xref: /netbsd-src/sys/dev/pci/if_ste.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: if_ste.c,v 1.31 2007/10/19 12:00:48 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. ST-201 10/100
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.31 2007/10/19 12:00:48 ad Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STE_NTXDESC		256
89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STE_NRXDESC		128
96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
98 
99 /*
100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct ste_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115 
116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct ste_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct ste_softc {
132 	struct device sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	void *sc_sdhook;		/* shutdown hook */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct ste_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 	int	sc_txpending;		/* number of Tx requests pending */
162 	int	sc_txdirty;		/* first dirty Tx descriptor */
163 	int	sc_txlast;		/* last used Tx descriptor */
164 
165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
166 
167 	int	sc_txthresh;		/* Tx threshold */
168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
172 };
173 
174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
176 
177 #define	STE_CDTXSYNC(sc, x, ops)					\
178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180 
181 #define	STE_CDRXSYNC(sc, x, ops)					\
182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184 
185 #define	STE_INIT_RXDESC(sc, x)						\
186 do {									\
187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
189 	struct mbuf *__m = __ds->ds_mbuf;				\
190 									\
191 	/*								\
192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
193 	 * so that the payload after the Ethernet header is aligned	\
194 	 * to a 4-byte boundary.					\
195 	 */								\
196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
197 	__rfd->rfd_frag.frag_addr =					\
198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
201 	__rfd->rfd_status = 0;						\
202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204 
205 #define STE_TIMEOUT 1000
206 
207 static void	ste_start(struct ifnet *);
208 static void	ste_watchdog(struct ifnet *);
209 static int	ste_ioctl(struct ifnet *, u_long, void *);
210 static int	ste_init(struct ifnet *);
211 static void	ste_stop(struct ifnet *, int);
212 
213 static void	ste_shutdown(void *);
214 
215 static void	ste_reset(struct ste_softc *, u_int32_t);
216 static void	ste_setthresh(struct ste_softc *);
217 static void	ste_txrestart(struct ste_softc *, u_int8_t);
218 static void	ste_rxdrain(struct ste_softc *);
219 static int	ste_add_rxbuf(struct ste_softc *, int);
220 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 static void	ste_tick(void *);
222 
223 static void	ste_stats_update(struct ste_softc *);
224 
225 static void	ste_set_filter(struct ste_softc *);
226 
227 static int	ste_intr(void *);
228 static void	ste_txintr(struct ste_softc *);
229 static void	ste_rxintr(struct ste_softc *);
230 
231 static int	ste_mii_readreg(struct device *, int, int);
232 static void	ste_mii_writereg(struct device *, int, int, int);
233 static void	ste_mii_statchg(struct device *);
234 
235 static int	ste_mediachange(struct ifnet *);
236 static void	ste_mediastatus(struct ifnet *, struct ifmediareq *);
237 
238 static int	ste_match(struct device *, struct cfdata *, void *);
239 static void	ste_attach(struct device *, struct device *, void *);
240 
241 int	ste_copy_small = 0;
242 
243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
244     ste_match, ste_attach, NULL, NULL);
245 
246 static uint32_t ste_mii_bitbang_read(struct device *);
247 static void	ste_mii_bitbang_write(struct device *, uint32_t);
248 
249 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
250 	ste_mii_bitbang_read,
251 	ste_mii_bitbang_write,
252 	{
253 		PC_MgmtData,		/* MII_BIT_MDO */
254 		PC_MgmtData,		/* MII_BIT_MDI */
255 		PC_MgmtClk,		/* MII_BIT_MDC */
256 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
257 		0,			/* MII_BIT_DIR_PHY_HOST */
258 	}
259 };
260 
261 /*
262  * Devices supported by this driver.
263  */
264 static const struct ste_product {
265 	pci_vendor_id_t		ste_vendor;
266 	pci_product_id_t	ste_product;
267 	const char		*ste_name;
268 } ste_products[] = {
269 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
270 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
271 
272 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
273 	  "Sundance ST-201 10/100 Ethernet" },
274 
275 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
276 	  "D-Link DL-1002 10/100 Ethernet" },
277 
278 	{ 0,				0,
279 	  NULL },
280 };
281 
282 static const struct ste_product *
283 ste_lookup(const struct pci_attach_args *pa)
284 {
285 	const struct ste_product *sp;
286 
287 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
288 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
289 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
290 			return (sp);
291 	}
292 	return (NULL);
293 }
294 
295 static int
296 ste_match(struct device *parent, struct cfdata *cf, void *aux)
297 {
298 	struct pci_attach_args *pa = aux;
299 
300 	if (ste_lookup(pa) != NULL)
301 		return (1);
302 
303 	return (0);
304 }
305 
306 static void
307 ste_attach(struct device *parent, struct device *self, void *aux)
308 {
309 	struct ste_softc *sc = (struct ste_softc *) self;
310 	struct pci_attach_args *pa = aux;
311 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
312 	pci_chipset_tag_t pc = pa->pa_pc;
313 	pci_intr_handle_t ih;
314 	const char *intrstr = NULL;
315 	bus_space_tag_t iot, memt;
316 	bus_space_handle_t ioh, memh;
317 	bus_dma_segment_t seg;
318 	int ioh_valid, memh_valid;
319 	int i, rseg, error;
320 	const struct ste_product *sp;
321 	uint8_t enaddr[ETHER_ADDR_LEN];
322 	uint16_t myea[ETHER_ADDR_LEN / 2];
323 
324 	callout_init(&sc->sc_tick_ch, 0);
325 
326 	sp = ste_lookup(pa);
327 	if (sp == NULL) {
328 		printf("\n");
329 		panic("ste_attach: impossible");
330 	}
331 
332 	printf(": %s\n", sp->ste_name);
333 
334 	/*
335 	 * Map the device.
