xref: /netbsd-src/sys/dev/pci/if_ste.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_ste.c,v 1.39 2009/11/26 15:17:10 njoly Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. ST-201 10/100
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.39 2009/11/26 15:17:10 njoly Exp $");
39 
40 #include "bpfilter.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53 
54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64 
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/if_stereg.h>
77 
78 /*
79  * Transmit descriptor list size.
80  */
81 #define	STE_NTXDESC		256
82 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
83 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
84 
85 /*
86  * Receive descriptor list size.
87  */
88 #define	STE_NRXDESC		128
89 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
90 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
91 
92 /*
93  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
94  * a single clump that maps to a single DMA segment to make several things
95  * easier.
96  */
97 struct ste_control_data {
98 	/*
99 	 * The transmit descriptors.
100 	 */
101 	struct ste_tfd scd_txdescs[STE_NTXDESC];
102 
103 	/*
104 	 * The receive descriptors.
105 	 */
106 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
107 };
108 
109 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
110 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
111 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
112 
113 /*
114  * Software state for transmit and receive jobs.
115  */
116 struct ste_descsoft {
117 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
118 	bus_dmamap_t ds_dmamap;		/* our DMA map */
119 };
120 
121 /*
122  * Software state per device.
123  */
124 struct ste_softc {
125 	struct device sc_dev;		/* generic device information */
126 	bus_space_tag_t sc_st;		/* bus space tag */
127 	bus_space_handle_t sc_sh;	/* bus space handle */
128 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
129 	struct ethercom sc_ethercom;	/* ethernet common data */
130 
131 	void *sc_ih;			/* interrupt cookie */
132 
133 	struct mii_data sc_mii;		/* MII/media information */
134 
135 	callout_t sc_tick_ch;		/* tick callout */
136 
137 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
138 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
139 
140 	/*
141 	 * Software state for transmit and receive descriptors.
142 	 */
143 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
144 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
145 
146 	/*
147 	 * Control data structures.
148 	 */
149 	struct ste_control_data *sc_control_data;
150 #define	sc_txdescs	sc_control_data->scd_txdescs
151 #define	sc_rxdescs	sc_control_data->scd_rxdescs
152 
153 	int	sc_txpending;		/* number of Tx requests pending */
154 	int	sc_txdirty;		/* first dirty Tx descriptor */
155 	int	sc_txlast;		/* last used Tx descriptor */
156 
157 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
158 
159 	int	sc_txthresh;		/* Tx threshold */
160 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
161 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
162 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
163 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
164 };
165 
166 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
167 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
168 
169 #define	STE_CDTXSYNC(sc, x, ops)					\
170 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
171 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
172 
173 #define	STE_CDRXSYNC(sc, x, ops)					\
174 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
175 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
176 
177 #define	STE_INIT_RXDESC(sc, x)						\
178 do {									\
179 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
180 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
181 	struct mbuf *__m = __ds->ds_mbuf;				\
182 									\
183 	/*								\
184 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
185 	 * so that the payload after the Ethernet header is aligned	\
186 	 * to a 4-byte boundary.					\
187 	 */								\
188 	__m->m_data = __m->m_ext.ext_buf + 2;				\
189 	__rfd->rfd_frag.frag_addr =					\
190 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
191 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
192 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
193 	__rfd->rfd_status = 0;						\
194 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
195 } while (/*CONSTCOND*/0)
196 
197 #define STE_TIMEOUT 1000
198 
199 static void	ste_start(struct ifnet *);
200 static void	ste_watchdog(struct ifnet *);
201 static int	ste_ioctl(struct ifnet *, u_long, void *);
202 static int	ste_init(struct ifnet *);
203 static void	ste_stop(struct ifnet *, int);
204 
205 static bool	ste_shutdown(device_t, int);
206 
207 static void	ste_reset(struct ste_softc *, u_int32_t);
208 static void	ste_setthresh(struct ste_softc *);
209 static void	ste_txrestart(struct ste_softc *, u_int8_t);
210 static void	ste_rxdrain(struct ste_softc *);
211 static int	ste_add_rxbuf(struct ste_softc *, int);
212 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
213 static void	ste_tick(void *);
214 
215 static void	ste_stats_update(struct ste_softc *);
216 
217 static void	ste_set_filter(struct ste_softc *);
218 
219 static int	ste_intr(void *);
220 static void	ste_txintr(struct ste_softc *);
221 static void	ste_rxintr(struct ste_softc *);
222 
223 static int	ste_mii_readreg(device_t, int, int);
224 static void	ste_mii_writereg(device_t, int, int, int);
225 static void	ste_mii_statchg(device_t);
226 
227 static int	ste_match(device_t, cfdata_t, void *);
228 static void	ste_attach(device_t, device_t, void *);
229 
230 int	ste_copy_small = 0;
231 
232 CFATTACH_DECL(ste, sizeof(struct ste_softc),
233     ste_match, ste_attach, NULL, NULL);
234 
235 static uint32_t ste_mii_bitbang_read(device_t);
236 static void	ste_mii_bitbang_write(device_t, uint32_t);
237 
238 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
239 	ste_mii_bitbang_read,
240 	ste_mii_bitbang_write,
241 	{
242 		PC_MgmtData,		/* MII_BIT_MDO */
243 		PC_MgmtData,		/* MII_BIT_MDI */
244 		PC_MgmtClk,		/* MII_BIT_MDC */
245 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
246 		0,			/* MII_BIT_DIR_PHY_HOST */
247 	}
248 };
249 
250 /*
251  * Devices supported by this driver.
