xref: /netbsd-src/sys/dev/pci/if_ste.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: if_ste.c,v 1.36 2008/04/28 20:23:55 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. ST-201 10/100
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.36 2008/04/28 20:23:55 martin Exp $");
39 
40 #include "bpfilter.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53 
54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64 
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/if_stereg.h>
77 
78 /*
79  * Transmit descriptor list size.
80  */
81 #define	STE_NTXDESC		256
82 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
83 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
84 
85 /*
86  * Receive descriptor list size.
87  */
88 #define	STE_NRXDESC		128
89 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
90 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
91 
92 /*
93  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
94  * a single clump that maps to a single DMA segment to make several things
95  * easier.
96  */
97 struct ste_control_data {
98 	/*
99 	 * The transmit descriptors.
100 	 */
101 	struct ste_tfd scd_txdescs[STE_NTXDESC];
102 
103 	/*
104 	 * The receive descriptors.
105 	 */
106 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
107 };
108 
109 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
110 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
111 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
112 
113 /*
114  * Software state for transmit and receive jobs.
115  */
116 struct ste_descsoft {
117 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
118 	bus_dmamap_t ds_dmamap;		/* our DMA map */
119 };
120 
121 /*
122  * Software state per device.
123  */
124 struct ste_softc {
125 	struct device sc_dev;		/* generic device information */
126 	bus_space_tag_t sc_st;		/* bus space tag */
127 	bus_space_handle_t sc_sh;	/* bus space handle */
128 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
129 	struct ethercom sc_ethercom;	/* ethernet common data */
130 	void *sc_sdhook;		/* shutdown hook */
131 
132 	void *sc_ih;			/* interrupt cookie */
133 
134 	struct mii_data sc_mii;		/* MII/media information */
135 
136 	callout_t sc_tick_ch;		/* tick callout */
137 
138 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
139 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
140 
141 	/*
142 	 * Software state for transmit and receive descriptors.
143 	 */
144 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
145 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
146 
147 	/*
148 	 * Control data structures.
149 	 */
150 	struct ste_control_data *sc_control_data;
151 #define	sc_txdescs	sc_control_data->scd_txdescs
152 #define	sc_rxdescs	sc_control_data->scd_rxdescs
153 
154 	int	sc_txpending;		/* number of Tx requests pending */
155 	int	sc_txdirty;		/* first dirty Tx descriptor */
156 	int	sc_txlast;		/* last used Tx descriptor */
157 
158 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
159 
160 	int	sc_txthresh;		/* Tx threshold */
161 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
162 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
163 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
164 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
165 };
166 
167 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
168 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
169 
170 #define	STE_CDTXSYNC(sc, x, ops)					\
171 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
172 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
173 
174 #define	STE_CDRXSYNC(sc, x, ops)					\
175 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
176 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
177 
178 #define	STE_INIT_RXDESC(sc, x)						\
179 do {									\
180 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
181 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
182 	struct mbuf *__m = __ds->ds_mbuf;				\
183 									\
184 	/*								\
185 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
186 	 * so that the payload after the Ethernet header is aligned	\
187 	 * to a 4-byte boundary.					\
188 	 */								\
189 	__m->m_data = __m->m_ext.ext_buf + 2;				\
190 	__rfd->rfd_frag.frag_addr =					\
191 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
192 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
193 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
194 	__rfd->rfd_status = 0;						\
195 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
196 } while (/*CONSTCOND*/0)
197 
198 #define STE_TIMEOUT 1000
199 
200 static void	ste_start(struct ifnet *);
201 static void	ste_watchdog(struct ifnet *);
202 static int	ste_ioctl(struct ifnet *, u_long, void *);
203 static int	ste_init(struct ifnet *);
204 static void	ste_stop(struct ifnet *, int);
205 
206 static void	ste_shutdown(void *);
207 
208 static void	ste_reset(struct ste_softc *, u_int32_t);
209 static void	ste_setthresh(struct ste_softc *);
210 static void	ste_txrestart(struct ste_softc *, u_int8_t);
211 static void	ste_rxdrain(struct ste_softc *);
212 static int	ste_add_rxbuf(struct ste_softc *, int);
213 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
214 static void	ste_tick(void *);
215 
216 static void	ste_stats_update(struct ste_softc *);
217 
218 static void	ste_set_filter(struct ste_softc *);
219 
220 static int	ste_intr(void *);
221 static void	ste_txintr(struct ste_softc *);
222 static void	ste_rxintr(struct ste_softc *);
223 
224 static int	ste_mii_readreg(device_t, int, int);
225 static void	ste_mii_writereg(device_t, int, int, int);
226 static void	ste_mii_statchg(device_t);
227 
228 static int	ste_match(device_t, struct cfdata *, void *);
229 static void	ste_attach(device_t, device_t, void *);
230 
231 int	ste_copy_small = 0;
232 
233 CFATTACH_DECL(ste, sizeof(struct ste_softc),
234     ste_match, ste_attach, NULL, NULL);
235 
236 static uint32_t ste_mii_bitbang_read(device_t);
237 static void	ste_mii_bitbang_write(device_t, uint32_t);
238 
239 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
240 	ste_mii_bitbang_read,
241 	ste_mii_bitbang_write,
242 	{
243 		PC_MgmtData,		/* MII_BIT_MDO */
244 		PC_MgmtData,		/* MII_BIT_MDI */
245 		PC_MgmtClk,		/* MII_BIT_MDC */
246 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
247 		0,			/* MII_BIT_DIR_PHY_HOST */
248 	}
249 };
250 
251 /*
252  * Devices supported by this driver.
