xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: if_stge.c,v 1.87 2020/07/02 09:02:04 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.87 2020/07/02 09:02:04 msaitoh Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stgereg.h>
72 
73 #include <prop/proplib.h>
74 
75 /* #define	STGE_CU_BUG			1 */
76 #define	STGE_VLAN_UNTAG			1
77 /* #define	STGE_VLAN_CFI		1 */
78 
79 /*
80  * Transmit descriptor list size.
81  */
82 #define	STGE_NTXDESC		256
83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
85 
86 /*
87  * Receive descriptor list size.
88  */
89 #define	STGE_NRXDESC		256
90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
92 
93 /*
94  * Only interrupt every N frames.  Must be a power-of-two.
95  */
96 #define	STGE_TXINTR_SPACING	16
97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98 
99 /*
100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct stge_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115 
116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct stge_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct stge_softc {
132 	device_t sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	int sc_rev;			/* silicon revision */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct stge_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 #ifdef STGE_EVENT_COUNTERS
162 	/*
163 	 * Event counters.
164 	 */
165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
169 
170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
177 
178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
181 
182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186 
187 	int	sc_txpending;		/* number of Tx requests pending */
188 	int	sc_txdirty;		/* first dirty Tx descriptor */
189 	int	sc_txlast;		/* last used Tx descriptor */
190 
191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
192 	int	sc_rxdiscard;
193 	int	sc_rxlen;
194 	struct mbuf *sc_rxhead;
195 	struct mbuf *sc_rxtail;
196 	struct mbuf **sc_rxtailp;
197 
198 	int	sc_txthresh;		/* Tx threshold */
199 	uint32_t sc_usefiber:1;		/* if we're fiber */
200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
206 };
207 
208 #define	STGE_RXCHAIN_RESET(sc)						\
209 do {									\
210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
211 	*(sc)->sc_rxtailp = NULL;					\
212 	(sc)->sc_rxlen = 0;						\
213 } while (/*CONSTCOND*/0)
214 
215 #define	STGE_RXCHAIN_LINK(sc, m)					\
216 do {									\
217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
218 	(sc)->sc_rxtailp = &(m)->m_next;				\
219 } while (/*CONSTCOND*/0)
220 
221 /*
222  * Register access macros
223  */
224 #define CSR_WRITE_4(_sc, reg, val)	\
225 	bus_space_write_4((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
226 #define CSR_WRITE_2(_sc, reg, val)	\
227 	bus_space_write_2((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
228 #define CSR_WRITE_1(_sc, reg, val)	\
229 	bus_space_write_1((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
230 
231 #define CSR_READ_4(_sc, reg)		\
232 	bus_space_read_4((_sc)->sc_st, (_sc)->sc_sh, (reg))
233 #define CSR_READ_2(_sc, reg)		\
234 	bus_space_read_2((_sc)->sc_st, (_sc)->sc_sh, (reg))
235 #define CSR_READ_1(_sc, reg)		\
236 	bus_space_read_1((_sc)->sc_st, (_sc)->sc_sh, (reg))
237 
238 #define STGE_TIMEOUT	1000
239 
240 #ifdef STGE_EVENT_COUNTERS
241 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
242 #else
243 #define	STGE_EVCNT_INCR(ev)	/* nothing */
244 #endif
245 
246 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
247 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
248 
249 #define	STGE_CDTXSYNC(sc, x, ops)					\
250 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
251 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
252 
253 #define	STGE_CDRXSYNC(sc, x, ops)					\
254 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
255 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
256 
257 #define	STGE_INIT_RXDESC(sc, x)						\
258 do {									\
259 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
260 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
261 									\
262 	/*								\
263 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
264 	 * so that the payload after the Ethernet header is aligned	\
265 	 * to a 4-byte boundary.					\
266 	 */								\
267 	__rfd->rfd_frag.frag_word0 =					\
268 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
269 	    FRAG_LEN(MCLBYTES - 2));					\
270 	__rfd->rfd_next =						\
271 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
272 	__rfd->rfd_status = 0;						\
273 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
274 } while (/*CONSTCOND*/0)
275 
276 static void	stge_start(struct ifnet *);
277 static void	stge_watchdog(struct ifnet *);
278 static int	stge_ioctl(struct ifnet *, u_long, void *);
279 static int	stge_init(struct ifnet *);
280 static void	stge_stop(struct ifnet *, int);
281 
282 static bool	stge_shutdown(device_t, int);
283 
284 static void	stge_reset(struct stge_softc *);
285 static void	stge_rxdrain(struct stge_softc *);
286 static int	stge_add_rxbuf(struct stge_softc *, int);
287 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
288 static void	stge_tick(void *);
289 
290 static void	stge_stats_update(struct stge_softc *);
291 
292 static void	stge_set_filter(struct stge_softc *);
293 
294 static int	stge_intr(void *);
295 static void	stge_txintr(struct stge_softc *);
296 static void	stge_rxintr(struct stge_softc *);
297 
298 static int	stge_mii_readreg(device_t, int, int, uint16_t *);
299 static int	stge_mii_writereg(device_t, int, int, uint16_t);
300 static void	stge_mii_statchg(struct ifnet *);
301 
302 static int	stge_match(device_t, cfdata_t, void *);
303 static void	stge_attach(device_t, device_t, void *);
304 
305 int	stge_copy_small = 0;
306 
307 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
308     stge_match, stge_attach, NULL, NULL);
309 
310 static uint32_t stge_mii_bitbang_read(device_t);
311 static void	stge_mii_bitbang_write(device_t, uint32_t);
312 
313 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
314 	stge_mii_bitbang_read,
315 	stge_mii_bitbang_write,
316 	{
317 		PC_MgmtData,		/* MII_BIT_MDO */
318 		PC_MgmtData,		/* MII_BIT_MDI */
319 		PC_MgmtClk,		/* MII_BIT_MDC */
320 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
321 		0,			/* MII_BIT_DIR_PHY_HOST */
322 	}
323 };
324 
325 /*
326  * Devices supported by this driver.
327  */
328 static const struct stge_product {
329 	pci_vendor_id_t		stge_vendor;
330 	pci_product_id_t	stge_product;
331 	const char		*stge_name;
332 } stge_products[] = {
333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
334 	  "Sundance ST-1023 Gigabit Ethernet" },
335 
336 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
337 	  "Sundance ST-2021 Gigabit Ethernet" },
338 
339 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
340 	  "Tamarack TC9021 Gigabit Ethernet" },
341 
342 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
343 	  "Tamarack TC9021 Gigabit Ethernet" },
344 
345 	/*
346 	 * The Sundance sample boards use the Sundance vendor ID,
347 	 * but the Tamarack product ID.
