xref: /netbsd-src/sys/dev/pci/if_ste.c (revision 08c81a9c2dc8c7300e893321eb65c0925d60871c)
1 /*	$NetBSD: if_ste.c,v 1.11 2002/06/05 16:27:29 bouyer Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. ST-201 10/100
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.11 2002/06/05 16:27:29 bouyer Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STE_NTXDESC		256
89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STE_NRXDESC		128
96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
98 
99 /*
100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct ste_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115 
116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct ste_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct ste_softc {
132 	struct device sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	void *sc_sdhook;		/* shutdown hook */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	struct callout sc_tick_ch;	/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct ste_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 	int	sc_txpending;		/* number of Tx requests pending */
162 	int	sc_txdirty;		/* first dirty Tx descriptor */
163 	int	sc_txlast;		/* last used Tx descriptor */
164 
165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
166 
167 	int	sc_txthresh;		/* Tx threshold */
168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
172 };
173 
174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
176 
177 #define	STE_CDTXSYNC(sc, x, ops)					\
178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180 
181 #define	STE_CDRXSYNC(sc, x, ops)					\
182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184 
185 #define	STE_INIT_RXDESC(sc, x)						\
186 do {									\
187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
189 	struct mbuf *__m = __ds->ds_mbuf;				\
190 									\
191 	/*								\
192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
193 	 * so that the payload after the Ethernet header is aligned	\
194 	 * to a 4-byte boundary.					\
195 	 */								\
196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
197 	__rfd->rfd_frag.frag_addr =					\
198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
201 	__rfd->rfd_status = 0;						\
202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204 
205 #define STE_TIMEOUT 1000
206 
207 void	ste_start(struct ifnet *);
208 void	ste_watchdog(struct ifnet *);
209 int	ste_ioctl(struct ifnet *, u_long, caddr_t);
210 int	ste_init(struct ifnet *);
211 void	ste_stop(struct ifnet *, int);
212 
213 void	ste_shutdown(void *);
214 
215 void	ste_reset(struct ste_softc *, u_int32_t);
216 void	ste_setthresh(struct ste_softc *);
217 void	ste_txrestart(struct ste_softc *, u_int8_t);
218 void	ste_rxdrain(struct ste_softc *);
219 int	ste_add_rxbuf(struct ste_softc *, int);
220 void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 void	ste_tick(void *);
222 
223 void	ste_stats_update(struct ste_softc *);
224 
225 void	ste_set_filter(struct ste_softc *);
226 
227 int	ste_intr(void *);
228 void	ste_txintr(struct ste_softc *);
229 void	ste_rxintr(struct ste_softc *);
230 
231 int	ste_mii_readreg(struct device *, int, int);
232 void	ste_mii_writereg(struct device *, int, int, int);
233 void	ste_mii_statchg(struct device *);
234 
235 int	ste_mediachange(struct ifnet *);
236 void	ste_mediastatus(struct ifnet *, struct ifmediareq *);
237 
238 int	ste_match(struct device *, struct cfdata *, void *);
239 void	ste_attach(struct device *, struct device *, void *);
240 
241 int	ste_copy_small = 0;
242 
243 struct cfattach ste_ca = {
244 	sizeof(struct ste_softc), ste_match, ste_attach,
245 };
246 
247 uint32_t ste_mii_bitbang_read(struct device *);
248 void	ste_mii_bitbang_write(struct device *, uint32_t);
249 
250 const struct mii_bitbang_ops ste_mii_bitbang_ops = {
251 	ste_mii_bitbang_read,
252 	ste_mii_bitbang_write,
253 	{
254 		PC_MgmtData,		/* MII_BIT_MDO */
255 		PC_MgmtData,		/* MII_BIT_MDI */
256 		PC_MgmtClk,		/* MII_BIT_MDC */
257 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
258 		0,			/* MII_BIT_DIR_PHY_HOST */
259 	}
260 };
261 
262 /*
263  * Devices supported by this driver.
264  */
265 const struct ste_product {
266 	pci_vendor_id_t		ste_vendor;
267 	pci_product_id_t	ste_product;
268 	const char		*ste_name;
269 } ste_products[] = {
270 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
271 	  "Sundance ST-201 10/100 Ethernet" },
272 
273 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
274 	  "D-Link DL-1002 10/100 Ethernet" },
275 
276 	{ 0,				0,
277 	  NULL },
278 };
279 
280 static const struct ste_product *
281 ste_lookup(const struct pci_attach_args *pa)
282 {
283 	const struct ste_product *sp;
284 
285 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
286 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
287 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
288 			return (sp);
289 	}
290 	return (NULL);
291 }
292 
293 int
294 ste_match(struct device *parent, struct cfdata *cf, void *aux)
295 {
296 	struct pci_attach_args *pa = aux;
297 
298 	if (ste_lookup(pa) != NULL)
299 		return (1);
300 
301 	return (0);
302 }
303 
304 void
305 ste_attach(struct device *parent, struct device *self, void *aux)
306 {
307 	struct ste_softc *sc = (struct ste_softc *) self;
308 	struct pci_attach_args *pa = aux;
309 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
310 	pci_chipset_tag_t pc = pa->pa_pc;
311 	pci_intr_handle_t ih;
312 	const char *intrstr = NULL;
313 	bus_space_tag_t iot, memt;
314 	bus_space_handle_t ioh, memh;
315 	bus_dma_segment_t seg;
316 	int ioh_valid, memh_valid;
317 	int i, rseg, error;
318 	const struct ste_product *sp;
319 	pcireg_t pmode;
320 	uint8_t enaddr[ETHER_ADDR_LEN];
321 	uint16_t myea[ETHER_ADDR_LEN / 2];
322 	int pmreg;
323 
324 	callout_init(&sc->sc_tick_ch);
325 
326 	sp = ste_lookup(pa);
327 	if (sp == NULL) {
328 		printf("\n");
329 		panic("ste_attach: impossible");
330 	}
331 
332 	printf(": %s\n", sp->ste_name);
333 
334 	/*
335 	 * Map the device.