253  */
254 static const struct ste_product {
255 	pci_vendor_id_t		ste_vendor;
256 	pci_product_id_t	ste_product;
257 	const char		*ste_name;
258 } ste_products[] = {
259 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
260 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
261 
262 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
263 	  "Sundance ST-201 10/100 Ethernet" },
264 
265 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
266 	  "D-Link DL-1002 10/100 Ethernet" },
267 
268 	{ 0,				0,
269 	  NULL },
270 };
271 
272 static const struct ste_product *
273 ste_lookup(const struct pci_attach_args *pa)
274 {
275 	const struct ste_product *sp;
276 
277 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
278 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
279 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
280 			return (sp);
281 	}
282 	return (NULL);
283 }
284 
285 static int
286 ste_match(device_t parent, struct cfdata *cf, void *aux)
287 {
288 	struct pci_attach_args *pa = aux;
289 
290 	if (ste_lookup(pa) != NULL)
291 		return (1);
292 
293 	return (0);
294 }
295 
296 static void
297 ste_attach(device_t parent, device_t self, void *aux)
298 {
299 	struct ste_softc *sc = device_private(self);
300 	struct pci_attach_args *pa = aux;
301 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
302 	pci_chipset_tag_t pc = pa->pa_pc;
303 	pci_intr_handle_t ih;
304 	const char *intrstr = NULL;
305 	bus_space_tag_t iot, memt;
306 	bus_space_handle_t ioh, memh;
307 	bus_dma_segment_t seg;
308 	int ioh_valid, memh_valid;
309 	int i, rseg, error;
310 	const struct ste_product *sp;
311 	uint8_t enaddr[ETHER_ADDR_LEN];
312 	uint16_t myea[ETHER_ADDR_LEN / 2];
313 
314 	callout_init(&sc->sc_tick_ch, 0);
315 
316 	sp = ste_lookup(pa);
317 	if (sp == NULL) {
318 		printf("\n");
319 		panic("ste_attach: impossible");
320 	}
321 
322 	printf(": %s\n", sp->ste_name);
323 
324 	/*
325 	 * Map the device.
326 	 */
327 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
328 	    PCI_MAPREG_TYPE_IO, 0,
329 	    &iot, &ioh, NULL, NULL) == 0);
330 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
331 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
332 	    &memt, &memh, NULL, NULL) == 0);
333 
334 	if (memh_valid) {
335 		sc->sc_st = memt;
336 		sc->sc_sh = memh;
337 	} else if (ioh_valid) {
338 		sc->sc_st = iot;
339 		sc->sc_sh = ioh;
340 	} else {
341 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
342 		return;
343 	}
344 
345 	sc->sc_dmat = pa->pa_dmat;
346 
347 	/* Enable bus mastering. */
348 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
349 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
350 	    PCI_COMMAND_MASTER_ENABLE);
351 
352 	/* power up chip */
353 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
354 	    NULL)) && error != EOPNOTSUPP) {
355 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
356 		    error);
357 		return;
358 	}
359 
360 	/*
361 	 * Map and establish our interrupt.
362 	 */
363 	if (pci_intr_map(pa, &ih)) {
364 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
365 		return;
366 	}
367 	intrstr = pci_intr_string(pc, ih);
368 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
369 	if (sc->sc_ih == NULL) {
370 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
371 		if (intrstr != NULL)
372 			printf(" at %s", intrstr);
373 		printf("\n");
374 		return;
375 	}
376 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
377 
378 	/*
379 	 * Allocate the control data structures, and create and load the
380 	 * DMA map for it.
381 	 */
382 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
383 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
384 	    0)) != 0) {
385 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
386 		    error);
387 		goto fail_0;
388 	}
389 
390 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
391 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
392 	    BUS_DMA_COHERENT)) != 0) {
393 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
394 		    error);
395 		goto fail_1;
396 	}
397 
398 	if ((error = bus_dmamap_create(sc->sc_dmat,
399 	    sizeof(struct ste_control_data), 1,
400 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
401 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
402 		    "error = %d\n", error);
403 		goto fail_2;
404 	}
405 
406 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
407 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
408 	    0)) != 0) {
409 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
410 		    error);
411 		goto fail_3;
412 	}
413 
414 	/*
415 	 * Create the transmit buffer DMA maps.
416 	 */
417 	for (i = 0; i < STE_NTXDESC; i++) {
418 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
419 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
420 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
421 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
422 			    "error = %d\n", i, error);
423 			goto fail_4;
424 		}
425 	}
426 
427 	/*
428 	 * Create the receive buffer DMA maps.
429 	 */
430 	for (i = 0; i < STE_NRXDESC; i++) {
431 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
432 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
433 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
434 			    "error = %d\n", i, error);
435 			goto fail_5;
436 		}
437 		sc->sc_rxsoft[i].ds_mbuf = NULL;
438 	}
439 
440 	/*
441 	 * Reset the chip to a known state.
442 	 */
443 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
444 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
445 
446 	/*
447 	 * Read the Ethernet address from the EEPROM.
448 	 */
449 	for (i = 0; i < 3; i++) {
450 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
451 		myea[i] = le16toh(myea[i]);
452 	}
453 	memcpy(enaddr, myea, sizeof(enaddr));
454 
455 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
456 	    ether_sprintf(enaddr));
457 
458 	/*
459 	 * Initialize our media structures and probe the MII.
