xref: /netbsd-src/sys/dev/pci/if_ste.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /*	$NetBSD: if_ste.c,v 1.23 2006/06/17 23:34:27 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. ST-201 10/100
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.23 2006/06/17 23:34:27 christos Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STE_NTXDESC		256
89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STE_NRXDESC		128
96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
98 
99 /*
100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct ste_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115 
116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct ste_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct ste_softc {
132 	struct device sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	void *sc_sdhook;		/* shutdown hook */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	struct callout sc_tick_ch;	/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct ste_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 	int	sc_txpending;		/* number of Tx requests pending */
162 	int	sc_txdirty;		/* first dirty Tx descriptor */
163 	int	sc_txlast;		/* last used Tx descriptor */
164 
165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
166 
167 	int	sc_txthresh;		/* Tx threshold */
168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
172 };
173 
174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
176 
177 #define	STE_CDTXSYNC(sc, x, ops)					\
178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180 
181 #define	STE_CDRXSYNC(sc, x, ops)					\
182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184 
185 #define	STE_INIT_RXDESC(sc, x)						\
186 do {									\
187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
189 	struct mbuf *__m = __ds->ds_mbuf;				\
190 									\
191 	/*								\
192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
193 	 * so that the payload after the Ethernet header is aligned	\
194 	 * to a 4-byte boundary.					\
195 	 */								\
196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
197 	__rfd->rfd_frag.frag_addr =					\
198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
201 	__rfd->rfd_status = 0;						\
202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204 
205 #define STE_TIMEOUT 1000
206 
207 static void	ste_start(struct ifnet *);
208 static void	ste_watchdog(struct ifnet *);
209 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
210 static int	ste_init(struct ifnet *);
211 static void	ste_stop(struct ifnet *, int);
212 
213 static void	ste_shutdown(void *);
214 
215 static void	ste_reset(struct ste_softc *, u_int32_t);
216 static void	ste_setthresh(struct ste_softc *);
217 static void	ste_txrestart(struct ste_softc *, u_int8_t);
218 static void	ste_rxdrain(struct ste_softc *);
219 static int	ste_add_rxbuf(struct ste_softc *, int);
220 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 static void	ste_tick(void *);
222 
223 static void	ste_stats_update(struct ste_softc *);
224 
225 static void	ste_set_filter(struct ste_softc *);
226 
227 static int	ste_intr(void *);
228 static void	ste_txintr(struct ste_softc *);
229 static void	ste_rxintr(struct ste_softc *);
230 
231 static int	ste_mii_readreg(struct device *, int, int);
232 static void	ste_mii_writereg(struct device *, int, int, int);
233 static void	ste_mii_statchg(struct device *);
234 
235 static int	ste_mediachange(struct ifnet *);
236 static void	ste_mediastatus(struct ifnet *, struct ifmediareq *);
237 
238 static int	ste_match(struct device *, struct cfdata *, void *);
239 static void	ste_attach(struct device *, struct device *, void *);
240 
241 int	ste_copy_small = 0;
242 
243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
244     ste_match, ste_attach, NULL, NULL);
245 
246 static uint32_t ste_mii_bitbang_read(struct device *);
247 static void	ste_mii_bitbang_write(struct device *, uint32_t);
248 
249 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
250 	ste_mii_bitbang_read,
251 	ste_mii_bitbang_write,
252 	{
253 		PC_MgmtData,		/* MII_BIT_MDO */
254 		PC_MgmtData,		/* MII_BIT_MDI */
255 		PC_MgmtClk,		/* MII_BIT_MDC */
256 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
257 		0,			/* MII_BIT_DIR_PHY_HOST */
258 	}
259 };
260 
261 /*
262  * Devices supported by this driver.
263  */
264 static const struct ste_product {
265 	pci_vendor_id_t		ste_vendor;
266 	pci_product_id_t	ste_product;
267 	const char		*ste_name;
268 } ste_products[] = {
269 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
270 	  "Sundance ST-201 10/100 Ethernet" },
271 
272 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
273 	  "D-Link DL-1002 10/100 Ethernet" },
274 
275 	{ 0,				0,
276 	  NULL },
277 };
278 
279 static const struct ste_product *
280 ste_lookup(const struct pci_attach_args *pa)
281 {
282 	const struct ste_product *sp;
283 
284 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
285 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
286 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
287 			return (sp);
288 	}
289 	return (NULL);
290 }
291 
292 static int
293 ste_match(struct device *parent, struct cfdata *cf, void *aux)
294 {
295 	struct pci_attach_args *pa = aux;
296 
297 	if (ste_lookup(pa) != NULL)
298 		return (1);
299 
300 	return (0);
301 }
302 
303 static void
304 ste_attach(struct device *parent, struct device *self, void *aux)
305 {
306 	struct ste_softc *sc = (struct ste_softc *) self;
307 	struct pci_attach_args *pa = aux;
308 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
309 	pci_chipset_tag_t pc = pa->pa_pc;
310 	pci_intr_handle_t ih;
311 	const char *intrstr = NULL;
312 	bus_space_tag_t iot, memt;
313 	bus_space_handle_t ioh, memh;
314 	bus_dma_segment_t seg;
315 	int ioh_valid, memh_valid;
316 	int i, rseg, error;
317 	const struct ste_product *sp;
318 	uint8_t enaddr[ETHER_ADDR_LEN];
319 	uint16_t myea[ETHER_ADDR_LEN / 2];
320 
321 	callout_init(&sc->sc_tick_ch);
322 
323 	sp = ste_lookup(pa);
324 	if (sp == NULL) {
325 		printf("\n");
326 		panic("ste_attach: impossible");
327 	}
328 
329 	printf(": %s\n", sp->ste_name);
330 
331 	/*
332 	 * Map the device.