336 	 */
337 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
338 	    PCI_MAPREG_TYPE_IO, 0,
339 	    &iot, &ioh, NULL, NULL) == 0);
340 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
341 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
342 	    &memt, &memh, NULL, NULL) == 0);
343 
344 	if (memh_valid) {
345 		sc->sc_st = memt;
346 		sc->sc_sh = memh;
347 	} else if (ioh_valid) {
348 		sc->sc_st = iot;
349 		sc->sc_sh = ioh;
350 	} else {
351 		printf("%s: unable to map device registers\n",
352 		    sc->sc_dev.dv_xname);
353 		return;
354 	}
355 
356 	sc->sc_dmat = pa->pa_dmat;
357 
358 	/* Enable bus mastering. */
359 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
360 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
361 	    PCI_COMMAND_MASTER_ENABLE);
362 
363 	/* Get it out of power save mode if needed. */
364 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
365 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
366 		if (pmode == 3) {
367 			/*
368 			 * The card has lost all configuration data in
369 			 * this state, so punt.
370 			 */
371 			printf("%s: unable to wake up from power state D3\n",
372 			    sc->sc_dev.dv_xname);
373 			return;
374 		}
375 		if (pmode != 0) {
376 			printf("%s: waking up from power state D%d\n",
377 			    sc->sc_dev.dv_xname, pmode);
378 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
379 		}
380 	}
381 
382 	/*
383 	 * Map and establish our interrupt.
384 	 */
385 	if (pci_intr_map(pa, &ih)) {
386 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
387 		return;
388 	}
389 	intrstr = pci_intr_string(pc, ih);
390 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
391 	if (sc->sc_ih == NULL) {
392 		printf("%s: unable to establish interrupt",
393 		    sc->sc_dev.dv_xname);
394 		if (intrstr != NULL)
395 			printf(" at %s", intrstr);
396 		printf("\n");
397 		return;
398 	}
399 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
400 
401 	/*
402 	 * Allocate the control data structures, and create and load the
403 	 * DMA map for it.
404 	 */
405 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
406 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
407 	    0)) != 0) {
408 		printf("%s: unable to allocate control data, error = %d\n",
409 		    sc->sc_dev.dv_xname, error);
410 		goto fail_0;
411 	}
412 
413 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
414 	    sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
415 	    BUS_DMA_COHERENT)) != 0) {
416 		printf("%s: unable to map control data, error = %d\n",
417 		    sc->sc_dev.dv_xname, error);
418 		goto fail_1;
419 	}
420 
421 	if ((error = bus_dmamap_create(sc->sc_dmat,
422 	    sizeof(struct ste_control_data), 1,
423 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
424 		printf("%s: unable to create control data DMA map, "
425 		    "error = %d\n", sc->sc_dev.dv_xname, error);
426 		goto fail_2;
427 	}
428 
429 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
430 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
431 	    0)) != 0) {
432 		printf("%s: unable to load control data DMA map, error = %d\n",
433 		    sc->sc_dev.dv_xname, error);
434 		goto fail_3;
435 	}
436 
437 	/*
438 	 * Create the transmit buffer DMA maps.
439 	 */
440 	for (i = 0; i < STE_NTXDESC; i++) {
441 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
442 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
443 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
444 			printf("%s: unable to create tx DMA map %d, "
445 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
446 			goto fail_4;
447 		}
448 	}
449 
450 	/*
451 	 * Create the receive buffer DMA maps.
452 	 */
453 	for (i = 0; i < STE_NRXDESC; i++) {
454 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
455 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
456 			printf("%s: unable to create rx DMA map %d, "
457 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
458 			goto fail_5;
459 		}
460 		sc->sc_rxsoft[i].ds_mbuf = NULL;
461 	}
462 
463 	/*
464 	 * Reset the chip to a known state.
465 	 */
466 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
467 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
468 
469 	/*
470 	 * Read the Ethernet address from the EEPROM.
471 	 */
472 	for (i = 0; i < 3; i++) {
473 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
474 		myea[i] = le16toh(myea[i]);
475 	}
476 	memcpy(enaddr, myea, sizeof(enaddr));
477 
478 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
479 	    ether_sprintf(enaddr));
480 
481 	/*
482 	 * Initialize our media structures and probe the MII.
483 	 */
484 	sc->sc_mii.mii_ifp = ifp;
485 	sc->sc_mii.mii_readreg = ste_mii_readreg;
486 	sc->sc_mii.mii_writereg = ste_mii_writereg;
487 	sc->sc_mii.mii_statchg = ste_mii_statchg;
488 	ifmedia_init(&sc->sc_mii.mii_media, 0, ste_mediachange,
489 	    ste_mediastatus);
490 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
491 	    MII_OFFSET_ANY, 0);
492 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
493 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
494 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
495 	} else
496 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 
498 	ifp = &sc->sc_ethercom.ec_if;
499 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
500 	ifp->if_softc = sc;
501 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
502 	ifp->if_ioctl = ste_ioctl;
503 	ifp->if_start = ste_start;
504 	ifp->if_watchdog = ste_watchdog;
505 	ifp->if_init = ste_init;
506 	ifp->if_stop = ste_stop;
507 	IFQ_SET_READY(&ifp->if_snd);
508 
509 	/*
510 	 * Default the transmit threshold to 128 bytes.
511 	 */
512 	sc->sc_txthresh = 128;
513 
514 	/*
515 	 * Disable MWI if the PCI layer tells us to.
