xref: /netbsd-src/sys/dev/pci/if_ste.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: if_ste.c,v 1.48 2016/07/07 06:55:41 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. ST-201 10/100
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.48 2016/07/07 06:55:41 msaitoh Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stereg.h>
72 
73 /*
74  * Transmit descriptor list size.
75  */
76 #define	STE_NTXDESC		256
77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
79 
80 /*
81  * Receive descriptor list size.
82  */
83 #define	STE_NRXDESC		128
84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
86 
87 /*
88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
89  * a single clump that maps to a single DMA segment to make several things
90  * easier.
91  */
92 struct ste_control_data {
93 	/*
94 	 * The transmit descriptors.
95 	 */
96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
97 
98 	/*
99 	 * The receive descriptors.
100 	 */
101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103 
104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
107 
108 /*
109  * Software state for transmit and receive jobs.
110  */
111 struct ste_descsoft {
112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
114 };
115 
116 /*
117  * Software state per device.
118  */
119 struct ste_softc {
120 	device_t sc_dev;		/* generic device information */
121 	bus_space_tag_t sc_st;		/* bus space tag */
122 	bus_space_handle_t sc_sh;	/* bus space handle */
123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
124 	struct ethercom sc_ethercom;	/* ethernet common data */
125 
126 	void *sc_ih;			/* interrupt cookie */
127 
128 	struct mii_data sc_mii;		/* MII/media information */
129 
130 	callout_t sc_tick_ch;		/* tick callout */
131 
132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
134 
135 	/*
136 	 * Software state for transmit and receive descriptors.
137 	 */
138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140 
141 	/*
142 	 * Control data structures.
143 	 */
144 	struct ste_control_data *sc_control_data;
145 #define	sc_txdescs	sc_control_data->scd_txdescs
146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
147 
148 	int	sc_txpending;		/* number of Tx requests pending */
149 	int	sc_txdirty;		/* first dirty Tx descriptor */
150 	int	sc_txlast;		/* last used Tx descriptor */
151 
152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
153 
154 	int	sc_txthresh;		/* Tx threshold */
155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
159 };
160 
161 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
163 
164 #define	STE_CDTXSYNC(sc, x, ops)					\
165 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
166 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167 
168 #define	STE_CDRXSYNC(sc, x, ops)					\
169 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
170 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171 
172 #define	STE_INIT_RXDESC(sc, x)						\
173 do {									\
174 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
175 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
176 	struct mbuf *__m = __ds->ds_mbuf;				\
177 									\
178 	/*								\
179 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
180 	 * so that the payload after the Ethernet header is aligned	\
181 	 * to a 4-byte boundary.					\
182 	 */								\
183 	__m->m_data = __m->m_ext.ext_buf + 2;				\
184 	__rfd->rfd_frag.frag_addr =					\
185 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
186 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
187 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
188 	__rfd->rfd_status = 0;						\
189 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191 
192 #define STE_TIMEOUT 1000
193 
194 static void	ste_start(struct ifnet *);
195 static void	ste_watchdog(struct ifnet *);
196 static int	ste_ioctl(struct ifnet *, u_long, void *);
197 static int	ste_init(struct ifnet *);
198 static void	ste_stop(struct ifnet *, int);
199 
200 static bool	ste_shutdown(device_t, int);
201 
202 static void	ste_reset(struct ste_softc *, u_int32_t);
203 static void	ste_setthresh(struct ste_softc *);
204 static void	ste_txrestart(struct ste_softc *, u_int8_t);
205 static void	ste_rxdrain(struct ste_softc *);
206 static int	ste_add_rxbuf(struct ste_softc *, int);
207 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void	ste_tick(void *);
209 
210 static void	ste_stats_update(struct ste_softc *);
211 
212 static void	ste_set_filter(struct ste_softc *);
213 
214 static int	ste_intr(void *);
215 static void	ste_txintr(struct ste_softc *);
216 static void	ste_rxintr(struct ste_softc *);
217 
218 static int	ste_mii_readreg(device_t, int, int);
219 static void	ste_mii_writereg(device_t, int, int, int);
220 static void	ste_mii_statchg(struct ifnet *);
221 
222 static int	ste_match(device_t, cfdata_t, void *);
223 static void	ste_attach(device_t, device_t, void *);
224 
225 int	ste_copy_small = 0;
226 
227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
228     ste_match, ste_attach, NULL, NULL);
229 
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void	ste_mii_bitbang_write(device_t, uint32_t);
232 
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 	ste_mii_bitbang_read,
235 	ste_mii_bitbang_write,
236 	{
237 		PC_MgmtData,		/* MII_BIT_MDO */
238 		PC_MgmtData,		/* MII_BIT_MDI */
239 		PC_MgmtClk,		/* MII_BIT_MDC */
240 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
241 		0,			/* MII_BIT_DIR_PHY_HOST */
242 	}
243 };
244 
245 /*
246  * Devices supported by this driver.