333 	 */
334 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
335 	    PCI_MAPREG_TYPE_IO, 0,
336 	    &iot, &ioh, NULL, NULL) == 0);
337 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
338 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
339 	    &memt, &memh, NULL, NULL) == 0);
340 
341 	if (memh_valid) {
342 		sc->sc_st = memt;
343 		sc->sc_sh = memh;
344 	} else if (ioh_valid) {
345 		sc->sc_st = iot;
346 		sc->sc_sh = ioh;
347 	} else {
348 		printf("%s: unable to map device registers\n",
349 		    sc->sc_dev.dv_xname);
350 		return;
351 	}
352 
353 	sc->sc_dmat = pa->pa_dmat;
354 
355 	/* Enable bus mastering. */
356 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
357 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
358 	    PCI_COMMAND_MASTER_ENABLE);
359 
360 	/* power up chip */
361 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
362 	    NULL)) && error != EOPNOTSUPP) {
363 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
364 		    error);
365 		return;
366 	}
367 
368 	/*
369 	 * Map and establish our interrupt.
370 	 */
371 	if (pci_intr_map(pa, &ih)) {
372 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
373 		return;
374 	}
375 	intrstr = pci_intr_string(pc, ih);
376 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
377 	if (sc->sc_ih == NULL) {
378 		printf("%s: unable to establish interrupt",
379 		    sc->sc_dev.dv_xname);
380 		if (intrstr != NULL)
381 			printf(" at %s", intrstr);
382 		printf("\n");
383 		return;
384 	}
385 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
386 
387 	/*
388 	 * Allocate the control data structures, and create and load the
389 	 * DMA map for it.
390 	 */
391 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
392 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
393 	    0)) != 0) {
394 		printf("%s: unable to allocate control data, error = %d\n",
395 		    sc->sc_dev.dv_xname, error);
396 		goto fail_0;
397 	}
398 
399 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
400 	    sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
401 	    BUS_DMA_COHERENT)) != 0) {
402 		printf("%s: unable to map control data, error = %d\n",
403 		    sc->sc_dev.dv_xname, error);
404 		goto fail_1;
405 	}
406 
407 	if ((error = bus_dmamap_create(sc->sc_dmat,
408 	    sizeof(struct ste_control_data), 1,
409 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
410 		printf("%s: unable to create control data DMA map, "
411 		    "error = %d\n", sc->sc_dev.dv_xname, error);
412 		goto fail_2;
413 	}
414 
415 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
416 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
417 	    0)) != 0) {
418 		printf("%s: unable to load control data DMA map, error = %d\n",
419 		    sc->sc_dev.dv_xname, error);
420 		goto fail_3;
421 	}
422 
423 	/*
424 	 * Create the transmit buffer DMA maps.
425 	 */
426 	for (i = 0; i < STE_NTXDESC; i++) {
427 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
428 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
429 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
430 			printf("%s: unable to create tx DMA map %d, "
431 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
432 			goto fail_4;
433 		}
434 	}
435 
436 	/*
437 	 * Create the receive buffer DMA maps.
438 	 */
439 	for (i = 0; i < STE_NRXDESC; i++) {
440 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
441 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
442 			printf("%s: unable to create rx DMA map %d, "
443 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
444 			goto fail_5;
445 		}
446 		sc->sc_rxsoft[i].ds_mbuf = NULL;
447 	}
448 
449 	/*
450 	 * Reset the chip to a known state.
451 	 */
452 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
453 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
454 
455 	/*
456 	 * Read the Ethernet address from the EEPROM.
457 	 */
458 	for (i = 0; i < 3; i++) {
459 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
460 		myea[i] = le16toh(myea[i]);
461 	}
462 	memcpy(enaddr, myea, sizeof(enaddr));
463 
464 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
465 	    ether_sprintf(enaddr));
466 
467 	/*
468 	 * Initialize our media structures and probe the MII.
469 	 */
470 	sc->sc_mii.mii_ifp = ifp;
471 	sc->sc_mii.mii_readreg = ste_mii_readreg;
472 	sc->sc_mii.mii_writereg = ste_mii_writereg;
473 	sc->sc_mii.mii_statchg = ste_mii_statchg;
474 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
475 	    ste_mediastatus);
476 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
477 	    MII_OFFSET_ANY, 0);
478 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
479 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
480 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
481 	} else
482 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
483 
484 	ifp = &sc->sc_ethercom.ec_if;
485 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
486 	ifp->if_softc = sc;
487 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
488 	ifp->if_ioctl = ste_ioctl;
489 	ifp->if_start = ste_start;
490 	ifp->if_watchdog = ste_watchdog;
491 	ifp->if_init = ste_init;
492 	ifp->if_stop = ste_stop;
493 	IFQ_SET_READY(&ifp->if_snd);
494 
495 	/*
496 	 * Default the transmit threshold to 128 bytes.
497 	 */
498 	sc->sc_txthresh = 128;
499 
500 	/*
501 	 * Disable MWI if the PCI layer tells us to.
502 	 */
503 	sc->sc_DMACtrl = 0;
504 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
505 		sc->sc_DMACtrl |= DC_MWIDisable;
506 
507 	/*
508 	 * We can support 802.1Q VLAN-sized frames.
509 	 */
510 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
511 
512 	/*
513 	 * Attach the interface.
514 	 */
515 	if_attach(ifp);
516 	ether_ifattach(ifp, enaddr);
517 
518 	/*
519 	 * Make sure the interface is shutdown during reboot.