336 	 */
337 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
338 	    PCI_MAPREG_TYPE_IO, 0,
339 	    &iot, &ioh, NULL, NULL) == 0);
340 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
341 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
342 	    &memt, &memh, NULL, NULL) == 0);
343 
344 	if (memh_valid) {
345 		sc->sc_st = memt;
346 		sc->sc_sh = memh;
347 	} else if (ioh_valid) {
348 		sc->sc_st = iot;
349 		sc->sc_sh = ioh;
350 	} else {
351 		printf("%s: unable to map device registers\n",
352 		    sc->sc_dev.dv_xname);
353 		return;
354 	}
355 
356 	sc->sc_dmat = pa->pa_dmat;
357 
358 	/* Enable bus mastering. */
359 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
360 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
361 	    PCI_COMMAND_MASTER_ENABLE);
362 
363 	/* power up chip */
364 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
365 	    NULL)) && error != EOPNOTSUPP) {
366 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
367 		    error);
368 		return;
369 	}
370 
371 	/*
372 	 * Map and establish our interrupt.
373 	 */
374 	if (pci_intr_map(pa, &ih)) {
375 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
376 		return;
377 	}
378 	intrstr = pci_intr_string(pc, ih);
379 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
380 	if (sc->sc_ih == NULL) {
381 		printf("%s: unable to establish interrupt",
382 		    sc->sc_dev.dv_xname);
383 		if (intrstr != NULL)
384 			printf(" at %s", intrstr);
385 		printf("\n");
386 		return;
387 	}
388 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
389 
390 	/*
391 	 * Allocate the control data structures, and create and load the
392 	 * DMA map for it.
393 	 */
394 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
395 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
396 	    0)) != 0) {
397 		printf("%s: unable to allocate control data, error = %d\n",
398 		    sc->sc_dev.dv_xname, error);
399 		goto fail_0;
400 	}
401 
402 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
403 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
404 	    BUS_DMA_COHERENT)) != 0) {
405 		printf("%s: unable to map control data, error = %d\n",
406 		    sc->sc_dev.dv_xname, error);
407 		goto fail_1;
408 	}
409 
410 	if ((error = bus_dmamap_create(sc->sc_dmat,
411 	    sizeof(struct ste_control_data), 1,
412 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
413 		printf("%s: unable to create control data DMA map, "
414 		    "error = %d\n", sc->sc_dev.dv_xname, error);
415 		goto fail_2;
416 	}
417 
418 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
419 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
420 	    0)) != 0) {
421 		printf("%s: unable to load control data DMA map, error = %d\n",
422 		    sc->sc_dev.dv_xname, error);
423 		goto fail_3;
424 	}
425 
426 	/*
427 	 * Create the transmit buffer DMA maps.
428 	 */
429 	for (i = 0; i < STE_NTXDESC; i++) {
430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
431 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
432 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
433 			printf("%s: unable to create tx DMA map %d, "
434 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
435 			goto fail_4;
436 		}
437 	}
438 
439 	/*
440 	 * Create the receive buffer DMA maps.
441 	 */
442 	for (i = 0; i < STE_NRXDESC; i++) {
443 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
444 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
445 			printf("%s: unable to create rx DMA map %d, "
446 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
447 			goto fail_5;
448 		}
449 		sc->sc_rxsoft[i].ds_mbuf = NULL;
450 	}
451 
452 	/*
453 	 * Reset the chip to a known state.
454 	 */
455 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
456 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
457 
458 	/*
459 	 * Read the Ethernet address from the EEPROM.
460 	 */
461 	for (i = 0; i < 3; i++) {
462 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
463 		myea[i] = le16toh(myea[i]);
464 	}
465 	memcpy(enaddr, myea, sizeof(enaddr));
466 
467 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
468 	    ether_sprintf(enaddr));
469 
470 	/*
471 	 * Initialize our media structures and probe the MII.
472 	 */
473 	sc->sc_mii.mii_ifp = ifp;
474 	sc->sc_mii.mii_readreg = ste_mii_readreg;
475 	sc->sc_mii.mii_writereg = ste_mii_writereg;
476 	sc->sc_mii.mii_statchg = ste_mii_statchg;
477 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
478 	    ste_mediastatus);
479 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
480 	    MII_OFFSET_ANY, 0);
481 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
482 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
483 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
484 	} else
485 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
486 
487 	ifp = &sc->sc_ethercom.ec_if;
488 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
489 	ifp->if_softc = sc;
490 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
491 	ifp->if_ioctl = ste_ioctl;
492 	ifp->if_start = ste_start;
493 	ifp->if_watchdog = ste_watchdog;
494 	ifp->if_init = ste_init;
495 	ifp->if_stop = ste_stop;
496 	IFQ_SET_READY(&ifp->if_snd);
497 
498 	/*
499 	 * Default the transmit threshold to 128 bytes.
500 	 */
501 	sc->sc_txthresh = 128;
502 
503 	/*
504 	 * Disable MWI if the PCI layer tells us to.
505 	 */
506 	sc->sc_DMACtrl = 0;
507 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
508 		sc->sc_DMACtrl |= DC_MWIDisable;
509 
510 	/*
511 	 * We can support 802.1Q VLAN-sized frames.
512 	 */
513 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
514 
515 	/*
516 	 * Attach the interface.
517 	 */
518 	if_attach(ifp);
519 	ether_ifattach(ifp, enaddr);
520 
521 	/*
522 	 * Make sure the interface is shutdown during reboot.