252  */
253 static const struct ste_product {
254 	pci_vendor_id_t		ste_vendor;
255 	pci_product_id_t	ste_product;
256 	const char		*ste_name;
257 } ste_products[] = {
258 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
259 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
260 
261 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
262 	  "Sundance ST-201 10/100 Ethernet" },
263 
264 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
265 	  "D-Link DL-1002 10/100 Ethernet" },
266 
267 	{ 0,				0,
268 	  NULL },
269 };
270 
271 static const struct ste_product *
272 ste_lookup(const struct pci_attach_args *pa)
273 {
274 	const struct ste_product *sp;
275 
276 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
277 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
278 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
279 			return (sp);
280 	}
281 	return (NULL);
282 }
283 
284 static int
285 ste_match(device_t parent, cfdata_t cf, void *aux)
286 {
287 	struct pci_attach_args *pa = aux;
288 
289 	if (ste_lookup(pa) != NULL)
290 		return (1);
291 
292 	return (0);
293 }
294 
295 static void
296 ste_attach(device_t parent, device_t self, void *aux)
297 {
298 	struct ste_softc *sc = device_private(self);
299 	struct pci_attach_args *pa = aux;
300 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
301 	pci_chipset_tag_t pc = pa->pa_pc;
302 	pci_intr_handle_t ih;
303 	const char *intrstr = NULL;
304 	bus_space_tag_t iot, memt;
305 	bus_space_handle_t ioh, memh;
306 	bus_dma_segment_t seg;
307 	int ioh_valid, memh_valid;
308 	int i, rseg, error;
309 	const struct ste_product *sp;
310 	uint8_t enaddr[ETHER_ADDR_LEN];
311 	uint16_t myea[ETHER_ADDR_LEN / 2];
312 
313 	callout_init(&sc->sc_tick_ch, 0);
314 
315 	sp = ste_lookup(pa);
316 	if (sp == NULL) {
317 		printf("\n");
318 		panic("ste_attach: impossible");
319 	}
320 
321 	printf(": %s\n", sp->ste_name);
322 
323 	/*
324 	 * Map the device.
325 	 */
326 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
327 	    PCI_MAPREG_TYPE_IO, 0,
328 	    &iot, &ioh, NULL, NULL) == 0);
329 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
330 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
331 	    &memt, &memh, NULL, NULL) == 0);
332 
333 	if (memh_valid) {
334 		sc->sc_st = memt;
335 		sc->sc_sh = memh;
336 	} else if (ioh_valid) {
337 		sc->sc_st = iot;
338 		sc->sc_sh = ioh;
339 	} else {
340 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
341 		return;
342 	}
343 
344 	sc->sc_dmat = pa->pa_dmat;
345 
346 	/* Enable bus mastering. */
347 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
348 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
349 	    PCI_COMMAND_MASTER_ENABLE);
350 
351 	/* power up chip */
352 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
353 	    NULL)) && error != EOPNOTSUPP) {
354 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
355 		    error);
356 		return;
357 	}
358 
359 	/*
360 	 * Map and establish our interrupt.
361 	 */
362 	if (pci_intr_map(pa, &ih)) {
363 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
364 		return;
365 	}
366 	intrstr = pci_intr_string(pc, ih);
367 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
368 	if (sc->sc_ih == NULL) {
369 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
370 		if (intrstr != NULL)
371 			aprint_error(" at %s", intrstr);
372 		aprint_error("\n");
373 		return;
374 	}
375 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
376 
377 	/*
378 	 * Allocate the control data structures, and create and load the
379 	 * DMA map for it.
380 	 */
381 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
382 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
383 	    0)) != 0) {
384 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
385 		    error);
386 		goto fail_0;
387 	}
388 
389 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
390 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
391 	    BUS_DMA_COHERENT)) != 0) {
392 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
393 		    error);
394 		goto fail_1;
395 	}
396 
397 	if ((error = bus_dmamap_create(sc->sc_dmat,
398 	    sizeof(struct ste_control_data), 1,
399 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
400 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
401 		    "error = %d\n", error);
402 		goto fail_2;
403 	}
404 
405 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
406 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
407 	    0)) != 0) {
408 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
409 		    error);
410 		goto fail_3;
411 	}
412 
413 	/*
414 	 * Create the transmit buffer DMA maps.
415 	 */
416 	for (i = 0; i < STE_NTXDESC; i++) {
417 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
418 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
419 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
420 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
421 			    "error = %d\n", i, error);
422 			goto fail_4;
423 		}
424 	}
425 
426 	/*
427 	 * Create the receive buffer DMA maps.
428 	 */
429 	for (i = 0; i < STE_NRXDESC; i++) {
430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
431 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
432 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
433 			    "error = %d\n", i, error);
434 			goto fail_5;
435 		}
436 		sc->sc_rxsoft[i].ds_mbuf = NULL;
437 	}
438 
439 	/*
440 	 * Reset the chip to a known state.
441 	 */
442 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
443 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
444 
445 	/*
446 	 * Read the Ethernet address from the EEPROM.
447 	 */
448 	for (i = 0; i < 3; i++) {
449 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
450 		myea[i] = le16toh(myea[i]);
451 	}
452 	memcpy(enaddr, myea, sizeof(enaddr));
453 
454 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
455 	    ether_sprintf(enaddr));
456 
457 	/*
458 	 * Initialize our media structures and probe the MII.