460 	 */
461 	sc->sc_mii.mii_ifp = ifp;
462 	sc->sc_mii.mii_readreg = ste_mii_readreg;
463 	sc->sc_mii.mii_writereg = ste_mii_writereg;
464 	sc->sc_mii.mii_statchg = ste_mii_statchg;
465 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
466 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
467 	    ether_mediastatus);
468 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
469 	    MII_OFFSET_ANY, 0);
470 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
471 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
472 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
473 	} else
474 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
475 
476 	ifp = &sc->sc_ethercom.ec_if;
477 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
478 	ifp->if_softc = sc;
479 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
480 	ifp->if_ioctl = ste_ioctl;
481 	ifp->if_start = ste_start;
482 	ifp->if_watchdog = ste_watchdog;
483 	ifp->if_init = ste_init;
484 	ifp->if_stop = ste_stop;
485 	IFQ_SET_READY(&ifp->if_snd);
486 
487 	/*
488 	 * Default the transmit threshold to 128 bytes.
489 	 */
490 	sc->sc_txthresh = 128;
491 
492 	/*
493 	 * Disable MWI if the PCI layer tells us to.
494 	 */
495 	sc->sc_DMACtrl = 0;
496 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
497 		sc->sc_DMACtrl |= DC_MWIDisable;
498 
499 	/*
500 	 * We can support 802.1Q VLAN-sized frames.
501 	 */
502 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
503 
504 	/*
505 	 * Attach the interface.
506 	 */
507 	if_attach(ifp);
508 	ether_ifattach(ifp, enaddr);
509 
510 	/*
511 	 * Make sure the interface is shutdown during reboot.
512 	 */
513 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
514 	if (sc->sc_sdhook == NULL)
515 		printf("%s: WARNING: unable to establish shutdown hook\n",
516 		    device_xname(&sc->sc_dev));
517 	return;
518 
519 	/*
520 	 * Free any resources we've allocated during the failed attach
521 	 * attempt.  Do this in reverse order and fall through.
522 	 */
523  fail_5:
524 	for (i = 0; i < STE_NRXDESC; i++) {
525 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
526 			bus_dmamap_destroy(sc->sc_dmat,
527 			    sc->sc_rxsoft[i].ds_dmamap);
528 	}
529  fail_4:
530 	for (i = 0; i < STE_NTXDESC; i++) {
531 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
532 			bus_dmamap_destroy(sc->sc_dmat,
533 			    sc->sc_txsoft[i].ds_dmamap);
534 	}
535 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
536  fail_3:
537 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
538  fail_2:
539 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
540 	    sizeof(struct ste_control_data));
541  fail_1:
542 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
543  fail_0:
544 	return;
545 }
546 
547 /*
548  * ste_shutdown:
549  *
550  *	Make sure the interface is stopped at reboot time.
551  */
552 static void
553 ste_shutdown(void *arg)
554 {
555 	struct ste_softc *sc = arg;
556 
557 	ste_stop(&sc->sc_ethercom.ec_if, 1);
558 }
559 
560 static void
561 ste_dmahalt_wait(struct ste_softc *sc)
562 {
563 	int i;
564 
565 	for (i = 0; i < STE_TIMEOUT; i++) {
566 		delay(2);
567 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
568 		     DC_DMAHaltBusy) == 0)
569 			break;
570 	}
571 
572 	if (i == STE_TIMEOUT)
573 		printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
574 }
575 
576 /*
577  * ste_start:		[ifnet interface function]
578  *
579  *	Start packet transmission on the interface.
580  */
581 static void
582 ste_start(struct ifnet *ifp)
583 {
584 	struct ste_softc *sc = ifp->if_softc;
585 	struct mbuf *m0, *m;
586 	struct ste_descsoft *ds;
587 	struct ste_tfd *tfd;
588 	bus_dmamap_t dmamap;
589 	int error, olasttx, nexttx, opending, seg, totlen;
590 
591 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
592 		return;
593 
594 	/*
595 	 * Remember the previous number of pending transmissions
596 	 * and the current last descriptor in the list.
597 	 */
598 	opending = sc->sc_txpending;
599 	olasttx = sc->sc_txlast;
600 
601 	/*
602 	 * Loop through the send queue, setting up transmit descriptors
603 	 * until we drain the queue, or use up all available transmit
604 	 * descriptors.
605 	 */
606 	while (sc->sc_txpending < STE_NTXDESC) {
607 		/*
608 		 * Grab a packet off the queue.
609 		 */
610 		IFQ_POLL(&ifp->if_snd, m0);
611 		if (m0 == NULL)
612 			break;
613 		m = NULL;
614 
615 		/*
616 		 * Get the last and next available transmit descriptor.
617 		 */
618 		nexttx = STE_NEXTTX(sc->sc_txlast);
619 		tfd = &sc->sc_txdescs[nexttx];
620 		ds = &sc->sc_txsoft[nexttx];
621 
622 		dmamap = ds->ds_dmamap;
623 
624 		/*
625 		 * Load the DMA map.  If this fails, the packet either
626 		 * didn't fit in the alloted number of segments, or we
627 		 * were short on resources.  In this case, we'll copy
628 		 * and try again.