523 	 */
524 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
525 	if (sc->sc_sdhook == NULL)
526 		printf("%s: WARNING: unable to establish shutdown hook\n",
527 		    sc->sc_dev.dv_xname);
528 	return;
529 
530 	/*
531 	 * Free any resources we've allocated during the failed attach
532 	 * attempt.  Do this in reverse order and fall through.
533 	 */
534  fail_5:
535 	for (i = 0; i < STE_NRXDESC; i++) {
536 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
537 			bus_dmamap_destroy(sc->sc_dmat,
538 			    sc->sc_rxsoft[i].ds_dmamap);
539 	}
540  fail_4:
541 	for (i = 0; i < STE_NTXDESC; i++) {
542 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
543 			bus_dmamap_destroy(sc->sc_dmat,
544 			    sc->sc_txsoft[i].ds_dmamap);
545 	}
546 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
547  fail_3:
548 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
549  fail_2:
550 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
551 	    sizeof(struct ste_control_data));
552  fail_1:
553 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
554  fail_0:
555 	return;
556 }
557 
558 /*
559  * ste_shutdown:
560  *
561  *	Make sure the interface is stopped at reboot time.
562  */
563 static void
564 ste_shutdown(void *arg)
565 {
566 	struct ste_softc *sc = arg;
567 
568 	ste_stop(&sc->sc_ethercom.ec_if, 1);
569 }
570 
571 static void
572 ste_dmahalt_wait(struct ste_softc *sc)
573 {
574 	int i;
575 
576 	for (i = 0; i < STE_TIMEOUT; i++) {
577 		delay(2);
578 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
579 		     DC_DMAHaltBusy) == 0)
580 			break;
581 	}
582 
583 	if (i == STE_TIMEOUT)
584 		printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
585 }
586 
587 /*
588  * ste_start:		[ifnet interface function]
589  *
590  *	Start packet transmission on the interface.
591  */
592 static void
593 ste_start(struct ifnet *ifp)
594 {
595 	struct ste_softc *sc = ifp->if_softc;
596 	struct mbuf *m0, *m;
597 	struct ste_descsoft *ds;
598 	struct ste_tfd *tfd;
599 	bus_dmamap_t dmamap;
600 	int error, olasttx, nexttx, opending, seg, totlen;
601 
602 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
603 		return;
604 
605 	/*
606 	 * Remember the previous number of pending transmissions
607 	 * and the current last descriptor in the list.
608 	 */
609 	opending = sc->sc_txpending;
610 	olasttx = sc->sc_txlast;
611 
612 	/*
613 	 * Loop through the send queue, setting up transmit descriptors
614 	 * until we drain the queue, or use up all available transmit
615 	 * descriptors.
616 	 */
617 	while (sc->sc_txpending < STE_NTXDESC) {
618 		/*
619 		 * Grab a packet off the queue.
620 		 */
621 		IFQ_POLL(&ifp->if_snd, m0);
622 		if (m0 == NULL)
623 			break;
624 		m = NULL;
625 
626 		/*
627 		 * Get the last and next available transmit descriptor.
628 		 */
629 		nexttx = STE_NEXTTX(sc->sc_txlast);
630 		tfd = &sc->sc_txdescs[nexttx];
631 		ds = &sc->sc_txsoft[nexttx];
632 
633 		dmamap = ds->ds_dmamap;
634 
635 		/*
636 		 * Load the DMA map.  If this fails, the packet either
637 		 * didn't fit in the alloted number of segments, or we
638 		 * were short on resources.  In this case, we'll copy
639 		 * and try again.
640 		 */
641 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
642 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
643 			MGETHDR(m, M_DONTWAIT, MT_DATA);
644 			if (m == NULL) {
645 				printf("%s: unable to allocate Tx mbuf\n",
646 				    sc->sc_dev.dv_xname);
647 				break;
648 			}
649 			if (m0->m_pkthdr.len > MHLEN) {
650 				MCLGET(m, M_DONTWAIT);
651 				if ((m->m_flags & M_EXT) == 0) {
652 					printf("%s: unable to allocate Tx "
653 					    "cluster\n", sc->sc_dev.dv_xname);
654 					m_freem(m);
655 					break;
656 				}
657 			}
658 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
659 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
660 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
661 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
662 			if (error) {
663 				printf("%s: unable to load Tx buffer, "
664 				    "error = %d\n", sc->sc_dev.dv_xname, error);
665 				break;
666 			}
667 		}
668 
669 		IFQ_DEQUEUE(&ifp->if_snd, m0);
670 		if (m != NULL) {
671 			m_freem(m0);
672 			m0 = m;
673 		}
674 
675 		/*
676 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
677 		 */
678 
679 		/* Sync the DMA map. */
680 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
681 		    BUS_DMASYNC_PREWRITE);
682 
683 		/* Initialize the fragment list. */
684 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
685 			tfd->tfd_frags[seg].frag_addr =
686 			    htole32(dmamap->dm_segs[seg].ds_addr);
687 			tfd->tfd_frags[seg].frag_len =
688 			    htole32(dmamap->dm_segs[seg].ds_len);
689 			totlen += dmamap->dm_segs[seg].ds_len;
690 		}
691 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
692 
693 		/* Initialize the descriptor. */
694 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
695 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
696 
697 		/* Sync the descriptor. */
698 		STE_CDTXSYNC(sc, nexttx,
699 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
700 
701 		/*
702 		 * Store a pointer to the packet so we can free it later,
703 		 * and remember what txdirty will be once the packet is
704 		 * done.
705 		 */
706 		ds->ds_mbuf = m0;
707 
708 		/* Advance the tx pointer. */
709 		sc->sc_txpending++;
710 		sc->sc_txlast = nexttx;
711 
712 #if NBPFILTER > 0
713 		/*
714 		 * Pass the packet to any BPF listeners.
