xref: /netbsd-src/sys/dev/pci/if_ste.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: if_ste.c,v 1.35 2008/04/10 19:13:37 cegger Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. ST-201 10/100
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.35 2008/04/10 19:13:37 cegger Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STE_NTXDESC		256
89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STE_NRXDESC		128
96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
98 
99 /*
100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct ste_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115 
116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct ste_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct ste_softc {
132 	struct device sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	void *sc_sdhook;		/* shutdown hook */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct ste_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 	int	sc_txpending;		/* number of Tx requests pending */
162 	int	sc_txdirty;		/* first dirty Tx descriptor */
163 	int	sc_txlast;		/* last used Tx descriptor */
164 
165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
166 
167 	int	sc_txthresh;		/* Tx threshold */
168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
172 };
173 
174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
176 
177 #define	STE_CDTXSYNC(sc, x, ops)					\
178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180 
181 #define	STE_CDRXSYNC(sc, x, ops)					\
182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184 
185 #define	STE_INIT_RXDESC(sc, x)						\
186 do {									\
187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
189 	struct mbuf *__m = __ds->ds_mbuf;				\
190 									\
191 	/*								\
192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
193 	 * so that the payload after the Ethernet header is aligned	\
194 	 * to a 4-byte boundary.					\
195 	 */								\
196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
197 	__rfd->rfd_frag.frag_addr =					\
198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
201 	__rfd->rfd_status = 0;						\
202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204 
205 #define STE_TIMEOUT 1000
206 
207 static void	ste_start(struct ifnet *);
208 static void	ste_watchdog(struct ifnet *);
209 static int	ste_ioctl(struct ifnet *, u_long, void *);
210 static int	ste_init(struct ifnet *);
211 static void	ste_stop(struct ifnet *, int);
212 
213 static void	ste_shutdown(void *);
214 
215 static void	ste_reset(struct ste_softc *, u_int32_t);
216 static void	ste_setthresh(struct ste_softc *);
217 static void	ste_txrestart(struct ste_softc *, u_int8_t);
218 static void	ste_rxdrain(struct ste_softc *);
219 static int	ste_add_rxbuf(struct ste_softc *, int);
220 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 static void	ste_tick(void *);
222 
223 static void	ste_stats_update(struct ste_softc *);
224 
225 static void	ste_set_filter(struct ste_softc *);
226 
227 static int	ste_intr(void *);
228 static void	ste_txintr(struct ste_softc *);
229 static void	ste_rxintr(struct ste_softc *);
230 
231 static int	ste_mii_readreg(device_t, int, int);
232 static void	ste_mii_writereg(device_t, int, int, int);
233 static void	ste_mii_statchg(device_t);
234 
235 static int	ste_match(device_t, struct cfdata *, void *);
236 static void	ste_attach(device_t, device_t, void *);
237 
238 int	ste_copy_small = 0;
239 
240 CFATTACH_DECL(ste, sizeof(struct ste_softc),
241     ste_match, ste_attach, NULL, NULL);
242 
243 static uint32_t ste_mii_bitbang_read(device_t);
244 static void	ste_mii_bitbang_write(device_t, uint32_t);
245 
246 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
247 	ste_mii_bitbang_read,
248 	ste_mii_bitbang_write,
249 	{
250 		PC_MgmtData,		/* MII_BIT_MDO */
251 		PC_MgmtData,		/* MII_BIT_MDI */
252 		PC_MgmtClk,		/* MII_BIT_MDC */
253 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
254 		0,			/* MII_BIT_DIR_PHY_HOST */
255 	}
256 };
257 
258 /*
259  * Devices supported by this driver.
260  */
261 static const struct ste_product {
262 	pci_vendor_id_t		ste_vendor;
263 	pci_product_id_t	ste_product;
264 	const char		*ste_name;
265 } ste_products[] = {
266 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
267 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
268 
269 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
270 	  "Sundance ST-201 10/100 Ethernet" },
271 
272 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
273 	  "D-Link DL-1002 10/100 Ethernet" },
274 
275 	{ 0,				0,
276 	  NULL },
277 };
278 
279 static const struct ste_product *
280 ste_lookup(const struct pci_attach_args *pa)
281 {
282 	const struct ste_product *sp;
283 
284 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
285 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
286 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
287 			return (sp);
288 	}
289 	return (NULL);
290 }
291 
292 static int
293 ste_match(device_t parent, struct cfdata *cf, void *aux)
294 {
295 	struct pci_attach_args *pa = aux;
296 
297 	if (ste_lookup(pa) != NULL)
298 		return (1);
299 
300 	return (0);
301 }
302 
303 static void
304 ste_attach(device_t parent, device_t self, void *aux)
305 {
306 	struct ste_softc *sc = device_private(self);
307 	struct pci_attach_args *pa = aux;
308 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
309 	pci_chipset_tag_t pc = pa->pa_pc;
310 	pci_intr_handle_t ih;
311 	const char *intrstr = NULL;
312 	bus_space_tag_t iot, memt;
313 	bus_space_handle_t ioh, memh;
314 	bus_dma_segment_t seg;
315 	int ioh_valid, memh_valid;
316 	int i, rseg, error;
317 	const struct ste_product *sp;
318 	uint8_t enaddr[ETHER_ADDR_LEN];
319 	uint16_t myea[ETHER_ADDR_LEN / 2];
320 
321 	callout_init(&sc->sc_tick_ch, 0);
322 
323 	sp = ste_lookup(pa);
324 	if (sp == NULL) {
325 		printf("\n");
326 		panic("ste_attach: impossible");
327 	}
328 
329 	printf(": %s\n", sp->ste_name);
330 
331 	/*
332 	 * Map the device.