459 	 */
460 	sc->sc_mii.mii_ifp = ifp;
461 	sc->sc_mii.mii_readreg = ste_mii_readreg;
462 	sc->sc_mii.mii_writereg = ste_mii_writereg;
463 	sc->sc_mii.mii_statchg = ste_mii_statchg;
464 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
465 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
466 	    ether_mediastatus);
467 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
468 	    MII_OFFSET_ANY, 0);
469 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
470 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
471 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
472 	} else
473 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
474 
475 	ifp = &sc->sc_ethercom.ec_if;
476 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
477 	ifp->if_softc = sc;
478 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
479 	ifp->if_ioctl = ste_ioctl;
480 	ifp->if_start = ste_start;
481 	ifp->if_watchdog = ste_watchdog;
482 	ifp->if_init = ste_init;
483 	ifp->if_stop = ste_stop;
484 	IFQ_SET_READY(&ifp->if_snd);
485 
486 	/*
487 	 * Default the transmit threshold to 128 bytes.
488 	 */
489 	sc->sc_txthresh = 128;
490 
491 	/*
492 	 * Disable MWI if the PCI layer tells us to.
493 	 */
494 	sc->sc_DMACtrl = 0;
495 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
496 		sc->sc_DMACtrl |= DC_MWIDisable;
497 
498 	/*
499 	 * We can support 802.1Q VLAN-sized frames.
500 	 */
501 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
502 
503 	/*
504 	 * Attach the interface.
505 	 */
506 	if_attach(ifp);
507 	ether_ifattach(ifp, enaddr);
508 
509 	/*
510 	 * Make sure the interface is shutdown during reboot.
511 	 */
512 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
513 		pmf_class_network_register(self, ifp);
514 	else
515 		aprint_error_dev(self, "couldn't establish power handler\n");
516 
517 	return;
518 
519 	/*
520 	 * Free any resources we've allocated during the failed attach
521 	 * attempt.  Do this in reverse order and fall through.
522 	 */
523  fail_5:
524 	for (i = 0; i < STE_NRXDESC; i++) {
525 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
526 			bus_dmamap_destroy(sc->sc_dmat,
527 			    sc->sc_rxsoft[i].ds_dmamap);
528 	}
529  fail_4:
530 	for (i = 0; i < STE_NTXDESC; i++) {
531 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
532 			bus_dmamap_destroy(sc->sc_dmat,
533 			    sc->sc_txsoft[i].ds_dmamap);
534 	}
535 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
536  fail_3:
537 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
538  fail_2:
539 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
540 	    sizeof(struct ste_control_data));
541  fail_1:
542 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
543  fail_0:
544 	return;
545 }
546 
547 /*
548  * ste_shutdown:
549  *
550  *	Make sure the interface is stopped at reboot time.
551  */
552 static bool
553 ste_shutdown(device_t self, int howto)
554 {
555 	struct ste_softc *sc;
556 
557 	sc = device_private(self);
558 	ste_stop(&sc->sc_ethercom.ec_if, 1);
559 
560 	return true;
561 }
562 
563 static void
564 ste_dmahalt_wait(struct ste_softc *sc)
565 {
566 	int i;
567 
568 	for (i = 0; i < STE_TIMEOUT; i++) {
569 		delay(2);
570 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
571 		     DC_DMAHaltBusy) == 0)
572 			break;
573 	}
574 
575 	if (i == STE_TIMEOUT)
576 		printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
577 }
578 
579 /*
580  * ste_start:		[ifnet interface function]
581  *
582  *	Start packet transmission on the interface.
583  */
584 static void
585 ste_start(struct ifnet *ifp)
586 {
587 	struct ste_softc *sc = ifp->if_softc;
588 	struct mbuf *m0, *m;
589 	struct ste_descsoft *ds;
590 	struct ste_tfd *tfd;
591 	bus_dmamap_t dmamap;
592 	int error, olasttx, nexttx, opending, seg, totlen;
593 
594 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
595 		return;
596 
597 	/*
598 	 * Remember the previous number of pending transmissions
599 	 * and the current last descriptor in the list.
600 	 */
601 	opending = sc->sc_txpending;
602 	olasttx = sc->sc_txlast;
603 
604 	/*
605 	 * Loop through the send queue, setting up transmit descriptors
606 	 * until we drain the queue, or use up all available transmit
607 	 * descriptors.
608 	 */
609 	while (sc->sc_txpending < STE_NTXDESC) {
610 		/*
611 		 * Grab a packet off the queue.
612 		 */
613 		IFQ_POLL(&ifp->if_snd, m0);
614 		if (m0 == NULL)
615 			break;
616 		m = NULL;
617 
618 		/*
619 		 * Get the last and next available transmit descriptor.
620 		 */
621 		nexttx = STE_NEXTTX(sc->sc_txlast);
622 		tfd = &sc->sc_txdescs[nexttx];
623 		ds = &sc->sc_txsoft[nexttx];
624 
625 		dmamap = ds->ds_dmamap;
626 
627 		/*
628 		 * Load the DMA map.  If this fails, the packet either
629 		 * didn't fit in the alloted number of segments, or we
630 		 * were short on resources.  In this case, we'll copy
631 		 * and try again.