520 	 */
521 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
522 	if (sc->sc_sdhook == NULL)
523 		printf("%s: WARNING: unable to establish shutdown hook\n",
524 		    sc->sc_dev.dv_xname);
525 	return;
526 
527 	/*
528 	 * Free any resources we've allocated during the failed attach
529 	 * attempt.  Do this in reverse order and fall through.
530 	 */
531  fail_5:
532 	for (i = 0; i < STE_NRXDESC; i++) {
533 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
534 			bus_dmamap_destroy(sc->sc_dmat,
535 			    sc->sc_rxsoft[i].ds_dmamap);
536 	}
537  fail_4:
538 	for (i = 0; i < STE_NTXDESC; i++) {
539 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
540 			bus_dmamap_destroy(sc->sc_dmat,
541 			    sc->sc_txsoft[i].ds_dmamap);
542 	}
543 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
544  fail_3:
545 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
546  fail_2:
547 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
548 	    sizeof(struct ste_control_data));
549  fail_1:
550 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
551  fail_0:
552 	return;
553 }
554 
555 /*
556  * ste_shutdown:
557  *
558  *	Make sure the interface is stopped at reboot time.
559  */
560 static void
561 ste_shutdown(void *arg)
562 {
563 	struct ste_softc *sc = arg;
564 
565 	ste_stop(&sc->sc_ethercom.ec_if, 1);
566 }
567 
568 static void
569 ste_dmahalt_wait(struct ste_softc *sc)
570 {
571 	int i;
572 
573 	for (i = 0; i < STE_TIMEOUT; i++) {
574 		delay(2);
575 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
576 		     DC_DMAHaltBusy) == 0)
577 			break;
578 	}
579 
580 	if (i == STE_TIMEOUT)
581 		printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
582 }
583 
584 /*
585  * ste_start:		[ifnet interface function]
586  *
587  *	Start packet transmission on the interface.
588  */
589 static void
590 ste_start(struct ifnet *ifp)
591 {
592 	struct ste_softc *sc = ifp->if_softc;
593 	struct mbuf *m0, *m;
594 	struct ste_descsoft *ds;
595 	struct ste_tfd *tfd;
596 	bus_dmamap_t dmamap;
597 	int error, olasttx, nexttx, opending, seg, totlen;
598 
599 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
600 		return;
601 
602 	/*
603 	 * Remember the previous number of pending transmissions
604 	 * and the current last descriptor in the list.
605 	 */
606 	opending = sc->sc_txpending;
607 	olasttx = sc->sc_txlast;
608 
609 	/*
610 	 * Loop through the send queue, setting up transmit descriptors
611 	 * until we drain the queue, or use up all available transmit
612 	 * descriptors.
613 	 */
614 	while (sc->sc_txpending < STE_NTXDESC) {
615 		/*
616 		 * Grab a packet off the queue.
617 		 */
618 		IFQ_POLL(&ifp->if_snd, m0);
619 		if (m0 == NULL)
620 			break;
621 		m = NULL;
622 
623 		/*
624 		 * Get the last and next available transmit descriptor.
625 		 */
626 		nexttx = STE_NEXTTX(sc->sc_txlast);
627 		tfd = &sc->sc_txdescs[nexttx];
628 		ds = &sc->sc_txsoft[nexttx];
629 
630 		dmamap = ds->ds_dmamap;
631 
632 		/*
633 		 * Load the DMA map.  If this fails, the packet either
634 		 * didn't fit in the alloted number of segments, or we
635 		 * were short on resources.  In this case, we'll copy
636 		 * and try again.
637 		 */
638 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
639 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
640 			MGETHDR(m, M_DONTWAIT, MT_DATA);
641 			if (m == NULL) {
642 				printf("%s: unable to allocate Tx mbuf\n",
643 				    sc->sc_dev.dv_xname);
644 				break;
645 			}
646 			if (m0->m_pkthdr.len > MHLEN) {
647 				MCLGET(m, M_DONTWAIT);
648 				if ((m->m_flags & M_EXT) == 0) {
649 					printf("%s: unable to allocate Tx "
650 					    "cluster\n", sc->sc_dev.dv_xname);
651 					m_freem(m);
652 					break;
653 				}
654 			}
655 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
656 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
657 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
658 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
659 			if (error) {
660 				printf("%s: unable to load Tx buffer, "
661 				    "error = %d\n", sc->sc_dev.dv_xname, error);
662 				break;
663 			}
664 		}
665 
666 		IFQ_DEQUEUE(&ifp->if_snd, m0);
667 		if (m != NULL) {
668 			m_freem(m0);
669 			m0 = m;
670 		}
671 
672 		/*
673 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
674 		 */
675 
676 		/* Sync the DMA map. */
677 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
678 		    BUS_DMASYNC_PREWRITE);
679 
680 		/* Initialize the fragment list. */
681 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
682 			tfd->tfd_frags[seg].frag_addr =
683 			    htole32(dmamap->dm_segs[seg].ds_addr);
684 			tfd->tfd_frags[seg].frag_len =
685 			    htole32(dmamap->dm_segs[seg].ds_len);
686 			totlen += dmamap->dm_segs[seg].ds_len;
687 		}
688 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
689 
690 		/* Initialize the descriptor. */
691 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
692 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
693 
694 		/* Sync the descriptor. */
695 		STE_CDTXSYNC(sc, nexttx,
696 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
697 
698 		/*
699 		 * Store a pointer to the packet so we can free it later,
700 		 * and remember what txdirty will be once the packet is
701 		 * done.
702 		 */
703 		ds->ds_mbuf = m0;
704 
705 		/* Advance the tx pointer. */
706 		sc->sc_txpending++;
707 		sc->sc_txlast = nexttx;
708 
709 #if NBPFILTER > 0
710 		/*
711 		 * Pass the packet to any BPF listeners.