516 	 */
517 	sc->sc_DMACtrl = 0;
518 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
519 		sc->sc_DMACtrl |= DC_MWIDisable;
520 
521 	/*
522 	 * We can support 802.1Q VLAN-sized frames.
523 	 */
524 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
525 
526 	/*
527 	 * Attach the interface.
528 	 */
529 	if_attach(ifp);
530 	ether_ifattach(ifp, enaddr);
531 
532 	/*
533 	 * Make sure the interface is shutdown during reboot.
534 	 */
535 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
536 	if (sc->sc_sdhook == NULL)
537 		printf("%s: WARNING: unable to establish shutdown hook\n",
538 		    sc->sc_dev.dv_xname);
539 	return;
540 
541 	/*
542 	 * Free any resources we've allocated during the failed attach
543 	 * attempt.  Do this in reverse order and fall through.
544 	 */
545  fail_5:
546 	for (i = 0; i < STE_NRXDESC; i++) {
547 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
548 			bus_dmamap_destroy(sc->sc_dmat,
549 			    sc->sc_rxsoft[i].ds_dmamap);
550 	}
551  fail_4:
552 	for (i = 0; i < STE_NTXDESC; i++) {
553 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
554 			bus_dmamap_destroy(sc->sc_dmat,
555 			    sc->sc_txsoft[i].ds_dmamap);
556 	}
557 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
558  fail_3:
559 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
560  fail_2:
561 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
562 	    sizeof(struct ste_control_data));
563  fail_1:
564 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
565  fail_0:
566 	return;
567 }
568 
569 /*
570  * ste_shutdown:
571  *
572  *	Make sure the interface is stopped at reboot time.
573  */
574 void
575 ste_shutdown(void *arg)
576 {
577 	struct ste_softc *sc = arg;
578 
579 	ste_stop(&sc->sc_ethercom.ec_if, 1);
580 }
581 
582 static void
583 ste_dmahalt_wait(struct ste_softc *sc)
584 {
585 	int i;
586 
587 	for (i = 0; i < STE_TIMEOUT; i++) {
588 		delay(2);
589 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
590 		     DC_DMAHaltBusy) == 0)
591 			break;
592 	}
593 
594 	if (i == STE_TIMEOUT)
595 		printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
596 }
597 
598 /*
599  * ste_start:		[ifnet interface function]
600  *
601  *	Start packet transmission on the interface.
602  */
603 void
604 ste_start(struct ifnet *ifp)
605 {
606 	struct ste_softc *sc = ifp->if_softc;
607 	struct mbuf *m0, *m;
608 	struct ste_descsoft *ds;
609 	struct ste_tfd *tfd;
610 	bus_dmamap_t dmamap;
611 	int error, olasttx, nexttx, opending, seg, totlen;
612 
613 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
614 		return;
615 
616 	/*
617 	 * Remember the previous number of pending transmissions
618 	 * and the current last descriptor in the list.
619 	 */
620 	opending = sc->sc_txpending;
621 	olasttx = sc->sc_txlast;
622 
623 	/*
624 	 * Loop through the send queue, setting up transmit descriptors
625 	 * until we drain the queue, or use up all available transmit
626 	 * descriptors.
627 	 */
628 	while (sc->sc_txpending < STE_NTXDESC) {
629 		/*
630 		 * Grab a packet off the queue.
631 		 */
632 		IFQ_POLL(&ifp->if_snd, m0);
633 		if (m0 == NULL)
634 			break;
635 		m = NULL;
636 
637 		/*
638 		 * Get the last and next available transmit descriptor.
639 		 */
640 		nexttx = STE_NEXTTX(sc->sc_txlast);
641 		tfd = &sc->sc_txdescs[nexttx];
642 		ds = &sc->sc_txsoft[nexttx];
643 
644 		dmamap = ds->ds_dmamap;
645 
646 		/*
647 		 * Load the DMA map.  If this fails, the packet either
648 		 * didn't fit in the alloted number of segments, or we
649 		 * were short on resources.  In this case, we'll copy
650 		 * and try again.
651 		 */
652 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
653 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
654 			MGETHDR(m, M_DONTWAIT, MT_DATA);
655 			if (m == NULL) {
656 				printf("%s: unable to allocate Tx mbuf\n",
657 				    sc->sc_dev.dv_xname);
658 				break;
659 			}
660 			if (m0->m_pkthdr.len > MHLEN) {
661 				MCLGET(m, M_DONTWAIT);
662 				if ((m->m_flags & M_EXT) == 0) {
663 					printf("%s: unable to allocate Tx "
664 					    "cluster\n", sc->sc_dev.dv_xname);
665 					m_freem(m);
666 					break;
667 				}
668 			}
669 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
670 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
671 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
672 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
673 			if (error) {
674 				printf("%s: unable to load Tx buffer, "
675 				    "error = %d\n", sc->sc_dev.dv_xname, error);
676 				break;
677 			}
678 		}
679 
680 		IFQ_DEQUEUE(&ifp->if_snd, m0);
681 		if (m != NULL) {
682 			m_freem(m0);
683 			m0 = m;
684 		}
685 
686 		/*
687 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
688 		 */
689 
690 		/* Sync the DMA map. */
691 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
692 		    BUS_DMASYNC_PREWRITE);
693 
694 		/* Initialize the fragment list. */
695 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
696 			tfd->tfd_frags[seg].frag_addr =
697 			    htole32(dmamap->dm_segs[seg].ds_addr);
698 			tfd->tfd_frags[seg].frag_len =
699 			    htole32(dmamap->dm_segs[seg].ds_len);
700 			totlen += dmamap->dm_segs[seg].ds_len;
701 		}
702 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
703 
704 		/* Initialize the descriptor. */
705 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
706 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
707 
708 		/* Sync the descriptor. */
709 		STE_CDTXSYNC(sc, nexttx,
710 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
711 
712 		/*
713 		 * Store a pointer to the packet so we can free it later,
714 		 * and remember what txdirty will be once the packet is
715 		 * done.