247  */
248 static const struct ste_product {
249 	pci_vendor_id_t		ste_vendor;
250 	pci_product_id_t	ste_product;
251 	const char		*ste_name;
252 } ste_products[] = {
253 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
254 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255 
256 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
257 	  "Sundance ST-201 10/100 Ethernet" },
258 
259 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
260 	  "D-Link DL-1002 10/100 Ethernet" },
261 
262 	{ 0,				0,
263 	  NULL },
264 };
265 
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 	const struct ste_product *sp;
270 
271 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 			return (sp);
275 	}
276 	return (NULL);
277 }
278 
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 	struct pci_attach_args *pa = aux;
283 
284 	if (ste_lookup(pa) != NULL)
285 		return (1);
286 
287 	return (0);
288 }
289 
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 	struct ste_softc *sc = device_private(self);
294 	struct pci_attach_args *pa = aux;
295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 	pci_chipset_tag_t pc = pa->pa_pc;
297 	pci_intr_handle_t ih;
298 	const char *intrstr = NULL;
299 	bus_space_tag_t iot, memt;
300 	bus_space_handle_t ioh, memh;
301 	bus_dma_segment_t seg;
302 	int ioh_valid, memh_valid;
303 	int i, rseg, error;
304 	const struct ste_product *sp;
305 	uint8_t enaddr[ETHER_ADDR_LEN];
306 	uint16_t myea[ETHER_ADDR_LEN / 2];
307 	char intrbuf[PCI_INTRSTR_LEN];
308 
309 	sc->sc_dev = self;
310 
311 	callout_init(&sc->sc_tick_ch, 0);
312 
313 	sp = ste_lookup(pa);
314 	if (sp == NULL) {
315 		printf("\n");
316 		panic("ste_attach: impossible");
317 	}
318 
319 	printf(": %s\n", sp->ste_name);
320 
321 	/*
322 	 * Map the device.
323 	 */
324 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
325 	    PCI_MAPREG_TYPE_IO, 0,
326 	    &iot, &ioh, NULL, NULL) == 0);
327 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
328 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
329 	    &memt, &memh, NULL, NULL) == 0);
330 
331 	if (memh_valid) {
332 		sc->sc_st = memt;
333 		sc->sc_sh = memh;
334 	} else if (ioh_valid) {
335 		sc->sc_st = iot;
336 		sc->sc_sh = ioh;
337 	} else {
338 		aprint_error_dev(self, "unable to map device registers\n");
339 		return;
340 	}
341 
342 	sc->sc_dmat = pa->pa_dmat;
343 
344 	/* Enable bus mastering. */
345 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
347 	    PCI_COMMAND_MASTER_ENABLE);
348 
349 	/* power up chip */
350 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
351 	    NULL)) && error != EOPNOTSUPP) {
352 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
353 		return;
354 	}
355 
356 	/*
357 	 * Map and establish our interrupt.
358 	 */
359 	if (pci_intr_map(pa, &ih)) {
360 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
361 		return;
362 	}
363 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
364 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
365 	if (sc->sc_ih == NULL) {
366 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
367 		if (intrstr != NULL)
368 			aprint_error(" at %s", intrstr);
369 		aprint_error("\n");
370 		return;
371 	}
372 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
373 
374 	/*
375 	 * Allocate the control data structures, and create and load the
376 	 * DMA map for it.
377 	 */
378 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
379 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
380 	    0)) != 0) {
381 		aprint_error_dev(sc->sc_dev,
382 		    "unable to allocate control data, error = %d\n", error);
383 		goto fail_0;
384 	}
385 
386 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
387 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
388 	    BUS_DMA_COHERENT)) != 0) {
389 		aprint_error_dev(sc->sc_dev,
390 		    "unable to map control data, error = %d\n", error);
391 		goto fail_1;
392 	}
393 
394 	if ((error = bus_dmamap_create(sc->sc_dmat,
395 	    sizeof(struct ste_control_data), 1,
396 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
397 		aprint_error_dev(sc->sc_dev,
398 		    "unable to create control data DMA map, error = %d\n",
399 		    error);
400 		goto fail_2;
401 	}
402 
403 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
404 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
405 	    0)) != 0) {
406 		aprint_error_dev(sc->sc_dev,
407 		    "unable to load control data DMA map, error = %d\n",
408 		    error);
409 		goto fail_3;
410 	}
411 
412 	/*
413 	 * Create the transmit buffer DMA maps.
414 	 */
415 	for (i = 0; i < STE_NTXDESC; i++) {
416 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
417 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
418 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
419 			aprint_error_dev(sc->sc_dev,
420 			    "unable to create tx DMA map %d, error = %d\n", i,
421 			    error);
422 			goto fail_4;
423 		}
424 	}
425 
426 	/*
427 	 * Create the receive buffer DMA maps.
428 	 */
429 	for (i = 0; i < STE_NRXDESC; i++) {
430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
431 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
432 			aprint_error_dev(sc->sc_dev,
433 			    "unable to create rx DMA map %d, error = %d\n", i,
434 			    error);
435 			goto fail_5;
436 		}
437 		sc->sc_rxsoft[i].ds_mbuf = NULL;
438 	}
439 
440 	/*
441 	 * Reset the chip to a known state.
442 	 */
443 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
444 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
445 
446 	/*
447 	 * Read the Ethernet address from the EEPROM.
448 	 */
449 	for (i = 0; i < 3; i++) {
450 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
451 		myea[i] = le16toh(myea[i]);
452 	}
453 	memcpy(enaddr, myea, sizeof(enaddr));
454 
455 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
456 	    ether_sprintf(enaddr));
457 
458 	/*
459 	 * Initialize our media structures and probe the MII.
460 	 */
461 	sc->sc_mii.mii_ifp = ifp;
462 	sc->sc_mii.mii_readreg = ste_mii_readreg;
463 	sc->sc_mii.mii_writereg = ste_mii_writereg;
464 	sc->sc_mii.mii_statchg = ste_mii_statchg;
465 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
466 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
467 	    ether_mediastatus);
468 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
469 	    MII_OFFSET_ANY, 0);
470 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
471 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0,NULL);
472 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
473 	} else
474 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
475 
476 	ifp = &sc->sc_ethercom.ec_if;
477 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
478 	ifp->if_softc = sc;
479 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
480 	ifp->if_ioctl = ste_ioctl;
481 	ifp->if_start = ste_start;
482 	ifp->if_watchdog = ste_watchdog;
483 	ifp->if_init = ste_init;
484 	ifp->if_stop = ste_stop;
485 	IFQ_SET_READY(&ifp->if_snd);
486 
487 	/*
488 	 * Default the transmit threshold to 128 bytes.