629 		 */
630 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
631 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
632 			MGETHDR(m, M_DONTWAIT, MT_DATA);
633 			if (m == NULL) {
634 				printf("%s: unable to allocate Tx mbuf\n",
635 				    device_xname(&sc->sc_dev));
636 				break;
637 			}
638 			if (m0->m_pkthdr.len > MHLEN) {
639 				MCLGET(m, M_DONTWAIT);
640 				if ((m->m_flags & M_EXT) == 0) {
641 					printf("%s: unable to allocate Tx "
642 					    "cluster\n", device_xname(&sc->sc_dev));
643 					m_freem(m);
644 					break;
645 				}
646 			}
647 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
648 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
649 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
650 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
651 			if (error) {
652 				printf("%s: unable to load Tx buffer, "
653 				    "error = %d\n", device_xname(&sc->sc_dev), error);
654 				break;
655 			}
656 		}
657 
658 		IFQ_DEQUEUE(&ifp->if_snd, m0);
659 		if (m != NULL) {
660 			m_freem(m0);
661 			m0 = m;
662 		}
663 
664 		/*
665 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
666 		 */
667 
668 		/* Sync the DMA map. */
669 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
670 		    BUS_DMASYNC_PREWRITE);
671 
672 		/* Initialize the fragment list. */
673 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
674 			tfd->tfd_frags[seg].frag_addr =
675 			    htole32(dmamap->dm_segs[seg].ds_addr);
676 			tfd->tfd_frags[seg].frag_len =
677 			    htole32(dmamap->dm_segs[seg].ds_len);
678 			totlen += dmamap->dm_segs[seg].ds_len;
679 		}
680 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
681 
682 		/* Initialize the descriptor. */
683 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
684 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
685 
686 		/* Sync the descriptor. */
687 		STE_CDTXSYNC(sc, nexttx,
688 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
689 
690 		/*
691 		 * Store a pointer to the packet so we can free it later,
692 		 * and remember what txdirty will be once the packet is
693 		 * done.
694 		 */
695 		ds->ds_mbuf = m0;
696 
697 		/* Advance the tx pointer. */
698 		sc->sc_txpending++;
699 		sc->sc_txlast = nexttx;
700 
701 #if NBPFILTER > 0
702 		/*
703 		 * Pass the packet to any BPF listeners.
704 		 */
705 		if (ifp->if_bpf)
706 			bpf_mtap(ifp->if_bpf, m0);
707 #endif /* NBPFILTER > 0 */
708 	}
709 
710 	if (sc->sc_txpending == STE_NTXDESC) {
711 		/* No more slots left; notify upper layer. */
712 		ifp->if_flags |= IFF_OACTIVE;
713 	}
714 
715 	if (sc->sc_txpending != opending) {
716 		/*
717 		 * We enqueued packets.  If the transmitter was idle,
718 		 * reset the txdirty pointer.
719 		 */
720 		if (opending == 0)
721 			sc->sc_txdirty = STE_NEXTTX(olasttx);
722 
723 		/*
724 		 * Cause a descriptor interrupt to happen on the
725 		 * last packet we enqueued, and also cause the
726 		 * DMA engine to wait after is has finished processing
727 		 * it.
728 		 */
729 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
730 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
731 		    htole32(TFD_TxDMAIndicate);
732 		STE_CDTXSYNC(sc, sc->sc_txlast,
733 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
734 
735 		/*
736 		 * Link up the new chain of descriptors to the
737 		 * last.
738 		 */
739 		sc->sc_txdescs[olasttx].tfd_next =
740 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
741 		STE_CDTXSYNC(sc, olasttx,
742 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
743 
744 		/*
745 		 * Kick the transmit DMA logic.  Note that since we're
746 		 * using auto-polling, reading the Tx desc pointer will
747 		 * give it the nudge it needs to get going.
748 		 */
749 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
750 		    STE_TxDMAListPtr) == 0) {
751 			bus_space_write_4(sc->sc_st, sc->sc_sh,
752 			    STE_DMACtrl, DC_TxDMAHalt);
753 			ste_dmahalt_wait(sc);
754 			bus_space_write_4(sc->sc_st, sc->sc_sh,
755 			    STE_TxDMAListPtr,
756 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
757 			bus_space_write_4(sc->sc_st, sc->sc_sh,
758 			    STE_DMACtrl, DC_TxDMAResume);
759 		}
760 
761 		/* Set a watchdog timer in case the chip flakes out. */
762 		ifp->if_timer = 5;
763 	}
764 }
765 
766 /*
767  * ste_watchdog:	[ifnet interface function]
768  *
769  *	Watchdog timer handler.
770  */
771 static void
772 ste_watchdog(struct ifnet *ifp)
773 {
774 	struct ste_softc *sc = ifp->if_softc;
775 
776 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
777 	ifp->if_oerrors++;
778 
779 	ste_txintr(sc);
780 	ste_rxintr(sc);
781 	(void) ste_init(ifp);
782 
783 	/* Try to get more packets going. */
784 	ste_start(ifp);
785 }
786 
787 /*
788  * ste_ioctl:		[ifnet interface function]
789  *
790  *	Handle control requests from the operator.
791  */
792 static int
793 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
794 {
795 	struct ste_softc *sc = ifp->if_softc;
796 	int s, error;
797 
798 	s = splnet();
799 
800 	error = ether_ioctl(ifp, cmd, data);
801 	if (error == ENETRESET) {
802 		/*
803 		 * Multicast list has changed; set the hardware filter
804 		 * accordingly.
805 		 */
806 		if (ifp->if_flags & IFF_RUNNING)
807 			ste_set_filter(sc);
808 		error = 0;
809 	}
810 
811 	/* Try to get more packets going. */
812 	ste_start(ifp);
813 
814 	splx(s);
815 	return (error);
816 }
817 
818 /*
819  * ste_intr:
820  *
821  *	Interrupt service routine.