348 	 */
349 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
350 	  "Sundance TC9021 Gigabit Ethernet" },
351 
352 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
353 	  "Sundance TC9021 Gigabit Ethernet" },
354 
355 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
356 	  "D-Link DL-4000 Gigabit Ethernet" },
357 
358 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
359 	  "Antares Gigabit Ethernet" },
360 
361 	{ 0,				0,
362 	  NULL },
363 };
364 
365 static const struct stge_product *
366 stge_lookup(const struct pci_attach_args *pa)
367 {
368 	const struct stge_product *sp;
369 
370 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
371 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
372 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
373 			return (sp);
374 	}
375 	return (NULL);
376 }
377 
378 static int
379 stge_match(device_t parent, cfdata_t cf, void *aux)
380 {
381 	struct pci_attach_args *pa = aux;
382 
383 	if (stge_lookup(pa) != NULL)
384 		return (1);
385 
386 	return (0);
387 }
388 
389 static void
390 stge_attach(device_t parent, device_t self, void *aux)
391 {
392 	struct stge_softc *sc = device_private(self);
393 	struct pci_attach_args *pa = aux;
394 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
395 	struct mii_data * const mii = &sc->sc_mii;
396 	pci_chipset_tag_t pc = pa->pa_pc;
397 	pci_intr_handle_t ih;
398 	const char *intrstr = NULL;
399 	bus_space_tag_t iot, memt;
400 	bus_space_handle_t ioh, memh;
401 	bus_dma_segment_t seg;
402 	prop_dictionary_t dict;
403 	prop_data_t data;
404 	int ioh_valid, memh_valid;
405 	int i, rseg, error;
406 	const struct stge_product *sp;
407 	uint8_t enaddr[ETHER_ADDR_LEN];
408 	char intrbuf[PCI_INTRSTR_LEN];
409 
410 	sc->sc_dev = self;
411 	callout_init(&sc->sc_tick_ch, 0);
412 	callout_setfunc(&sc->sc_tick_ch, stge_tick, sc);
413 
414 	sp = stge_lookup(pa);
415 	if (sp == NULL) {
416 		printf("\n");
417 		panic("ste_attach: impossible");
418 	}
419 
420 	sc->sc_rev = PCI_REVISION(pa->pa_class);
421 
422 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
423 
424 	/*
425 	 * Map the device.
426 	 */
427 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
428 	    PCI_MAPREG_TYPE_IO, 0,
429 	    &iot, &ioh, NULL, NULL) == 0);
430 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
431 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
432 	    &memt, &memh, NULL, NULL) == 0);
433 
434 	if (memh_valid) {
435 		sc->sc_st = memt;
436 		sc->sc_sh = memh;
437 	} else if (ioh_valid) {
438 		sc->sc_st = iot;
439 		sc->sc_sh = ioh;
440 	} else {
441 		aprint_error_dev(self, "unable to map device registers\n");
442 		return;
443 	}
444 
445 	/*
446 	 * We have a 40-bit limit on our DMA addresses.  This isn't an
447 	 * issue if we're only using a 32-bit DMA tag, but we have to
448 	 * account for it if the 64-bit DMA tag is available.
449 	 */
450 	if (pci_dma64_available(pa)) {
451 		if (bus_dmatag_subregion(pa->pa_dmat64,
452 					 0,
453 					 (bus_addr_t)(FRAG_ADDR_MASK + 1ULL),
454 					 &sc->sc_dmat,
455 					 BUS_DMA_WAITOK) != 0) {
456 			aprint_error_dev(self,
457 			    "WARNING: failed to restrict dma range,"
458 			    " falling back to parent bus dma range\n");
459 			sc->sc_dmat = pa->pa_dmat64;
460 		}
461 	} else {
462 		sc->sc_dmat = pa->pa_dmat;
463 	}
464 
465 	/* Enable bus mastering. */
466 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
467 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
468 	    PCI_COMMAND_MASTER_ENABLE);
469 
470 	/* power up chip */
471 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
472 	    error != EOPNOTSUPP) {
473 		aprint_error_dev(self, "cannot activate %d\n", error);
474 		return;
475 	}
476 	/*
477 	 * Map and establish our interrupt.
478 	 */
479 	if (pci_intr_map(pa, &ih)) {
480 		aprint_error_dev(self, "unable to map interrupt\n");
481 		return;
482 	}
483 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
484 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
485 	    device_xname(self));
486 	if (sc->sc_ih == NULL) {
487 		aprint_error_dev(self, "unable to establish interrupt");
488 		if (intrstr != NULL)
489 			aprint_error(" at %s", intrstr);
490 		aprint_error("\n");
491 		return;
492 	}
493 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
494 
495 	/*
496 	 * Allocate the control data structures, and create and load the
497 	 * DMA map for it.
498 	 */
499 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
500 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
501 	    0)) != 0) {
502 		aprint_error_dev(self,
503 		    "unable to allocate control data, error = %d\n", error);
504 		goto fail_0;
505 	}
506 
507 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
508 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
509 	    BUS_DMA_COHERENT)) != 0) {
510 		aprint_error_dev(self,
511 		    "unable to map control data, error = %d\n", error);
512 		goto fail_1;
513 	}
514 
515 	if ((error = bus_dmamap_create(sc->sc_dmat,
516 	    sizeof(struct stge_control_data), 1,
517 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
518 		aprint_error_dev(self,
519 		    "unable to create control data DMA map, error = %d\n",
520 		    error);
521 		goto fail_2;
522 	}
523 
524 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
525 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
526 	    0)) != 0) {
527 		aprint_error_dev(self,
528 		    "unable to load control data DMA map, error = %d\n",
529 		    error);
530 		goto fail_3;
531 	}
532 
533 	/*
534 	 * Create the transmit buffer DMA maps.  Note that rev B.3
535 	 * and earlier seem to have a bug regarding multi-fragment
536 	 * packets.  We need to limit the number of Tx segments on
537 	 * such chips to 1.
538 	 */
539 	for (i = 0; i < STGE_NTXDESC; i++) {
540 		if ((error = bus_dmamap_create(sc->sc_dmat,
541 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
542 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
543 			aprint_error_dev(self,
544 			    "unable to create tx DMA map %d, error = %d\n",
545 			    i, error);
546 			goto fail_4;
547 		}
548 	}
549 
550 	/*
551 	 * Create the receive buffer DMA maps.
552 	 */
553 	for (i = 0; i < STGE_NRXDESC; i++) {
554 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
555 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
556 			aprint_error_dev(self,
557 			    "unable to create rx DMA map %d, error = %d\n",
558 			    i, error);
559 			goto fail_5;
560 		}
561 		sc->sc_rxsoft[i].ds_mbuf = NULL;
562 	}
563 
564 	/*
565 	 * Determine if we're copper or fiber.  It affects how we
566 	 * reset the card.
567 	 */
568 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
569 		sc->sc_usefiber = 1;
570 	else
571 		sc->sc_usefiber = 0;
572 
573 	/*
574 	 * Reset the chip to a known state.
575 	 */
576 	stge_reset(sc);
577 
578 	/*
579 	 * Reading the station address from the EEPROM doesn't seem
580 	 * to work, at least on my sample boards.  Instead, since
581 	 * the reset sequence does AutoInit, read it from the station
582 	 * address registers. For Sundance 1023 you can only read it
583 	 * from EEPROM.