489 	 */
490 	sc->sc_txthresh = 128;
491 
492 	/*
493 	 * Disable MWI if the PCI layer tells us to.
494 	 */
495 	sc->sc_DMACtrl = 0;
496 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
497 		sc->sc_DMACtrl |= DC_MWIDisable;
498 
499 	/*
500 	 * We can support 802.1Q VLAN-sized frames.
501 	 */
502 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
503 
504 	/*
505 	 * Attach the interface.
506 	 */
507 	if_attach(ifp);
508 	ether_ifattach(ifp, enaddr);
509 
510 	/*
511 	 * Make sure the interface is shutdown during reboot.
512 	 */
513 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
514 		pmf_class_network_register(self, ifp);
515 	else
516 		aprint_error_dev(self, "couldn't establish power handler\n");
517 
518 	return;
519 
520 	/*
521 	 * Free any resources we've allocated during the failed attach
522 	 * attempt.  Do this in reverse order and fall through.
523 	 */
524  fail_5:
525 	for (i = 0; i < STE_NRXDESC; i++) {
526 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
527 			bus_dmamap_destroy(sc->sc_dmat,
528 			    sc->sc_rxsoft[i].ds_dmamap);
529 	}
530  fail_4:
531 	for (i = 0; i < STE_NTXDESC; i++) {
532 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
533 			bus_dmamap_destroy(sc->sc_dmat,
534 			    sc->sc_txsoft[i].ds_dmamap);
535 	}
536 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
537  fail_3:
538 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
539  fail_2:
540 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
541 	    sizeof(struct ste_control_data));
542  fail_1:
543 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
544  fail_0:
545 	return;
546 }
547 
548 /*
549  * ste_shutdown:
550  *
551  *	Make sure the interface is stopped at reboot time.
552  */
553 static bool
554 ste_shutdown(device_t self, int howto)
555 {
556 	struct ste_softc *sc;
557 
558 	sc = device_private(self);
559 	ste_stop(&sc->sc_ethercom.ec_if, 1);
560 
561 	return true;
562 }
563 
564 static void
565 ste_dmahalt_wait(struct ste_softc *sc)
566 {
567 	int i;
568 
569 	for (i = 0; i < STE_TIMEOUT; i++) {
570 		delay(2);
571 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
572 		     DC_DMAHaltBusy) == 0)
573 			break;
574 	}
575 
576 	if (i == STE_TIMEOUT)
577 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
578 }
579 
580 /*
581  * ste_start:		[ifnet interface function]
582  *
583  *	Start packet transmission on the interface.
584  */
585 static void
586 ste_start(struct ifnet *ifp)
587 {
588 	struct ste_softc *sc = ifp->if_softc;
589 	struct mbuf *m0, *m;
590 	struct ste_descsoft *ds;
591 	struct ste_tfd *tfd;
592 	bus_dmamap_t dmamap;
593 	int error, olasttx, nexttx, opending, seg, totlen;
594 
595 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
596 		return;
597 
598 	/*
599 	 * Remember the previous number of pending transmissions
600 	 * and the current last descriptor in the list.
601 	 */
602 	opending = sc->sc_txpending;
603 	olasttx = sc->sc_txlast;
604 
605 	/*
606 	 * Loop through the send queue, setting up transmit descriptors
607 	 * until we drain the queue, or use up all available transmit
608 	 * descriptors.
609 	 */
610 	while (sc->sc_txpending < STE_NTXDESC) {
611 		/*
612 		 * Grab a packet off the queue.
613 		 */
614 		IFQ_POLL(&ifp->if_snd, m0);
615 		if (m0 == NULL)
616 			break;
617 		m = NULL;
618 
619 		/*
620 		 * Get the last and next available transmit descriptor.
621 		 */
622 		nexttx = STE_NEXTTX(sc->sc_txlast);
623 		tfd = &sc->sc_txdescs[nexttx];
624 		ds = &sc->sc_txsoft[nexttx];
625 
626 		dmamap = ds->ds_dmamap;
627 
628 		/*
629 		 * Load the DMA map.  If this fails, the packet either
630 		 * didn't fit in the alloted number of segments, or we
631 		 * were short on resources.  In this case, we'll copy
632 		 * and try again.
633 		 */
634 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
635 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
636 			MGETHDR(m, M_DONTWAIT, MT_DATA);
637 			if (m == NULL) {
638 				printf("%s: unable to allocate Tx mbuf\n",
639 				    device_xname(sc->sc_dev));
640 				break;
641 			}
642 			if (m0->m_pkthdr.len > MHLEN) {
643 				MCLGET(m, M_DONTWAIT);
644 				if ((m->m_flags & M_EXT) == 0) {
645 					printf("%s: unable to allocate Tx "
646 					    "cluster\n",
647 					    device_xname(sc->sc_dev));
648 					m_freem(m);
649 					break;
650 				}
651 			}
652 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
653 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
654 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
655 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
656 			if (error) {
657 				printf("%s: unable to load Tx buffer, "
658 				    "error = %d\n", device_xname(sc->sc_dev),
659 				    error);
660 				break;
661 			}
662 		}
663 
664 		IFQ_DEQUEUE(&ifp->if_snd, m0);
665 		if (m != NULL) {
666 			m_freem(m0);
667 			m0 = m;
668 		}
669 
670 		/*
671 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
672 		 */
673 
674 		/* Sync the DMA map. */
675 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
676 		    BUS_DMASYNC_PREWRITE);
677 
678 		/* Initialize the fragment list. */
679 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
680 			tfd->tfd_frags[seg].frag_addr =
681 			    htole32(dmamap->dm_segs[seg].ds_addr);
682 			tfd->tfd_frags[seg].frag_len =
683 			    htole32(dmamap->dm_segs[seg].ds_len);
684 			totlen += dmamap->dm_segs[seg].ds_len;
685 		}
686 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
687 
688 		/* Initialize the descriptor. */
689 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
690 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
691 
692 		/* Sync the descriptor. */
693 		STE_CDTXSYNC(sc, nexttx,
694 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
695 
696 		/*
697 		 * Store a pointer to the packet so we can free it later,
698 		 * and remember what txdirty will be once the packet is
699 		 * done.