333 	 */
334 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
335 	    PCI_MAPREG_TYPE_IO, 0,
336 	    &iot, &ioh, NULL, NULL) == 0);
337 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
338 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
339 	    &memt, &memh, NULL, NULL) == 0);
340 
341 	if (memh_valid) {
342 		sc->sc_st = memt;
343 		sc->sc_sh = memh;
344 	} else if (ioh_valid) {
345 		sc->sc_st = iot;
346 		sc->sc_sh = ioh;
347 	} else {
348 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
349 		return;
350 	}
351 
352 	sc->sc_dmat = pa->pa_dmat;
353 
354 	/* Enable bus mastering. */
355 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
356 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
357 	    PCI_COMMAND_MASTER_ENABLE);
358 
359 	/* power up chip */
360 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
361 	    NULL)) && error != EOPNOTSUPP) {
362 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
363 		    error);
364 		return;
365 	}
366 
367 	/*
368 	 * Map and establish our interrupt.
369 	 */
370 	if (pci_intr_map(pa, &ih)) {
371 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
372 		return;
373 	}
374 	intrstr = pci_intr_string(pc, ih);
375 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
376 	if (sc->sc_ih == NULL) {
377 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
378 		if (intrstr != NULL)
379 			printf(" at %s", intrstr);
380 		printf("\n");
381 		return;
382 	}
383 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
384 
385 	/*
386 	 * Allocate the control data structures, and create and load the
387 	 * DMA map for it.
388 	 */
389 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
390 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
391 	    0)) != 0) {
392 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
393 		    error);
394 		goto fail_0;
395 	}
396 
397 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
398 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
399 	    BUS_DMA_COHERENT)) != 0) {
400 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
401 		    error);
402 		goto fail_1;
403 	}
404 
405 	if ((error = bus_dmamap_create(sc->sc_dmat,
406 	    sizeof(struct ste_control_data), 1,
407 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
408 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
409 		    "error = %d\n", error);
410 		goto fail_2;
411 	}
412 
413 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
414 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
415 	    0)) != 0) {
416 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
417 		    error);
418 		goto fail_3;
419 	}
420 
421 	/*
422 	 * Create the transmit buffer DMA maps.
423 	 */
424 	for (i = 0; i < STE_NTXDESC; i++) {
425 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
426 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
427 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
428 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
429 			    "error = %d\n", i, error);
430 			goto fail_4;
431 		}
432 	}
433 
434 	/*
435 	 * Create the receive buffer DMA maps.
436 	 */
437 	for (i = 0; i < STE_NRXDESC; i++) {
438 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
439 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
440 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
441 			    "error = %d\n", i, error);
442 			goto fail_5;
443 		}
444 		sc->sc_rxsoft[i].ds_mbuf = NULL;
445 	}
446 
447 	/*
448 	 * Reset the chip to a known state.
449 	 */
450 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
451 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
452 
453 	/*
454 	 * Read the Ethernet address from the EEPROM.
455 	 */
456 	for (i = 0; i < 3; i++) {
457 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
458 		myea[i] = le16toh(myea[i]);
459 	}
460 	memcpy(enaddr, myea, sizeof(enaddr));
461 
462 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
463 	    ether_sprintf(enaddr));
464 
465 	/*
466 	 * Initialize our media structures and probe the MII.
467 	 */
468 	sc->sc_mii.mii_ifp = ifp;
469 	sc->sc_mii.mii_readreg = ste_mii_readreg;
470 	sc->sc_mii.mii_writereg = ste_mii_writereg;
471 	sc->sc_mii.mii_statchg = ste_mii_statchg;
472 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
473 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
474 	    ether_mediastatus);
475 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
476 	    MII_OFFSET_ANY, 0);
477 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
478 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
479 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
480 	} else
481 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
482 
483 	ifp = &sc->sc_ethercom.ec_if;
484 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
485 	ifp->if_softc = sc;
486 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
487 	ifp->if_ioctl = ste_ioctl;
488 	ifp->if_start = ste_start;
489 	ifp->if_watchdog = ste_watchdog;
490 	ifp->if_init = ste_init;
491 	ifp->if_stop = ste_stop;
492 	IFQ_SET_READY(&ifp->if_snd);
493 
494 	/*
495 	 * Default the transmit threshold to 128 bytes.
496 	 */
497 	sc->sc_txthresh = 128;
498 
499 	/*
500 	 * Disable MWI if the PCI layer tells us to.
501 	 */
502 	sc->sc_DMACtrl = 0;
503 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
504 		sc->sc_DMACtrl |= DC_MWIDisable;
505 
506 	/*
507 	 * We can support 802.1Q VLAN-sized frames.
508 	 */
509 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
510 
511 	/*
512 	 * Attach the interface.
513 	 */
514 	if_attach(ifp);
515 	ether_ifattach(ifp, enaddr);
516 
517 	/*
518 	 * Make sure the interface is shutdown during reboot.
519 	 */
520 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
521 	if (sc->sc_sdhook == NULL)
522 		printf("%s: WARNING: unable to establish shutdown hook\n",
523 		    device_xname(&sc->sc_dev));
524 	return;
525 
526 	/*
527 	 * Free any resources we've allocated during the failed attach
528 	 * attempt.  Do this in reverse order and fall through.