584 	 */
585 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
586 		enaddr[0] = CSR_READ_2(sc, STGE_StationAddress0) & 0xff;
587 		enaddr[1] = CSR_READ_2(sc, STGE_StationAddress0) >> 8;
588 		enaddr[2] = CSR_READ_2(sc, STGE_StationAddress1) & 0xff;
589 		enaddr[3] = CSR_READ_2(sc, STGE_StationAddress1) >> 8;
590 		enaddr[4] = CSR_READ_2(sc, STGE_StationAddress2) & 0xff;
591 		enaddr[5] = CSR_READ_2(sc, STGE_StationAddress2) >> 8;
592 		sc->sc_stge1023 = 0;
593 	} else {
594 		data = prop_dictionary_get(device_properties(self),
595 		    "mac-address");
596 		if (data != NULL) {
597 			/*
598 			 * Try to get the station address from device
599 			 * properties first, in case the EEPROM is missing.
600 			 */
601 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
602 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
603 			(void)memcpy(enaddr, prop_data_value(data),
604 			    ETHER_ADDR_LEN);
605 		} else {
606 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
607 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
608 				stge_read_eeprom(sc,
609 				    STGE_EEPROM_StationAddress0 + i,
610 				    &myaddr[i]);
611 				myaddr[i] = le16toh(myaddr[i]);
612 			}
613 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
614 		}
615 		sc->sc_stge1023 = 1;
616 	}
617 
618 	/* Set need_loaddspcode before mii_attach() */
619 	dict = device_properties(self);
620 	prop_dictionary_set_bool(dict, "need_loaddspcode",
621 	    ((sc->sc_rev >= 0x40) && (sc->sc_rev <= 0x4e)) ? true : false);
622 
623 	aprint_normal_dev(self, "Ethernet address %s\n",
624 	    ether_sprintf(enaddr));
625 
626 	/*
627 	 * Read some important bits from the PhyCtrl register.
628 	 */
629 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
630 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
631 
632 	/*
633 	 * Initialize our media structures and probe the MII.
634 	 */
635 	mii->mii_ifp = ifp;
636 	mii->mii_readreg = stge_mii_readreg;
637 	mii->mii_writereg = stge_mii_writereg;
638 	mii->mii_statchg = stge_mii_statchg;
639 	sc->sc_ethercom.ec_mii = mii;
640 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
641 	    ether_mediastatus);
642 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
643 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
644 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
645 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
646 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
647 	} else
648 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
649 
650 	ifp = &sc->sc_ethercom.ec_if;
651 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
652 	ifp->if_softc = sc;
653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 	ifp->if_ioctl = stge_ioctl;
655 	ifp->if_start = stge_start;
656 	ifp->if_watchdog = stge_watchdog;
657 	ifp->if_init = stge_init;
658 	ifp->if_stop = stge_stop;
659 	IFQ_SET_READY(&ifp->if_snd);
660 
661 	/*
662 	 * The manual recommends disabling early transmit, so we
663 	 * do.  It's disabled anyway, if using IP checksumming,
664 	 * since the entire packet must be in the FIFO in order
665 	 * for the chip to perform the checksum.
666 	 */
667 	sc->sc_txthresh = 0x0fff;
668 
669 	/*
670 	 * Disable MWI if the PCI layer tells us to.
671 	 */
672 	sc->sc_DMACtrl = 0;
673 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
674 		sc->sc_DMACtrl |= DMAC_MWIDisable;
675 
676 	/*
677 	 * We can support 802.1Q VLAN-sized frames and jumbo
678 	 * Ethernet frames.
679 	 *
680 	 * XXX Figure out how to do hw-assisted VLAN tagging in
681 	 * XXX a reasonable way on this chip.
682 	 */
683 	sc->sc_ethercom.ec_capabilities |=
684 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
685 	    ETHERCAP_VLAN_HWTAGGING;
686 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
687 
688 	/*
689 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
690 	 */
691 	sc->sc_ethercom.ec_if.if_capabilities |=
692 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
693 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
694 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
695 
696 	/*
697 	 * Attach the interface.
698 	 */
699 	if_attach(ifp);
700 	if_deferred_start_init(ifp, NULL);
701 	ether_ifattach(ifp, enaddr);
702 
703 #ifdef STGE_EVENT_COUNTERS
704 	/*
705 	 * Attach event counters.
706 	 */
707 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
708 	    NULL, device_xname(self), "txstall");
709 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
710 	    NULL, device_xname(self), "txdmaintr");
711 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
712 	    NULL, device_xname(self), "txindintr");
713 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
714 	    NULL, device_xname(self), "rxintr");
715 
716 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
717 	    NULL, device_xname(self), "txseg1");
718 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
719 	    NULL, device_xname(self), "txseg2");
720 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
721 	    NULL, device_xname(self), "txseg3");
722 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
723 	    NULL, device_xname(self), "txseg4");
724 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
725 	    NULL, device_xname(self), "txseg5");
726 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
727 	    NULL, device_xname(self), "txsegmore");
728 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
729 	    NULL, device_xname(self), "txcopy");
730 
731 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
732 	    NULL, device_xname(self), "rxipsum");
733 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
734 	    NULL, device_xname(self), "rxtcpsum");
735 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
736 	    NULL, device_xname(self), "rxudpsum");
737 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
738 	    NULL, device_xname(self), "txipsum");
739 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
740 	    NULL, device_xname(self), "txtcpsum");
741 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
742 	    NULL, device_xname(self), "txudpsum");
743 #endif /* STGE_EVENT_COUNTERS */
744 
745 	/*
746 	 * Make sure the interface is shutdown during reboot.
747 	 */
748 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
749 		pmf_class_network_register(self, ifp);
750 	else
751 		aprint_error_dev(self, "couldn't establish power handler\n");
752 
753 	return;
754 
755 	/*
756 	 * Free any resources we've allocated during the failed attach
757 	 * attempt.  Do this in reverse order and fall through.
758 	 */
759  fail_5:
760 	for (i = 0; i < STGE_NRXDESC; i++) {
761 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
762 			bus_dmamap_destroy(sc->sc_dmat,
763 			    sc->sc_rxsoft[i].ds_dmamap);
764 	}
765  fail_4:
766 	for (i = 0; i < STGE_NTXDESC; i++) {
767 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
768 			bus_dmamap_destroy(sc->sc_dmat,
769 			    sc->sc_txsoft[i].ds_dmamap);
770 	}
771 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
772  fail_3:
773 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
774  fail_2:
775 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
776 	    sizeof(struct stge_control_data));
777  fail_1:
778 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
779  fail_0:
780 	return;
781 }
782 
783 /*
784  * stge_shutdown:
785  *
786  *	Make sure the interface is stopped at reboot time.
787  */
788 static bool
789 stge_shutdown(device_t self, int howto)
790 {
791 	struct stge_softc *sc = device_private(self);
792 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
793 
794 	stge_stop(ifp, 1);
795 	stge_reset(sc);
796 	return true;
797 }
798 
799 static void
800 stge_dma_wait(struct stge_softc *sc)
801 {
802 	int i;
803 
804 	for (i = 0; i < STGE_TIMEOUT; i++) {
805 		delay(2);
806 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
807 			break;
808 	}
809 
810 	if (i == STGE_TIMEOUT)
811 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
812 }
813 
814 /*
815  * stge_start:		[ifnet interface function]
816  *
817  *	Start packet transmission on the interface.