700 		 */
701 		ds->ds_mbuf = m0;
702 
703 		/* Advance the tx pointer. */
704 		sc->sc_txpending++;
705 		sc->sc_txlast = nexttx;
706 
707 		/*
708 		 * Pass the packet to any BPF listeners.
709 		 */
710 		bpf_mtap(ifp, m0);
711 	}
712 
713 	if (sc->sc_txpending == STE_NTXDESC) {
714 		/* No more slots left; notify upper layer. */
715 		ifp->if_flags |= IFF_OACTIVE;
716 	}
717 
718 	if (sc->sc_txpending != opending) {
719 		/*
720 		 * We enqueued packets.  If the transmitter was idle,
721 		 * reset the txdirty pointer.
722 		 */
723 		if (opending == 0)
724 			sc->sc_txdirty = STE_NEXTTX(olasttx);
725 
726 		/*
727 		 * Cause a descriptor interrupt to happen on the
728 		 * last packet we enqueued, and also cause the
729 		 * DMA engine to wait after is has finished processing
730 		 * it.
731 		 */
732 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
733 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
734 		    htole32(TFD_TxDMAIndicate);
735 		STE_CDTXSYNC(sc, sc->sc_txlast,
736 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
737 
738 		/*
739 		 * Link up the new chain of descriptors to the
740 		 * last.
741 		 */
742 		sc->sc_txdescs[olasttx].tfd_next =
743 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
744 		STE_CDTXSYNC(sc, olasttx,
745 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
746 
747 		/*
748 		 * Kick the transmit DMA logic.  Note that since we're
749 		 * using auto-polling, reading the Tx desc pointer will
750 		 * give it the nudge it needs to get going.
751 		 */
752 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
753 		    STE_TxDMAListPtr) == 0) {
754 			bus_space_write_4(sc->sc_st, sc->sc_sh,
755 			    STE_DMACtrl, DC_TxDMAHalt);
756 			ste_dmahalt_wait(sc);
757 			bus_space_write_4(sc->sc_st, sc->sc_sh,
758 			    STE_TxDMAListPtr,
759 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
760 			bus_space_write_4(sc->sc_st, sc->sc_sh,
761 			    STE_DMACtrl, DC_TxDMAResume);
762 		}
763 
764 		/* Set a watchdog timer in case the chip flakes out. */
765 		ifp->if_timer = 5;
766 	}
767 }
768 
769 /*
770  * ste_watchdog:	[ifnet interface function]
771  *
772  *	Watchdog timer handler.
773  */
774 static void
775 ste_watchdog(struct ifnet *ifp)
776 {
777 	struct ste_softc *sc = ifp->if_softc;
778 
779 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
780 	ifp->if_oerrors++;
781 
782 	ste_txintr(sc);
783 	ste_rxintr(sc);
784 	(void) ste_init(ifp);
785 
786 	/* Try to get more packets going. */
787 	ste_start(ifp);
788 }
789 
790 /*
791  * ste_ioctl:		[ifnet interface function]
792  *
793  *	Handle control requests from the operator.
794  */
795 static int
796 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
797 {
798 	struct ste_softc *sc = ifp->if_softc;
799 	int s, error;
800 
801 	s = splnet();
802 
803 	error = ether_ioctl(ifp, cmd, data);
804 	if (error == ENETRESET) {
805 		/*
806 		 * Multicast list has changed; set the hardware filter
807 		 * accordingly.
808 		 */
809 		if (ifp->if_flags & IFF_RUNNING)
810 			ste_set_filter(sc);
811 		error = 0;
812 	}
813 
814 	/* Try to get more packets going. */
815 	ste_start(ifp);
816 
817 	splx(s);
818 	return (error);
819 }
820 
821 /*
822  * ste_intr:
823  *
824  *	Interrupt service routine.