712 		 */
713 		if (ifp->if_bpf)
714 			bpf_mtap(ifp->if_bpf, m0);
715 #endif /* NBPFILTER > 0 */
716 	}
717 
718 	if (sc->sc_txpending == STE_NTXDESC) {
719 		/* No more slots left; notify upper layer. */
720 		ifp->if_flags |= IFF_OACTIVE;
721 	}
722 
723 	if (sc->sc_txpending != opending) {
724 		/*
725 		 * We enqueued packets.  If the transmitter was idle,
726 		 * reset the txdirty pointer.
727 		 */
728 		if (opending == 0)
729 			sc->sc_txdirty = STE_NEXTTX(olasttx);
730 
731 		/*
732 		 * Cause a descriptor interrupt to happen on the
733 		 * last packet we enqueued, and also cause the
734 		 * DMA engine to wait after is has finished processing
735 		 * it.
736 		 */
737 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
738 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
739 		    htole32(TFD_TxDMAIndicate);
740 		STE_CDTXSYNC(sc, sc->sc_txlast,
741 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
742 
743 		/*
744 		 * Link up the new chain of descriptors to the
745 		 * last.
746 		 */
747 		sc->sc_txdescs[olasttx].tfd_next =
748 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
749 		STE_CDTXSYNC(sc, olasttx,
750 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
751 
752 		/*
753 		 * Kick the transmit DMA logic.  Note that since we're
754 		 * using auto-polling, reading the Tx desc pointer will
755 		 * give it the nudge it needs to get going.
756 		 */
757 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
758 		    STE_TxDMAListPtr) == 0) {
759 			bus_space_write_4(sc->sc_st, sc->sc_sh,
760 			    STE_DMACtrl, DC_TxDMAHalt);
761 			ste_dmahalt_wait(sc);
762 			bus_space_write_4(sc->sc_st, sc->sc_sh,
763 			    STE_TxDMAListPtr,
764 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
765 			bus_space_write_4(sc->sc_st, sc->sc_sh,
766 			    STE_DMACtrl, DC_TxDMAResume);
767 		}
768 
769 		/* Set a watchdog timer in case the chip flakes out. */
770 		ifp->if_timer = 5;
771 	}
772 }
773 
774 /*
775  * ste_watchdog:	[ifnet interface function]
776  *
777  *	Watchdog timer handler.
778  */
779 static void
780 ste_watchdog(struct ifnet *ifp)
781 {
782 	struct ste_softc *sc = ifp->if_softc;
783 
784 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
785 	ifp->if_oerrors++;
786 
787 	(void) ste_init(ifp);
788 
789 	/* Try to get more packets going. */
790 	ste_start(ifp);
791 }
792 
793 /*
794  * ste_ioctl:		[ifnet interface function]
795  *
796  *	Handle control requests from the operator.
797  */
798 static int
799 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
800 {
801 	struct ste_softc *sc = ifp->if_softc;
802 	struct ifreq *ifr = (struct ifreq *)data;
803 	int s, error;
804 
805 	s = splnet();
806 
807 	switch (cmd) {
808 	case SIOCSIFMEDIA:
809 	case SIOCGIFMEDIA:
810 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
811 		break;
812 
813 	default:
814 		error = ether_ioctl(ifp, cmd, data);
815 		if (error == ENETRESET) {
816 			/*
817 			 * Multicast list has changed; set the hardware filter
818 			 * accordingly.
819 			 */
820 			if (ifp->if_flags & IFF_RUNNING)
821 				ste_set_filter(sc);
822 			error = 0;
823 		}
824 		break;
825 	}
826 
827 	/* Try to get more packets going. */
828 	ste_start(ifp);
829 
830 	splx(s);
831 	return (error);
832 }
833 
834 /*
835  * ste_intr:
836  *
837  *	Interrupt service routine.
838  */
839 static int
840 ste_intr(void *arg)
841 {
842 	struct ste_softc *sc = arg;
843 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
844 	uint16_t isr;
845 	uint8_t txstat;
846 	int wantinit;
847 
848 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
849 	     IS_InterruptStatus) == 0)
850 		return (0);
851 
852 	for (wantinit = 0; wantinit == 0;) {
853 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
854 		if ((isr & sc->sc_IntEnable) == 0)
855 			break;
856 
857 		/* Receive interrupts. */
858 		if (isr & IE_RxDMAComplete)
859 			ste_rxintr(sc);
860 
861 		/* Transmit interrupts. */
862 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
863 			ste_txintr(sc);
864 
865 		/* Statistics overflow. */
866 		if (isr & IE_UpdateStats)
867 			ste_stats_update(sc);
868 
869 		/* Transmission errors. */
870 		if (isr & IE_TxComplete) {
871 			for (;;) {
872 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
873 				    STE_TxStatus);
874 				if ((txstat & TS_TxComplete) == 0)
875 					break;
876 				if (txstat & TS_TxUnderrun) {
877 					sc->sc_txthresh += 32;
878 					if (sc->sc_txthresh > 0x1ffc)
879 						sc->sc_txthresh = 0x1ffc;
880 					printf("%s: transmit underrun, new "
881 					    "threshold: %d bytes\n",
882 					    sc->sc_dev.dv_xname,
883 					    sc->sc_txthresh);
884 					ste_reset(sc, AC_TxReset | AC_DMA |
885 					    AC_FIFO | AC_Network);
886 					ste_setthresh(sc);
887 					bus_space_write_1(sc->sc_st, sc->sc_sh,
888 					    STE_TxDMAPollPeriod, 127);
889 					ste_txrestart(sc,
890 					    bus_space_read_1(sc->sc_st,
891 						sc->sc_sh, STE_TxFrameId));
892 				}
893 				if (txstat & TS_TxReleaseError) {
894 					printf("%s: Tx FIFO release error\n",
895 					    sc->sc_dev.dv_xname);
896 					wantinit = 1;
897 				}
898 				if (txstat & TS_MaxCollisions) {
899 					printf("%s: excessive collisions\n",
900 					    sc->sc_dev.dv_xname);
901 					wantinit = 1;
902 				}
903 				if (txstat & TS_TxStatusOverflow) {
904 					printf("%s: status overflow\n",
905 					    sc->sc_dev.dv_xname);
906 					wantinit = 1;
907 				}
908 				bus_space_write_2(sc->sc_st, sc->sc_sh,
909 				    STE_TxStatus, 0);
910 			}
911 		}
912 
913 		/* Host interface errors. */
914 		if (isr & IE_HostError) {
915 			printf("%s: Host interface error\n",
916 			    sc->sc_dev.dv_xname);
917 			wantinit = 1;
918 		}
919 	}
920 
921 	if (wantinit)
922 		ste_init(ifp);
923 
924 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
925 	    sc->sc_IntEnable);
926 
927 	/* Try to get more packets going. */
928 	ste_start(ifp);
929 
930 	return (1);
931 }
932 
933 /*
934  * ste_txintr:
935  *
936  *	Helper; handle transmit interrupts.