818  */
819 static void
820 stge_start(struct ifnet *ifp)
821 {
822 	struct stge_softc *sc = ifp->if_softc;
823 	struct mbuf *m0;
824 	struct stge_descsoft *ds;
825 	struct stge_tfd *tfd;
826 	bus_dmamap_t dmamap;
827 	int error, firsttx, nexttx, opending, seg, totlen;
828 	uint64_t csum_flags;
829 
830 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
831 		return;
832 
833 	/*
834 	 * Remember the previous number of pending transmissions
835 	 * and the first descriptor we will use.
836 	 */
837 	opending = sc->sc_txpending;
838 	firsttx = STGE_NEXTTX(sc->sc_txlast);
839 
840 	/*
841 	 * Loop through the send queue, setting up transmit descriptors
842 	 * until we drain the queue, or use up all available transmit
843 	 * descriptors.
844 	 */
845 	for (;;) {
846 		uint64_t tfc;
847 		bool have_vtag;
848 		uint16_t vtag;
849 
850 		/*
851 		 * Grab a packet off the queue.
852 		 */
853 		IFQ_POLL(&ifp->if_snd, m0);
854 		if (m0 == NULL)
855 			break;
856 
857 		/*
858 		 * Leave one unused descriptor at the end of the
859 		 * list to prevent wrapping completely around.
860 		 */
861 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
862 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
863 			break;
864 		}
865 
866 		/*
867 		 * See if we have any VLAN stuff.
868 		 */
869 		have_vtag = vlan_has_tag(m0);
870 		if (have_vtag)
871 			vtag = vlan_get_tag(m0);
872 
873 		/*
874 		 * Get the last and next available transmit descriptor.
875 		 */
876 		nexttx = STGE_NEXTTX(sc->sc_txlast);
877 		tfd = &sc->sc_txdescs[nexttx];
878 		ds = &sc->sc_txsoft[nexttx];
879 
880 		dmamap = ds->ds_dmamap;
881 
882 		/*
883 		 * Load the DMA map.  If this fails, the packet either
884 		 * didn't fit in the alloted number of segments, or we
885 		 * were short on resources.  For the too-many-segments
886 		 * case, we simply report an error and drop the packet,
887 		 * since we can't sanely copy a jumbo packet to a single
888 		 * buffer.
889 		 */
890 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
891 		    BUS_DMA_NOWAIT);
892 		if (error) {
893 			if (error == EFBIG) {
894 				printf("%s: Tx packet consumes too many "
895 				    "DMA segments, dropping...\n",
896 				    device_xname(sc->sc_dev));
897 				IFQ_DEQUEUE(&ifp->if_snd, m0);
898 				m_freem(m0);
899 				continue;
900 			}
901 			/*
902 			 * Short on resources, just stop for now.
903 			 */
904 			break;
905 		}
906 
907 		IFQ_DEQUEUE(&ifp->if_snd, m0);
908 
909 		/*
910 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
911 		 */
912 
913 		/* Sync the DMA map. */
914 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
915 		    BUS_DMASYNC_PREWRITE);
916 
917 		/* Initialize the fragment list. */
918 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
919 			tfd->tfd_frags[seg].frag_word0 =
920 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
921 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
922 			totlen += dmamap->dm_segs[seg].ds_len;
923 		}
924 
925 #ifdef STGE_EVENT_COUNTERS
926 		switch (dmamap->dm_nsegs) {
927 		case 1:
928 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
929 			break;
930 		case 2:
931 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
932 			break;
933 		case 3:
934 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
935 			break;
936 		case 4:
937 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
938 			break;
939 		case 5:
940 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
941 			break;
942 		default:
943 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
944 			break;
945 		}
946 #endif /* STGE_EVENT_COUNTERS */
947 
948 		/*
949 		 * Initialize checksumming flags in the descriptor.
950 		 * Byte-swap constants so the compiler can optimize.
951 		 */
952 		csum_flags = 0;
953 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
954 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
955 			csum_flags |= TFD_IPChecksumEnable;
956 		}
957 
958 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
959 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
960 			csum_flags |= TFD_TCPChecksumEnable;
961 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
962 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
963 			csum_flags |= TFD_UDPChecksumEnable;
964 		}
965 
966 		/*
967 		 * Initialize the descriptor and give it to the chip.
968 		 * Check to see if we have a VLAN tag to insert.
969 		 */
970 
971 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
972 		    TFD_FragCount(seg) | csum_flags |
973 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
974 			TFD_TxDMAIndicate : 0);
975 		if (have_vtag) {
976 #if	0
977 			struct ether_header *eh =
978 			    mtod(m0, struct ether_header *);
979 			uint16_t etype = ntohs(eh->ether_type);
980 			printf("%s: xmit (tag %d) etype %x\n",
981 			   ifp->if_xname, *mtod(n, int *), etype);
982 #endif
983 			tfc |= TFD_VLANTagInsert |
984 #ifdef	STGE_VLAN_CFI
985 			    TFD_CFI |
986 #endif
987 			    TFD_VID(vtag);
988 		}
989 		tfd->tfd_control = htole64(tfc);
990 
991 		/* Sync the descriptor. */
992 		STGE_CDTXSYNC(sc, nexttx,
993 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
994 
995 		/*
996 		 * Kick the transmit DMA logic.
997 		 */
998 		CSR_WRITE_4(sc, STGE_DMACtrl,
999 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
1000 
1001 		/*
1002 		 * Store a pointer to the packet so we can free it later.
1003 		 */
1004 		ds->ds_mbuf = m0;
1005 
1006 		/* Advance the tx pointer. */
1007 		sc->sc_txpending++;
1008 		sc->sc_txlast = nexttx;
1009 
1010 		/*
1011 		 * Pass the packet to any BPF listeners.
1012 		 */
1013 		bpf_mtap(ifp, m0, BPF_D_OUT);
1014 	}
1015 
1016 	if (sc->sc_txpending != opending) {
1017 		/*
1018 		 * We enqueued packets.  If the transmitter was idle,
1019 		 * reset the txdirty pointer.
1020 		 */
1021 		if (opending == 0)
1022 			sc->sc_txdirty = firsttx;
1023 
1024 		/* Set a watchdog timer in case the chip flakes out. */
1025 		ifp->if_timer = 5;
1026 	}
1027 }
1028 
1029 /*
1030  * stge_watchdog:	[ifnet interface function]
1031  *
1032  *	Watchdog timer handler.
1033  */
1034 static void
1035 stge_watchdog(struct ifnet *ifp)
1036 {
1037 	struct stge_softc *sc = ifp->if_softc;
1038 
1039 	/*
1040 	 * Sweep up first, since we don't interrupt every frame.
1041 	 */
1042 	stge_txintr(sc);
1043 	if (sc->sc_txpending != 0) {
1044 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1045 		if_statinc(ifp, if_oerrors);
1046 
1047 		(void) stge_init(ifp);
1048 
1049 		/* Try to get more packets going. */
1050 		stge_start(ifp);
1051 	}
1052 }
1053 
1054 /*
1055  * stge_ioctl:		[ifnet interface function]
1056  *
1057  *	Handle control requests from the operator.
1058  */
1059 static int
1060 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1061 {
1062 	struct stge_softc *sc = ifp->if_softc;
1063 	int s, error;
1064 
1065 	s = splnet();
1066 
1067 	error = ether_ioctl(ifp, cmd, data);
1068 	if (error == ENETRESET) {
1069 		error = 0;
1070 
1071 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1072 			;
1073 		else if (ifp->if_flags & IFF_RUNNING) {
1074 			/*
1075 			 * Multicast list has changed; set the hardware filter
1076 			 * accordingly.