825  */
826 static int
827 ste_intr(void *arg)
828 {
829 	struct ste_softc *sc = arg;
830 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
831 	uint16_t isr;
832 	uint8_t txstat;
833 	int wantinit;
834 
835 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
836 	     IS_InterruptStatus) == 0)
837 		return (0);
838 
839 	for (wantinit = 0; wantinit == 0;) {
840 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
841 		if ((isr & sc->sc_IntEnable) == 0)
842 			break;
843 
844 		/* Receive interrupts. */
845 		if (isr & IE_RxDMAComplete)
846 			ste_rxintr(sc);
847 
848 		/* Transmit interrupts. */
849 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
850 			ste_txintr(sc);
851 
852 		/* Statistics overflow. */
853 		if (isr & IE_UpdateStats)
854 			ste_stats_update(sc);
855 
856 		/* Transmission errors. */
857 		if (isr & IE_TxComplete) {
858 			for (;;) {
859 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
860 				    STE_TxStatus);
861 				if ((txstat & TS_TxComplete) == 0)
862 					break;
863 				if (txstat & TS_TxUnderrun) {
864 					sc->sc_txthresh += 32;
865 					if (sc->sc_txthresh > 0x1ffc)
866 						sc->sc_txthresh = 0x1ffc;
867 					printf("%s: transmit underrun, new "
868 					    "threshold: %d bytes\n",
869 					    device_xname(sc->sc_dev),
870 					    sc->sc_txthresh);
871 					ste_reset(sc, AC_TxReset | AC_DMA |
872 					    AC_FIFO | AC_Network);
873 					ste_setthresh(sc);
874 					bus_space_write_1(sc->sc_st, sc->sc_sh,
875 					    STE_TxDMAPollPeriod, 127);
876 					ste_txrestart(sc,
877 					    bus_space_read_1(sc->sc_st,
878 						sc->sc_sh, STE_TxFrameId));
879 				}
880 				if (txstat & TS_TxReleaseError) {
881 					printf("%s: Tx FIFO release error\n",
882 					    device_xname(sc->sc_dev));
883 					wantinit = 1;
884 				}
885 				if (txstat & TS_MaxCollisions) {
886 					printf("%s: excessive collisions\n",
887 					    device_xname(sc->sc_dev));
888 					wantinit = 1;
889 				}
890 				if (txstat & TS_TxStatusOverflow) {
891 					printf("%s: status overflow\n",
892 					    device_xname(sc->sc_dev));
893 					wantinit = 1;
894 				}
895 				bus_space_write_2(sc->sc_st, sc->sc_sh,
896 				    STE_TxStatus, 0);
897 			}
898 		}
899 
900 		/* Host interface errors. */
901 		if (isr & IE_HostError) {
902 			printf("%s: Host interface error\n",
903 			    device_xname(sc->sc_dev));
904 			wantinit = 1;
905 		}
906 	}
907 
908 	if (wantinit)
909 		ste_init(ifp);
910 
911 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
912 	    sc->sc_IntEnable);
913 
914 	/* Try to get more packets going. */
915 	ste_start(ifp);
916 
917 	return (1);
918 }
919 
920 /*
921  * ste_txintr:
922  *
923  *	Helper; handle transmit interrupts.
924  */
925 static void
926 ste_txintr(struct ste_softc *sc)
927 {
928 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
929 	struct ste_descsoft *ds;
930 	uint32_t control;
931 	int i;
932 
933 	ifp->if_flags &= ~IFF_OACTIVE;
934 
935 	/*
936 	 * Go through our Tx list and free mbufs for those
937 	 * frames which have been transmitted.
938 	 */
939 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
940 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
941 		ds = &sc->sc_txsoft[i];
942 
943 		STE_CDTXSYNC(sc, i,
944 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
945 
946 		control = le32toh(sc->sc_txdescs[i].tfd_control);
947 		if ((control & TFD_TxDMAComplete) == 0)
948 			break;
949 
950 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
951 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
952 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
953 		m_freem(ds->ds_mbuf);
954 		ds->ds_mbuf = NULL;
955 	}
956 
957 	/* Update the dirty transmit buffer pointer. */
958 	sc->sc_txdirty = i;
959 
960 	/*
961 	 * If there are no more pending transmissions, cancel the watchdog
962 	 * timer.
963 	 */
964 	if (sc->sc_txpending == 0)
965 		ifp->if_timer = 0;
966 }
967 
968 /*
969  * ste_rxintr:
970  *
971  *	Helper; handle receive interrupts.
972  */
973 static void
974 ste_rxintr(struct ste_softc *sc)
975 {
976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
977 	struct ste_descsoft *ds;
978 	struct mbuf *m;
979 	uint32_t status;
980 	int i, len;
981 
982 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
983 		ds = &sc->sc_rxsoft[i];
984 
985 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
986 
987 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
988 
989 		if ((status & RFD_RxDMAComplete) == 0)
990 			break;
991 
992 		/*
993 		 * If the packet had an error, simply recycle the
994 		 * buffer.  Note, we count the error later in the
995 		 * periodic stats update.
996 		 */
997 		if (status & RFD_RxFrameError) {
998 			STE_INIT_RXDESC(sc, i);
999 			continue;
1000 		}
1001 
1002 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1003 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1004 
1005 		/*
1006 		 * No errors; receive the packet.  Note, we have
1007 		 * configured the chip to not include the CRC at
1008 		 * the end of the packet.
1009 		 */
1010 		len = RFD_RxDMAFrameLen(status);
1011 
1012 		/*
1013 		 * If the packet is small enough to fit in a
1014 		 * single header mbuf, allocate one and copy
1015 		 * the data into it.  This greatly reduces
1016 		 * memory consumption when we receive lots
1017 		 * of small packets.
1018 		 *
1019 		 * Otherwise, we add a new buffer to the receive
1020 		 * chain.  If this fails, we drop the packet and
1021 		 * recycle the old buffer.
1022 		 */
1023 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1024 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1025 			if (m == NULL)
1026 				goto dropit;
1027 			m->m_data += 2;
1028 			memcpy(mtod(m, void *),
1029 			    mtod(ds->ds_mbuf, void *), len);
1030 			STE_INIT_RXDESC(sc, i);
1031 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1032 			    ds->ds_dmamap->dm_mapsize,
1033 			    BUS_DMASYNC_PREREAD);
1034 		} else {
1035 			m = ds->ds_mbuf;
1036 			if (ste_add_rxbuf(sc, i) != 0) {
1037  dropit:
1038 				ifp->if_ierrors++;
1039 				STE_INIT_RXDESC(sc, i);
1040 				bus_dmamap_sync(sc->sc_dmat,
1041 				    ds->ds_dmamap, 0,
1042 				    ds->ds_dmamap->dm_mapsize,
1043 				    BUS_DMASYNC_PREREAD);
1044 				continue;
1045 			}
1046 		}
1047 
1048 		m_set_rcvif(m, ifp);
1049 		m->m_pkthdr.len = m->m_len = len;
1050 
1051 		/*
1052 		 * Pass this up to any BPF listeners, but only
1053 		 * pass if up the stack if it's for us.