529 	 */
530  fail_5:
531 	for (i = 0; i < STE_NRXDESC; i++) {
532 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
533 			bus_dmamap_destroy(sc->sc_dmat,
534 			    sc->sc_rxsoft[i].ds_dmamap);
535 	}
536  fail_4:
537 	for (i = 0; i < STE_NTXDESC; i++) {
538 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
539 			bus_dmamap_destroy(sc->sc_dmat,
540 			    sc->sc_txsoft[i].ds_dmamap);
541 	}
542 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
543  fail_3:
544 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
545  fail_2:
546 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
547 	    sizeof(struct ste_control_data));
548  fail_1:
549 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
550  fail_0:
551 	return;
552 }
553 
554 /*
555  * ste_shutdown:
556  *
557  *	Make sure the interface is stopped at reboot time.
558  */
559 static void
560 ste_shutdown(void *arg)
561 {
562 	struct ste_softc *sc = arg;
563 
564 	ste_stop(&sc->sc_ethercom.ec_if, 1);
565 }
566 
567 static void
568 ste_dmahalt_wait(struct ste_softc *sc)
569 {
570 	int i;
571 
572 	for (i = 0; i < STE_TIMEOUT; i++) {
573 		delay(2);
574 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
575 		     DC_DMAHaltBusy) == 0)
576 			break;
577 	}
578 
579 	if (i == STE_TIMEOUT)
580 		printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
581 }
582 
583 /*
584  * ste_start:		[ifnet interface function]
585  *
586  *	Start packet transmission on the interface.
587  */
588 static void
589 ste_start(struct ifnet *ifp)
590 {
591 	struct ste_softc *sc = ifp->if_softc;
592 	struct mbuf *m0, *m;
593 	struct ste_descsoft *ds;
594 	struct ste_tfd *tfd;
595 	bus_dmamap_t dmamap;
596 	int error, olasttx, nexttx, opending, seg, totlen;
597 
598 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
599 		return;
600 
601 	/*
602 	 * Remember the previous number of pending transmissions
603 	 * and the current last descriptor in the list.
604 	 */
605 	opending = sc->sc_txpending;
606 	olasttx = sc->sc_txlast;
607 
608 	/*
609 	 * Loop through the send queue, setting up transmit descriptors
610 	 * until we drain the queue, or use up all available transmit
611 	 * descriptors.
612 	 */
613 	while (sc->sc_txpending < STE_NTXDESC) {
614 		/*
615 		 * Grab a packet off the queue.
616 		 */
617 		IFQ_POLL(&ifp->if_snd, m0);
618 		if (m0 == NULL)
619 			break;
620 		m = NULL;
621 
622 		/*
623 		 * Get the last and next available transmit descriptor.
624 		 */
625 		nexttx = STE_NEXTTX(sc->sc_txlast);
626 		tfd = &sc->sc_txdescs[nexttx];
627 		ds = &sc->sc_txsoft[nexttx];
628 
629 		dmamap = ds->ds_dmamap;
630 
631 		/*
632 		 * Load the DMA map.  If this fails, the packet either
633 		 * didn't fit in the alloted number of segments, or we
634 		 * were short on resources.  In this case, we'll copy
635 		 * and try again.
636 		 */
637 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
638 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
639 			MGETHDR(m, M_DONTWAIT, MT_DATA);
640 			if (m == NULL) {
641 				printf("%s: unable to allocate Tx mbuf\n",
642 				    device_xname(&sc->sc_dev));
643 				break;
644 			}
645 			if (m0->m_pkthdr.len > MHLEN) {
646 				MCLGET(m, M_DONTWAIT);
647 				if ((m->m_flags & M_EXT) == 0) {
648 					printf("%s: unable to allocate Tx "
649 					    "cluster\n", device_xname(&sc->sc_dev));
650 					m_freem(m);
651 					break;
652 				}
653 			}
654 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
655 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
656 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
657 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
658 			if (error) {
659 				printf("%s: unable to load Tx buffer, "
660 				    "error = %d\n", device_xname(&sc->sc_dev), error);
661 				break;
662 			}
663 		}
664 
665 		IFQ_DEQUEUE(&ifp->if_snd, m0);
666 		if (m != NULL) {
667 			m_freem(m0);
668 			m0 = m;
669 		}
670 
671 		/*
672 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
673 		 */
674 
675 		/* Sync the DMA map. */
676 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
677 		    BUS_DMASYNC_PREWRITE);
678 
679 		/* Initialize the fragment list. */
680 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
681 			tfd->tfd_frags[seg].frag_addr =
682 			    htole32(dmamap->dm_segs[seg].ds_addr);
683 			tfd->tfd_frags[seg].frag_len =
684 			    htole32(dmamap->dm_segs[seg].ds_len);
685 			totlen += dmamap->dm_segs[seg].ds_len;
686 		}
687 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
688 
689 		/* Initialize the descriptor. */
690 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
691 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
692 
693 		/* Sync the descriptor. */
694 		STE_CDTXSYNC(sc, nexttx,
695 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
696 
697 		/*
698 		 * Store a pointer to the packet so we can free it later,
699 		 * and remember what txdirty will be once the packet is
700 		 * done.
701 		 */
702 		ds->ds_mbuf = m0;
703 
704 		/* Advance the tx pointer. */
705 		sc->sc_txpending++;
706 		sc->sc_txlast = nexttx;
707 
708 #if NBPFILTER > 0
709 		/*
710 		 * Pass the packet to any BPF listeners.