716 		 */
717 		ds->ds_mbuf = m0;
718 
719 		/* Advance the tx pointer. */
720 		sc->sc_txpending++;
721 		sc->sc_txlast = nexttx;
722 
723 #if NBPFILTER > 0
724 		/*
725 		 * Pass the packet to any BPF listeners.
726 		 */
727 		if (ifp->if_bpf)
728 			bpf_mtap(ifp->if_bpf, m0);
729 #endif /* NBPFILTER > 0 */
730 	}
731 
732 	if (sc->sc_txpending == STE_NTXDESC) {
733 		/* No more slots left; notify upper layer. */
734 		ifp->if_flags |= IFF_OACTIVE;
735 	}
736 
737 	if (sc->sc_txpending != opending) {
738 		/*
739 		 * We enqueued packets.  If the transmitter was idle,
740 		 * reset the txdirty pointer.
741 		 */
742 		if (opending == 0)
743 			sc->sc_txdirty = STE_NEXTTX(olasttx);
744 
745 		/*
746 		 * Cause a descriptor interrupt to happen on the
747 		 * last packet we enqueued, and also cause the
748 		 * DMA engine to wait after is has finished processing
749 		 * it.
750 		 */
751 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
752 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
753 		    htole32(TFD_TxDMAIndicate);
754 		STE_CDTXSYNC(sc, sc->sc_txlast,
755 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756 
757 		/*
758 		 * Link up the new chain of descriptors to the
759 		 * last.
760 		 */
761 		sc->sc_txdescs[olasttx].tfd_next =
762 		    STE_CDTXADDR(sc, STE_NEXTTX(olasttx));
763 		STE_CDTXSYNC(sc, olasttx,
764 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
765 
766 		/*
767 		 * Kick the transmit DMA logic.  Note that since we're
768 		 * using auto-polling, reading the Tx desc pointer will
769 		 * give it the nudge it needs to get going.
770 		 */
771 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
772 		    STE_TxDMAListPtr) == 0) {
773 			bus_space_write_4(sc->sc_st, sc->sc_sh,
774 			    STE_DMACtrl, DC_TxDMAHalt);
775 			ste_dmahalt_wait(sc);
776 			bus_space_write_4(sc->sc_st, sc->sc_sh,
777 			    STE_TxDMAListPtr,
778 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
779 			bus_space_write_4(sc->sc_st, sc->sc_sh,
780 			    STE_DMACtrl, DC_TxDMAResume);
781 		}
782 
783 		/* Set a watchdog timer in case the chip flakes out. */
784 		ifp->if_timer = 5;
785 	}
786 }
787 
788 /*
789  * ste_watchdog:	[ifnet interface function]
790  *
791  *	Watchdog timer handler.
792  */
793 void
794 ste_watchdog(struct ifnet *ifp)
795 {
796 	struct ste_softc *sc = ifp->if_softc;
797 
798 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
799 	ifp->if_oerrors++;
800 
801 	(void) ste_init(ifp);
802 
803 	/* Try to get more packets going. */
804 	ste_start(ifp);
805 }
806 
807 /*
808  * ste_ioctl:		[ifnet interface function]
809  *
810  *	Handle control requests from the operator.
811  */
812 int
813 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
814 {
815 	struct ste_softc *sc = ifp->if_softc;
816 	struct ifreq *ifr = (struct ifreq *)data;
817 	int s, error;
818 
819 	s = splnet();
820 
821 	switch (cmd) {
822 	case SIOCSIFMEDIA:
823 	case SIOCGIFMEDIA:
824 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
825 		break;
826 
827 	default:
828 		error = ether_ioctl(ifp, cmd, data);
829 		if (error == ENETRESET) {
830 			/*
831 			 * Multicast list has changed; set the hardware filter
832 			 * accordingly.
833 			 */
834 			ste_set_filter(sc);
835 			error = 0;
836 		}
837 		break;
838 	}
839 
840 	/* Try to get more packets going. */
841 	ste_start(ifp);
842 
843 	splx(s);
844 	return (error);
845 }
846 
847 /*
848  * ste_intr:
849  *
850  *	Interrupt service routine.