1054 		 */
1055 		bpf_mtap(ifp, m);
1056 
1057 		/* Pass it on. */
1058 		if_percpuq_enqueue(ifp->if_percpuq, m);
1059 	}
1060 
1061 	/* Update the receive pointer. */
1062 	sc->sc_rxptr = i;
1063 }
1064 
1065 /*
1066  * ste_tick:
1067  *
1068  *	One second timer, used to tick the MII.
1069  */
1070 static void
1071 ste_tick(void *arg)
1072 {
1073 	struct ste_softc *sc = arg;
1074 	int s;
1075 
1076 	s = splnet();
1077 	mii_tick(&sc->sc_mii);
1078 	ste_stats_update(sc);
1079 	splx(s);
1080 
1081 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1082 }
1083 
1084 /*
1085  * ste_stats_update:
1086  *
1087  *	Read the ST-201 statistics counters.
1088  */
1089 static void
1090 ste_stats_update(struct ste_softc *sc)
1091 {
1092 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1093 	bus_space_tag_t st = sc->sc_st;
1094 	bus_space_handle_t sh = sc->sc_sh;
1095 
1096 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1097 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1098 
1099 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1100 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1101 
1102 	ifp->if_opackets +=
1103 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1104 	ifp->if_ipackets +=
1105 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1106 
1107 	ifp->if_collisions +=
1108 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1109 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1110 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1111 
1112 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1113 
1114 	ifp->if_ierrors +=
1115 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1116 
1117 	ifp->if_oerrors +=
1118 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1119 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1120 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1121 
1122 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1123 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1124 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1125 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1126 }
1127 
1128 /*
1129  * ste_reset:
1130  *
1131  *	Perform a soft reset on the ST-201.
1132  */
1133 static void
1134 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1135 {
1136 	uint32_t ac;
1137 	int i;
1138 
1139 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1140 
1141 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1142 
1143 	delay(50000);
1144 
1145 	for (i = 0; i < STE_TIMEOUT; i++) {
1146 		delay(1000);
1147 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1148 		     AC_ResetBusy) == 0)
1149 			break;
1150 	}
1151 
1152 	if (i == STE_TIMEOUT)
1153 		printf("%s: reset failed to complete\n",
1154 		    device_xname(sc->sc_dev));
1155 
1156 	delay(1000);
1157 }
1158 
1159 /*
1160  * ste_setthresh:
1161  *
1162  * 	set the various transmit threshold registers
1163  */
1164 static void
1165 ste_setthresh(struct ste_softc *sc)
1166 {
1167 	/* set the TX threhold */
1168 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1169 	    STE_TxStartThresh, sc->sc_txthresh);
1170 	/* Urgent threshold: set to sc_txthresh / 2 */
1171 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1172 	    sc->sc_txthresh >> 6);
1173 	/* Burst threshold: use default value (256 bytes) */
1174 }
1175 
1176 /*
1177  * restart TX at the given frame ID in the transmitter ring
1178  */
1179 static void
1180 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1181 {
1182 	u_int32_t control;
1183 
1184 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1185 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1186 	control &= ~TFD_TxDMAComplete;
1187 	sc->sc_txdescs[id].tfd_control = htole32(control);
1188 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1189 
1190 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1191 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1192 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1193 	ste_dmahalt_wait(sc);
1194 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1195 	    STE_CDTXADDR(sc, id));
1196 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1197 }
1198 
1199 /*
1200  * ste_init:		[ ifnet interface function ]
1201  *
1202  *	Initialize the interface.  Must be called at splnet().
1203  */
1204 static int
1205 ste_init(struct ifnet *ifp)
1206 {
1207 	struct ste_softc *sc = ifp->if_softc;
1208 	bus_space_tag_t st = sc->sc_st;
1209 	bus_space_handle_t sh = sc->sc_sh;
1210 	struct ste_descsoft *ds;
1211 	int i, error = 0;
1212 
1213 	/*
1214 	 * Cancel any pending I/O.
1215 	 */
1216 	ste_stop(ifp, 0);
1217 
1218 	/*
1219 	 * Reset the chip to a known state.
1220 	 */
1221 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1222 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1223 
1224 	/*
1225 	 * Initialize the transmit descriptor ring.
1226 	 */
1227 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1228 	sc->sc_txpending = 0;
1229 	sc->sc_txdirty = 0;
1230 	sc->sc_txlast = STE_NTXDESC - 1;
1231 
1232 	/*
1233 	 * Initialize the receive descriptor and receive job
1234 	 * descriptor rings.
1235 	 */
1236 	for (i = 0; i < STE_NRXDESC; i++) {
1237 		ds = &sc->sc_rxsoft[i];
1238 		if (ds->ds_mbuf == NULL) {
1239 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1240 				printf("%s: unable to allocate or map rx "
1241 				    "buffer %d, error = %d\n",
1242 				    device_xname(sc->sc_dev), i, error);
1243 				/*
1244 				 * XXX Should attempt to run with fewer receive
1245 				 * XXX buffers instead of just failing.