715 		 */
716 		if (ifp->if_bpf)
717 			bpf_mtap(ifp->if_bpf, m0);
718 #endif /* NBPFILTER > 0 */
719 	}
720 
721 	if (sc->sc_txpending == STE_NTXDESC) {
722 		/* No more slots left; notify upper layer. */
723 		ifp->if_flags |= IFF_OACTIVE;
724 	}
725 
726 	if (sc->sc_txpending != opending) {
727 		/*
728 		 * We enqueued packets.  If the transmitter was idle,
729 		 * reset the txdirty pointer.
730 		 */
731 		if (opending == 0)
732 			sc->sc_txdirty = STE_NEXTTX(olasttx);
733 
734 		/*
735 		 * Cause a descriptor interrupt to happen on the
736 		 * last packet we enqueued, and also cause the
737 		 * DMA engine to wait after is has finished processing
738 		 * it.
739 		 */
740 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
741 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
742 		    htole32(TFD_TxDMAIndicate);
743 		STE_CDTXSYNC(sc, sc->sc_txlast,
744 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
745 
746 		/*
747 		 * Link up the new chain of descriptors to the
748 		 * last.
749 		 */
750 		sc->sc_txdescs[olasttx].tfd_next =
751 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
752 		STE_CDTXSYNC(sc, olasttx,
753 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754 
755 		/*
756 		 * Kick the transmit DMA logic.  Note that since we're
757 		 * using auto-polling, reading the Tx desc pointer will
758 		 * give it the nudge it needs to get going.
759 		 */
760 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
761 		    STE_TxDMAListPtr) == 0) {
762 			bus_space_write_4(sc->sc_st, sc->sc_sh,
763 			    STE_DMACtrl, DC_TxDMAHalt);
764 			ste_dmahalt_wait(sc);
765 			bus_space_write_4(sc->sc_st, sc->sc_sh,
766 			    STE_TxDMAListPtr,
767 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
768 			bus_space_write_4(sc->sc_st, sc->sc_sh,
769 			    STE_DMACtrl, DC_TxDMAResume);
770 		}
771 
772 		/* Set a watchdog timer in case the chip flakes out. */
773 		ifp->if_timer = 5;
774 	}
775 }
776 
777 /*
778  * ste_watchdog:	[ifnet interface function]
779  *
780  *	Watchdog timer handler.
781  */
782 static void
783 ste_watchdog(struct ifnet *ifp)
784 {
785 	struct ste_softc *sc = ifp->if_softc;
786 
787 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
788 	ifp->if_oerrors++;
789 
790 	ste_txintr(sc);
791 	ste_rxintr(sc);
792 	(void) ste_init(ifp);
793 
794 	/* Try to get more packets going. */
795 	ste_start(ifp);
796 }
797 
798 /*
799  * ste_ioctl:		[ifnet interface function]
800  *
801  *	Handle control requests from the operator.
802  */
803 static int
804 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
805 {
806 	struct ste_softc *sc = ifp->if_softc;
807 	struct ifreq *ifr = (struct ifreq *)data;
808 	int s, error;
809 
810 	s = splnet();
811 
812 	switch (cmd) {
813 	case SIOCSIFMEDIA:
814 	case SIOCGIFMEDIA:
815 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
816 		break;
817 
818 	default:
819 		error = ether_ioctl(ifp, cmd, data);
820 		if (error == ENETRESET) {
821 			/*
822 			 * Multicast list has changed; set the hardware filter
823 			 * accordingly.
824 			 */
825 			if (ifp->if_flags & IFF_RUNNING)
826 				ste_set_filter(sc);
827 			error = 0;
828 		}
829 		break;
830 	}
831 
832 	/* Try to get more packets going. */
833 	ste_start(ifp);
834 
835 	splx(s);
836 	return (error);
837 }
838 
839 /*
840  * ste_intr:
841  *
842  *	Interrupt service routine.
843  */
844 static int
845 ste_intr(void *arg)
846 {
847 	struct ste_softc *sc = arg;
848 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
849 	uint16_t isr;
850 	uint8_t txstat;
851 	int wantinit;
852 
853 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
854 	     IS_InterruptStatus) == 0)
855 		return (0);
856 
857 	for (wantinit = 0; wantinit == 0;) {
858 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
859 		if ((isr & sc->sc_IntEnable) == 0)
860 			break;
861 
862 		/* Receive interrupts. */
863 		if (isr & IE_RxDMAComplete)
864 			ste_rxintr(sc);
865 
866 		/* Transmit interrupts. */
867 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
868 			ste_txintr(sc);
869 
870 		/* Statistics overflow. */
871 		if (isr & IE_UpdateStats)
872 			ste_stats_update(sc);
873 
874 		/* Transmission errors. */
875 		if (isr & IE_TxComplete) {
876 			for (;;) {
877 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
878 				    STE_TxStatus);
879 				if ((txstat & TS_TxComplete) == 0)
880 					break;
881 				if (txstat & TS_TxUnderrun) {
882 					sc->sc_txthresh += 32;
883 					if (sc->sc_txthresh > 0x1ffc)
884 						sc->sc_txthresh = 0x1ffc;
885 					printf("%s: transmit underrun, new "
886 					    "threshold: %d bytes\n",
887 					    sc->sc_dev.dv_xname,
888 					    sc->sc_txthresh);
889 					ste_reset(sc, AC_TxReset | AC_DMA |
890 					    AC_FIFO | AC_Network);
891 					ste_setthresh(sc);
892 					bus_space_write_1(sc->sc_st, sc->sc_sh,
893 					    STE_TxDMAPollPeriod, 127);
894 					ste_txrestart(sc,
895 					    bus_space_read_1(sc->sc_st,
896 						sc->sc_sh, STE_TxFrameId));
897 				}
898 				if (txstat & TS_TxReleaseError) {
899 					printf("%s: Tx FIFO release error\n",
900 					    sc->sc_dev.dv_xname);
901 					wantinit = 1;
902 				}
903 				if (txstat & TS_MaxCollisions) {
904 					printf("%s: excessive collisions\n",
905 					    sc->sc_dev.dv_xname);
906 					wantinit = 1;
907 				}
908 				if (txstat & TS_TxStatusOverflow) {
909 					printf("%s: status overflow\n",
910 					    sc->sc_dev.dv_xname);
911 					wantinit = 1;
912 				}
913 				bus_space_write_2(sc->sc_st, sc->sc_sh,
914 				    STE_TxStatus, 0);
915 			}
916 		}
917 
918 		/* Host interface errors. */
919 		if (isr & IE_HostError) {
920 			printf("%s: Host interface error\n",
921 			    sc->sc_dev.dv_xname);
922 			wantinit = 1;
923 		}
924 	}
925 
926 	if (wantinit)
927 		ste_init(ifp);
928 
929 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
930 	    sc->sc_IntEnable);
931 
932 	/* Try to get more packets going. */
933 	ste_start(ifp);
934 
935 	return (1);
936 }
937 
938 /*
939  * ste_txintr:
940  *
941  *	Helper; handle transmit interrupts.