822  */
823 static int
824 ste_intr(void *arg)
825 {
826 	struct ste_softc *sc = arg;
827 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
828 	uint16_t isr;
829 	uint8_t txstat;
830 	int wantinit;
831 
832 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
833 	     IS_InterruptStatus) == 0)
834 		return (0);
835 
836 	for (wantinit = 0; wantinit == 0;) {
837 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
838 		if ((isr & sc->sc_IntEnable) == 0)
839 			break;
840 
841 		/* Receive interrupts. */
842 		if (isr & IE_RxDMAComplete)
843 			ste_rxintr(sc);
844 
845 		/* Transmit interrupts. */
846 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
847 			ste_txintr(sc);
848 
849 		/* Statistics overflow. */
850 		if (isr & IE_UpdateStats)
851 			ste_stats_update(sc);
852 
853 		/* Transmission errors. */
854 		if (isr & IE_TxComplete) {
855 			for (;;) {
856 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
857 				    STE_TxStatus);
858 				if ((txstat & TS_TxComplete) == 0)
859 					break;
860 				if (txstat & TS_TxUnderrun) {
861 					sc->sc_txthresh += 32;
862 					if (sc->sc_txthresh > 0x1ffc)
863 						sc->sc_txthresh = 0x1ffc;
864 					printf("%s: transmit underrun, new "
865 					    "threshold: %d bytes\n",
866 					    device_xname(&sc->sc_dev),
867 					    sc->sc_txthresh);
868 					ste_reset(sc, AC_TxReset | AC_DMA |
869 					    AC_FIFO | AC_Network);
870 					ste_setthresh(sc);
871 					bus_space_write_1(sc->sc_st, sc->sc_sh,
872 					    STE_TxDMAPollPeriod, 127);
873 					ste_txrestart(sc,
874 					    bus_space_read_1(sc->sc_st,
875 						sc->sc_sh, STE_TxFrameId));
876 				}
877 				if (txstat & TS_TxReleaseError) {
878 					printf("%s: Tx FIFO release error\n",
879 					    device_xname(&sc->sc_dev));
880 					wantinit = 1;
881 				}
882 				if (txstat & TS_MaxCollisions) {
883 					printf("%s: excessive collisions\n",
884 					    device_xname(&sc->sc_dev));
885 					wantinit = 1;
886 				}
887 				if (txstat & TS_TxStatusOverflow) {
888 					printf("%s: status overflow\n",
889 					    device_xname(&sc->sc_dev));
890 					wantinit = 1;
891 				}
892 				bus_space_write_2(sc->sc_st, sc->sc_sh,
893 				    STE_TxStatus, 0);
894 			}
895 		}
896 
897 		/* Host interface errors. */
898 		if (isr & IE_HostError) {
899 			printf("%s: Host interface error\n",
900 			    device_xname(&sc->sc_dev));
901 			wantinit = 1;
902 		}
903 	}
904 
905 	if (wantinit)
906 		ste_init(ifp);
907 
908 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
909 	    sc->sc_IntEnable);
910 
911 	/* Try to get more packets going. */
912 	ste_start(ifp);
913 
914 	return (1);
915 }
916 
917 /*
918  * ste_txintr:
919  *
920  *	Helper; handle transmit interrupts.
921  */
922 static void
923 ste_txintr(struct ste_softc *sc)
924 {
925 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
926 	struct ste_descsoft *ds;
927 	uint32_t control;
928 	int i;
929 
930 	ifp->if_flags &= ~IFF_OACTIVE;
931 
932 	/*
933 	 * Go through our Tx list and free mbufs for those
934 	 * frames which have been transmitted.
935 	 */
936 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
937 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
938 		ds = &sc->sc_txsoft[i];
939 
940 		STE_CDTXSYNC(sc, i,
941 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
942 
943 		control = le32toh(sc->sc_txdescs[i].tfd_control);
944 		if ((control & TFD_TxDMAComplete) == 0)
945 			break;
946 
947 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
948 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
949 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
950 		m_freem(ds->ds_mbuf);
951 		ds->ds_mbuf = NULL;
952 	}
953 
954 	/* Update the dirty transmit buffer pointer. */
955 	sc->sc_txdirty = i;
956 
957 	/*
958 	 * If there are no more pending transmissions, cancel the watchdog
959 	 * timer.
960 	 */
961 	if (sc->sc_txpending == 0)
962 		ifp->if_timer = 0;
963 }
964 
965 /*
966  * ste_rxintr:
967  *
968  *	Helper; handle receive interrupts.
969  */
970 static void
971 ste_rxintr(struct ste_softc *sc)
972 {
973 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
974 	struct ste_descsoft *ds;
975 	struct mbuf *m;
976 	uint32_t status;
977 	int i, len;
978 
979 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
980 		ds = &sc->sc_rxsoft[i];
981 
982 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
983 
984 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
985 
986 		if ((status & RFD_RxDMAComplete) == 0)
987 			break;
988 
989 		/*
990 		 * If the packet had an error, simply recycle the
991 		 * buffer.  Note, we count the error later in the
992 		 * periodic stats update.
993 		 */
994 		if (status & RFD_RxFrameError) {
995 			STE_INIT_RXDESC(sc, i);
996 			continue;
997 		}
998 
999 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1000 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1001 
1002 		/*
1003 		 * No errors; receive the packet.  Note, we have
1004 		 * configured the chip to not include the CRC at
1005 		 * the end of the packet.
1006 		 */
1007 		len = RFD_RxDMAFrameLen(status);
1008 
1009 		/*
1010 		 * If the packet is small enough to fit in a
1011 		 * single header mbuf, allocate one and copy
1012 		 * the data into it.  This greatly reduces
1013 		 * memory consumption when we receive lots
1014 		 * of small packets.
1015 		 *
1016 		 * Otherwise, we add a new buffer to the receive
1017 		 * chain.  If this fails, we drop the packet and
1018 		 * recycle the old buffer.