1246 				 */
1247 				ste_rxdrain(sc);
1248 				goto out;
1249 			}
1250 		} else
1251 			STE_INIT_RXDESC(sc, i);
1252 	}
1253 	sc->sc_rxptr = 0;
1254 
1255 	/* Set the station address. */
1256 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1257 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1258 		    CLLADDR(ifp->if_sadl)[i]);
1259 
1260 	/* Set up the receive filter. */
1261 	ste_set_filter(sc);
1262 
1263 	/*
1264 	 * Give the receive ring to the chip.
1265 	 */
1266 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1267 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1268 
1269 	/*
1270 	 * We defer giving the transmit ring to the chip until we
1271 	 * transmit the first packet.
1272 	 */
1273 
1274 	/*
1275 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1276 	 * large (127 is the max) -- we explicitly kick the transmit engine
1277 	 * when there's actually a packet.  We are using auto-polling only
1278 	 * to make the interface to the transmit engine not suck.
1279 	 */
1280 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1281 
1282 	/* ..and the Rx auto-poll period. */
1283 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1284 
1285 	/* Initialize the Tx start threshold. */
1286 	ste_setthresh(sc);
1287 
1288 	/* Set the FIFO release threshold to 512 bytes. */
1289 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1290 
1291 	/* Set maximum packet size for VLAN. */
1292 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1293 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1294 	else
1295 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1296 
1297 	/*
1298 	 * Initialize the interrupt mask.
1299 	 */
1300 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1301 	    IE_TxDMAComplete | IE_RxDMAComplete;
1302 
1303 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1304 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1305 
1306 	/*
1307 	 * Start the receive DMA engine.
1308 	 */
1309 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1310 
1311 	/*
1312 	 * Initialize MacCtrl0 -- do it before setting the media,
1313 	 * as setting the media will actually program the register.
1314 	 */
1315 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1316 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1317 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1318 
1319 	/*
1320 	 * Set the current media.
1321 	 */
1322 	if ((error = ether_mediachange(ifp)) != 0)
1323 		goto out;
1324 
1325 	/*
1326 	 * Start the MAC.
1327 	 */
1328 	bus_space_write_2(st, sh, STE_MacCtrl1,
1329 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1330 
1331 	/*
1332 	 * Start the one second MII clock.
1333 	 */
1334 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1335 
1336 	/*
1337 	 * ...all done!
1338 	 */
1339 	ifp->if_flags |= IFF_RUNNING;
1340 	ifp->if_flags &= ~IFF_OACTIVE;
1341 
1342  out:
1343 	if (error)
1344 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1345 	return (error);
1346 }
1347 
1348 /*
1349  * ste_drain:
1350  *
1351  *	Drain the receive queue.
1352  */
1353 static void
1354 ste_rxdrain(struct ste_softc *sc)
1355 {
1356 	struct ste_descsoft *ds;
1357 	int i;
1358 
1359 	for (i = 0; i < STE_NRXDESC; i++) {
1360 		ds = &sc->sc_rxsoft[i];
1361 		if (ds->ds_mbuf != NULL) {
1362 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1363 			m_freem(ds->ds_mbuf);
1364 			ds->ds_mbuf = NULL;
1365 		}
1366 	}
1367 }
1368 
1369 /*
1370  * ste_stop:		[ ifnet interface function ]
1371  *
1372  *	Stop transmission on the interface.
1373  */
1374 static void
1375 ste_stop(struct ifnet *ifp, int disable)
1376 {
1377 	struct ste_softc *sc = ifp->if_softc;
1378 	struct ste_descsoft *ds;
1379 	int i;
1380 
1381 	/*
1382 	 * Stop the one second clock.
1383 	 */
1384 	callout_stop(&sc->sc_tick_ch);
1385 
1386 	/* Down the MII. */
1387 	mii_down(&sc->sc_mii);
1388 
1389 	/*
1390 	 * Disable interrupts.
1391 	 */
1392 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1393 
1394 	/*
1395 	 * Stop receiver, transmitter, and stats update.
1396 	 */
1397 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1398 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1399 
1400 	/*
1401 	 * Stop the transmit and receive DMA.
1402 	 */
1403 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1404 	    DC_RxDMAHalt | DC_TxDMAHalt);
1405 	ste_dmahalt_wait(sc);
1406 
1407 	/*
1408 	 * Release any queued transmit buffers.
1409 	 */
1410 	for (i = 0; i < STE_NTXDESC; i++) {
1411 		ds = &sc->sc_txsoft[i];
1412 		if (ds->ds_mbuf != NULL) {
1413 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1414 			m_freem(ds->ds_mbuf);
1415 			ds->ds_mbuf = NULL;
1416 		}
1417 	}
1418 
1419 	/*
1420 	 * Mark the interface down and cancel the watchdog timer.
1421 	 */
1422 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1423 	ifp->if_timer = 0;
1424 
1425 	if (disable)
1426 		ste_rxdrain(sc);
1427 }
1428 
1429 static int
1430 ste_eeprom_wait(struct ste_softc *sc)
1431 {
1432 	int i;
1433 
1434 	for (i = 0; i < STE_TIMEOUT; i++) {
1435 		delay(1000);
1436 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1437 		     EC_EepromBusy) == 0)
1438 			return (0);
1439 	}
1440 	return (1);
1441 }
1442 
1443 /*
1444  * ste_read_eeprom:
1445  *
1446  *	Read data from the serial EEPROM.
1447  */
1448 static void
1449 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1450 {
1451 
1452 	if (ste_eeprom_wait(sc))
1453 		printf("%s: EEPROM failed to come ready\n",
1454 		    device_xname(sc->sc_dev));
1455 
1456 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1457 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1458 	if (ste_eeprom_wait(sc))
1459 		printf("%s: EEPROM read timed out\n",
1460 		    device_xname(sc->sc_dev));
1461 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1462 }
1463 
1464 /*
1465  * ste_add_rxbuf:
1466  *
1467  *	Add a receive buffer to the indicated descriptor.
