }
2003 
2004 /*
2005  * stge_mii_bitbang_write: [mii big-bang interface function]
2006  *
2007  *	Write the MII serial port for the MII bit-bang module.
2008  */
2009 static void
2010 stge_mii_bitbang_write(struct device *self, uint32_t val)
2011 {
2012 	struct stge_softc *sc = (void *) self;
2013 
2014 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2015 	    val | sc->sc_PhyCtrl);
2016 }
2017 
2018 /*
2019  * stge_mediastatus:	[ifmedia interface function]
2020  *
2021  *	Get the current interface media status.
2022  */
2023 static void
2024 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2025 {
2026 	struct stge_softc *sc = ifp->if_softc;
2027 
2028 	mii_pollstat(&sc->sc_mii);
2029 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2030 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2031 }
2032 
2033 /*
2034  * stge_mediachange:	[ifmedia interface function]
2035  *
2036  *	Set hardware to newly-selected media.
2037  */
2038 static int
2039 stge_mediachange(struct ifnet *ifp)
2040 {
2041 	struct stge_softc *sc = ifp->if_softc;
2042 
2043 	if (ifp->if_flags & IFF_UP)
2044 		mii_mediachg(&sc->sc_mii);
2045 	return (0);
2046 }
2047