1019 		 */
1020 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1021 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1022 			if (m == NULL)
1023 				goto dropit;
1024 			m->m_data += 2;
1025 			memcpy(mtod(m, void *),
1026 			    mtod(ds->ds_mbuf, void *), len);
1027 			STE_INIT_RXDESC(sc, i);
1028 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1029 			    ds->ds_dmamap->dm_mapsize,
1030 			    BUS_DMASYNC_PREREAD);
1031 		} else {
1032 			m = ds->ds_mbuf;
1033 			if (ste_add_rxbuf(sc, i) != 0) {
1034  dropit:
1035 				ifp->if_ierrors++;
1036 				STE_INIT_RXDESC(sc, i);
1037 				bus_dmamap_sync(sc->sc_dmat,
1038 				    ds->ds_dmamap, 0,
1039 				    ds->ds_dmamap->dm_mapsize,
1040 				    BUS_DMASYNC_PREREAD);
1041 				continue;
1042 			}
1043 		}
1044 
1045 		m->m_pkthdr.rcvif = ifp;
1046 		m->m_pkthdr.len = m->m_len = len;
1047 
1048 #if NBPFILTER > 0
1049 		/*
1050 		 * Pass this up to any BPF listeners, but only
1051 		 * pass if up the stack if it's for us.
1052 		 */
1053 		if (ifp->if_bpf)
1054 			bpf_mtap(ifp->if_bpf, m);
1055 #endif /* NBPFILTER > 0 */
1056 
1057 		/* Pass it on. */
1058 		(*ifp->if_input)(ifp, m);
1059 	}
1060 
1061 	/* Update the receive pointer. */
1062 	sc->sc_rxptr = i;
1063 }
1064 
1065 /*
1066  * ste_tick:
1067  *
1068  *	One second timer, used to tick the MII.
1069  */
1070 static void
1071 ste_tick(void *arg)
1072 {
1073 	struct ste_softc *sc = arg;
1074 	int s;
1075 
1076 	s = splnet();
1077 	mii_tick(&sc->sc_mii);
1078 	ste_stats_update(sc);
1079 	splx(s);
1080 
1081 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1082 }
1083 
1084 /*
1085  * ste_stats_update:
1086  *
1087  *	Read the ST-201 statistics counters.
1088  */
1089 static void
1090 ste_stats_update(struct ste_softc *sc)
1091 {
1092 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1093 	bus_space_tag_t st = sc->sc_st;
1094 	bus_space_handle_t sh = sc->sc_sh;
1095 
1096 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1097 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1098 
1099 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1100 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1101 
1102 	ifp->if_opackets +=
1103 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1104 	ifp->if_ipackets +=
1105 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1106 
1107 	ifp->if_collisions +=
1108 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1109 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1110 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1111 
1112 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1113 
1114 	ifp->if_ierrors +=
1115 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1116 
1117 	ifp->if_oerrors +=
1118 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1119 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1120 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1121 
1122 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1123 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1124 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1125 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1126 }
1127 
1128 /*
1129  * ste_reset:
1130  *
1131  *	Perform a soft reset on the ST-201.
1132  */
1133 static void
1134 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1135 {
1136 	uint32_t ac;
1137 	int i;
1138 
1139 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1140 
1141 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1142 
1143 	delay(50000);
1144 
1145 	for (i = 0; i < STE_TIMEOUT; i++) {
1146 		delay(1000);
1147 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1148 		     AC_ResetBusy) == 0)
1149 			break;
1150 	}
1151 
1152 	if (i == STE_TIMEOUT)
1153 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1154 
1155 	delay(1000);
1156 }
1157 
1158 /*
1159  * ste_setthresh:
1160  *
1161  * 	set the various transmit threshold registers
1162  */
1163 static void
1164 ste_setthresh(struct ste_softc *sc)
1165 {
1166 	/* set the TX threhold */
1167 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1168 	    STE_TxStartThresh, sc->sc_txthresh);
1169 	/* Urgent threshold: set to sc_txthresh / 2 */
1170 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1171 	    sc->sc_txthresh >> 6);
1172 	/* Burst threshold: use default value (256 bytes) */
1173 }
1174 
1175 /*
1176  * restart TX at the given frame ID in the transmitter ring
1177  */
1178 static void
1179 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1180 {
1181 	u_int32_t control;
1182 
1183 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1184 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1185 	control &= ~TFD_TxDMAComplete;
1186 	sc->sc_txdescs[id].tfd_control = htole32(control);
1187 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1188 
1189 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1190 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1191 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1192 	ste_dmahalt_wait(sc);
1193 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1194 	    STE_CDTXADDR(sc, id));
1195 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1196 }
1197 
1198 /*
1199  * ste_init:		[ ifnet interface function ]
1200  *
1201  *	Initialize the interface.  Must be called at splnet().
1202  */
1203 static int
1204 ste_init(struct ifnet *ifp)
1205 {
1206 	struct ste_softc *sc = ifp->if_softc;
1207 	bus_space_tag_t st = sc->sc_st;
1208 	bus_space_handle_t sh = sc->sc_sh;
1209 	struct ste_descsoft *ds;
1210 	int i, error = 0;
1211 
1212 	/*
1213 	 * Cancel any pending I/O.
1214 	 */
1215 	ste_stop(ifp, 0);
1216 
1217 	/*
1218 	 * Reset the chip to a known state.
1219 	 */
1220 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1221 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1222 
1223 	/*
1224 	 * Initialize the transmit descriptor ring.
1225 	 */
1226 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1227 	sc->sc_txpending = 0;
1228 	sc->sc_txdirty = 0;
1229 	sc->sc_txlast = STE_NTXDESC - 1;
1230 
1231 	/*
1232 	 * Initialize the receive descriptor and receive job
1233 	 * descriptor rings.
1234 	 */
1235 	for (i = 0; i < STE_NRXDESC; i++) {
1236 		ds = &sc->sc_rxsoft[i];
1237 		if (ds->ds_mbuf == NULL) {
1238 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1239 				printf("%s: unable to allocate or map rx "
1240 				    "buffer %d, error = %d\n",
1241 				    device_xname(&sc->sc_dev), i, error);
1242 				/*
1243 				 * XXX Should attempt to run with fewer receive
1244 				 * XXX buffers instead of just failing.