711 		 */
712 		if (ifp->if_bpf)
713 			bpf_mtap(ifp->if_bpf, m0);
714 #endif /* NBPFILTER > 0 */
715 	}
716 
717 	if (sc->sc_txpending == STE_NTXDESC) {
718 		/* No more slots left; notify upper layer. */
719 		ifp->if_flags |= IFF_OACTIVE;
720 	}
721 
722 	if (sc->sc_txpending != opending) {
723 		/*
724 		 * We enqueued packets.  If the transmitter was idle,
725 		 * reset the txdirty pointer.
726 		 */
727 		if (opending == 0)
728 			sc->sc_txdirty = STE_NEXTTX(olasttx);
729 
730 		/*
731 		 * Cause a descriptor interrupt to happen on the
732 		 * last packet we enqueued, and also cause the
733 		 * DMA engine to wait after is has finished processing
734 		 * it.
735 		 */
736 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
737 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
738 		    htole32(TFD_TxDMAIndicate);
739 		STE_CDTXSYNC(sc, sc->sc_txlast,
740 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
741 
742 		/*
743 		 * Link up the new chain of descriptors to the
744 		 * last.
745 		 */
746 		sc->sc_txdescs[olasttx].tfd_next =
747 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
748 		STE_CDTXSYNC(sc, olasttx,
749 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
750 
751 		/*
752 		 * Kick the transmit DMA logic.  Note that since we're
753 		 * using auto-polling, reading the Tx desc pointer will
754 		 * give it the nudge it needs to get going.
755 		 */
756 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
757 		    STE_TxDMAListPtr) == 0) {
758 			bus_space_write_4(sc->sc_st, sc->sc_sh,
759 			    STE_DMACtrl, DC_TxDMAHalt);
760 			ste_dmahalt_wait(sc);
761 			bus_space_write_4(sc->sc_st, sc->sc_sh,
762 			    STE_TxDMAListPtr,
763 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
764 			bus_space_write_4(sc->sc_st, sc->sc_sh,
765 			    STE_DMACtrl, DC_TxDMAResume);
766 		}
767 
768 		/* Set a watchdog timer in case the chip flakes out. */
769 		ifp->if_timer = 5;
770 	}
771 }
772 
773 /*
774  * ste_watchdog:	[ifnet interface function]
775  *
776  *	Watchdog timer handler.
777  */
778 static void
779 ste_watchdog(struct ifnet *ifp)
780 {
781 	struct ste_softc *sc = ifp->if_softc;
782 
783 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
784 	ifp->if_oerrors++;
785 
786 	ste_txintr(sc);
787 	ste_rxintr(sc);
788 	(void) ste_init(ifp);
789 
790 	/* Try to get more packets going. */
791 	ste_start(ifp);
792 }
793 
794 /*
795  * ste_ioctl:		[ifnet interface function]
796  *
797  *	Handle control requests from the operator.
798  */
799 static int
800 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
801 {
802 	struct ste_softc *sc = ifp->if_softc;
803 	int s, error;
804 
805 	s = splnet();
806 
807 	error = ether_ioctl(ifp, cmd, data);
808 	if (error == ENETRESET) {
809 		/*
810 		 * Multicast list has changed; set the hardware filter
811 		 * accordingly.
812 		 */
813 		if (ifp->if_flags & IFF_RUNNING)
814 			ste_set_filter(sc);
815 		error = 0;
816 	}
817 
818 	/* Try to get more packets going. */
819 	ste_start(ifp);
820 
821 	splx(s);
822 	return (error);
823 }
824 
825 /*
826  * ste_intr:
827  *
828  *	Interrupt service routine.
829  */
830 static int
831 ste_intr(void *arg)
832 {
833 	struct ste_softc *sc = arg;
834 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
835 	uint16_t isr;
836 	uint8_t txstat;
837 	int wantinit;
838 
839 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
840 	     IS_InterruptStatus) == 0)
841 		return (0);
842 
843 	for (wantinit = 0; wantinit == 0;) {
844 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
845 		if ((isr & sc->sc_IntEnable) == 0)
846 			break;
847 
848 		/* Receive interrupts. */
849 		if (isr & IE_RxDMAComplete)
850 			ste_rxintr(sc);
851 
852 		/* Transmit interrupts. */
853 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
854 			ste_txintr(sc);
855 
856 		/* Statistics overflow. */
857 		if (isr & IE_UpdateStats)
858 			ste_stats_update(sc);
859 
860 		/* Transmission errors. */
861 		if (isr & IE_TxComplete) {
862 			for (;;) {
863 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
864 				    STE_TxStatus);
865 				if ((txstat & TS_TxComplete) == 0)
866 					break;
867 				if (txstat & TS_TxUnderrun) {
868 					sc->sc_txthresh += 32;
869 					if (sc->sc_txthresh > 0x1ffc)
870 						sc->sc_txthresh = 0x1ffc;
871 					printf("%s: transmit underrun, new "
872 					    "threshold: %d bytes\n",
873 					    device_xname(&sc->sc_dev),
874 					    sc->sc_txthresh);
875 					ste_reset(sc, AC_TxReset | AC_DMA |
876 					    AC_FIFO | AC_Network);
877 					ste_setthresh(sc);
878 					bus_space_write_1(sc->sc_st, sc->sc_sh,
879 					    STE_TxDMAPollPeriod, 127);
880 					ste_txrestart(sc,
881 					    bus_space_read_1(sc->sc_st,
882 						sc->sc_sh, STE_TxFrameId));
883 				}
884 				if (txstat & TS_TxReleaseError) {
885 					printf("%s: Tx FIFO release error\n",
886 					    device_xname(&sc->sc_dev));
887 					wantinit = 1;
888 				}
889 				if (txstat & TS_MaxCollisions) {
890 					printf("%s: excessive collisions\n",
891 					    device_xname(&sc->sc_dev));
892 					wantinit = 1;
893 				}
894 				if (txstat & TS_TxStatusOverflow) {
895 					printf("%s: status overflow\n",
896 					    device_xname(&sc->sc_dev));
897 					wantinit = 1;
898 				}
899 				bus_space_write_2(sc->sc_st, sc->sc_sh,
900 				    STE_TxStatus, 0);
901 			}
902 		}
903 
904 		/* Host interface errors. */
905 		if (isr & IE_HostError) {
906 			printf("%s: Host interface error\n",
907 			    device_xname(&sc->sc_dev));
908 			wantinit = 1;
909 		}
910 	}
911 
912 	if (wantinit)
913 		ste_init(ifp);
914 
915 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
916 	    sc->sc_IntEnable);
917 
918 	/* Try to get more packets going. */
919 	ste_start(ifp);
920 
921 	return (1);
922 }
923 
924 /*
925  * ste_txintr:
926  *
927  *	Helper; handle transmit interrupts.