937  */
938 static void
939 ste_txintr(struct ste_softc *sc)
940 {
941 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
942 	struct ste_descsoft *ds;
943 	uint32_t control;
944 	int i;
945 
946 	ifp->if_flags &= ~IFF_OACTIVE;
947 
948 	/*
949 	 * Go through our Tx list and free mbufs for those
950 	 * frames which have been transmitted.
951 	 */
952 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
953 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
954 		ds = &sc->sc_txsoft[i];
955 
956 		STE_CDTXSYNC(sc, i,
957 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
958 
959 		control = le32toh(sc->sc_txdescs[i].tfd_control);
960 		if ((control & TFD_TxDMAComplete) == 0)
961 			break;
962 
963 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
964 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
965 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
966 		m_freem(ds->ds_mbuf);
967 		ds->ds_mbuf = NULL;
968 	}
969 
970 	/* Update the dirty transmit buffer pointer. */
971 	sc->sc_txdirty = i;
972 
973 	/*
974 	 * If there are no more pending transmissions, cancel the watchdog
975 	 * timer.
976 	 */
977 	if (sc->sc_txpending == 0)
978 		ifp->if_timer = 0;
979 }
980 
981 /*
982  * ste_rxintr:
983  *
984  *	Helper; handle receive interrupts.
985  */
986 static void
987 ste_rxintr(struct ste_softc *sc)
988 {
989 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
990 	struct ste_descsoft *ds;
991 	struct mbuf *m;
992 	uint32_t status;
993 	int i, len;
994 
995 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
996 		ds = &sc->sc_rxsoft[i];
997 
998 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
999 
1000 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
1001 
1002 		if ((status & RFD_RxDMAComplete) == 0)
1003 			break;
1004 
1005 		/*
1006 		 * If the packet had an error, simply recycle the
1007 		 * buffer.  Note, we count the error later in the
1008 		 * periodic stats update.
1009 		 */
1010 		if (status & RFD_RxFrameError) {
1011 			STE_INIT_RXDESC(sc, i);
1012 			continue;
1013 		}
1014 
1015 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1016 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1017 
1018 		/*
1019 		 * No errors; receive the packet.  Note, we have
1020 		 * configured the chip to not include the CRC at
1021 		 * the end of the packet.
1022 		 */
1023 		len = RFD_RxDMAFrameLen(status);
1024 
1025 		/*
1026 		 * If the packet is small enough to fit in a
1027 		 * single header mbuf, allocate one and copy
1028 		 * the data into it.  This greatly reduces
1029 		 * memory consumption when we receive lots
1030 		 * of small packets.
1031 		 *
1032 		 * Otherwise, we add a new buffer to the receive
1033 		 * chain.  If this fails, we drop the packet and
1034 		 * recycle the old buffer.
1035 		 */
1036 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1037 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1038 			if (m == NULL)
1039 				goto dropit;
1040 			m->m_data += 2;
1041 			memcpy(mtod(m, caddr_t),
1042 			    mtod(ds->ds_mbuf, caddr_t), len);
1043 			STE_INIT_RXDESC(sc, i);
1044 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1045 			    ds->ds_dmamap->dm_mapsize,
1046 			    BUS_DMASYNC_PREREAD);
1047 		} else {
1048 			m = ds->ds_mbuf;
1049 			if (ste_add_rxbuf(sc, i) != 0) {
1050  dropit:
1051 				ifp->if_ierrors++;
1052 				STE_INIT_RXDESC(sc, i);
1053 				bus_dmamap_sync(sc->sc_dmat,
1054 				    ds->ds_dmamap, 0,
1055 				    ds->ds_dmamap->dm_mapsize,
1056 				    BUS_DMASYNC_PREREAD);
1057 				continue;
1058 			}
1059 		}
1060 
1061 		m->m_pkthdr.rcvif = ifp;
1062 		m->m_pkthdr.len = m->m_len = len;
1063 
1064 #if NBPFILTER > 0
1065 		/*
1066 		 * Pass this up to any BPF listeners, but only
1067 		 * pass if up the stack if it's for us.
