xref: /netbsd-src/sys/dev/pci/if_sk.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: if_sk.c,v 1.98 2019/05/30 02:32:18 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  *	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.98 2019/05/30 02:32:18 msaitoh Exp $");
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133 
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137 
138 #include <net/if_media.h>
139 
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150 
151 /* #define SK_USEIOSPACE */
152 
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155 
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 					struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189 
190 void sk_update_int_mod(struct sk_softc *);
191 
192 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
193 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195 
196 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
197 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
198 void sk_marv_miibus_statchg(struct ifnet *);
199 
200 uint32_t sk_xmac_hash(void *);
201 uint32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205 
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209 
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x)	if (skdebug) printf x
213 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
214 int	skdebug = SK_DEBUG;
215 
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n, x)
222 #endif
223 
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226 
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 	pci_vendor_id_t		sk_vendor;
231 	pci_product_id_t	sk_product;
232 } sk_products[] = {
233 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 	{ 0, 0, }
242 };
243 
244 #define SK_LINKSYS_EG1032_SUBID	0x00151737
245 
246 static inline uint32_t
247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 	return CSR_READ_4(sc, reg);
254 #endif
255 }
256 
257 static inline uint16_t
258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 	return CSR_READ_2(sc, reg);
265 #endif
266 }
267 
268 static inline uint8_t
269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 	return CSR_READ_1(sc, reg);
276 #endif
277 }
278 
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 	CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289 
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 	CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300 
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 	CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311 
312 /*
313  * The VPD EEPROM contains Vital Product Data, as suggested in
314  * the PCI 2.1 specification. The VPD data is separared into areas
315  * denoted by resource IDs. The SysKonnect VPD contains an ID string
316  * resource (the name of the adapter), a read-only area resource
317  * containing various key/data fields and a read/write area which
318  * can be used to store asset management information or log messages.
319  * We read the ID string and read-only into buffers attached to
320  * the controller softc structure for later use. At the moment,
321  * we only use the ID string during sk_attach().
322  */
323 uint8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 	int			i;
327 
328 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 	for (i = 0; i < SK_TIMEOUT; i++) {
330 		DELAY(1);
331 		if (sk_win_read_2(sc,
332 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 			break;
334 	}
335 
336 	if (i == SK_TIMEOUT)
337 		return 0;
338 
339 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341 
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 	int			i;
346 	uint8_t		*ptr;
347 
348 	ptr = (uint8_t *)res;
349 	for (i = 0; i < sizeof(struct vpd_res); i++)
350 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352 
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 	int			pos = 0, i;
357 	struct vpd_res		res;
358 
359 	if (sc->sk_vpd_prodname != NULL)
360 		free(sc->sk_vpd_prodname, M_DEVBUF);
361 	if (sc->sk_vpd_readonly != NULL)
362 		free(sc->sk_vpd_readonly, M_DEVBUF);
363 	sc->sk_vpd_prodname = NULL;
364 	sc->sk_vpd_readonly = NULL;
365 
366 	sk_vpd_read_res(sc, &res, pos);
367 
368 	if (res.vr_id != VPD_RES_ID) {
369 		aprint_error_dev(sc->sk_dev,
370 		    "bad VPD resource id: expected %x got %x\n",
371 		    VPD_RES_ID, res.vr_id);
372 		return;
373 	}
374 
375 	pos += sizeof(res);
376 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 	if (sc->sk_vpd_prodname == NULL)
378 		panic("sk_vpd_read");
379 	for (i = 0; i < res.vr_len; i++)
380 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 	sc->sk_vpd_prodname[i] = '\0';
382 	pos += i;
383 
384 	sk_vpd_read_res(sc, &res, pos);
385 
386 	if (res.vr_id != VPD_RES_READ) {
387 		aprint_error_dev(sc->sk_dev,
388 		    "bad VPD resource id: expected %x got %x\n",
389 		    VPD_RES_READ, res.vr_id);
390 		return;
391 	}
392 
393 	pos += sizeof(res);
394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 	if (sc->sk_vpd_readonly == NULL)
396 		panic("sk_vpd_read");
397 	for (i = 0; i < res.vr_len ; i++)
398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400 
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
403 {
404 	struct sk_if_softc *sc_if = device_private(dev);
405 	int i;
406 
407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408 
409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 		return -1;
411 
412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 		for (i = 0; i < SK_TIMEOUT; i++) {
416 			DELAY(1);
417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 			    XM_MMUCMD_PHYDATARDY)
419 				break;
420 		}
421 
422 		if (i == SK_TIMEOUT) {
423 			aprint_error_dev(sc_if->sk_dev,
424 			    "phy failed to come ready\n");
425 			return ETIMEDOUT;
426 		}
427 	}
428 	DELAY(1);
429 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 	return 0;
431 }
432 
433 int
434 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
435 {
436 	struct sk_if_softc *sc_if = device_private(dev);
437 	int i;
438 
439 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
440 
441 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
442 	for (i = 0; i < SK_TIMEOUT; i++) {
443 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
444 			break;
445 	}
446 
447 	if (i == SK_TIMEOUT) {
448 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
449 		return ETIMEDOUT;
450 	}
451 
452 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
453 	for (i = 0; i < SK_TIMEOUT; i++) {
454 		DELAY(1);
455 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
456 			break;
457 	}
458 
459 	if (i == SK_TIMEOUT) {
460 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
461 		return ETIMEDOUT;
462 	}
463 
464 	return 0;
465 }
466 
467 void
468 sk_xmac_miibus_statchg(struct ifnet *ifp)
469 {
470 	struct sk_if_softc *sc_if = ifp->if_softc;
471 	struct mii_data *mii = &sc_if->sk_mii;
472 
473 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
474 
475 	/*
476 	 * If this is a GMII PHY, manually set the XMAC's
477 	 * duplex mode accordingly.