632 		 */
633 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
634 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
635 			MGETHDR(m, M_DONTWAIT, MT_DATA);
636 			if (m == NULL) {
637 				printf("%s: unable to allocate Tx mbuf\n",
638 				    device_xname(&sc->sc_dev));
639 				break;
640 			}
641 			if (m0->m_pkthdr.len > MHLEN) {
642 				MCLGET(m, M_DONTWAIT);
643 				if ((m->m_flags & M_EXT) == 0) {
644 					printf("%s: unable to allocate Tx "
645 					    "cluster\n", device_xname(&sc->sc_dev));
646 					m_freem(m);
647 					break;
648 				}
649 			}
650 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
651 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
652 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
653 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
654 			if (error) {
655 				printf("%s: unable to load Tx buffer, "
656 				    "error = %d\n", device_xname(&sc->sc_dev), error);
657 				break;
658 			}
659 		}
660 
661 		IFQ_DEQUEUE(&ifp->if_snd, m0);
662 		if (m != NULL) {
663 			m_freem(m0);
664 			m0 = m;
665 		}
666 
667 		/*
668 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
669 		 */
670 
671 		/* Sync the DMA map. */
672 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
673 		    BUS_DMASYNC_PREWRITE);
674 
675 		/* Initialize the fragment list. */
676 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
677 			tfd->tfd_frags[seg].frag_addr =
678 			    htole32(dmamap->dm_segs[seg].ds_addr);
679 			tfd->tfd_frags[seg].frag_len =
680 			    htole32(dmamap->dm_segs[seg].ds_len);
681 			totlen += dmamap->dm_segs[seg].ds_len;
682 		}
683 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
684 
685 		/* Initialize the descriptor. */
686 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
687 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
688 
689 		/* Sync the descriptor. */
690 		STE_CDTXSYNC(sc, nexttx,
691 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
692 
693 		/*
694 		 * Store a pointer to the packet so we can free it later,
695 		 * and remember what txdirty will be once the packet is
696 		 * done.
697 		 */
698 		ds->ds_mbuf = m0;
699 
700 		/* Advance the tx pointer. */
701 		sc->sc_txpending++;
702 		sc->sc_txlast = nexttx;
703 
704 #if NBPFILTER > 0
705 		/*
706 		 * Pass the packet to any BPF listeners.
707 		 */
708 		if (ifp->if_bpf)
709 			bpf_mtap(ifp->if_bpf, m0);
710 #endif /* NBPFILTER > 0 */
711 	}
712 
713 	if (sc->sc_txpending == STE_NTXDESC) {
714 		/* No more slots left; notify upper layer. */
715 		ifp->if_flags |= IFF_OACTIVE;
716 	}
717 
718 	if (sc->sc_txpending != opending) {
719 		/*
720 		 * We enqueued packets.  If the transmitter was idle,
721 		 * reset the txdirty pointer.
722 		 */
723 		if (opending == 0)
724 			sc->sc_txdirty = STE_NEXTTX(olasttx);
725 
726 		/*
727 		 * Cause a descriptor interrupt to happen on the
728 		 * last packet we enqueued, and also cause the
729 		 * DMA engine to wait after is has finished processing
730 		 * it.
731 		 */
732 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
733 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
734 		    htole32(TFD_TxDMAIndicate);
735 		STE_CDTXSYNC(sc, sc->sc_txlast,
736 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
737 
738 		/*
739 		 * Link up the new chain of descriptors to the
740 		 * last.
741 		 */
742 		sc->sc_txdescs[olasttx].tfd_next =
743 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
744 		STE_CDTXSYNC(sc, olasttx,
745 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
746 
747 		/*
748 		 * Kick the transmit DMA logic.  Note that since we're
749 		 * using auto-polling, reading the Tx desc pointer will
750 		 * give it the nudge it needs to get going.
751 		 */
752 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
753 		    STE_TxDMAListPtr) == 0) {
754 			bus_space_write_4(sc->sc_st, sc->sc_sh,
755 			    STE_DMACtrl, DC_TxDMAHalt);
756 			ste_dmahalt_wait(sc);
757 			bus_space_write_4(sc->sc_st, sc->sc_sh,
758 			    STE_TxDMAListPtr,
759 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
760 			bus_space_write_4(sc->sc_st, sc->sc_sh,
761 			    STE_DMACtrl, DC_TxDMAResume);
762 		}
763 
764 		/* Set a watchdog timer in case the chip flakes out. */
765 		ifp->if_timer = 5;
766 	}
767 }
768 
769 /*
770  * ste_watchdog:	[ifnet interface function]
771  *
772  *	Watchdog timer handler.
773  */
774 static void
775 ste_watchdog(struct ifnet *ifp)
776 {
777 	struct ste_softc *sc = ifp->if_softc;
778 
779 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
780 	ifp->if_oerrors++;
781 
782 	ste_txintr(sc);
783 	ste_rxintr(sc);
784 	(void) ste_init(ifp);
785 
786 	/* Try to get more packets going. */
787 	ste_start(ifp);
788 }
789 
790 /*
791  * ste_ioctl:		[ifnet interface function]
792  *
793  *	Handle control requests from the operator.
794  */
795 static int
796 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
797 {
798 	struct ste_softc *sc = ifp->if_softc;
799 	int s, error;
800 
801 	s = splnet();
802 
803 	error = ether_ioctl(ifp, cmd, data);
804 	if (error == ENETRESET) {
805 		/*
806 		 * Multicast list has changed; set the hardware filter
807 		 * accordingly.
808 		 */
809 		if (ifp->if_flags & IFF_RUNNING)
810 			ste_set_filter(sc);
811 		error = 0;
812 	}
813 
814 	/* Try to get more packets going. */
815 	ste_start(ifp);
816 
817 	splx(s);
818 	return (error);
819 }
820 
821 /*
822  * ste_intr:
823  *
824  *	Interrupt service routine.