1068 		 */
1069 		if (ifp->if_bpf)
1070 			bpf_mtap(ifp->if_bpf, m);
1071 #endif /* NBPFILTER > 0 */
1072 
1073 		/* Pass it on. */
1074 		(*ifp->if_input)(ifp, m);
1075 	}
1076 
1077 	/* Update the receive pointer. */
1078 	sc->sc_rxptr = i;
1079 }
1080 
1081 /*
1082  * ste_tick:
1083  *
1084  *	One second timer, used to tick the MII.
1085  */
1086 static void
1087 ste_tick(void *arg)
1088 {
1089 	struct ste_softc *sc = arg;
1090 	int s;
1091 
1092 	s = splnet();
1093 	mii_tick(&sc->sc_mii);
1094 	ste_stats_update(sc);
1095 	splx(s);
1096 
1097 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1098 }
1099 
1100 /*
1101  * ste_stats_update:
1102  *
1103  *	Read the ST-201 statistics counters.
1104  */
1105 static void
1106 ste_stats_update(struct ste_softc *sc)
1107 {
1108 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1109 	bus_space_tag_t st = sc->sc_st;
1110 	bus_space_handle_t sh = sc->sc_sh;
1111 
1112 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1113 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1114 
1115 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1116 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1117 
1118 	ifp->if_opackets +=
1119 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1120 	ifp->if_ipackets +=
1121 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1122 
1123 	ifp->if_collisions +=
1124 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1125 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1126 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1127 
1128 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1129 
1130 	ifp->if_ierrors +=
1131 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1132 
1133 	ifp->if_oerrors +=
1134 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1135 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1136 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1137 
1138 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1139 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1140 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1141 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1142 }
1143 
1144 /*
1145  * ste_reset:
1146  *
1147  *	Perform a soft reset on the ST-201.
1148  */
1149 static void
1150 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1151 {
1152 	uint32_t ac;
1153 	int i;
1154 
1155 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1156 
1157 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1158 
1159 	delay(50000);
1160 
1161 	for (i = 0; i < STE_TIMEOUT; i++) {
1162 		delay(1000);
1163 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1164 		     AC_ResetBusy) == 0)
1165 			break;
1166 	}
1167 
1168 	if (i == STE_TIMEOUT)
1169 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1170 
1171 	delay(1000);
1172 }
1173 
1174 /*
1175  * ste_setthresh:
1176  *
1177  * 	set the various transmit threshold registers
1178  */
1179 static void
1180 ste_setthresh(struct ste_softc *sc)
1181 {
1182 	/* set the TX threhold */
1183 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1184 	    STE_TxStartThresh, sc->sc_txthresh);
1185 	/* Urgent threshold: set to sc_txthresh / 2 */
1186 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1187 	    sc->sc_txthresh >> 6);
1188 	/* Burst threshold: use default value (256 bytes) */
1189 }
1190 
1191 /*
1192  * restart TX at the given frame ID in the transmitter ring
1193  */
1194 static void
1195 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1196 {
1197 	u_int32_t control;
1198 
1199 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1200 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1201 	control &= ~TFD_TxDMAComplete;
1202 	sc->sc_txdescs[id].tfd_control = htole32(control);
1203 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1204 
1205 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1206 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1207 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1208 	ste_dmahalt_wait(sc);
1209 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1210 	    STE_CDTXADDR(sc, id));
1211 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1212 }
1213 
1214 /*
1215  * ste_init:		[ ifnet interface function ]
1216  *
1217  *	Initialize the interface.  Must be called at splnet().
1218  */
1219 static int
1220 ste_init(struct ifnet *ifp)
1221 {
1222 	struct ste_softc *sc = ifp->if_softc;
1223 	bus_space_tag_t st = sc->sc_st;
1224 	bus_space_handle_t sh = sc->sc_sh;
1225 	struct ste_descsoft *ds;
1226 	int i, error = 0;
1227 
1228 	/*
1229 	 * Cancel any pending I/O.
1230 	 */
1231 	ste_stop(ifp, 0);
1232 
1233 	/*
1234 	 * Reset the chip to a known state.
1235 	 */
1236 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1237 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1238 
1239 	/*
1240 	 * Initialize the transmit descriptor ring.
1241 	 */
1242 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1243 	sc->sc_txpending = 0;
1244 	sc->sc_txdirty = 0;
1245 	sc->sc_txlast = STE_NTXDESC - 1;
1246 
1247 	/*
1248 	 * Initialize the receive descriptor and receive job
1249 	 * descriptor rings.
1250 	 */
1251 	for (i = 0; i < STE_NRXDESC; i++) {
1252 		ds = &sc->sc_rxsoft[i];
1253 		if (ds->ds_mbuf == NULL) {
1254 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1255 				printf("%s: unable to allocate or map rx "
1256 				    "buffer %d, error = %d\n",
1257 				    sc->sc_dev.dv_xname, i, error);
1258 				/*
1259 				 * XXX Should attempt to run with fewer receive
1260 				 * XXX buffers instead of just failing.
1261 				 */
1262 				ste_rxdrain(sc);
1263 				goto out;
1264 			}
1265 		} else
1266 			STE_INIT_RXDESC(sc, i);
1267 	}
1268 	sc->sc_rxptr = 0;
1269 
1270 	/* Set the station address. */
1271 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1272 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1273 		    LLADDR(ifp->if_sadl)[i]);
1274 
1275 	/* Set up the receive filter. */
1276 	ste_set_filter(sc);
1277 
1278 	/*
1279 	 * Give the receive ring to the chip.
1280 	 */
1281 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1282 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1283 
1284 	/*
1285 	 * We defer giving the transmit ring to the chip until we
1286 	 * transmit the first packet.