1245 				 */
1246 				ste_rxdrain(sc);
1247 				goto out;
1248 			}
1249 		} else
1250 			STE_INIT_RXDESC(sc, i);
1251 	}
1252 	sc->sc_rxptr = 0;
1253 
1254 	/* Set the station address. */
1255 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1256 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1257 		    CLLADDR(ifp->if_sadl)[i]);
1258 
1259 	/* Set up the receive filter. */
1260 	ste_set_filter(sc);
1261 
1262 	/*
1263 	 * Give the receive ring to the chip.
1264 	 */
1265 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1266 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1267 
1268 	/*
1269 	 * We defer giving the transmit ring to the chip until we
1270 	 * transmit the first packet.
1271 	 */
1272 
1273 	/*
1274 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1275 	 * large (127 is the max) -- we explicitly kick the transmit engine
1276 	 * when there's actually a packet.  We are using auto-polling only
1277 	 * to make the interface to the transmit engine not suck.
1278 	 */
1279 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1280 
1281 	/* ..and the Rx auto-poll period. */
1282 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1283 
1284 	/* Initialize the Tx start threshold. */
1285 	ste_setthresh(sc);
1286 
1287 	/* Set the FIFO release threshold to 512 bytes. */
1288 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1289 
1290 	/* Set maximum packet size for VLAN. */
1291 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1292 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1293 	else
1294 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1295 
1296 	/*
1297 	 * Initialize the interrupt mask.
1298 	 */
1299 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1300 	    IE_TxDMAComplete | IE_RxDMAComplete;
1301 
1302 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1303 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1304 
1305 	/*
1306 	 * Start the receive DMA engine.
1307 	 */
1308 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1309 
1310 	/*
1311 	 * Initialize MacCtrl0 -- do it before setting the media,
1312 	 * as setting the media will actually program the register.
1313 	 */
1314 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1315 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1316 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1317 
1318 	/*
1319 	 * Set the current media.
1320 	 */
1321 	if ((error = ether_mediachange(ifp)) != 0)
1322 		goto out;
1323 
1324 	/*
1325 	 * Start the MAC.
1326 	 */
1327 	bus_space_write_2(st, sh, STE_MacCtrl1,
1328 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1329 
1330 	/*
1331 	 * Start the one second MII clock.
1332 	 */
1333 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1334 
1335 	/*
1336 	 * ...all done!
1337 	 */
1338 	ifp->if_flags |= IFF_RUNNING;
1339 	ifp->if_flags &= ~IFF_OACTIVE;
1340 
1341  out:
1342 	if (error)
1343 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1344 	return (error);
1345 }
1346 
1347 /*
1348  * ste_drain:
1349  *
1350  *	Drain the receive queue.
1351  */
1352 static void
1353 ste_rxdrain(struct ste_softc *sc)
1354 {
1355 	struct ste_descsoft *ds;
1356 	int i;
1357 
1358 	for (i = 0; i < STE_NRXDESC; i++) {
1359 		ds = &sc->sc_rxsoft[i];
1360 		if (ds->ds_mbuf != NULL) {
1361 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1362 			m_freem(ds->ds_mbuf);
1363 			ds->ds_mbuf = NULL;
1364 		}
1365 	}
1366 }
1367 
1368 /*
1369  * ste_stop:		[ ifnet interface function ]
1370  *
1371  *	Stop transmission on the interface.
1372  */
1373 static void
1374 ste_stop(struct ifnet *ifp, int disable)
1375 {
1376 	struct ste_softc *sc = ifp->if_softc;
1377 	struct ste_descsoft *ds;
1378 	int i;
1379 
1380 	/*
1381 	 * Stop the one second clock.
1382 	 */
1383 	callout_stop(&sc->sc_tick_ch);
1384 
1385 	/* Down the MII. */
1386 	mii_down(&sc->sc_mii);
1387 
1388 	/*
1389 	 * Disable interrupts.
1390 	 */
1391 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1392 
1393 	/*
1394 	 * Stop receiver, transmitter, and stats update.
1395 	 */
1396 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1397 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1398 
1399 	/*
1400 	 * Stop the transmit and receive DMA.
1401 	 */
1402 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1403 	    DC_RxDMAHalt | DC_TxDMAHalt);
1404 	ste_dmahalt_wait(sc);
1405 
1406 	/*
1407 	 * Release any queued transmit buffers.
1408 	 */
1409 	for (i = 0; i < STE_NTXDESC; i++) {
1410 		ds = &sc->sc_txsoft[i];
1411 		if (ds->ds_mbuf != NULL) {
1412 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1413 			m_freem(ds->ds_mbuf);
1414 			ds->ds_mbuf = NULL;
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Mark the interface down and cancel the watchdog timer.
1420 	 */
1421 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1422 	ifp->if_timer = 0;
1423 
1424 	if (disable)
1425 		ste_rxdrain(sc);
1426 }
1427 
1428 static int
1429 ste_eeprom_wait(struct ste_softc *sc)
1430 {
1431 	int i;
1432 
1433 	for (i = 0; i < STE_TIMEOUT; i++) {
1434 		delay(1000);
1435 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1436 		     EC_EepromBusy) == 0)
1437 			return (0);
1438 	}
1439 	return (1);
1440 }
1441 
1442 /*
1443  * ste_read_eeprom:
1444  *
1445  *	Read data from the serial EEPROM.