825  */
826 static int
827 ste_intr(void *arg)
828 {
829 	struct ste_softc *sc = arg;
830 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
831 	uint16_t isr;
832 	uint8_t txstat;
833 	int wantinit;
834 
835 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
836 	     IS_InterruptStatus) == 0)
837 		return (0);
838 
839 	for (wantinit = 0; wantinit == 0;) {
840 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
841 		if ((isr & sc->sc_IntEnable) == 0)
842 			break;
843 
844 		/* Receive interrupts. */
845 		if (isr & IE_RxDMAComplete)
846 			ste_rxintr(sc);
847 
848 		/* Transmit interrupts. */
849 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
850 			ste_txintr(sc);
851 
852 		/* Statistics overflow. */
853 		if (isr & IE_UpdateStats)
854 			ste_stats_update(sc);
855 
856 		/* Transmission errors. */
857 		if (isr & IE_TxComplete) {
858 			for (;;) {
859 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
860 				    STE_TxStatus);
861 				if ((txstat & TS_TxComplete) == 0)
862 					break;
863 				if (txstat & TS_TxUnderrun) {
864 					sc->sc_txthresh += 32;
865 					if (sc->sc_txthresh > 0x1ffc)
866 						sc->sc_txthresh = 0x1ffc;
867 					printf("%s: transmit underrun, new "
868 					    "threshold: %d bytes\n",
869 					    device_xname(&sc->sc_dev),
870 					    sc->sc_txthresh);
871 					ste_reset(sc, AC_TxReset | AC_DMA |
872 					    AC_FIFO | AC_Network);
873 					ste_setthresh(sc);
874 					bus_space_write_1(sc->sc_st, sc->sc_sh,
875 					    STE_TxDMAPollPeriod, 127);
876 					ste_txrestart(sc,
877 					    bus_space_read_1(sc->sc_st,
878 						sc->sc_sh, STE_TxFrameId));
879 				}
880 				if (txstat & TS_TxReleaseError) {
881 					printf("%s: Tx FIFO release error\n",
882 					    device_xname(&sc->sc_dev));
883 					wantinit = 1;
884 				}
885 				if (txstat & TS_MaxCollisions) {
886 					printf("%s: excessive collisions\n",
887 					    device_xname(&sc->sc_dev));
888 					wantinit = 1;
889 				}
890 				if (txstat & TS_TxStatusOverflow) {
891 					printf("%s: status overflow\n",
892 					    device_xname(&sc->sc_dev));
893 					wantinit = 1;
894 				}
895 				bus_space_write_2(sc->sc_st, sc->sc_sh,
896 				    STE_TxStatus, 0);
897 			}
898 		}
899 
900 		/* Host interface errors. */
901 		if (isr & IE_HostError) {
902 			printf("%s: Host interface error\n",
903 			    device_xname(&sc->sc_dev));
904 			wantinit = 1;
905 		}
906 	}
907 
908 	if (wantinit)
909 		ste_init(ifp);
910 
911 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
912 	    sc->sc_IntEnable);
913 
914 	/* Try to get more packets going. */
915 	ste_start(ifp);
916 
917 	return (1);
918 }
919 
920 /*
921  * ste_txintr:
922  *
923  *	Helper; handle transmit interrupts.
924  */
925 static void
926 ste_txintr(struct ste_softc *sc)
927 {
928 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
929 	struct ste_descsoft *ds;
930 	uint32_t control;
931 	int i;
932 
933 	ifp->if_flags &= ~IFF_OACTIVE;
934 
935 	/*
936 	 * Go through our Tx list and free mbufs for those
937 	 * frames which have been transmitted.
938 	 */
939 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
940 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
941 		ds = &sc->sc_txsoft[i];
942 
943 		STE_CDTXSYNC(sc, i,
944 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
945 
946 		control = le32toh(sc->sc_txdescs[i].tfd_control);
947 		if ((control & TFD_TxDMAComplete) == 0)
948 			break;
949 
950 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
951 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
952 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
953 		m_freem(ds->ds_mbuf);
954 		ds->ds_mbuf = NULL;
955 	}
956 
957 	/* Update the dirty transmit buffer pointer. */
958 	sc->sc_txdirty = i;
959 
960 	/*
961 	 * If there are no more pending transmissions, cancel the watchdog
962 	 * timer.
963 	 */
964 	if (sc->sc_txpending == 0)
965 		ifp->if_timer = 0;
966 }
967 
968 /*
969  * ste_rxintr:
970  *
971  *	Helper; handle receive interrupts.
972  */
973 static void
974 ste_rxintr(struct ste_softc *sc)
975 {
976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
977 	struct ste_descsoft *ds;
978 	struct mbuf *m;
979 	uint32_t status;
980 	int i, len;
981 
982 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
983 		ds = &sc->sc_rxsoft[i];
984 
985 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
986 
987 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
988 
989 		if ((status & RFD_RxDMAComplete) == 0)
990 			break;
991 
992 		/*
993 		 * If the packet had an error, simply recycle the
994 		 * buffer.  Note, we count the error later in the
995 		 * periodic stats update.
996 		 */
997 		if (status & RFD_RxFrameError) {
998 			STE_INIT_RXDESC(sc, i);
999 			continue;
1000 		}
1001 
1002 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1003 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1004 
1005 		/*
1006 		 * No errors; receive the packet.  Note, we have
1007 		 * configured the chip to not include the CRC at
1008 		 * the end of the packet.
1009 		 */
1010 		len = RFD_RxDMAFrameLen(status);
1011 
1012 		/*
1013 		 * If the packet is small enough to fit in a
1014 		 * single header mbuf, allocate one and copy
1015 		 * the data into it.  This greatly reduces
1016 		 * memory consumption when we receive lots
1017 		 * of small packets.
1018 		 *
1019 		 * Otherwise, we add a new buffer to the receive
1020 		 * chain.  If this fails, we drop the packet and
1021 		 * recycle the old buffer.