942  */
943 static void
944 ste_txintr(struct ste_softc *sc)
945 {
946 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
947 	struct ste_descsoft *ds;
948 	uint32_t control;
949 	int i;
950 
951 	ifp->if_flags &= ~IFF_OACTIVE;
952 
953 	/*
954 	 * Go through our Tx list and free mbufs for those
955 	 * frames which have been transmitted.
956 	 */
957 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
958 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
959 		ds = &sc->sc_txsoft[i];
960 
961 		STE_CDTXSYNC(sc, i,
962 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
963 
964 		control = le32toh(sc->sc_txdescs[i].tfd_control);
965 		if ((control & TFD_TxDMAComplete) == 0)
966 			break;
967 
968 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
969 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
970 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
971 		m_freem(ds->ds_mbuf);
972 		ds->ds_mbuf = NULL;
973 	}
974 
975 	/* Update the dirty transmit buffer pointer. */
976 	sc->sc_txdirty = i;
977 
978 	/*
979 	 * If there are no more pending transmissions, cancel the watchdog
980 	 * timer.
981 	 */
982 	if (sc->sc_txpending == 0)
983 		ifp->if_timer = 0;
984 }
985 
986 /*
987  * ste_rxintr:
988  *
989  *	Helper; handle receive interrupts.
990  */
991 static void
992 ste_rxintr(struct ste_softc *sc)
993 {
994 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
995 	struct ste_descsoft *ds;
996 	struct mbuf *m;
997 	uint32_t status;
998 	int i, len;
999 
1000 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1001 		ds = &sc->sc_rxsoft[i];
1002 
1003 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1004 
1005 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
1006 
1007 		if ((status & RFD_RxDMAComplete) == 0)
1008 			break;
1009 
1010 		/*
1011 		 * If the packet had an error, simply recycle the
1012 		 * buffer.  Note, we count the error later in the
1013 		 * periodic stats update.
1014 		 */
1015 		if (status & RFD_RxFrameError) {
1016 			STE_INIT_RXDESC(sc, i);
1017 			continue;
1018 		}
1019 
1020 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1021 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1022 
1023 		/*
1024 		 * No errors; receive the packet.  Note, we have
1025 		 * configured the chip to not include the CRC at
1026 		 * the end of the packet.
1027 		 */
1028 		len = RFD_RxDMAFrameLen(status);
1029 
1030 		/*
1031 		 * If the packet is small enough to fit in a
1032 		 * single header mbuf, allocate one and copy
1033 		 * the data into it.  This greatly reduces
1034 		 * memory consumption when we receive lots
1035 		 * of small packets.
1036 		 *
1037 		 * Otherwise, we add a new buffer to the receive
1038 		 * chain.  If this fails, we drop the packet and
1039 		 * recycle the old buffer.
1040 		 */
1041 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1042 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1043 			if (m == NULL)
1044 				goto dropit;
1045 			m->m_data += 2;
1046 			memcpy(mtod(m, void *),
1047 			    mtod(ds->ds_mbuf, void *), len);
1048 			STE_INIT_RXDESC(sc, i);
1049 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1050 			    ds->ds_dmamap->dm_mapsize,
1051 			    BUS_DMASYNC_PREREAD);
1052 		} else {
1053 			m = ds->ds_mbuf;
1054 			if (ste_add_rxbuf(sc, i) != 0) {
1055  dropit:
1056 				ifp->if_ierrors++;
1057 				STE_INIT_RXDESC(sc, i);
1058 				bus_dmamap_sync(sc->sc_dmat,
1059 				    ds->ds_dmamap, 0,
1060 				    ds->ds_dmamap->dm_mapsize,
1061 				    BUS_DMASYNC_PREREAD);
1062 				continue;
1063 			}
1064 		}
1065 
1066 		m->m_pkthdr.rcvif = ifp;
1067 		m->m_pkthdr.len = m->m_len = len;
1068 
1069 #if NBPFILTER > 0
1070 		/*
1071 		 * Pass this up to any BPF listeners, but only
1072 		 * pass if up the stack if it's for us.