928  */
929 static void
930 ste_txintr(struct ste_softc *sc)
931 {
932 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
933 	struct ste_descsoft *ds;
934 	uint32_t control;
935 	int i;
936 
937 	ifp->if_flags &= ~IFF_OACTIVE;
938 
939 	/*
940 	 * Go through our Tx list and free mbufs for those
941 	 * frames which have been transmitted.
942 	 */
943 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
944 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
945 		ds = &sc->sc_txsoft[i];
946 
947 		STE_CDTXSYNC(sc, i,
948 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
949 
950 		control = le32toh(sc->sc_txdescs[i].tfd_control);
951 		if ((control & TFD_TxDMAComplete) == 0)
952 			break;
953 
954 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
955 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
956 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
957 		m_freem(ds->ds_mbuf);
958 		ds->ds_mbuf = NULL;
959 	}
960 
961 	/* Update the dirty transmit buffer pointer. */
962 	sc->sc_txdirty = i;
963 
964 	/*
965 	 * If there are no more pending transmissions, cancel the watchdog
966 	 * timer.
967 	 */
968 	if (sc->sc_txpending == 0)
969 		ifp->if_timer = 0;
970 }
971 
972 /*
973  * ste_rxintr:
974  *
975  *	Helper; handle receive interrupts.
976  */
977 static void
978 ste_rxintr(struct ste_softc *sc)
979 {
980 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 	struct ste_descsoft *ds;
982 	struct mbuf *m;
983 	uint32_t status;
984 	int i, len;
985 
986 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
987 		ds = &sc->sc_rxsoft[i];
988 
989 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
990 
991 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
992 
993 		if ((status & RFD_RxDMAComplete) == 0)
994 			break;
995 
996 		/*
997 		 * If the packet had an error, simply recycle the
998 		 * buffer.  Note, we count the error later in the
999 		 * periodic stats update.
1000 		 */
1001 		if (status & RFD_RxFrameError) {
1002 			STE_INIT_RXDESC(sc, i);
1003 			continue;
1004 		}
1005 
1006 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1007 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1008 
1009 		/*
1010 		 * No errors; receive the packet.  Note, we have
1011 		 * configured the chip to not include the CRC at
1012 		 * the end of the packet.
1013 		 */
1014 		len = RFD_RxDMAFrameLen(status);
1015 
1016 		/*
1017 		 * If the packet is small enough to fit in a
1018 		 * single header mbuf, allocate one and copy
1019 		 * the data into it.  This greatly reduces
1020 		 * memory consumption when we receive lots
1021 		 * of small packets.
1022 		 *
1023 		 * Otherwise, we add a new buffer to the receive
1024 		 * chain.  If this fails, we drop the packet and
1025 		 * recycle the old buffer.
1026 		 */
1027 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1028 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1029 			if (m == NULL)
1030 				goto dropit;
1031 			m->m_data += 2;
1032 			memcpy(mtod(m, void *),
1033 			    mtod(ds->ds_mbuf, void *), len);
1034 			STE_INIT_RXDESC(sc, i);
1035 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1036 			    ds->ds_dmamap->dm_mapsize,
1037 			    BUS_DMASYNC_PREREAD);
1038 		} else {
1039 			m = ds->ds_mbuf;
1040 			if (ste_add_rxbuf(sc, i) != 0) {
1041  dropit:
1042 				ifp->if_ierrors++;
1043 				STE_INIT_RXDESC(sc, i);
1044 				bus_dmamap_sync(sc->sc_dmat,
1045 				    ds->ds_dmamap, 0,
1046 				    ds->ds_dmamap->dm_mapsize,
1047 				    BUS_DMASYNC_PREREAD);
1048 				continue;
1049 			}
1050 		}
1051 
1052 		m->m_pkthdr.rcvif = ifp;
1053 		m->m_pkthdr.len = m->m_len = len;
1054 
1055 #if NBPFILTER > 0
1056 		/*
1057 		 * Pass this up to any BPF listeners, but only
1058 		 * pass if up the stack if it's for us.