1022 		 */
1023 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1024 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1025 			if (m == NULL)
1026 				goto dropit;
1027 			m->m_data += 2;
1028 			memcpy(mtod(m, void *),
1029 			    mtod(ds->ds_mbuf, void *), len);
1030 			STE_INIT_RXDESC(sc, i);
1031 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1032 			    ds->ds_dmamap->dm_mapsize,
1033 			    BUS_DMASYNC_PREREAD);
1034 		} else {
1035 			m = ds->ds_mbuf;
1036 			if (ste_add_rxbuf(sc, i) != 0) {
1037  dropit:
1038 				ifp->if_ierrors++;
1039 				STE_INIT_RXDESC(sc, i);
1040 				bus_dmamap_sync(sc->sc_dmat,
1041 				    ds->ds_dmamap, 0,
1042 				    ds->ds_dmamap->dm_mapsize,
1043 				    BUS_DMASYNC_PREREAD);
1044 				continue;
1045 			}
1046 		}
1047 
1048 		m->m_pkthdr.rcvif = ifp;
1049 		m->m_pkthdr.len = m->m_len = len;
1050 
1051 #if NBPFILTER > 0
1052 		/*
1053 		 * Pass this up to any BPF listeners, but only
1054 		 * pass if up the stack if it's for us.
1055 		 */
1056 		if (ifp->if_bpf)
1057 			bpf_mtap(ifp->if_bpf, m);
1058 #endif /* NBPFILTER > 0 */
1059 
1060 		/* Pass it on. */
1061 		(*ifp->if_input)(ifp, m);
1062 	}
1063 
1064 	/* Update the receive pointer. */
1065 	sc->sc_rxptr = i;
1066 }
1067 
1068 /*
1069  * ste_tick:
1070  *
1071  *	One second timer, used to tick the MII.
1072  */
1073 static void
1074 ste_tick(void *arg)
1075 {
1076 	struct ste_softc *sc = arg;
1077 	int s;
1078 
1079 	s = splnet();
1080 	mii_tick(&sc->sc_mii);
1081 	ste_stats_update(sc);
1082 	splx(s);
1083 
1084 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1085 }
1086 
1087 /*
1088  * ste_stats_update:
1089  *
1090  *	Read the ST-201 statistics counters.
1091  */
1092 static void
1093 ste_stats_update(struct ste_softc *sc)
1094 {
1095 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1096 	bus_space_tag_t st = sc->sc_st;
1097 	bus_space_handle_t sh = sc->sc_sh;
1098 
1099 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1100 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1101 
1102 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1103 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1104 
1105 	ifp->if_opackets +=
1106 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1107 	ifp->if_ipackets +=
1108 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1109 
1110 	ifp->if_collisions +=
1111 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1112 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1113 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1114 
1115 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1116 
1117 	ifp->if_ierrors +=
1118 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1119 
1120 	ifp->if_oerrors +=
1121 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1122 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1123 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1124 
1125 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1126 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1127 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1128 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1129 }
1130 
1131 /*
1132  * ste_reset:
1133  *
1134  *	Perform a soft reset on the ST-201.
1135  */
1136 static void
1137 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1138 {
1139 	uint32_t ac;
1140 	int i;
1141 
1142 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1143 
1144 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1145 
1146 	delay(50000);
1147 
1148 	for (i = 0; i < STE_TIMEOUT; i++) {
1149 		delay(1000);
1150 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1151 		     AC_ResetBusy) == 0)
1152 			break;
1153 	}
1154 
1155 	if (i == STE_TIMEOUT)
1156 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1157 
1158 	delay(1000);
1159 }
1160 
1161 /*
1162  * ste_setthresh:
1163  *
1164  * 	set the various transmit threshold registers
1165  */
1166 static void
1167 ste_setthresh(struct ste_softc *sc)
1168 {
1169 	/* set the TX threhold */
1170 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1171 	    STE_TxStartThresh, sc->sc_txthresh);
1172 	/* Urgent threshold: set to sc_txthresh / 2 */
1173 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1174 	    sc->sc_txthresh >> 6);
1175 	/* Burst threshold: use default value (256 bytes) */
1176 }
1177 
1178 /*
1179  * restart TX at the given frame ID in the transmitter ring
1180  */
1181 static void
1182 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1183 {
1184 	u_int32_t control;
1185 
1186 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1187 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1188 	control &= ~TFD_TxDMAComplete;
1189 	sc->sc_txdescs[id].tfd_control = htole32(control);
1190 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1191 
1192 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1193 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1194 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1195 	ste_dmahalt_wait(sc);
1196 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1197 	    STE_CDTXADDR(sc, id));
1198 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1199 }
1200 
1201 /*
1202  * ste_init:		[ ifnet interface function ]
1203  *
1204  *	Initialize the interface.  Must be called at splnet().
1205  */
1206 static int
1207 ste_init(struct ifnet *ifp)
1208 {
1209 	struct ste_softc *sc = ifp->if_softc;
1210 	bus_space_tag_t st = sc->sc_st;
1211 	bus_space_handle_t sh = sc->sc_sh;
1212 	struct ste_descsoft *ds;
1213 	int i, error = 0;
1214 
1215 	/*
1216 	 * Cancel any pending I/O.
1217 	 */
1218 	ste_stop(ifp, 0);
1219 
1220 	/*
1221 	 * Reset the chip to a known state.
1222 	 */
1223 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1224 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1225 
1226 	/*
1227 	 * Initialize the transmit descriptor ring.
1228 	 */
1229 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1230 	sc->sc_txpending = 0;
1231 	sc->sc_txdirty = 0;
1232 	sc->sc_txlast = STE_NTXDESC - 1;
1233 
1234 	/*
1235 	 * Initialize the receive descriptor and receive job
1236 	 * descriptor rings.
1237 	 */
1238 	for (i = 0; i < STE_NRXDESC; i++) {
1239 		ds = &sc->sc_rxsoft[i];
1240 		if (ds->ds_mbuf == NULL) {
1241 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1242 				printf("%s: unable to allocate or map rx "
1243 				    "buffer %d, error = %d\n",
1244 				    device_xname(&sc->sc_dev), i, error);
1245 				/*
1246 				 * XXX Should attempt to run with fewer receive
1247 				 * XXX buffers instead of just failing.