1077 			 */
1078 			stge_set_filter(sc);
1079 		}
1080 	}
1081 
1082 	/* Try to get more packets going. */
1083 	stge_start(ifp);
1084 
1085 	splx(s);
1086 	return (error);
1087 }
1088 
1089 /*
1090  * stge_intr:
1091  *
1092  *	Interrupt service routine.
1093  */
1094 static int
1095 stge_intr(void *arg)
1096 {
1097 	struct stge_softc *sc = arg;
1098 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1099 	uint32_t txstat;
1100 	int wantinit;
1101 	uint16_t isr;
1102 
1103 	if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
1104 		return (0);
1105 
1106 	for (wantinit = 0; wantinit == 0;) {
1107 		isr = CSR_READ_2(sc, STGE_IntStatusAck);
1108 		if ((isr & sc->sc_IntEnable) == 0)
1109 			break;
1110 
1111 		/* Host interface errors. */
1112 		if (isr & IS_HostError) {
1113 			printf("%s: Host interface error\n",
1114 			    device_xname(sc->sc_dev));
1115 			wantinit = 1;
1116 			continue;
1117 		}
1118 
1119 		/* Receive interrupts. */
1120 		if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
1121 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1122 			stge_rxintr(sc);
1123 			if (isr & IS_RFDListEnd) {
1124 				printf("%s: receive ring overflow\n",
1125 				    device_xname(sc->sc_dev));
1126 				/*
1127 				 * XXX Should try to recover from this
1128 				 * XXX more gracefully.
1129 				 */
1130 				wantinit = 1;
1131 			}
1132 		}
1133 
1134 		/* Transmit interrupts. */
1135 		if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
1136 #ifdef STGE_EVENT_COUNTERS
1137 			if (isr & IS_TxDMAComplete)
1138 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1139 #endif
1140 			stge_txintr(sc);
1141 		}
1142 
1143 		/* Statistics overflow. */
1144 		if (isr & IS_UpdateStats)
1145 			stge_stats_update(sc);
1146 
1147 		/* Transmission errors. */
1148 		if (isr & IS_TxComplete) {
1149 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1150 			for (;;) {
1151 				txstat = CSR_READ_4(sc, STGE_TxStatus);
1152 				if ((txstat & TS_TxComplete) == 0)
1153 					break;
1154 				if (txstat & TS_TxUnderrun) {
1155 					sc->sc_txthresh++;
1156 					if (sc->sc_txthresh > 0x0fff)
1157 						sc->sc_txthresh = 0x0fff;
1158 					printf("%s: transmit underrun, new "
1159 					    "threshold: %d bytes\n",
1160 					    device_xname(sc->sc_dev),
1161 					    sc->sc_txthresh << 5);
1162 				}
1163 				if (txstat & TS_MaxCollisions)
1164 					printf("%s: excessive collisions\n",
1165 					    device_xname(sc->sc_dev));
1166 			}
1167 			wantinit = 1;
1168 		}
1169 
1170 	}
1171 
1172 	if (wantinit)
1173 		stge_init(ifp);
1174 
1175 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1176 
1177 	/* Try to get more packets going. */
1178 	if_schedule_deferred_start(ifp);
1179 
1180 	return (1);
1181 }
1182 
1183 /*
1184  * stge_txintr:
1185  *
1186  *	Helper; handle transmit interrupts.
1187  */
1188 static void
1189 stge_txintr(struct stge_softc *sc)
1190 {
1191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1192 	struct stge_descsoft *ds;
1193 	uint64_t control;
1194 	int i;
1195 
1196 	/*
1197 	 * Go through our Tx list and free mbufs for those
1198 	 * frames which have been transmitted.
1199 	 */
1200 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1201 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1202 		ds = &sc->sc_txsoft[i];
1203 
1204 		STGE_CDTXSYNC(sc, i,
1205 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1206 
1207 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1208 		if ((control & TFD_TFDDone) == 0)
1209 			break;
1210 
1211 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1212 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1213 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1214 		m_freem(ds->ds_mbuf);
1215 		ds->ds_mbuf = NULL;
1216 	}
1217 
1218 	/* Update the dirty transmit buffer pointer. */
1219 	sc->sc_txdirty = i;
1220 
1221 	/*
1222 	 * If there are no more pending transmissions, cancel the watchdog
1223 	 * timer.
1224 	 */
1225 	if (sc->sc_txpending == 0)
1226 		ifp->if_timer = 0;
1227 }
1228 
1229 /*
1230  * stge_rxintr:
1231  *
1232  *	Helper; handle receive interrupts.
1233  */
1234 static void
1235 stge_rxintr(struct stge_softc *sc)
1236 {
1237 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1238 	struct stge_descsoft *ds;
1239 	struct mbuf *m, *tailm;
1240 	uint64_t status;
1241 	int i, len;
1242 
1243 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1244 		ds = &sc->sc_rxsoft[i];
1245 
1246 		STGE_CDRXSYNC(sc, i,
1247 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1248 
1249 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1250 
1251 		if ((status & RFD_RFDDone) == 0)
1252 			break;
1253 
1254 		if (__predict_false(sc->sc_rxdiscard)) {
1255 			STGE_INIT_RXDESC(sc, i);
1256 			if (status & RFD_FrameEnd) {
1257 				/* Reset our state. */
1258 				sc->sc_rxdiscard = 0;
1259 			}
1260 			continue;
1261 		}
1262 
1263 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1264 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1265 
1266 		m = ds->ds_mbuf;
1267 
1268 		/*
1269 		 * Add a new receive buffer to the ring.
1270 		 */
1271 		if (stge_add_rxbuf(sc, i) != 0) {
1272 			/*
1273 			 * Failed, throw away what we've done so
1274 			 * far, and discard the rest of the packet.
1275 			 */
1276 			if_statinc(ifp, if_ierrors);
1277 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1278 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1279 			STGE_INIT_RXDESC(sc, i);
1280 			if ((status & RFD_FrameEnd) == 0)
1281 				sc->sc_rxdiscard = 1;
1282 			if (sc->sc_rxhead != NULL)
1283 				m_freem(sc->sc_rxhead);
1284 			STGE_RXCHAIN_RESET(sc);
1285 			continue;
1286 		}
1287 
1288 #ifdef DIAGNOSTIC
1289 		if (status & RFD_FrameStart) {
1290 			KASSERT(sc->sc_rxhead == NULL);
1291 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1292 		}
1293 #endif
1294 
1295 		STGE_RXCHAIN_LINK(sc, m);
1296 
1297 		/*
1298 		 * If this is not the end of the packet, keep
1299 		 * looking.
1300 		 */
1301 		if ((status & RFD_FrameEnd) == 0) {
1302 			sc->sc_rxlen += m->m_len;
1303 			continue;
1304 		}
1305 
1306 		/*
1307 		 * Okay, we have the entire packet now...