1468  */
1469 static int
1470 ste_add_rxbuf(struct ste_softc *sc, int idx)
1471 {
1472 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1473 	struct mbuf *m;
1474 	int error;
1475 
1476 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1477 	if (m == NULL)
1478 		return (ENOBUFS);
1479 
1480 	MCLGET(m, M_DONTWAIT);
1481 	if ((m->m_flags & M_EXT) == 0) {
1482 		m_freem(m);
1483 		return (ENOBUFS);
1484 	}
1485 
1486 	if (ds->ds_mbuf != NULL)
1487 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1488 
1489 	ds->ds_mbuf = m;
1490 
1491 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1492 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1493 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1494 	if (error) {
1495 		printf("%s: can't load rx DMA map %d, error = %d\n",
1496 		    device_xname(sc->sc_dev), idx, error);
1497 		panic("ste_add_rxbuf");		/* XXX */
1498 	}
1499 
1500 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1501 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1502 
1503 	STE_INIT_RXDESC(sc, idx);
1504 
1505 	return (0);
1506 }
1507 
1508 /*
1509  * ste_set_filter:
1510  *
1511  *	Set up the receive filter.
1512  */
1513 static void
1514 ste_set_filter(struct ste_softc *sc)
1515 {
1516 	struct ethercom *ec = &sc->sc_ethercom;
1517 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1518 	struct ether_multi *enm;
1519 	struct ether_multistep step;
1520 	uint32_t crc;
1521 	uint16_t mchash[4];
1522 
1523 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1524 	if (ifp->if_flags & IFF_BROADCAST)
1525 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1526 
1527 	if (ifp->if_flags & IFF_PROMISC) {
1528 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1529 		goto allmulti;
1530 	}
1531 
1532 	/*
1533 	 * Set up the multicast address filter by passing all multicast
1534 	 * addresses through a CRC generator, and then using the low-order
1535 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1536 	 * high order bits select the register, while the rest of the bits
1537 	 * select the bit within the register.
1538 	 */
1539 
1540 	memset(mchash, 0, sizeof(mchash));
1541 
1542 	ETHER_FIRST_MULTI(step, ec, enm);
1543 	if (enm == NULL)
1544 		goto done;
1545 
1546 	while (enm != NULL) {
1547 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1548 			/*
1549 			 * We must listen to a range of multicast addresses.
1550 			 * For now, just accept all multicasts, rather than
1551 			 * trying to set only those filter bits needed to match
1552 			 * the range.  (At this time, the only use of address
1553 			 * ranges is for IP multicast routing, for which the
1554 			 * range is big enough to require all bits set.)
1555 			 */
1556 			goto allmulti;
1557 		}
1558 
1559 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1560 
1561 		/* Just want the 6 least significant bits. */
1562 		crc &= 0x3f;
1563 
1564 		/* Set the corresponding bit in the hash table. */
1565 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1566 
1567 		ETHER_NEXT_MULTI(step, enm);
1568 	}
1569 
1570 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1571 
1572 	ifp->if_flags &= ~IFF_ALLMULTI;
1573 	goto done;
1574 
1575  allmulti:
1576 	ifp->if_flags |= IFF_ALLMULTI;
1577 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1578 
1579  done:
1580 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1581 		/*
1582 		 * Program the multicast hash table.
1583 		 */
1584 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1585 		    mchash[0]);
1586 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1587 		    mchash[1]);
1588 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1589 		    mchash[2]);
1590 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1591 		    mchash[3]);
1592 	}
1593 
1594 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1595 	    sc->sc_ReceiveMode);
1596 }
1597 
1598 /*
1599  * ste_mii_readreg:	[mii interface function]
1600  *
1601  *	Read a PHY register on the MII of the ST-201.
1602  */
1603 static int
1604 ste_mii_readreg(device_t self, int phy, int reg)
1605 {
1606 
1607 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1608 }
1609 
1610 /*
1611  * ste_mii_writereg:	[mii interface function]
1612  *
1613  *	Write a PHY register on the MII of the ST-201.
1614  */
1615 static void
1616 ste_mii_writereg(device_t self, int phy, int reg, int val)
1617 {
1618 
1619 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1620 }
1621 
1622 /*
1623  * ste_mii_statchg:	[mii interface function]
1624  *
1625  *	Callback from MII layer when media changes.
1626  */
1627 static void
1628 ste_mii_statchg(struct ifnet *ifp)
1629 {
1630 	struct ste_softc *sc = ifp->if_softc;
1631 
1632 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1633 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1634 	else
1635 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1636 
1637 	/* XXX 802.1x flow-control? */
1638 
1639 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1640 }
1641 
1642 /*
1643  * ste_mii_bitbang_read: [mii bit-bang interface function]
1644  *
1645  *	Read the MII serial port for the MII bit-bang module.
1646  */
1647 static uint32_t
1648 ste_mii_bitbang_read(device_t self)
1649 {
1650 	struct ste_softc *sc = device_private(self);
1651 
1652 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1653 }
1654 
1655 /*
1656  * ste_mii_bitbang_write: [mii big-bang interface function]
1657  *
1658  *	Write the MII serial port for the MII bit-bang module.
1659  */
1660 static void
1661 ste_mii_bitbang_write(device_t self, uint32_t val)
1662 {
1663 	struct ste_softc *sc = device_private(self);
1664 
1665 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1666 }
1667