1287 	 */
1288 
1289 	/*
1290 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1291 	 * large (127 is the max) -- we explicitly kick the transmit engine
1292 	 * when there's actually a packet.  We are using auto-polling only
1293 	 * to make the interface to the transmit engine not suck.
1294 	 */
1295 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1296 
1297 	/* ..and the Rx auto-poll period. */
1298 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1299 
1300 	/* Initialize the Tx start threshold. */
1301 	ste_setthresh(sc);
1302 
1303 	/* Set the FIFO release threshold to 512 bytes. */
1304 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1305 
1306 	/* Set maximum packet size for VLAN. */
1307 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1308 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1309 	else
1310 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1311 
1312 	/*
1313 	 * Initialize the interrupt mask.
1314 	 */
1315 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1316 	    IE_TxDMAComplete | IE_RxDMAComplete;
1317 
1318 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1319 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1320 
1321 	/*
1322 	 * Start the receive DMA engine.
1323 	 */
1324 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1325 
1326 	/*
1327 	 * Initialize MacCtrl0 -- do it before setting the media,
1328 	 * as setting the media will actually program the register.
1329 	 */
1330 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1331 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1332 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1333 
1334 	/*
1335 	 * Set the current media.
1336 	 */
1337 	mii_mediachg(&sc->sc_mii);
1338 
1339 	/*
1340 	 * Start the MAC.
1341 	 */
1342 	bus_space_write_2(st, sh, STE_MacCtrl1,
1343 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1344 
1345 	/*
1346 	 * Start the one second MII clock.
1347 	 */
1348 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1349 
1350 	/*
1351 	 * ...all done!
1352 	 */
1353 	ifp->if_flags |= IFF_RUNNING;
1354 	ifp->if_flags &= ~IFF_OACTIVE;
1355 
1356  out:
1357 	if (error)
1358 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1359 	return (error);
1360 }
1361 
1362 /*
1363  * ste_drain:
1364  *
1365  *	Drain the receive queue.
1366  */
1367 static void
1368 ste_rxdrain(struct ste_softc *sc)
1369 {
1370 	struct ste_descsoft *ds;
1371 	int i;
1372 
1373 	for (i = 0; i < STE_NRXDESC; i++) {
1374 		ds = &sc->sc_rxsoft[i];
1375 		if (ds->ds_mbuf != NULL) {
1376 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1377 			m_freem(ds->ds_mbuf);
1378 			ds->ds_mbuf = NULL;
1379 		}
1380 	}
1381 }
1382 
1383 /*
1384  * ste_stop:		[ ifnet interface function ]
1385  *
1386  *	Stop transmission on the interface.
1387  */
1388 static void
1389 ste_stop(struct ifnet *ifp, int disable)
1390 {
1391 	struct ste_softc *sc = ifp->if_softc;
1392 	struct ste_descsoft *ds;
1393 	int i;
1394 
1395 	/*
1396 	 * Stop the one second clock.
1397 	 */
1398 	callout_stop(&sc->sc_tick_ch);
1399 
1400 	/* Down the MII. */
1401 	mii_down(&sc->sc_mii);
1402 
1403 	/*
1404 	 * Disable interrupts.
1405 	 */
1406 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1407 
1408 	/*
1409 	 * Stop receiver, transmitter, and stats update.
1410 	 */
1411 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1412 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1413 
1414 	/*
1415 	 * Stop the transmit and receive DMA.
1416 	 */
1417 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1418 	    DC_RxDMAHalt | DC_TxDMAHalt);
1419 	ste_dmahalt_wait(sc);
1420 
1421 	/*
1422 	 * Release any queued transmit buffers.
1423 	 */
1424 	for (i = 0; i < STE_NTXDESC; i++) {
1425 		ds = &sc->sc_txsoft[i];
1426 		if (ds->ds_mbuf != NULL) {
1427 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1428 			m_freem(ds->ds_mbuf);
1429 			ds->ds_mbuf = NULL;
1430 		}
1431 	}
1432 
1433 	if (disable)
1434 		ste_rxdrain(sc);
1435 
1436 	/*
1437 	 * Mark the interface down and cancel the watchdog timer.
1438 	 */
1439 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1440 	ifp->if_timer = 0;
1441 }
1442 
1443 static int
1444 ste_eeprom_wait(struct ste_softc *sc)
1445 {
1446 	int i;
1447 
1448 	for (i = 0; i < STE_TIMEOUT; i++) {
1449 		delay(1000);
1450 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1451 		     EC_EepromBusy) == 0)
1452 			return (0);
1453 	}
1454 	return (1);
1455 }
1456 
1457 /*
1458  * ste_read_eeprom:
1459  *
1460  *	Read data from the serial EEPROM.
1461  */
1462 static void
1463 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1464 {
1465 
1466 	if (ste_eeprom_wait(sc))
1467 		printf("%s: EEPROM failed to come ready\n",
1468 		    sc->sc_dev.dv_xname);
1469 
1470 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1471 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1472 	if (ste_eeprom_wait(sc))
1473 		printf("%s: EEPROM read timed out\n",
1474 		    sc->sc_dev.dv_xname);
1475 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1476 }
1477 
1478 /*
1479  * ste_add_rxbuf:
1480  *
1481  *	Add a receive buffer to the indicated descriptor.