1308 		 */
1309 		*sc->sc_rxtailp = NULL;
1310 		m = sc->sc_rxhead;
1311 		tailm = sc->sc_rxtail;
1312 
1313 		STGE_RXCHAIN_RESET(sc);
1314 
1315 		/*
1316 		 * If the packet had an error, drop it.  Note we
1317 		 * count the error later in the periodic stats update.
1318 		 */
1319 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1320 			      RFD_RxAlignmentError | RFD_RxFCSError |
1321 			      RFD_RxLengthError)) {
1322 			m_freem(m);
1323 			continue;
1324 		}
1325 
1326 		/*
1327 		 * No errors.
1328 		 *
1329 		 * Note we have configured the chip to not include
1330 		 * the CRC at the end of the packet.
1331 		 */
1332 		len = RFD_RxDMAFrameLen(status);
1333 		tailm->m_len = len - sc->sc_rxlen;
1334 
1335 		/*
1336 		 * If the packet is small enough to fit in a
1337 		 * single header mbuf, allocate one and copy
1338 		 * the data into it.  This greatly reduces
1339 		 * memory consumption when we receive lots
1340 		 * of small packets.
1341 		 */
1342 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1343 			struct mbuf *nm;
1344 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1345 			if (nm == NULL) {
1346 				if_statinc(ifp, if_ierrors);
1347 				m_freem(m);
1348 				continue;
1349 			}
1350 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1351 			nm->m_data += 2;
1352 			nm->m_pkthdr.len = nm->m_len = len;
1353 			m_copydata(m, 0, len, mtod(nm, void *));
1354 			m_freem(m);
1355 			m = nm;
1356 		}
1357 
1358 		/*
1359 		 * Set the incoming checksum information for the packet.
1360 		 */
1361 		if (status & RFD_IPDetected) {
1362 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1363 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1364 			if (status & RFD_IPError)
1365 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1366 			if (status & RFD_TCPDetected) {
1367 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1368 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1369 				if (status & RFD_TCPError)
1370 					m->m_pkthdr.csum_flags |=
1371 					    M_CSUM_TCP_UDP_BAD;
1372 			} else if (status & RFD_UDPDetected) {
1373 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1374 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1375 				if (status & RFD_UDPError)
1376 					m->m_pkthdr.csum_flags |=
1377 					    M_CSUM_TCP_UDP_BAD;
1378 			}
1379 		}
1380 
1381 		m_set_rcvif(m, ifp);
1382 		m->m_pkthdr.len = len;
1383 
1384 		/*
1385 		 * Pass this up to any BPF listeners, but only
1386 		 * pass if up the stack if it's for us.
1387 		 */
1388 #ifdef	STGE_VLAN_UNTAG
1389 		/*
1390 		 * Check for VLAN tagged packets
1391 		 */
1392 		if (status & RFD_VLANDetected)
1393 			vlan_set_tag(m, RFD_TCI(status));
1394 
1395 #endif
1396 #if	0
1397 		if (status & RFD_VLANDetected) {
1398 			struct ether_header *eh;
1399 			uint16_t etype;
1400 
1401 			eh = mtod(m, struct ether_header *);
1402 			etype = ntohs(eh->ether_type);
1403 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1404 			    ifp->if_xname, (uint16_t) RFD_TCI(status),
1405 			    etype);
1406 		}
1407 #endif
1408 		/* Pass it on. */
1409 		if_percpuq_enqueue(ifp->if_percpuq, m);
1410 	}
1411 
1412 	/* Update the receive pointer. */
1413 	sc->sc_rxptr = i;
1414 }
1415 
1416 /*
1417  * stge_tick:
1418  *
1419  *	One second timer, used to tick the MII.
1420  */
1421 static void
1422 stge_tick(void *arg)
1423 {
1424 	struct stge_softc *sc = arg;
1425 	int s;
1426 
1427 	s = splnet();
1428 	mii_tick(&sc->sc_mii);
1429 	stge_stats_update(sc);
1430 	splx(s);
1431 
1432 	callout_schedule(&sc->sc_tick_ch, hz);
1433 }
1434 
1435 /*
1436  * stge_stats_update:
1437  *
1438  *	Read the TC9021 statistics counters.
1439  */
1440 static void
1441 stge_stats_update(struct stge_softc *sc)
1442 {
1443 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1444 
1445 	(void) CSR_READ_4(sc, STGE_OctetRcvOk);
1446 
1447 	(void) CSR_READ_4(sc, STGE_FramesRcvdOk);
1448 
1449 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1450 
1451 	if_statadd_ref(nsr, if_ierrors,
1452 	    (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors));
1453 
1454 	(void) CSR_READ_4(sc, STGE_OctetXmtdOk);
1455 
1456 	if_statadd_ref(nsr, if_opackets,
1457 	    CSR_READ_4(sc, STGE_FramesXmtdOk));
1458 
1459 	if_statadd_ref(nsr, if_collisions,
1460 	    CSR_READ_4(sc, STGE_LateCollisions) +
1461 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1462 	    CSR_READ_4(sc, STGE_SingleColFrames));
1463 
1464 	if_statadd_ref(nsr, if_oerrors,
1465 	    (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1466 	    (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal));
1467 
1468 	IF_STAT_PUTREF(ifp);
1469 }
1470 
1471 /*
1472  * stge_reset:
1473  *
1474  *	Perform a soft reset on the TC9021.
1475  */
1476 static void
1477 stge_reset(struct stge_softc *sc)
1478 {
1479 	uint32_t ac;
1480 	int i;
1481 
1482 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1483 
1484 	/*
1485 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1486 	 * to be present in order for the reset to complete on fiber
1487 	 * cards.
1488 	 */
1489 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1490 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1491 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1492 	    (sc->sc_usefiber ? AC_RstOut : 0));
1493 
1494 	delay(50000);
1495 
1496 	for (i = 0; i < STGE_TIMEOUT; i++) {
1497 		delay(5000);
1498 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1499 			break;
1500 	}
1501 
1502 	if (i == STGE_TIMEOUT)
1503 		printf("%s: reset failed to complete\n",
1504 		    device_xname(sc->sc_dev));
1505 
1506 	delay(1000);
1507 }
1508 
1509 /*
1510  * stge_init:		[ ifnet interface function ]
1511  *
1512  *	Initialize the interface.  Must be called at splnet().
1513  */
1514 static int
1515 stge_init(struct ifnet *ifp)
1516 {
1517 	struct stge_softc *sc = ifp->if_softc;
1518 	struct stge_descsoft *ds;
1519 	int i, error = 0;
1520 
1521 	/*
1522 	 * Cancel any pending I/O.
1523 	 */
1524 	stge_stop(ifp, 0);
1525 
1526 	/*
1527 	 * Reset the chip to a known state.
1528 	 */
1529 	stge_reset(sc);
1530 
1531 	/*
1532 	 * Initialize the transmit descriptor ring.
1533 	 */
1534 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1535 	for (i = 0; i < STGE_NTXDESC; i++) {
1536 		sc->sc_txdescs[i].tfd_next = htole64(
1537 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1538 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1539 	}
1540 	sc->sc_txpending = 0;
1541 	sc->sc_txdirty = 0;
1542 	sc->sc_txlast = STGE_NTXDESC - 1;
1543 
1544 	/*
1545 	 * Initialize the receive descriptor and receive job
1546 	 * descriptor rings.