1446  */
1447 static void
1448 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1449 {
1450 
1451 	if (ste_eeprom_wait(sc))
1452 		printf("%s: EEPROM failed to come ready\n",
1453 		    device_xname(&sc->sc_dev));
1454 
1455 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1456 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1457 	if (ste_eeprom_wait(sc))
1458 		printf("%s: EEPROM read timed out\n",
1459 		    device_xname(&sc->sc_dev));
1460 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1461 }
1462 
1463 /*
1464  * ste_add_rxbuf:
1465  *
1466  *	Add a receive buffer to the indicated descriptor.
1467  */
1468 static int
1469 ste_add_rxbuf(struct ste_softc *sc, int idx)
1470 {
1471 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1472 	struct mbuf *m;
1473 	int error;
1474 
1475 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1476 	if (m == NULL)
1477 		return (ENOBUFS);
1478 
1479 	MCLGET(m, M_DONTWAIT);
1480 	if ((m->m_flags & M_EXT) == 0) {
1481 		m_freem(m);
1482 		return (ENOBUFS);
1483 	}
1484 
1485 	if (ds->ds_mbuf != NULL)
1486 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1487 
1488 	ds->ds_mbuf = m;
1489 
1490 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1491 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1492 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1493 	if (error) {
1494 		printf("%s: can't load rx DMA map %d, error = %d\n",
1495 		    device_xname(&sc->sc_dev), idx, error);
1496 		panic("ste_add_rxbuf");		/* XXX */
1497 	}
1498 
1499 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1500 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1501 
1502 	STE_INIT_RXDESC(sc, idx);
1503 
1504 	return (0);
1505 }
1506 
1507 /*
1508  * ste_set_filter:
1509  *
1510  *	Set up the receive filter.
1511  */
1512 static void
1513 ste_set_filter(struct ste_softc *sc)
1514 {
1515 	struct ethercom *ec = &sc->sc_ethercom;
1516 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1517 	struct ether_multi *enm;
1518 	struct ether_multistep step;
1519 	uint32_t crc;
1520 	uint16_t mchash[4];
1521 
1522 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1523 	if (ifp->if_flags & IFF_BROADCAST)
1524 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1525 
1526 	if (ifp->if_flags & IFF_PROMISC) {
1527 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1528 		goto allmulti;
1529 	}
1530 
1531 	/*
1532 	 * Set up the multicast address filter by passing all multicast
1533 	 * addresses through a CRC generator, and then using the low-order
1534 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1535 	 * high order bits select the register, while the rest of the bits
1536 	 * select the bit within the register.
1537 	 */
1538 
1539 	memset(mchash, 0, sizeof(mchash));
1540 
1541 	ETHER_FIRST_MULTI(step, ec, enm);
1542 	if (enm == NULL)
1543 		goto done;
1544 
1545 	while (enm != NULL) {
1546 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1547 			/*
1548 			 * We must listen to a range of multicast addresses.
1549 			 * For now, just accept all multicasts, rather than
1550 			 * trying to set only those filter bits needed to match
1551 			 * the range.  (At this time, the only use of address
1552 			 * ranges is for IP multicast routing, for which the
1553 			 * range is big enough to require all bits set.)
1554 			 */
1555 			goto allmulti;
1556 		}
1557 
1558 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1559 
1560 		/* Just want the 6 least significant bits. */
1561 		crc &= 0x3f;
1562 
1563 		/* Set the corresponding bit in the hash table. */
1564 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1565 
1566 		ETHER_NEXT_MULTI(step, enm);
1567 	}
1568 
1569 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1570 
1571 	ifp->if_flags &= ~IFF_ALLMULTI;
1572 	goto done;
1573 
1574  allmulti:
1575 	ifp->if_flags |= IFF_ALLMULTI;
1576 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1577 
1578  done:
1579 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1580 		/*
1581 		 * Program the multicast hash table.
1582 		 */
1583 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1584 		    mchash[0]);
1585 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1586 		    mchash[1]);
1587 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1588 		    mchash[2]);
1589 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1590 		    mchash[3]);
1591 	}
1592 
1593 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1594 	    sc->sc_ReceiveMode);
1595 }
1596 
1597 /*
1598  * ste_mii_readreg:	[mii interface function]
1599  *
1600  *	Read a PHY register on the MII of the ST-201.
1601  */
1602 static int
1603 ste_mii_readreg(device_t self, int phy, int reg)
1604 {
1605 
1606 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1607 }
1608 
1609 /*
1610  * ste_mii_writereg:	[mii interface function]
1611  *
1612  *	Write a PHY register on the MII of the ST-201.
1613  */
1614 static void
1615 ste_mii_writereg(device_t self, int phy, int reg, int val)
1616 {
1617 
1618 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1619 }
1620 
1621 /*
1622  * ste_mii_statchg:	[mii interface function]
1623  *
1624  *	Callback from MII layer when media changes.
1625  */
1626 static void
1627 ste_mii_statchg(device_t self)
1628 {
1629 	struct ste_softc *sc = device_private(self);
1630 
1631 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1632 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1633 	else
1634 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1635 
1636 	/* XXX 802.1x flow-control? */
1637 
1638 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1639 }
1640 
1641 /*
1642  * ste_mii_bitbang_read: [mii bit-bang interface function]
1643  *
1644  *	Read the MII serial port for the MII bit-bang module.
1645  */
1646 static uint32_t
1647 ste_mii_bitbang_read(device_t self)
1648 {
1649 	struct ste_softc *sc = device_private(self);
1650 
1651 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1652 }
1653 
1654 /*
1655  * ste_mii_bitbang_write: [mii big-bang interface function]
1656  *
1657  *	Write the MII serial port for the MII bit-bang module.
1658  */
1659 static void
1660 ste_mii_bitbang_write(device_t self, uint32_t val)
1661 {
1662 	struct ste_softc *sc = device_private(self);
1663 
1664 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1665 }
1666