1482  */
1483 static int
1484 ste_add_rxbuf(struct ste_softc *sc, int idx)
1485 {
1486 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1487 	struct mbuf *m;
1488 	int error;
1489 
1490 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1491 	if (m == NULL)
1492 		return (ENOBUFS);
1493 
1494 	MCLGET(m, M_DONTWAIT);
1495 	if ((m->m_flags & M_EXT) == 0) {
1496 		m_freem(m);
1497 		return (ENOBUFS);
1498 	}
1499 
1500 	if (ds->ds_mbuf != NULL)
1501 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1502 
1503 	ds->ds_mbuf = m;
1504 
1505 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1506 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1507 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1508 	if (error) {
1509 		printf("%s: can't load rx DMA map %d, error = %d\n",
1510 		    sc->sc_dev.dv_xname, idx, error);
1511 		panic("ste_add_rxbuf");		/* XXX */
1512 	}
1513 
1514 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1515 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1516 
1517 	STE_INIT_RXDESC(sc, idx);
1518 
1519 	return (0);
1520 }
1521 
1522 /*
1523  * ste_set_filter:
1524  *
1525  *	Set up the receive filter.
1526  */
1527 static void
1528 ste_set_filter(struct ste_softc *sc)
1529 {
1530 	struct ethercom *ec = &sc->sc_ethercom;
1531 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1532 	struct ether_multi *enm;
1533 	struct ether_multistep step;
1534 	uint32_t crc;
1535 	uint16_t mchash[4];
1536 
1537 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1538 	if (ifp->if_flags & IFF_BROADCAST)
1539 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1540 
1541 	if (ifp->if_flags & IFF_PROMISC) {
1542 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1543 		goto allmulti;
1544 	}
1545 
1546 	/*
1547 	 * Set up the multicast address filter by passing all multicast
1548 	 * addresses through a CRC generator, and then using the low-order
1549 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1550 	 * high order bits select the register, while the rest of the bits
1551 	 * select the bit within the register.
1552 	 */
1553 
1554 	memset(mchash, 0, sizeof(mchash));
1555 
1556 	ETHER_FIRST_MULTI(step, ec, enm);
1557 	if (enm == NULL)
1558 		goto done;
1559 
1560 	while (enm != NULL) {
1561 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1562 			/*
1563 			 * We must listen to a range of multicast addresses.
1564 			 * For now, just accept all multicasts, rather than
1565 			 * trying to set only those filter bits needed to match
1566 			 * the range.  (At this time, the only use of address
1567 			 * ranges is for IP multicast routing, for which the
1568 			 * range is big enough to require all bits set.)
1569 			 */
1570 			goto allmulti;
1571 		}
1572 
1573 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1574 
1575 		/* Just want the 6 least significant bits. */
1576 		crc &= 0x3f;
1577 
1578 		/* Set the corresponding bit in the hash table. */
1579 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1580 
1581 		ETHER_NEXT_MULTI(step, enm);
1582 	}
1583 
1584 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1585 
1586 	ifp->if_flags &= ~IFF_ALLMULTI;
1587 	goto done;
1588 
1589  allmulti:
1590 	ifp->if_flags |= IFF_ALLMULTI;
1591 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1592 
1593  done:
1594 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1595 		/*
1596 		 * Program the multicast hash table.
1597 		 */
1598 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1599 		    mchash[0]);
1600 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1601 		    mchash[1]);
1602 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1603 		    mchash[2]);
1604 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1605 		    mchash[3]);
1606 	}
1607 
1608 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1609 	    sc->sc_ReceiveMode);
1610 }
1611 
1612 /*
1613  * ste_mii_readreg:	[mii interface function]
1614  *
1615  *	Read a PHY register on the MII of the ST-201.
1616  */
1617 static int
1618 ste_mii_readreg(struct device *self, int phy, int reg)
1619 {
1620 
1621 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1622 }
1623 
1624 /*
1625  * ste_mii_writereg:	[mii interface function]
1626  *
1627  *	Write a PHY register on the MII of the ST-201.
1628  */
1629 static void
1630 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1631 {
1632 
1633 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1634 }
1635 
1636 /*
1637  * ste_mii_statchg:	[mii interface function]
1638  *
1639  *	Callback from MII layer when media changes.
1640  */
1641 static void
1642 ste_mii_statchg(struct device *self)
1643 {
1644 	struct ste_softc *sc = (struct ste_softc *) self;
1645 
1646 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1647 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1648 	else
1649 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1650 
1651 	/* XXX 802.1x flow-control? */
1652 
1653 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1654 }
1655 
1656 /*
1657  * ste_mii_bitbang_read: [mii bit-bang interface function]
1658  *
1659  *	Read the MII serial port for the MII bit-bang module.
1660  */
1661 static uint32_t
1662 ste_mii_bitbang_read(struct device *self)
1663 {
1664 	struct ste_softc *sc = (void *) self;
1665 
1666 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1667 }
1668 
1669 /*
1670  * ste_mii_bitbang_write: [mii big-bang interface function]
1671  *
1672  *	Write the MII serial port for the MII bit-bang module.
1673  */
1674 static void
1675 ste_mii_bitbang_write(struct device *self, uint32_t val)
1676 {
1677 	struct ste_softc *sc = (void *) self;
1678 
1679 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1680 }
1681 
1682 /*
1683  * ste_mediastatus:	[ifmedia interface function]
1684  *
1685  *	Get the current interface media status.
1686  */
1687 static void
1688 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1689 {
1690 	struct ste_softc *sc = ifp->if_softc;
1691 
1692 	mii_pollstat(&sc->sc_mii);
1693 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1694 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1695 }
1696 
1697 /*
1698  * ste_mediachange:	[ifmedia interface function]
1699  *
1700  *	Set hardware to newly-selected media.
1701  */
1702 static int
1703 ste_mediachange(struct ifnet *ifp)
1704 {
1705 	struct ste_softc *sc = ifp->if_softc;
1706 
1707 	if (ifp->if_flags & IFF_UP)
1708 		mii_mediachg(&sc->sc_mii);
1709 	return (0);
1710 }
1711