1059 		 */
1060 		if (ifp->if_bpf)
1061 			bpf_mtap(ifp->if_bpf, m);
1062 #endif /* NBPFILTER > 0 */
1063 
1064 		/* Pass it on. */
1065 		(*ifp->if_input)(ifp, m);
1066 	}
1067 
1068 	/* Update the receive pointer. */
1069 	sc->sc_rxptr = i;
1070 }
1071 
1072 /*
1073  * ste_tick:
1074  *
1075  *	One second timer, used to tick the MII.
1076  */
1077 static void
1078 ste_tick(void *arg)
1079 {
1080 	struct ste_softc *sc = arg;
1081 	int s;
1082 
1083 	s = splnet();
1084 	mii_tick(&sc->sc_mii);
1085 	ste_stats_update(sc);
1086 	splx(s);
1087 
1088 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1089 }
1090 
1091 /*
1092  * ste_stats_update:
1093  *
1094  *	Read the ST-201 statistics counters.
1095  */
1096 static void
1097 ste_stats_update(struct ste_softc *sc)
1098 {
1099 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1100 	bus_space_tag_t st = sc->sc_st;
1101 	bus_space_handle_t sh = sc->sc_sh;
1102 
1103 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1104 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1105 
1106 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1107 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1108 
1109 	ifp->if_opackets +=
1110 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1111 	ifp->if_ipackets +=
1112 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1113 
1114 	ifp->if_collisions +=
1115 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1116 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1117 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1118 
1119 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1120 
1121 	ifp->if_ierrors +=
1122 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1123 
1124 	ifp->if_oerrors +=
1125 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1126 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1127 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1128 
1129 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1130 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1131 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1132 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1133 }
1134 
1135 /*
1136  * ste_reset:
1137  *
1138  *	Perform a soft reset on the ST-201.
1139  */
1140 static void
1141 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1142 {
1143 	uint32_t ac;
1144 	int i;
1145 
1146 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1147 
1148 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1149 
1150 	delay(50000);
1151 
1152 	for (i = 0; i < STE_TIMEOUT; i++) {
1153 		delay(1000);
1154 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1155 		     AC_ResetBusy) == 0)
1156 			break;
1157 	}
1158 
1159 	if (i == STE_TIMEOUT)
1160 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1161 
1162 	delay(1000);
1163 }
1164 
1165 /*
1166  * ste_setthresh:
1167  *
1168  * 	set the various transmit threshold registers
1169  */
1170 static void
1171 ste_setthresh(struct ste_softc *sc)
1172 {
1173 	/* set the TX threhold */
1174 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1175 	    STE_TxStartThresh, sc->sc_txthresh);
1176 	/* Urgent threshold: set to sc_txthresh / 2 */
1177 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1178 	    sc->sc_txthresh >> 6);
1179 	/* Burst threshold: use default value (256 bytes) */
1180 }
1181 
1182 /*
1183  * restart TX at the given frame ID in the transmitter ring
1184  */
1185 static void
1186 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1187 {
1188 	u_int32_t control;
1189 
1190 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1191 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1192 	control &= ~TFD_TxDMAComplete;
1193 	sc->sc_txdescs[id].tfd_control = htole32(control);
1194 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1195 
1196 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1197 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1198 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1199 	ste_dmahalt_wait(sc);
1200 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1201 	    STE_CDTXADDR(sc, id));
1202 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1203 }
1204 
1205 /*
1206  * ste_init:		[ ifnet interface function ]
1207  *
1208  *	Initialize the interface.  Must be called at splnet().
1209  */
1210 static int
1211 ste_init(struct ifnet *ifp)
1212 {
1213 	struct ste_softc *sc = ifp->if_softc;
1214 	bus_space_tag_t st = sc->sc_st;
1215 	bus_space_handle_t sh = sc->sc_sh;
1216 	struct ste_descsoft *ds;
1217 	int i, error = 0;
1218 
1219 	/*
1220 	 * Cancel any pending I/O.
1221 	 */
1222 	ste_stop(ifp, 0);
1223 
1224 	/*
1225 	 * Reset the chip to a known state.
1226 	 */
1227 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1228 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1229 
1230 	/*
1231 	 * Initialize the transmit descriptor ring.
1232 	 */
1233 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1234 	sc->sc_txpending = 0;
1235 	sc->sc_txdirty = 0;
1236 	sc->sc_txlast = STE_NTXDESC - 1;
1237 
1238 	/*
1239 	 * Initialize the receive descriptor and receive job
1240 	 * descriptor rings.
1241 	 */
1242 	for (i = 0; i < STE_NRXDESC; i++) {
1243 		ds = &sc->sc_rxsoft[i];
1244 		if (ds->ds_mbuf == NULL) {
1245 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1246 				printf("%s: unable to allocate or map rx "
1247 				    "buffer %d, error = %d\n",
1248 				    device_xname(&sc->sc_dev), i, error);
1249 				/*
1250 				 * XXX Should attempt to run with fewer receive
1251 				 * XXX buffers instead of just failing.
1252 				 */
1253 				ste_rxdrain(sc);
1254 				goto out;
1255 			}
1256 		} else
1257 			STE_INIT_RXDESC(sc, i);
1258 	}
1259 	sc->sc_rxptr = 0;
1260 
1261 	/* Set the station address. */
1262 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1263 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1264 		    CLLADDR(ifp->if_sadl)[i]);
1265 
1266 	/* Set up the receive filter. */
1267 	ste_set_filter(sc);
1268 
1269 	/*
1270 	 * Give the receive ring to the chip.