1547 	 */
1548 	for (i = 0; i < STGE_NRXDESC; i++) {
1549 		ds = &sc->sc_rxsoft[i];
1550 		if (ds->ds_mbuf == NULL) {
1551 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1552 				printf("%s: unable to allocate or map rx "
1553 				    "buffer %d, error = %d\n",
1554 				    device_xname(sc->sc_dev), i, error);
1555 				/*
1556 				 * XXX Should attempt to run with fewer receive
1557 				 * XXX buffers instead of just failing.
1558 				 */
1559 				stge_rxdrain(sc);
1560 				goto out;
1561 			}
1562 		} else
1563 			STGE_INIT_RXDESC(sc, i);
1564 	}
1565 	sc->sc_rxptr = 0;
1566 	sc->sc_rxdiscard = 0;
1567 	STGE_RXCHAIN_RESET(sc);
1568 
1569 	/* Set the station address. */
1570 	for (i = 0; i < 6; i++)
1571 		CSR_WRITE_1(sc, STGE_StationAddress0 + i,
1572 		    CLLADDR(ifp->if_sadl)[i]);
1573 
1574 	/*
1575 	 * Set the statistics masks.  Disable all the RMON stats,
1576 	 * and disable selected stats in the non-RMON stats registers.
1577 	 */
1578 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
1579 	CSR_WRITE_4(sc, STGE_StatisticsMask,
1580 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1581 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1582 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1583 	    (1U << 21));
1584 
1585 	/* Set up the receive filter. */
1586 	stge_set_filter(sc);
1587 
1588 	/*
1589 	 * Give the transmit and receive ring to the chip.
1590 	 */
1591 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
1592 	    ((uint64_t)STGE_CDTXADDR(sc, sc->sc_txdirty)) >> 32);
1593 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
1594 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1595 
1596 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
1597 	    ((uint64_t)STGE_CDRXADDR(sc, sc->sc_rxptr)) >> 32);
1598 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
1599 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1600 
1601 	/*
1602 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1603 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1604 	 * transmit engine when there's actually a packet.
1605 	 */
1606 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
1607 
1608 	/* ..and the Rx auto-poll period. */
1609 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
1610 
1611 	/* Initialize the Tx start threshold. */
1612 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
1613 
1614 	/* RX DMA thresholds, from linux */
1615 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
1616 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
1617 
1618 	/* Rx early threhold, from Linux */
1619 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
1620 
1621 	/* Tx DMA thresholds, from Linux */
1622 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
1623 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
1624 
1625 	/*
1626 	 * Initialize the Rx DMA interrupt control register.  We
1627 	 * request an interrupt after every incoming packet, but
1628 	 * defer it for 32us (64 * 512 ns).  When the number of
1629 	 * interrupts pending reaches 8, we stop deferring the
1630 	 * interrupt, and signal it immediately.
1631 	 */
1632 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
1633 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1634 
1635 	/*
1636 	 * Initialize the interrupt mask.
1637 	 */
1638 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1639 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1640 	CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
1641 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1642 
1643 	/*
1644 	 * Configure the DMA engine.
1645 	 * XXX Should auto-tune TxBurstLimit.
1646 	 */
1647 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
1648 	    DMAC_TxBurstLimit(3));
1649 
1650 	/*
1651 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1652 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
1653 	 * in the Rx FIFO.
1654 	 */
1655 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
1656 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
1657 
1658 	/*
1659 	 * Set the maximum frame size.
1660 	 */
1661 	CSR_WRITE_2(sc, STGE_MaxFrameSize,
1662 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1663 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1664 	     ETHER_VLAN_ENCAP_LEN : 0));
1665 
1666 	/*
1667 	 * Initialize MacCtrl -- do it before setting the media,
1668 	 * as setting the media will actually program the register.
1669 	 *
1670 	 * Note: We have to poke the IFS value before poking
1671 	 * anything else.
1672 	 */
1673 	sc->sc_MACCtrl = MC_IFSSelect(0);
1674 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1675 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1676 #ifdef	STGE_VLAN_UNTAG
1677 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1678 #endif
1679 
1680 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1681 		/* Multi-frag frame bug work-around. */
1682 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1683 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
1684 
1685 		/* Tx Poll Now bug work-around. */
1686 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1687 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
1688 		/* XXX ? from linux */
1689 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1690 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
1691 	}
1692 
1693 	/*
1694 	 * Set the current media.
1695 	 */
1696 	if ((error = ether_mediachange(ifp)) != 0)
1697 		goto out;
1698 
1699 	/*
1700 	 * Start the one second MII clock.
1701 	 */
1702 	callout_schedule(&sc->sc_tick_ch, hz);
1703 
1704 	/*
1705 	 * ...all done!
1706 	 */
1707 	ifp->if_flags |= IFF_RUNNING;
1708 
1709  out:
1710 	if (error)
1711 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1712 	return (error);
1713 }
1714 
1715 /*
1716  * stge_drain:
1717  *
1718  *	Drain the receive queue.
1719  */
1720 static void
1721 stge_rxdrain(struct stge_softc *sc)
1722 {
1723 	struct stge_descsoft *ds;
1724 	int i;
1725 
1726 	for (i = 0; i < STGE_NRXDESC; i++) {
1727 		ds = &sc->sc_rxsoft[i];
1728 		if (ds->ds_mbuf != NULL) {
1729 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1730 			ds->ds_mbuf->m_next = NULL;
1731 			m_freem(ds->ds_mbuf);
1732 			ds->ds_mbuf = NULL;
1733 		}
1734 	}
1735 }
1736 
1737 /*
1738  * stge_stop:		[ ifnet interface function ]
1739  *
1740  *	Stop transmission on the interface.
1741  */
1742 static void
1743 stge_stop(struct ifnet *ifp, int disable)
1744 {
1745 	struct stge_softc *sc = ifp->if_softc;
1746 	struct stge_descsoft *ds;
1747 	int i;
1748 
1749 	/*
1750 	 * Stop the one second clock.
1751 	 */
1752 	callout_stop(&sc->sc_tick_ch);
1753 
1754 	/* Down the MII. */
1755 	mii_down(&sc->sc_mii);
1756 
1757 	/*
1758 	 * Disable interrupts.
1759 	 */
1760 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
1761 
1762 	/*
1763 	 * Stop receiver, transmitter, and stats update.
1764 	 */
1765 	CSR_WRITE_4(sc, STGE_MACCtrl,
1766 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1767 
1768 	/*
1769 	 * Stop the transmit and receive DMA.
1770 	 */
1771 	stge_dma_wait(sc);
1772 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
1773 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
1774 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
1775 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
1776 
1777 	/*
1778 	 * Release any queued transmit buffers.
1779 	 */
1780 	for (i = 0; i < STGE_NTXDESC; i++) {
1781 		ds = &sc->sc_txsoft[i];
1782 		if (ds->ds_mbuf != NULL) {
1783 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1784 			m_freem(ds->ds_mbuf);
1785 			ds->ds_mbuf = NULL;
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * Mark the interface down and cancel the watchdog timer.