1073 		 */
1074 		if (ifp->if_bpf)
1075 			bpf_mtap(ifp->if_bpf, m);
1076 #endif /* NBPFILTER > 0 */
1077 
1078 		/* Pass it on. */
1079 		(*ifp->if_input)(ifp, m);
1080 	}
1081 
1082 	/* Update the receive pointer. */
1083 	sc->sc_rxptr = i;
1084 }
1085 
1086 /*
1087  * ste_tick:
1088  *
1089  *	One second timer, used to tick the MII.
1090  */
1091 static void
1092 ste_tick(void *arg)
1093 {
1094 	struct ste_softc *sc = arg;
1095 	int s;
1096 
1097 	s = splnet();
1098 	mii_tick(&sc->sc_mii);
1099 	ste_stats_update(sc);
1100 	splx(s);
1101 
1102 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1103 }
1104 
1105 /*
1106  * ste_stats_update:
1107  *
1108  *	Read the ST-201 statistics counters.
1109  */
1110 static void
1111 ste_stats_update(struct ste_softc *sc)
1112 {
1113 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1114 	bus_space_tag_t st = sc->sc_st;
1115 	bus_space_handle_t sh = sc->sc_sh;
1116 
1117 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1118 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1119 
1120 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1121 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1122 
1123 	ifp->if_opackets +=
1124 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1125 	ifp->if_ipackets +=
1126 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1127 
1128 	ifp->if_collisions +=
1129 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1130 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1131 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1132 
1133 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1134 
1135 	ifp->if_ierrors +=
1136 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1137 
1138 	ifp->if_oerrors +=
1139 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1140 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1141 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1142 
1143 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1144 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1145 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1146 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1147 }
1148 
1149 /*
1150  * ste_reset:
1151  *
1152  *	Perform a soft reset on the ST-201.
1153  */
1154 static void
1155 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1156 {
1157 	uint32_t ac;
1158 	int i;
1159 
1160 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1161 
1162 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1163 
1164 	delay(50000);
1165 
1166 	for (i = 0; i < STE_TIMEOUT; i++) {
1167 		delay(1000);
1168 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1169 		     AC_ResetBusy) == 0)
1170 			break;
1171 	}
1172 
1173 	if (i == STE_TIMEOUT)
1174 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1175 
1176 	delay(1000);
1177 }
1178 
1179 /*
1180  * ste_setthresh:
1181  *
1182  * 	set the various transmit threshold registers
1183  */
1184 static void
1185 ste_setthresh(struct ste_softc *sc)
1186 {
1187 	/* set the TX threhold */
1188 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1189 	    STE_TxStartThresh, sc->sc_txthresh);
1190 	/* Urgent threshold: set to sc_txthresh / 2 */
1191 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1192 	    sc->sc_txthresh >> 6);
1193 	/* Burst threshold: use default value (256 bytes) */
1194 }
1195 
1196 /*
1197  * restart TX at the given frame ID in the transmitter ring
1198  */
1199 static void
1200 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1201 {
1202 	u_int32_t control;
1203 
1204 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1205 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1206 	control &= ~TFD_TxDMAComplete;
1207 	sc->sc_txdescs[id].tfd_control = htole32(control);
1208 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1209 
1210 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1211 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1212 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1213 	ste_dmahalt_wait(sc);
1214 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1215 	    STE_CDTXADDR(sc, id));
1216 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1217 }
1218 
1219 /*
1220  * ste_init:		[ ifnet interface function ]
1221  *
1222  *	Initialize the interface.  Must be called at splnet().
1223  */
1224 static int
1225 ste_init(struct ifnet *ifp)
1226 {
1227 	struct ste_softc *sc = ifp->if_softc;
1228 	bus_space_tag_t st = sc->sc_st;
1229 	bus_space_handle_t sh = sc->sc_sh;
1230 	struct ste_descsoft *ds;
1231 	int i, error = 0;
1232 
1233 	/*
1234 	 * Cancel any pending I/O.
1235 	 */
1236 	ste_stop(ifp, 0);
1237 
1238 	/*
1239 	 * Reset the chip to a known state.
1240 	 */
1241 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1242 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1243 
1244 	/*
1245 	 * Initialize the transmit descriptor ring.
1246 	 */
1247 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1248 	sc->sc_txpending = 0;
1249 	sc->sc_txdirty = 0;
1250 	sc->sc_txlast = STE_NTXDESC - 1;
1251 
1252 	/*
1253 	 * Initialize the receive descriptor and receive job
1254 	 * descriptor rings.
1255 	 */
1256 	for (i = 0; i < STE_NRXDESC; i++) {
1257 		ds = &sc->sc_rxsoft[i];
1258 		if (ds->ds_mbuf == NULL) {
1259 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1260 				printf("%s: unable to allocate or map rx "
1261 				    "buffer %d, error = %d\n",
1262 				    sc->sc_dev.dv_xname, i, error);
1263 				/*
1264 				 * XXX Should attempt to run with fewer receive
1265 				 * XXX buffers instead of just failing.
1266 				 */
1267 				ste_rxdrain(sc);
1268 				goto out;
1269 			}
1270 		} else
1271 			STE_INIT_RXDESC(sc, i);
1272 	}
1273 	sc->sc_rxptr = 0;
1274 
1275 	/* Set the station address. */
1276 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1277 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1278 		    CLLADDR(ifp->if_sadl)[i]);
1279 
1280 	/* Set up the receive filter. */
1281 	ste_set_filter(sc);
1282 
1283 	/*
1284 	 * Give the receive ring to the chip.
1285 	 */
1286 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1287 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1288 
1289 	/*
1290 	 * We defer giving the transmit ring to the chip until we
1291 	 * transmit the first packet.