1271 	 */
1272 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1273 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1274 
1275 	/*
1276 	 * We defer giving the transmit ring to the chip until we
1277 	 * transmit the first packet.
1278 	 */
1279 
1280 	/*
1281 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1282 	 * large (127 is the max) -- we explicitly kick the transmit engine
1283 	 * when there's actually a packet.  We are using auto-polling only
1284 	 * to make the interface to the transmit engine not suck.
1285 	 */
1286 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1287 
1288 	/* ..and the Rx auto-poll period. */
1289 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1290 
1291 	/* Initialize the Tx start threshold. */
1292 	ste_setthresh(sc);
1293 
1294 	/* Set the FIFO release threshold to 512 bytes. */
1295 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1296 
1297 	/* Set maximum packet size for VLAN. */
1298 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1299 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1300 	else
1301 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1302 
1303 	/*
1304 	 * Initialize the interrupt mask.
1305 	 */
1306 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1307 	    IE_TxDMAComplete | IE_RxDMAComplete;
1308 
1309 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1310 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1311 
1312 	/*
1313 	 * Start the receive DMA engine.
1314 	 */
1315 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1316 
1317 	/*
1318 	 * Initialize MacCtrl0 -- do it before setting the media,
1319 	 * as setting the media will actually program the register.
1320 	 */
1321 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1322 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1323 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1324 
1325 	/*
1326 	 * Set the current media.
1327 	 */
1328 	if ((error = ether_mediachange(ifp)) != 0)
1329 		goto out;
1330 
1331 	/*
1332 	 * Start the MAC.
1333 	 */
1334 	bus_space_write_2(st, sh, STE_MacCtrl1,
1335 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1336 
1337 	/*
1338 	 * Start the one second MII clock.
1339 	 */
1340 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1341 
1342 	/*
1343 	 * ...all done!
1344 	 */
1345 	ifp->if_flags |= IFF_RUNNING;
1346 	ifp->if_flags &= ~IFF_OACTIVE;
1347 
1348  out:
1349 	if (error)
1350 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1351 	return (error);
1352 }
1353 
1354 /*
1355  * ste_drain:
1356  *
1357  *	Drain the receive queue.
1358  */
1359 static void
1360 ste_rxdrain(struct ste_softc *sc)
1361 {
1362 	struct ste_descsoft *ds;
1363 	int i;
1364 
1365 	for (i = 0; i < STE_NRXDESC; i++) {
1366 		ds = &sc->sc_rxsoft[i];
1367 		if (ds->ds_mbuf != NULL) {
1368 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1369 			m_freem(ds->ds_mbuf);
1370 			ds->ds_mbuf = NULL;
1371 		}
1372 	}
1373 }
1374 
1375 /*
1376  * ste_stop:		[ ifnet interface function ]
1377  *
1378  *	Stop transmission on the interface.
1379  */
1380 static void
1381 ste_stop(struct ifnet *ifp, int disable)
1382 {
1383 	struct ste_softc *sc = ifp->if_softc;
1384 	struct ste_descsoft *ds;
1385 	int i;
1386 
1387 	/*
1388 	 * Stop the one second clock.
1389 	 */
1390 	callout_stop(&sc->sc_tick_ch);
1391 
1392 	/* Down the MII. */
1393 	mii_down(&sc->sc_mii);
1394 
1395 	/*
1396 	 * Disable interrupts.
1397 	 */
1398 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1399 
1400 	/*
1401 	 * Stop receiver, transmitter, and stats update.
1402 	 */
1403 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1404 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1405 
1406 	/*
1407 	 * Stop the transmit and receive DMA.
1408 	 */
1409 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1410 	    DC_RxDMAHalt | DC_TxDMAHalt);
1411 	ste_dmahalt_wait(sc);
1412 
1413 	/*
1414 	 * Release any queued transmit buffers.
1415 	 */
1416 	for (i = 0; i < STE_NTXDESC; i++) {
1417 		ds = &sc->sc_txsoft[i];
1418 		if (ds->ds_mbuf != NULL) {
1419 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1420 			m_freem(ds->ds_mbuf);
1421 			ds->ds_mbuf = NULL;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * Mark the interface down and cancel the watchdog timer.
1427 	 */
1428 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1429 	ifp->if_timer = 0;
1430 
1431 	if (disable)
1432 		ste_rxdrain(sc);
1433 }
1434 
1435 static int
1436 ste_eeprom_wait(struct ste_softc *sc)
1437 {
1438 	int i;
1439 
1440 	for (i = 0; i < STE_TIMEOUT; i++) {
1441 		delay(1000);
1442 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1443 		     EC_EepromBusy) == 0)
1444 			return (0);
1445 	}
1446 	return (1);
1447 }
1448 
1449 /*
1450  * ste_read_eeprom:
1451  *
1452  *	Read data from the serial EEPROM.
1453  */
1454 static void
1455 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1456 {
1457 
1458 	if (ste_eeprom_wait(sc))
1459 		printf("%s: EEPROM failed to come ready\n",
1460 		    device_xname(&sc->sc_dev));
1461 
1462 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1463 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1464 	if (ste_eeprom_wait(sc))
1465 		printf("%s: EEPROM read timed out\n",
1466 		    device_xname(&sc->sc_dev));
1467 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1468 }
1469 
1470 /*
1471  * ste_add_rxbuf:
1472  *
1473  *	Add a receive buffer to the indicated descriptor.