851  */
852 int
853 ste_intr(void *arg)
854 {
855 	struct ste_softc *sc = arg;
856 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
857 	uint16_t isr;
858 	uint8_t txstat;
859 	int wantinit;
860 
861 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
862 	     IS_InterruptStatus) == 0)
863 		return (0);
864 
865 	for (wantinit = 0; wantinit == 0;) {
866 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
867 		if ((isr & sc->sc_IntEnable) == 0)
868 			break;
869 
870 		/* Receive interrupts. */
871 		if (isr & IE_RxDMAComplete)
872 			ste_rxintr(sc);
873 
874 		/* Transmit interrupts. */
875 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
876 			ste_txintr(sc);
877 
878 		/* Statistics overflow. */
879 		if (isr & IE_UpdateStats)
880 			ste_stats_update(sc);
881 
882 		/* Transmission errors. */
883 		if (isr & IE_TxComplete) {
884 			for (;;) {
885 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
886 				    STE_TxStatus);
887 				if ((txstat & TS_TxComplete) == 0)
888 					break;
889 				if (txstat & TS_TxUnderrun) {
890 					sc->sc_txthresh += 32;
891 					if (sc->sc_txthresh > 0x1ffc)
892 						sc->sc_txthresh = 0x1ffc;
893 					printf("%s: transmit underrun, new "
894 					    "threshold: %d bytes\n",
895 					    sc->sc_dev.dv_xname,
896 					    sc->sc_txthresh);
897 					ste_reset(sc, AC_TxReset | AC_DMA |
898 					    AC_FIFO | AC_Network);
899 					ste_setthresh(sc);
900 					bus_space_write_1(sc->sc_st, sc->sc_sh,
901 					    STE_TxDMAPollPeriod, 127);
902 					ste_txrestart(sc,
903 					    bus_space_read_1(sc->sc_st,
904 						sc->sc_sh, STE_TxFrameId));
905 				}
906 				if (txstat & TS_TxReleaseError) {
907 					printf("%s: Tx FIFO release error\n",
908 					    sc->sc_dev.dv_xname);
909 					wantinit = 1;
910 				}
911 				if (txstat & TS_MaxCollisions) {
912 					printf("%s: excessive collisions\n",
913 					    sc->sc_dev.dv_xname);
914 					wantinit = 1;
915 				}
916 				if (txstat & TS_TxStatusOverflow) {
917 					printf("%s: status overflow\n",
918 					    sc->sc_dev.dv_xname);
919 					wantinit = 1;
920 				}
921 				bus_space_write_2(sc->sc_st, sc->sc_sh,
922 				    STE_TxStatus, 0);
923 			}
924 		}
925 
926 		/* Host interface errors. */
927 		if (isr & IE_HostError) {
928 			printf("%s: Host interface error\n",
929 			    sc->sc_dev.dv_xname);
930 			wantinit = 1;
931 		}
932 	}
933 
934 	if (wantinit)
935 		ste_init(ifp);
936 
937 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
938 	    sc->sc_IntEnable);
939 
940 	/* Try to get more packets going. */
941 	ste_start(ifp);
942 
943 	return (1);
944 }
945 
946 /*
947  * ste_txintr:
948  *
949  *	Helper; handle transmit interrupts.
950  */
951 void
952 ste_txintr(struct ste_softc *sc)
953 {
954 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
955 	struct ste_descsoft *ds;
956 	uint32_t control;
957 	int i;
958 
959 	ifp->if_flags &= ~IFF_OACTIVE;
960 
961 	/*
962 	 * Go through our Tx list and free mbufs for those
963 	 * frames which have been transmitted.
964 	 */
965 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
966 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
967 		ds = &sc->sc_txsoft[i];
968 
969 		STE_CDTXSYNC(sc, i,
970 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
971 
972 		control = le32toh(sc->sc_txdescs[i].tfd_control);
973 		if ((control & TFD_TxDMAComplete) == 0)
974 			break;
975 
976 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
977 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
978 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
979 		m_freem(ds->ds_mbuf);
980 		ds->ds_mbuf = NULL;
981 	}
982 
983 	/* Update the dirty transmit buffer pointer. */
984 	sc->sc_txdirty = i;
985 
986 	/*
987 	 * If there are no more pending transmissions, cancel the watchdog
988 	 * timer.
989 	 */
990 	if (sc->sc_txpending == 0)
991 		ifp->if_timer = 0;
992 }
993 
994 /*
995  * ste_rxintr:
996  *
997  *	Helper; handle receive interrupts.
998  */
999 void
1000 ste_rxintr(struct ste_softc *sc)
1001 {
1002 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1003 	struct ste_descsoft *ds;
1004 	struct mbuf *m;
1005 	uint32_t status;
1006 	int i, len;
1007 
1008 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1009 		ds = &sc->sc_rxsoft[i];
1010 
1011 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1012 
1013 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
1014 
1015 		if ((status & RFD_RxDMAComplete) == 0)
1016 			break;
1017 
1018 		/*
1019 		 * If the packet had an error, simply recycle the
1020 		 * buffer.  Note, we count the error later in the
1021 		 * periodic stats update.
1022 		 */
1023 		if (status & RFD_RxFrameError) {
1024 			STE_INIT_RXDESC(sc, i);
1025 			continue;
1026 		}
1027 
1028 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1029 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1030 
1031 		/*
1032 		 * No errors; receive the packet.  Note, we have
1033 		 * configured the chip to not include the CRC at
1034 		 * the end of the packet.
1035 		 */
1036 		len = RFD_RxDMAFrameLen(status);
1037 
1038 		/*
1039 		 * If the packet is small enough to fit in a
1040 		 * single header mbuf, allocate one and copy
1041 		 * the data into it.  This greatly reduces
1042 		 * memory consumption when we receive lots
1043 		 * of small packets.
1044 		 *
1045 		 * Otherwise, we add a new buffer to the receive
1046 		 * chain.  If this fails, we drop the packet and
1047 		 * recycle the old buffer.
1048 		 */
1049 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1050 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1051 			if (m == NULL)
1052 				goto dropit;
1053 			m->m_data += 2;
1054 			memcpy(mtod(m, caddr_t),
1055 			    mtod(ds->ds_mbuf, caddr_t), len);
1056 			STE_INIT_RXDESC(sc, i);
1057 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1058 			    ds->ds_dmamap->dm_mapsize,
1059 			    BUS_DMASYNC_PREREAD);
1060 		} else {
1061 			m = ds->ds_mbuf;
1062 			if (ste_add_rxbuf(sc, i) != 0) {
1063  dropit:
1064 				ifp->if_ierrors++;
1065 				STE_INIT_RXDESC(sc, i);
1066 				bus_dmamap_sync(sc->sc_dmat,
1067 				    ds->ds_dmamap, 0,
1068 				    ds->ds_dmamap->dm_mapsize,
1069 				    BUS_DMASYNC_PREREAD);
1070 				continue;
1071 			}
1072 		}
1073 
1074 		m->m_pkthdr.rcvif = ifp;
1075 		m->m_pkthdr.len = m->m_len = len;
1076 
1077 #if NBPFILTER > 0
1078 		/*
1079 		 * Pass this up to any BPF listeners, but only
1080 		 * pass if up the stack if it's for us.