1248 				 */
1249 				ste_rxdrain(sc);
1250 				goto out;
1251 			}
1252 		} else
1253 			STE_INIT_RXDESC(sc, i);
1254 	}
1255 	sc->sc_rxptr = 0;
1256 
1257 	/* Set the station address. */
1258 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1259 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1260 		    CLLADDR(ifp->if_sadl)[i]);
1261 
1262 	/* Set up the receive filter. */
1263 	ste_set_filter(sc);
1264 
1265 	/*
1266 	 * Give the receive ring to the chip.
1267 	 */
1268 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1269 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1270 
1271 	/*
1272 	 * We defer giving the transmit ring to the chip until we
1273 	 * transmit the first packet.
1274 	 */
1275 
1276 	/*
1277 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1278 	 * large (127 is the max) -- we explicitly kick the transmit engine
1279 	 * when there's actually a packet.  We are using auto-polling only
1280 	 * to make the interface to the transmit engine not suck.
1281 	 */
1282 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1283 
1284 	/* ..and the Rx auto-poll period. */
1285 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1286 
1287 	/* Initialize the Tx start threshold. */
1288 	ste_setthresh(sc);
1289 
1290 	/* Set the FIFO release threshold to 512 bytes. */
1291 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1292 
1293 	/* Set maximum packet size for VLAN. */
1294 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1295 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1296 	else
1297 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1298 
1299 	/*
1300 	 * Initialize the interrupt mask.
1301 	 */
1302 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1303 	    IE_TxDMAComplete | IE_RxDMAComplete;
1304 
1305 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1306 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1307 
1308 	/*
1309 	 * Start the receive DMA engine.
1310 	 */
1311 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1312 
1313 	/*
1314 	 * Initialize MacCtrl0 -- do it before setting the media,
1315 	 * as setting the media will actually program the register.
1316 	 */
1317 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1318 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1319 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1320 
1321 	/*
1322 	 * Set the current media.
1323 	 */
1324 	if ((error = ether_mediachange(ifp)) != 0)
1325 		goto out;
1326 
1327 	/*
1328 	 * Start the MAC.
1329 	 */
1330 	bus_space_write_2(st, sh, STE_MacCtrl1,
1331 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1332 
1333 	/*
1334 	 * Start the one second MII clock.
1335 	 */
1336 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1337 
1338 	/*
1339 	 * ...all done!
1340 	 */
1341 	ifp->if_flags |= IFF_RUNNING;
1342 	ifp->if_flags &= ~IFF_OACTIVE;
1343 
1344  out:
1345 	if (error)
1346 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1347 	return (error);
1348 }
1349 
1350 /*
1351  * ste_drain:
1352  *
1353  *	Drain the receive queue.
1354  */
1355 static void
1356 ste_rxdrain(struct ste_softc *sc)
1357 {
1358 	struct ste_descsoft *ds;
1359 	int i;
1360 
1361 	for (i = 0; i < STE_NRXDESC; i++) {
1362 		ds = &sc->sc_rxsoft[i];
1363 		if (ds->ds_mbuf != NULL) {
1364 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1365 			m_freem(ds->ds_mbuf);
1366 			ds->ds_mbuf = NULL;
1367 		}
1368 	}
1369 }
1370 
1371 /*
1372  * ste_stop:		[ ifnet interface function ]
1373  *
1374  *	Stop transmission on the interface.
1375  */
1376 static void
1377 ste_stop(struct ifnet *ifp, int disable)
1378 {
1379 	struct ste_softc *sc = ifp->if_softc;
1380 	struct ste_descsoft *ds;
1381 	int i;
1382 
1383 	/*
1384 	 * Stop the one second clock.
1385 	 */
1386 	callout_stop(&sc->sc_tick_ch);
1387 
1388 	/* Down the MII. */
1389 	mii_down(&sc->sc_mii);
1390 
1391 	/*
1392 	 * Disable interrupts.
1393 	 */
1394 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1395 
1396 	/*
1397 	 * Stop receiver, transmitter, and stats update.
1398 	 */
1399 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1400 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1401 
1402 	/*
1403 	 * Stop the transmit and receive DMA.
1404 	 */
1405 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1406 	    DC_RxDMAHalt | DC_TxDMAHalt);
1407 	ste_dmahalt_wait(sc);
1408 
1409 	/*
1410 	 * Release any queued transmit buffers.
1411 	 */
1412 	for (i = 0; i < STE_NTXDESC; i++) {
1413 		ds = &sc->sc_txsoft[i];
1414 		if (ds->ds_mbuf != NULL) {
1415 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1416 			m_freem(ds->ds_mbuf);
1417 			ds->ds_mbuf = NULL;
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * Mark the interface down and cancel the watchdog timer.
1423 	 */
1424 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1425 	ifp->if_timer = 0;
1426 
1427 	if (disable)
1428 		ste_rxdrain(sc);
1429 }
1430 
1431 static int
1432 ste_eeprom_wait(struct ste_softc *sc)
1433 {
1434 	int i;
1435 
1436 	for (i = 0; i < STE_TIMEOUT; i++) {
1437 		delay(1000);
1438 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1439 		     EC_EepromBusy) == 0)
1440 			return (0);
1441 	}
1442 	return (1);
1443 }
1444 
1445 /*
1446  * ste_read_eeprom:
1447  *
1448  *	Read data from the serial EEPROM.