1474  */
1475 static int
1476 ste_add_rxbuf(struct ste_softc *sc, int idx)
1477 {
1478 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1479 	struct mbuf *m;
1480 	int error;
1481 
1482 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1483 	if (m == NULL)
1484 		return (ENOBUFS);
1485 
1486 	MCLGET(m, M_DONTWAIT);
1487 	if ((m->m_flags & M_EXT) == 0) {
1488 		m_freem(m);
1489 		return (ENOBUFS);
1490 	}
1491 
1492 	if (ds->ds_mbuf != NULL)
1493 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1494 
1495 	ds->ds_mbuf = m;
1496 
1497 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1498 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1499 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1500 	if (error) {
1501 		printf("%s: can't load rx DMA map %d, error = %d\n",
1502 		    device_xname(&sc->sc_dev), idx, error);
1503 		panic("ste_add_rxbuf");		/* XXX */
1504 	}
1505 
1506 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1507 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1508 
1509 	STE_INIT_RXDESC(sc, idx);
1510 
1511 	return (0);
1512 }
1513 
1514 /*
1515  * ste_set_filter:
1516  *
1517  *	Set up the receive filter.
1518  */
1519 static void
1520 ste_set_filter(struct ste_softc *sc)
1521 {
1522 	struct ethercom *ec = &sc->sc_ethercom;
1523 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1524 	struct ether_multi *enm;
1525 	struct ether_multistep step;
1526 	uint32_t crc;
1527 	uint16_t mchash[4];
1528 
1529 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1530 	if (ifp->if_flags & IFF_BROADCAST)
1531 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1532 
1533 	if (ifp->if_flags & IFF_PROMISC) {
1534 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1535 		goto allmulti;
1536 	}
1537 
1538 	/*
1539 	 * Set up the multicast address filter by passing all multicast
1540 	 * addresses through a CRC generator, and then using the low-order
1541 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1542 	 * high order bits select the register, while the rest of the bits
1543 	 * select the bit within the register.
1544 	 */
1545 
1546 	memset(mchash, 0, sizeof(mchash));
1547 
1548 	ETHER_FIRST_MULTI(step, ec, enm);
1549 	if (enm == NULL)
1550 		goto done;
1551 
1552 	while (enm != NULL) {
1553 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1554 			/*
1555 			 * We must listen to a range of multicast addresses.
1556 			 * For now, just accept all multicasts, rather than
1557 			 * trying to set only those filter bits needed to match
1558 			 * the range.  (At this time, the only use of address
1559 			 * ranges is for IP multicast routing, for which the
1560 			 * range is big enough to require all bits set.)
1561 			 */
1562 			goto allmulti;
1563 		}
1564 
1565 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1566 
1567 		/* Just want the 6 least significant bits. */
1568 		crc &= 0x3f;
1569 
1570 		/* Set the corresponding bit in the hash table. */
1571 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1572 
1573 		ETHER_NEXT_MULTI(step, enm);
1574 	}
1575 
1576 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1577 
1578 	ifp->if_flags &= ~IFF_ALLMULTI;
1579 	goto done;
1580 
1581  allmulti:
1582 	ifp->if_flags |= IFF_ALLMULTI;
1583 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1584 
1585  done:
1586 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1587 		/*
1588 		 * Program the multicast hash table.
1589 		 */
1590 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1591 		    mchash[0]);
1592 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1593 		    mchash[1]);
1594 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1595 		    mchash[2]);
1596 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1597 		    mchash[3]);
1598 	}
1599 
1600 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1601 	    sc->sc_ReceiveMode);
1602 }
1603 
1604 /*
1605  * ste_mii_readreg:	[mii interface function]
1606  *
1607  *	Read a PHY register on the MII of the ST-201.
1608  */
1609 static int
1610 ste_mii_readreg(device_t self, int phy, int reg)
1611 {
1612 
1613 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1614 }
1615 
1616 /*
1617  * ste_mii_writereg:	[mii interface function]
1618  *
1619  *	Write a PHY register on the MII of the ST-201.
1620  */
1621 static void
1622 ste_mii_writereg(device_t self, int phy, int reg, int val)
1623 {
1624 
1625 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1626 }
1627 
1628 /*
1629  * ste_mii_statchg:	[mii interface function]
1630  *
1631  *	Callback from MII layer when media changes.
1632  */
1633 static void
1634 ste_mii_statchg(device_t self)
1635 {
1636 	struct ste_softc *sc = device_private(self);
1637 
1638 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1639 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1640 	else
1641 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1642 
1643 	/* XXX 802.1x flow-control? */
1644 
1645 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1646 }
1647 
1648 /*
1649  * ste_mii_bitbang_read: [mii bit-bang interface function]
1650  *
1651  *	Read the MII serial port for the MII bit-bang module.
1652  */
1653 static uint32_t
1654 ste_mii_bitbang_read(device_t self)
1655 {
1656 	struct ste_softc *sc = device_private(self);
1657 
1658 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1659 }
1660 
1661 /*
1662  * ste_mii_bitbang_write: [mii big-bang interface function]
1663  *
1664  *	Write the MII serial port for the MII bit-bang module.
1665  */
1666 static void
1667 ste_mii_bitbang_write(device_t self, uint32_t val)
1668 {
1669 	struct ste_softc *sc = device_private(self);
1670 
1671 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1672 }
1673