1081 		 */
1082 		if (ifp->if_bpf)
1083 			bpf_mtap(ifp->if_bpf, m);
1084 #endif /* NBPFILTER > 0 */
1085 
1086 		/* Pass it on. */
1087 		(*ifp->if_input)(ifp, m);
1088 	}
1089 
1090 	/* Update the receive pointer. */
1091 	sc->sc_rxptr = i;
1092 }
1093 
1094 /*
1095  * ste_tick:
1096  *
1097  *	One second timer, used to tick the MII.
1098  */
1099 void
1100 ste_tick(void *arg)
1101 {
1102 	struct ste_softc *sc = arg;
1103 	int s;
1104 
1105 	s = splnet();
1106 	mii_tick(&sc->sc_mii);
1107 	ste_stats_update(sc);
1108 	splx(s);
1109 
1110 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1111 }
1112 
1113 /*
1114  * ste_stats_update:
1115  *
1116  *	Read the ST-201 statistics counters.
1117  */
1118 void
1119 ste_stats_update(struct ste_softc *sc)
1120 {
1121 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1122 	bus_space_tag_t st = sc->sc_st;
1123 	bus_space_handle_t sh = sc->sc_sh;
1124 
1125 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1126 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1127 
1128 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1129 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1130 
1131 	ifp->if_opackets +=
1132 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1133 	ifp->if_ipackets +=
1134 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1135 
1136 	ifp->if_collisions +=
1137 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1138 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1139 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1140 
1141 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1142 
1143 	ifp->if_ierrors +=
1144 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1145 
1146 	ifp->if_oerrors +=
1147 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1148 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1149 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1150 
1151 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1152 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1153 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1154 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1155 }
1156 
1157 /*
1158  * ste_reset:
1159  *
1160  *	Perform a soft reset on the ST-201.
1161  */
1162 void
1163 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1164 {
1165 	uint32_t ac;
1166 	int i;
1167 
1168 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1169 
1170 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1171 
1172 	delay(50000);
1173 
1174 	for (i = 0; i < STE_TIMEOUT; i++) {
1175 		delay(1000);
1176 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1177 		     AC_ResetBusy) == 0)
1178 			break;
1179 	}
1180 
1181 	if (i == STE_TIMEOUT)
1182 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1183 
1184 	delay(1000);
1185 }
1186 
1187 /*
1188  * ste_setthresh:
1189  *
1190  * 	set the various transmit threshold registers
1191  */
1192 void
1193 ste_setthresh(struct ste_softc *sc)
1194 {
1195 	/* set the TX threhold */
1196 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1197 	    STE_TxStartThresh, sc->sc_txthresh);
1198 	/* Urgent threshold: set to sc_txthresh / 2 */
1199 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1200 	    sc->sc_txthresh >> 6);
1201 	/* Burst threshold: use default value (256 bytes) */
1202 }
1203 
1204 /*
1205  * restart TX at the given frame ID in the transmitter ring
1206  */
1207 
1208 void
1209 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1210 {
1211 	u_int32_t control;
1212 
1213 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1214 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1215 	control &= ~TFD_TxDMAComplete;
1216 	sc->sc_txdescs[id].tfd_control = htole32(control);
1217 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1218 
1219 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1220 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1221 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1222 	ste_dmahalt_wait(sc);
1223 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1224 	    STE_CDTXADDR(sc, id));
1225 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1226 }
1227 
1228 /*
1229  * ste_init:		[ ifnet interface function ]
1230  *
1231  *	Initialize the interface.  Must be called at splnet().
1232  */
1233 int
1234 ste_init(struct ifnet *ifp)
1235 {
1236 	struct ste_softc *sc = ifp->if_softc;
1237 	bus_space_tag_t st = sc->sc_st;
1238 	bus_space_handle_t sh = sc->sc_sh;
1239 	struct ste_descsoft *ds;
1240 	int i, error = 0;
1241 
1242 	/*
1243 	 * Cancel any pending I/O.
1244 	 */
1245 	ste_stop(ifp, 0);
1246 
1247 	/*
1248 	 * Reset the chip to a known state.
1249 	 */
1250 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1251 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1252 
1253 	/*
1254 	 * Initialize the transmit descriptor ring.
1255 	 */
1256 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1257 	sc->sc_txpending = 0;
1258 	sc->sc_txdirty = 0;
1259 	sc->sc_txlast = STE_NTXDESC - 1;
1260 
1261 	/*
1262 	 * Initialize the receive descriptor and receive job
1263 	 * descriptor rings.
1264 	 */
1265 	for (i = 0; i < STE_NRXDESC; i++) {
1266 		ds = &sc->sc_rxsoft[i];
1267 		if (ds->ds_mbuf == NULL) {
1268 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1269 				printf("%s: unable to allocate or map rx "
1270 				    "buffer %d, error = %d\n",
1271 				    sc->sc_dev.dv_xname, i, error);
1272 				/*
1273 				 * XXX Should attempt to run with fewer receive
1274 				 * XXX buffers instead of just failing.
1275 				 */
1276 				ste_rxdrain(sc);
1277 				goto out;
1278 			}
1279 		} else
1280 			STE_INIT_RXDESC(sc, i);
1281 	}
1282 	sc->sc_rxptr = 0;
1283 
1284 	/* Set the station address. */
1285 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1286 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1287 		    LLADDR(ifp->if_sadl)[i]);
1288 
1289 	/* Set up the receive filter. */
1290 	ste_set_filter(sc);
1291 
1292 	/*
1293 	 * Give the receive ring to the chip.