1292 	 */
1293 
1294 	/*
1295 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1296 	 * large (127 is the max) -- we explicitly kick the transmit engine
1297 	 * when there's actually a packet.  We are using auto-polling only
1298 	 * to make the interface to the transmit engine not suck.
1299 	 */
1300 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1301 
1302 	/* ..and the Rx auto-poll period. */
1303 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1304 
1305 	/* Initialize the Tx start threshold. */
1306 	ste_setthresh(sc);
1307 
1308 	/* Set the FIFO release threshold to 512 bytes. */
1309 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1310 
1311 	/* Set maximum packet size for VLAN. */
1312 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1313 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1314 	else
1315 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1316 
1317 	/*
1318 	 * Initialize the interrupt mask.
1319 	 */
1320 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1321 	    IE_TxDMAComplete | IE_RxDMAComplete;
1322 
1323 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1324 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1325 
1326 	/*
1327 	 * Start the receive DMA engine.
1328 	 */
1329 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1330 
1331 	/*
1332 	 * Initialize MacCtrl0 -- do it before setting the media,
1333 	 * as setting the media will actually program the register.
1334 	 */
1335 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1336 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1337 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1338 
1339 	/*
1340 	 * Set the current media.
1341 	 */
1342 	mii_mediachg(&sc->sc_mii);
1343 
1344 	/*
1345 	 * Start the MAC.
1346 	 */
1347 	bus_space_write_2(st, sh, STE_MacCtrl1,
1348 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1349 
1350 	/*
1351 	 * Start the one second MII clock.
1352 	 */
1353 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1354 
1355 	/*
1356 	 * ...all done!
1357 	 */
1358 	ifp->if_flags |= IFF_RUNNING;
1359 	ifp->if_flags &= ~IFF_OACTIVE;
1360 
1361  out:
1362 	if (error)
1363 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1364 	return (error);
1365 }
1366 
1367 /*
1368  * ste_drain:
1369  *
1370  *	Drain the receive queue.
1371  */
1372 static void
1373 ste_rxdrain(struct ste_softc *sc)
1374 {
1375 	struct ste_descsoft *ds;
1376 	int i;
1377 
1378 	for (i = 0; i < STE_NRXDESC; i++) {
1379 		ds = &sc->sc_rxsoft[i];
1380 		if (ds->ds_mbuf != NULL) {
1381 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1382 			m_freem(ds->ds_mbuf);
1383 			ds->ds_mbuf = NULL;
1384 		}
1385 	}
1386 }
1387 
1388 /*
1389  * ste_stop:		[ ifnet interface function ]
1390  *
1391  *	Stop transmission on the interface.
1392  */
1393 static void
1394 ste_stop(struct ifnet *ifp, int disable)
1395 {
1396 	struct ste_softc *sc = ifp->if_softc;
1397 	struct ste_descsoft *ds;
1398 	int i;
1399 
1400 	/*
1401 	 * Stop the one second clock.
1402 	 */
1403 	callout_stop(&sc->sc_tick_ch);
1404 
1405 	/* Down the MII. */
1406 	mii_down(&sc->sc_mii);
1407 
1408 	/*
1409 	 * Disable interrupts.
1410 	 */
1411 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1412 
1413 	/*
1414 	 * Stop receiver, transmitter, and stats update.
1415 	 */
1416 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1417 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1418 
1419 	/*
1420 	 * Stop the transmit and receive DMA.
1421 	 */
1422 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1423 	    DC_RxDMAHalt | DC_TxDMAHalt);
1424 	ste_dmahalt_wait(sc);
1425 
1426 	/*
1427 	 * Release any queued transmit buffers.
1428 	 */
1429 	for (i = 0; i < STE_NTXDESC; i++) {
1430 		ds = &sc->sc_txsoft[i];
1431 		if (ds->ds_mbuf != NULL) {
1432 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1433 			m_freem(ds->ds_mbuf);
1434 			ds->ds_mbuf = NULL;
1435 		}
1436 	}
1437 
1438 	if (disable)
1439 		ste_rxdrain(sc);
1440 
1441 	/*
1442 	 * Mark the interface down and cancel the watchdog timer.
1443 	 */
1444 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1445 	ifp->if_timer = 0;
1446 }
1447 
1448 static int
1449 ste_eeprom_wait(struct ste_softc *sc)
1450 {
1451 	int i;
1452 
1453 	for (i = 0; i < STE_TIMEOUT; i++) {
1454 		delay(1000);
1455 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1456 		     EC_EepromBusy) == 0)
1457 			return (0);
1458 	}
1459 	return (1);
1460 }
1461 
1462 /*
1463  * ste_read_eeprom:
1464  *
1465  *	Read data from the serial EEPROM.
1466  */
1467 static void
1468 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1469 {
1470 
1471 	if (ste_eeprom_wait(sc))
1472 		printf("%s: EEPROM failed to come ready\n",
1473 		    sc->sc_dev.dv_xname);
1474 
1475 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1476 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1477 	if (ste_eeprom_wait(sc))
1478 		printf("%s: EEPROM read timed out\n",
1479 		    sc->sc_dev.dv_xname);
1480 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1481 }
1482 
1483 /*
1484  * ste_add_rxbuf:
1485  *
1486  *	Add a receive buffer to the indicated descriptor.