1449  */
1450 static void
1451 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1452 {
1453 
1454 	if (ste_eeprom_wait(sc))
1455 		printf("%s: EEPROM failed to come ready\n",
1456 		    device_xname(&sc->sc_dev));
1457 
1458 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1459 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1460 	if (ste_eeprom_wait(sc))
1461 		printf("%s: EEPROM read timed out\n",
1462 		    device_xname(&sc->sc_dev));
1463 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1464 }
1465 
1466 /*
1467  * ste_add_rxbuf:
1468  *
1469  *	Add a receive buffer to the indicated descriptor.
1470  */
1471 static int
1472 ste_add_rxbuf(struct ste_softc *sc, int idx)
1473 {
1474 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1475 	struct mbuf *m;
1476 	int error;
1477 
1478 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1479 	if (m == NULL)
1480 		return (ENOBUFS);
1481 
1482 	MCLGET(m, M_DONTWAIT);
1483 	if ((m->m_flags & M_EXT) == 0) {
1484 		m_freem(m);
1485 		return (ENOBUFS);
1486 	}
1487 
1488 	if (ds->ds_mbuf != NULL)
1489 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1490 
1491 	ds->ds_mbuf = m;
1492 
1493 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1494 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1495 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1496 	if (error) {
1497 		printf("%s: can't load rx DMA map %d, error = %d\n",
1498 		    device_xname(&sc->sc_dev), idx, error);
1499 		panic("ste_add_rxbuf");		/* XXX */
1500 	}
1501 
1502 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1503 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1504 
1505 	STE_INIT_RXDESC(sc, idx);
1506 
1507 	return (0);
1508 }
1509 
1510 /*
1511  * ste_set_filter:
1512  *
1513  *	Set up the receive filter.
1514  */
1515 static void
1516 ste_set_filter(struct ste_softc *sc)
1517 {
1518 	struct ethercom *ec = &sc->sc_ethercom;
1519 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1520 	struct ether_multi *enm;
1521 	struct ether_multistep step;
1522 	uint32_t crc;
1523 	uint16_t mchash[4];
1524 
1525 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1526 	if (ifp->if_flags & IFF_BROADCAST)
1527 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1528 
1529 	if (ifp->if_flags & IFF_PROMISC) {
1530 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1531 		goto allmulti;
1532 	}
1533 
1534 	/*
1535 	 * Set up the multicast address filter by passing all multicast
1536 	 * addresses through a CRC generator, and then using the low-order
1537 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1538 	 * high order bits select the register, while the rest of the bits
1539 	 * select the bit within the register.
1540 	 */
1541 
1542 	memset(mchash, 0, sizeof(mchash));
1543 
1544 	ETHER_FIRST_MULTI(step, ec, enm);
1545 	if (enm == NULL)
1546 		goto done;
1547 
1548 	while (enm != NULL) {
1549 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1550 			/*
1551 			 * We must listen to a range of multicast addresses.
1552 			 * For now, just accept all multicasts, rather than
1553 			 * trying to set only those filter bits needed to match
1554 			 * the range.  (At this time, the only use of address
1555 			 * ranges is for IP multicast routing, for which the
1556 			 * range is big enough to require all bits set.)
1557 			 */
1558 			goto allmulti;
1559 		}
1560 
1561 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1562 
1563 		/* Just want the 6 least significant bits. */
1564 		crc &= 0x3f;
1565 
1566 		/* Set the corresponding bit in the hash table. */
1567 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1568 
1569 		ETHER_NEXT_MULTI(step, enm);
1570 	}
1571 
1572 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1573 
1574 	ifp->if_flags &= ~IFF_ALLMULTI;
1575 	goto done;
1576 
1577  allmulti:
1578 	ifp->if_flags |= IFF_ALLMULTI;
1579 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1580 
1581  done:
1582 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1583 		/*
1584 		 * Program the multicast hash table.
1585 		 */
1586 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1587 		    mchash[0]);
1588 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1589 		    mchash[1]);
1590 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1591 		    mchash[2]);
1592 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1593 		    mchash[3]);
1594 	}
1595 
1596 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1597 	    sc->sc_ReceiveMode);
1598 }
1599 
1600 /*
1601  * ste_mii_readreg:	[mii interface function]
1602  *
1603  *	Read a PHY register on the MII of the ST-201.
1604  */
1605 static int
1606 ste_mii_readreg(device_t self, int phy, int reg)
1607 {
1608 
1609 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1610 }
1611 
1612 /*
1613  * ste_mii_writereg:	[mii interface function]
1614  *
1615  *	Write a PHY register on the MII of the ST-201.
1616  */
1617 static void
1618 ste_mii_writereg(device_t self, int phy, int reg, int val)
1619 {
1620 
1621 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1622 }
1623 
1624 /*
1625  * ste_mii_statchg:	[mii interface function]
1626  *
1627  *	Callback from MII layer when media changes.
1628  */
1629 static void
1630 ste_mii_statchg(device_t self)
1631 {
1632 	struct ste_softc *sc = device_private(self);
1633 
1634 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1635 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1636 	else
1637 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1638 
1639 	/* XXX 802.1x flow-control? */
1640 
1641 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1642 }
1643 
1644 /*
1645  * ste_mii_bitbang_read: [mii bit-bang interface function]
1646  *
1647  *	Read the MII serial port for the MII bit-bang module.
1648  */
1649 static uint32_t
1650 ste_mii_bitbang_read(device_t self)
1651 {
1652 	struct ste_softc *sc = device_private(self);
1653 
1654 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1655 }
1656 
1657 /*
1658  * ste_mii_bitbang_write: [mii big-bang interface function]
1659  *
1660  *	Write the MII serial port for the MII bit-bang module.
1661  */
1662 static void
1663 ste_mii_bitbang_write(device_t self, uint32_t val)
1664 {
1665 	struct ste_softc *sc = device_private(self);
1666 
1667 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1668 }
1669