1294 	 */
1295 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1296 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1297 
1298 	/*
1299 	 * We defer giving the transmit ring to the chip until we
1300 	 * transmit the first packet.
1301 	 */
1302 
1303 	/*
1304 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1305 	 * large (127 is the max) -- we explicitly kick the transmit engine
1306 	 * when there's actually a packet.  We are using auto-polling only
1307 	 * to make the interface to the transmit engine not suck.
1308 	 */
1309 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1310 
1311 	/* ..and the Rx auto-poll period. */
1312 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1313 
1314 	/* Initialize the Tx start threshold. */
1315 	ste_setthresh(sc);
1316 
1317 	/* Set the FIFO release threshold to 512 bytes. */
1318 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1319 
1320 	/*
1321 	 * Initialize the interrupt mask.
1322 	 */
1323 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1324 	    IE_TxDMAComplete | IE_RxDMAComplete;
1325 
1326 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1327 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1328 
1329 	/*
1330 	 * Start the receive DMA engine.
1331 	 */
1332 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1333 
1334 	/*
1335 	 * Initialize MacCtrl0 -- do it before setting the media,
1336 	 * as setting the media will actually program the register.
1337 	 */
1338 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1339 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1340 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1341 
1342 	/*
1343 	 * Set the current media.
1344 	 */
1345 	mii_mediachg(&sc->sc_mii);
1346 
1347 	/*
1348 	 * Start the MAC.
1349 	 */
1350 	bus_space_write_2(st, sh, STE_MacCtrl1,
1351 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1352 
1353 	/*
1354 	 * Start the one second MII clock.
1355 	 */
1356 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1357 
1358 	/*
1359 	 * ...all done!
1360 	 */
1361 	ifp->if_flags |= IFF_RUNNING;
1362 	ifp->if_flags &= ~IFF_OACTIVE;
1363 
1364  out:
1365 	if (error)
1366 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1367 	return (error);
1368 }
1369 
1370 /*
1371  * ste_drain:
1372  *
1373  *	Drain the receive queue.
1374  */
1375 void
1376 ste_rxdrain(struct ste_softc *sc)
1377 {
1378 	struct ste_descsoft *ds;
1379 	int i;
1380 
1381 	for (i = 0; i < STE_NRXDESC; i++) {
1382 		ds = &sc->sc_rxsoft[i];
1383 		if (ds->ds_mbuf != NULL) {
1384 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1385 			m_freem(ds->ds_mbuf);
1386 			ds->ds_mbuf = NULL;
1387 		}
1388 	}
1389 }
1390 
1391 /*
1392  * ste_stop:		[ ifnet interface function ]
1393  *
1394  *	Stop transmission on the interface.
1395  */
1396 void
1397 ste_stop(struct ifnet *ifp, int disable)
1398 {
1399 	struct ste_softc *sc = ifp->if_softc;
1400 	struct ste_descsoft *ds;
1401 	int i;
1402 
1403 	/*
1404 	 * Stop the one second clock.
1405 	 */
1406 	callout_stop(&sc->sc_tick_ch);
1407 
1408 	/* Down the MII. */
1409 	mii_down(&sc->sc_mii);
1410 
1411 	/*
1412 	 * Disable interrupts.
1413 	 */
1414 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1415 
1416 	/*
1417 	 * Stop receiver, transmitter, and stats update.
1418 	 */
1419 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1420 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1421 
1422 	/*
1423 	 * Stop the transmit and receive DMA.
1424 	 */
1425 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1426 	    DC_RxDMAHalt | DC_TxDMAHalt);
1427 	ste_dmahalt_wait(sc);
1428 
1429 	/*
1430 	 * Release any queued transmit buffers.
1431 	 */
1432 	for (i = 0; i < STE_NTXDESC; i++) {
1433 		ds = &sc->sc_txsoft[i];
1434 		if (ds->ds_mbuf != NULL) {
1435 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1436 			m_freem(ds->ds_mbuf);
1437 			ds->ds_mbuf = NULL;
1438 		}
1439 	}
1440 
1441 	if (disable)
1442 		ste_rxdrain(sc);
1443 
1444 	/*
1445 	 * Mark the interface down and cancel the watchdog timer.
1446 	 */
1447 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1448 	ifp->if_timer = 0;
1449 }
1450 
1451 static int
1452 ste_eeprom_wait(struct ste_softc *sc)
1453 {
1454 	int i;
1455 
1456 	for (i = 0; i < STE_TIMEOUT; i++) {
1457 		delay(1000);
1458 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1459 		     EC_EepromBusy) == 0)
1460 			return (0);
1461 	}
1462 	return (1);
1463 }
1464 
1465 /*
1466  * ste_read_eeprom:
1467  *
1468  *	Read data from the serial EEPROM.
1469  */
1470 void
1471 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1472 {
1473 
1474 	if (ste_eeprom_wait(sc))
1475 		printf("%s: EEPROM failed to come ready\n",
1476 		    sc->sc_dev.dv_xname);
1477 
1478 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1479 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1480 	if (ste_eeprom_wait(sc))
1481 		printf("%s: EEPROM read timed out\n",
1482 		    sc->sc_dev.dv_xname);
1483 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1484 }
1485 
1486 /*
1487  * ste_add_rxbuf:
1488  *
1489  *	Add a receive buffer to the indicated descriptor.