1791 	 */
1792 	ifp->if_flags &= ~IFF_RUNNING;
1793 	ifp->if_timer = 0;
1794 
1795 	if (disable)
1796 		stge_rxdrain(sc);
1797 }
1798 
1799 static int
1800 stge_eeprom_wait(struct stge_softc *sc)
1801 {
1802 	int i;
1803 
1804 	for (i = 0; i < STGE_TIMEOUT; i++) {
1805 		delay(1000);
1806 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
1807 			return (0);
1808 	}
1809 	return (1);
1810 }
1811 
1812 /*
1813  * stge_read_eeprom:
1814  *
1815  *	Read data from the serial EEPROM.
1816  */
1817 static void
1818 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1819 {
1820 
1821 	if (stge_eeprom_wait(sc))
1822 		printf("%s: EEPROM failed to come ready\n",
1823 		    device_xname(sc->sc_dev));
1824 
1825 	CSR_WRITE_2(sc, STGE_EepromCtrl,
1826 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1827 	if (stge_eeprom_wait(sc))
1828 		printf("%s: EEPROM read timed out\n",
1829 		    device_xname(sc->sc_dev));
1830 	*data = CSR_READ_2(sc, STGE_EepromData);
1831 }
1832 
1833 /*
1834  * stge_add_rxbuf:
1835  *
1836  *	Add a receive buffer to the indicated descriptor.
1837  */
1838 static int
1839 stge_add_rxbuf(struct stge_softc *sc, int idx)
1840 {
1841 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1842 	struct mbuf *m;
1843 	int error;
1844 
1845 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1846 	if (m == NULL)
1847 		return (ENOBUFS);
1848 
1849 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1850 	MCLGET(m, M_DONTWAIT);
1851 	if ((m->m_flags & M_EXT) == 0) {
1852 		m_freem(m);
1853 		return (ENOBUFS);
1854 	}
1855 
1856 	m->m_data = m->m_ext.ext_buf + 2;
1857 	m->m_len = MCLBYTES - 2;
1858 
1859 	if (ds->ds_mbuf != NULL)
1860 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1861 
1862 	ds->ds_mbuf = m;
1863 
1864 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1865 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1866 	if (error) {
1867 		printf("%s: can't load rx DMA map %d, error = %d\n",
1868 		    device_xname(sc->sc_dev), idx, error);
1869 		panic("stge_add_rxbuf");	/* XXX */
1870 	}
1871 
1872 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1873 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1874 
1875 	STGE_INIT_RXDESC(sc, idx);
1876 
1877 	return (0);
1878 }
1879 
1880 /*
1881  * stge_set_filter:
1882  *
1883  *	Set up the receive filter.
1884  */
1885 static void
1886 stge_set_filter(struct stge_softc *sc)
1887 {
1888 	struct ethercom *ec = &sc->sc_ethercom;
1889 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1890 	struct ether_multi *enm;
1891 	struct ether_multistep step;
1892 	uint32_t crc;
1893 	uint32_t mchash[2];
1894 
1895 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1896 	if (ifp->if_flags & IFF_BROADCAST)
1897 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1898 
1899 	/* XXX: ST1023 only works in promiscuous mode */
1900 	if (sc->sc_stge1023)
1901 		ifp->if_flags |= IFF_PROMISC;
1902 
1903 	if (ifp->if_flags & IFF_PROMISC) {
1904 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1905 		goto allmulti;
1906 	}
1907 
1908 	/*
1909 	 * Set up the multicast address filter by passing all multicast
1910 	 * addresses through a CRC generator, and then using the low-order
1911 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1912 	 * high order bits select the register, while the rest of the bits
1913 	 * select the bit within the register.
1914 	 */
1915 
1916 	memset(mchash, 0, sizeof(mchash));
1917 
1918 	ETHER_LOCK(ec);
1919 	ETHER_FIRST_MULTI(step, ec, enm);
1920 	if (enm == NULL) {
1921 		ETHER_UNLOCK(ec);
1922 		goto done;
1923 	}
1924 
1925 	while (enm != NULL) {
1926 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1927 			/*
1928 			 * We must listen to a range of multicast addresses.
1929 			 * For now, just accept all multicasts, rather than
1930 			 * trying to set only those filter bits needed to match
1931 			 * the range.  (At this time, the only use of address
1932 			 * ranges is for IP multicast routing, for which the
1933 			 * range is big enough to require all bits set.)
1934 			 */
1935 			ETHER_UNLOCK(ec);
1936 			goto allmulti;
1937 		}
1938 
1939 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1940 
1941 		/* Just want the 6 least significant bits. */
1942 		crc &= 0x3f;
1943 
1944 		/* Set the corresponding bit in the hash table. */
1945 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1946 
1947 		ETHER_NEXT_MULTI(step, enm);
1948 	}
1949 	ETHER_UNLOCK(ec);
1950 
1951 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1952 
1953 	ifp->if_flags &= ~IFF_ALLMULTI;
1954 	goto done;
1955 
1956  allmulti:
1957 	ifp->if_flags |= IFF_ALLMULTI;
1958 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1959 
1960  done:
1961 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1962 		/*
1963 		 * Program the multicast hash table.
1964 		 */
1965 		CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
1966 		CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
1967 	}
1968 
1969 	CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
1970 }
1971 
1972 /*
1973  * stge_mii_readreg:	[mii interface function]
1974  *
1975  *	Read a PHY register on the MII of the TC9021.
1976  */
1977 static int
1978 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1979 {
1980 
1981 	return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
1982 }
1983 
1984 /*
1985  * stge_mii_writereg:	[mii interface function]
1986  *
1987  *	Write a PHY register on the MII of the TC9021.
1988  */
1989 static int
1990 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1991 {
1992 
1993 	return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
1994 	    val);
1995 }
1996 
1997 /*
1998  * stge_mii_statchg:	[mii interface function]
1999  *
2000  *	Callback from MII layer when media changes.
2001  */
2002 static void
2003 stge_mii_statchg(struct ifnet *ifp)
2004 {
2005 	struct stge_softc *sc = ifp->if_softc;
2006 
2007 	sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
2008 	    MC_TxFlowControlEnable);
2009 
2010 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2011 		sc->sc_MACCtrl |= MC_DuplexSelect;
2012 	if ((sc->sc_mii.mii_media_active & IFM_ETH_RXPAUSE) != 0)
2013 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
2014 	if ((sc->sc_mii.mii_media_active & IFM_ETH_TXPAUSE) != 0)
2015 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
2016 
2017 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
2018 }
2019 
2020 /*
2021  * sste_mii_bitbang_read: [mii bit-bang interface function]
2022  *
2023  *	Read the MII serial port for the MII bit-bang module.
2024  */
2025 static uint32_t
2026 stge_mii_bitbang_read(device_t self)
2027 {
2028 	struct stge_softc *sc = device_private(self);
2029 
2030 	return (CSR_READ_1(sc, STGE_PhyCtrl));
2031 }
2032 
2033 /*
2034  * stge_mii_bitbang_write: [mii big-bang interface function]
2035  *
2036  *	Write the MII serial port for the MII bit-bang module.
2037  */
2038 static void
2039 stge_mii_bitbang_write(device_t self, uint32_t val)
2040 {
2041 	struct stge_softc *sc = device_private(self);
2042 
2043 	CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
2044 }
2045