1487  */
1488 static int
1489 ste_add_rxbuf(struct ste_softc *sc, int idx)
1490 {
1491 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1492 	struct mbuf *m;
1493 	int error;
1494 
1495 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 	if (m == NULL)
1497 		return (ENOBUFS);
1498 
1499 	MCLGET(m, M_DONTWAIT);
1500 	if ((m->m_flags & M_EXT) == 0) {
1501 		m_freem(m);
1502 		return (ENOBUFS);
1503 	}
1504 
1505 	if (ds->ds_mbuf != NULL)
1506 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1507 
1508 	ds->ds_mbuf = m;
1509 
1510 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1511 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1512 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1513 	if (error) {
1514 		printf("%s: can't load rx DMA map %d, error = %d\n",
1515 		    sc->sc_dev.dv_xname, idx, error);
1516 		panic("ste_add_rxbuf");		/* XXX */
1517 	}
1518 
1519 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1520 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1521 
1522 	STE_INIT_RXDESC(sc, idx);
1523 
1524 	return (0);
1525 }
1526 
1527 /*
1528  * ste_set_filter:
1529  *
1530  *	Set up the receive filter.
1531  */
1532 static void
1533 ste_set_filter(struct ste_softc *sc)
1534 {
1535 	struct ethercom *ec = &sc->sc_ethercom;
1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1537 	struct ether_multi *enm;
1538 	struct ether_multistep step;
1539 	uint32_t crc;
1540 	uint16_t mchash[4];
1541 
1542 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1543 	if (ifp->if_flags & IFF_BROADCAST)
1544 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1545 
1546 	if (ifp->if_flags & IFF_PROMISC) {
1547 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1548 		goto allmulti;
1549 	}
1550 
1551 	/*
1552 	 * Set up the multicast address filter by passing all multicast
1553 	 * addresses through a CRC generator, and then using the low-order
1554 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1555 	 * high order bits select the register, while the rest of the bits
1556 	 * select the bit within the register.
1557 	 */
1558 
1559 	memset(mchash, 0, sizeof(mchash));
1560 
1561 	ETHER_FIRST_MULTI(step, ec, enm);
1562 	if (enm == NULL)
1563 		goto done;
1564 
1565 	while (enm != NULL) {
1566 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1567 			/*
1568 			 * We must listen to a range of multicast addresses.
1569 			 * For now, just accept all multicasts, rather than
1570 			 * trying to set only those filter bits needed to match
1571 			 * the range.  (At this time, the only use of address
1572 			 * ranges is for IP multicast routing, for which the
1573 			 * range is big enough to require all bits set.)
1574 			 */
1575 			goto allmulti;
1576 		}
1577 
1578 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1579 
1580 		/* Just want the 6 least significant bits. */
1581 		crc &= 0x3f;
1582 
1583 		/* Set the corresponding bit in the hash table. */
1584 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1585 
1586 		ETHER_NEXT_MULTI(step, enm);
1587 	}
1588 
1589 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1590 
1591 	ifp->if_flags &= ~IFF_ALLMULTI;
1592 	goto done;
1593 
1594  allmulti:
1595 	ifp->if_flags |= IFF_ALLMULTI;
1596 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1597 
1598  done:
1599 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1600 		/*
1601 		 * Program the multicast hash table.
1602 		 */
1603 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1604 		    mchash[0]);
1605 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1606 		    mchash[1]);
1607 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1608 		    mchash[2]);
1609 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1610 		    mchash[3]);
1611 	}
1612 
1613 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1614 	    sc->sc_ReceiveMode);
1615 }
1616 
1617 /*
1618  * ste_mii_readreg:	[mii interface function]
1619  *
1620  *	Read a PHY register on the MII of the ST-201.
1621  */
1622 static int
1623 ste_mii_readreg(struct device *self, int phy, int reg)
1624 {
1625 
1626 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1627 }
1628 
1629 /*
1630  * ste_mii_writereg:	[mii interface function]
1631  *
1632  *	Write a PHY register on the MII of the ST-201.
1633  */
1634 static void
1635 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1636 {
1637 
1638 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1639 }
1640 
1641 /*
1642  * ste_mii_statchg:	[mii interface function]
1643  *
1644  *	Callback from MII layer when media changes.
1645  */
1646 static void
1647 ste_mii_statchg(struct device *self)
1648 {
1649 	struct ste_softc *sc = (struct ste_softc *) self;
1650 
1651 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1652 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1653 	else
1654 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1655 
1656 	/* XXX 802.1x flow-control? */
1657 
1658 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1659 }
1660 
1661 /*
1662  * ste_mii_bitbang_read: [mii bit-bang interface function]
1663  *
1664  *	Read the MII serial port for the MII bit-bang module.
1665  */
1666 static uint32_t
1667 ste_mii_bitbang_read(struct device *self)
1668 {
1669 	struct ste_softc *sc = (void *) self;
1670 
1671 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1672 }
1673 
1674 /*
1675  * ste_mii_bitbang_write: [mii big-bang interface function]
1676  *
1677  *	Write the MII serial port for the MII bit-bang module.
1678  */
1679 static void
1680 ste_mii_bitbang_write(struct device *self, uint32_t val)
1681 {
1682 	struct ste_softc *sc = (void *) self;
1683 
1684 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1685 }
1686 
1687 /*
1688  * ste_mediastatus:	[ifmedia interface function]
1689  *
1690  *	Get the current interface media status.
1691  */
1692 static void
1693 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1694 {
1695 	struct ste_softc *sc = ifp->if_softc;
1696 
1697 	mii_pollstat(&sc->sc_mii);
1698 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1699 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1700 }
1701 
1702 /*
1703  * ste_mediachange:	[ifmedia interface function]
1704  *
1705  *	Set hardware to newly-selected media.
1706  */
1707 static int
1708 ste_mediachange(struct ifnet *ifp)
1709 {
1710 	struct ste_softc *sc = ifp->if_softc;
1711 
1712 	if (ifp->if_flags & IFF_UP)
1713 		mii_mediachg(&sc->sc_mii);
1714 	return (0);
1715 }
1716