1490  */
1491 int
1492 ste_add_rxbuf(struct ste_softc *sc, int idx)
1493 {
1494 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1495 	struct mbuf *m;
1496 	int error;
1497 
1498 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1499 	if (m == NULL)
1500 		return (ENOBUFS);
1501 
1502 	MCLGET(m, M_DONTWAIT);
1503 	if ((m->m_flags & M_EXT) == 0) {
1504 		m_freem(m);
1505 		return (ENOBUFS);
1506 	}
1507 
1508 	if (ds->ds_mbuf != NULL)
1509 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1510 
1511 	ds->ds_mbuf = m;
1512 
1513 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1514 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1515 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1516 	if (error) {
1517 		printf("%s: can't load rx DMA map %d, error = %d\n",
1518 		    sc->sc_dev.dv_xname, idx, error);
1519 		panic("ste_add_rxbuf");		/* XXX */
1520 	}
1521 
1522 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1523 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1524 
1525 	STE_INIT_RXDESC(sc, idx);
1526 
1527 	return (0);
1528 }
1529 
1530 /*
1531  * ste_set_filter:
1532  *
1533  *	Set up the receive filter.
1534  */
1535 void
1536 ste_set_filter(struct ste_softc *sc)
1537 {
1538 	struct ethercom *ec = &sc->sc_ethercom;
1539 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1540 	struct ether_multi *enm;
1541 	struct ether_multistep step;
1542 	uint32_t crc;
1543 	uint16_t mchash[4];
1544 
1545 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1546 	if (ifp->if_flags & IFF_BROADCAST)
1547 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1548 
1549 	if (ifp->if_flags & IFF_PROMISC) {
1550 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1551 		goto allmulti;
1552 	}
1553 
1554 	/*
1555 	 * Set up the multicast address filter by passing all multicast
1556 	 * addresses through a CRC generator, and then using the low-order
1557 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1558 	 * high order bits select the register, while the rest of the bits
1559 	 * select the bit within the register.
1560 	 */
1561 
1562 	memset(mchash, 0, sizeof(mchash));
1563 
1564 	ETHER_FIRST_MULTI(step, ec, enm);
1565 	if (enm == NULL)
1566 		goto done;
1567 
1568 	while (enm != NULL) {
1569 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1570 			/*
1571 			 * We must listen to a range of multicast addresses.
1572 			 * For now, just accept all multicasts, rather than
1573 			 * trying to set only those filter bits needed to match
1574 			 * the range.  (At this time, the only use of address
1575 			 * ranges is for IP multicast routing, for which the
1576 			 * range is big enough to require all bits set.)
1577 			 */
1578 			goto allmulti;
1579 		}
1580 
1581 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1582 
1583 		/* Just want the 6 least significant bits. */
1584 		crc &= 0x3f;
1585 
1586 		/* Set the corresponding bit in the hash table. */
1587 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1588 
1589 		ETHER_NEXT_MULTI(step, enm);
1590 	}
1591 
1592 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1593 
1594 	ifp->if_flags &= ~IFF_ALLMULTI;
1595 	goto done;
1596 
1597  allmulti:
1598 	ifp->if_flags |= IFF_ALLMULTI;
1599 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1600 
1601  done:
1602 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1603 		/*
1604 		 * Program the multicast hash table.
1605 		 */
1606 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1607 		    mchash[0]);
1608 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1609 		    mchash[1]);
1610 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1611 		    mchash[2]);
1612 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1613 		    mchash[3]);
1614 	}
1615 
1616 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1617 	    sc->sc_ReceiveMode);
1618 }
1619 
1620 /*
1621  * ste_mii_readreg:	[mii interface function]
1622  *
1623  *	Read a PHY register on the MII of the ST-201.
1624  */
1625 int
1626 ste_mii_readreg(struct device *self, int phy, int reg)
1627 {
1628 
1629 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1630 }
1631 
1632 /*
1633  * ste_mii_writereg:	[mii interface function]
1634  *
1635  *	Write a PHY register on the MII of the ST-201.
1636  */
1637 void
1638 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1639 {
1640 
1641 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1642 }
1643 
1644 /*
1645  * ste_mii_statchg:	[mii interface function]
1646  *
1647  *	Callback from MII layer when media changes.
1648  */
1649 void
1650 ste_mii_statchg(struct device *self)
1651 {
1652 	struct ste_softc *sc = (struct ste_softc *) self;
1653 
1654 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1655 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1656 	else
1657 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1658 
1659 	/* XXX 802.1x flow-control? */
1660 
1661 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1662 }
1663 
1664 /*
1665  * ste_mii_bitbang_read: [mii bit-bang interface function]
1666  *
1667  *	Read the MII serial port for the MII bit-bang module.
1668  */
1669 uint32_t
1670 ste_mii_bitbang_read(struct device *self)
1671 {
1672 	struct ste_softc *sc = (void *) self;
1673 
1674 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1675 }
1676 
1677 /*
1678  * ste_mii_bitbang_write: [mii big-bang interface function]
1679  *
1680  *	Write the MII serial port for the MII bit-bang module.
1681  */
1682 void
1683 ste_mii_bitbang_write(struct device *self, uint32_t val)
1684 {
1685 	struct ste_softc *sc = (void *) self;
1686 
1687 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1688 }
1689 
1690 /*
1691  * ste_mediastatus:	[ifmedia interface function]
1692  *
1693  *	Get the current interface media status.
1694  */
1695 void
1696 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1697 {
1698 	struct ste_softc *sc = ifp->if_softc;
1699 
1700 	mii_pollstat(&sc->sc_mii);
1701 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1702 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1703 }
1704 
1705 /*
1706  * ste_mediachange:	[ifmedia interface function]
1707  *
1708  *	Set hardware to newly-selected media.
1709  */
1710 int
1711 ste_mediachange(struct ifnet *ifp)
1712 {
1713 	struct ste_softc *sc = ifp->if_softc;
1714 
1715 	if (ifp->if_flags & IFF_UP)
1716 		mii_mediachg(&sc->sc_mii);
1717 	return (0);
1718 }
1719