478 	 */
479 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
480 		if ((mii->mii_media_active & IFM_FDX) != 0)
481 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 		else
483 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 	}
485 }
486 
487 int
488 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
489 {
490 	struct sk_if_softc *sc_if = device_private(dev);
491 	uint16_t data;
492 	int i;
493 
494 	if (phy != 0 ||
495 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
496 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
497 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
498 			     phy, reg));
499 		return -1;
500 	}
501 
502 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
503 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
504 
505 	for (i = 0; i < SK_TIMEOUT; i++) {
506 		DELAY(1);
507 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
508 		if (data & YU_SMICR_READ_VALID)
509 			break;
510 	}
511 
512 	if (i == SK_TIMEOUT) {
513 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
514 		return ETIMEDOUT;
515 	}
516 
517 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
518 		     SK_TIMEOUT));
519 
520 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
521 
522 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
523 		     phy, reg, *val));
524 
525 	return 0;
526 }
527 
528 int
529 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
530 {
531 	struct sk_if_softc *sc_if = device_private(dev);
532 	int i;
533 
534 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
535 		     phy, reg, val));
536 
537 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
538 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
539 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
540 
541 	for (i = 0; i < SK_TIMEOUT; i++) {
542 		DELAY(1);
543 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
544 			break;
545 	}
546 
547 	if (i == SK_TIMEOUT) {
548 		printf("%s: phy write timed out\n",
549 		    device_xname(sc_if->sk_dev));
550 		return ETIMEDOUT;
551 	}
552 
553 	return 0;
554 }
555 
556 void
557 sk_marv_miibus_statchg(struct ifnet *ifp)
558 {
559 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
560 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
561 		     YUKON_GPCR)));
562 }
563 
564 uint32_t
565 sk_xmac_hash(void *addr)
566 {
567 	uint32_t		crc;
568 
569 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
570 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
572 	return crc;
573 }
574 
575 uint32_t
576 sk_yukon_hash(void *addr)
577 {
578 	uint32_t		crc;
579 
580 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
581 	crc &= ((1 << SK_HASH_BITS) - 1);
582 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
583 	return crc;
584 }
585 
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 	char *addr = addrv;
590 	int base = XM_RXFILT_ENTRY(slot);
591 
592 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
593 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
594 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
595 }
596 
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 	struct sk_softc *sc = sc_if->sk_softc;
601 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 	uint32_t hashes[2] = { 0, 0 };
603 	int h = 0, i;
604 	struct ethercom *ec = &sc_if->sk_ethercom;
605 	struct ether_multi *enm;
606 	struct ether_multistep step;
607 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
608 
609 	/* First, zot all the existing filters. */
610 	switch (sc->sk_type) {
611 	case SK_GENESIS:
612 		for (i = 1; i < XM_RXFILT_MAX; i++)
613 			sk_setfilt(sc_if, (void *)&dummy, i);
614 
615 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 		break;
618 	case SK_YUKON:
619 	case SK_YUKON_LITE:
620 	case SK_YUKON_LP:
621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 		break;
626 	}
627 
628 	/* Now program new ones. */
629 allmulti:
630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 		hashes[0] = 0xFFFFFFFF;
632 		hashes[1] = 0xFFFFFFFF;
633 	} else {
634 		i = 1;
635 		/* First find the tail of the list. */
636 		ETHER_LOCK(ec);
637 		ETHER_FIRST_MULTI(step, ec, enm);
638 		while (enm != NULL) {
639 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
640 				 ETHER_ADDR_LEN)) {
641 				ifp->if_flags |= IFF_ALLMULTI;
642 				ETHER_UNLOCK(ec);
643 				goto allmulti;
644 			}
645 			DPRINTFN(2,("multicast address %s\n",
646 				ether_sprintf(enm->enm_addrlo)));
647 			/*
648 			 * Program the first XM_RXFILT_MAX multicast groups
649 			 * into the perfect filter. For all others,
650 			 * use the hash table.
651 			 */
652 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
653 				sk_setfilt(sc_if, enm->enm_addrlo, i);
654 				i++;
655 			}
656 			else {
657 				switch (sc->sk_type) {
658 				case SK_GENESIS:
659 					h = sk_xmac_hash(enm->enm_addrlo);
660 					break;
661 				case SK_YUKON:
662 				case SK_YUKON_LITE:
663 				case SK_YUKON_LP:
664 					h = sk_yukon_hash(enm->enm_addrlo);
665 					break;
666 				}
667 				if (h < 32)
668 					hashes[0] |= (1 << h);
669 				else
670 					hashes[1] |= (1 << (h - 32));
671 			}
672 
673 			ETHER_NEXT_MULTI(step, enm);
674 		}
675 		ETHER_UNLOCK(ec);
676 	}
677 
678 	switch (sc->sk_type) {
679 	case SK_GENESIS:
680 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
681 			       XM_MODE_RX_USE_PERFECT);
682 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
683 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
684 		break;
685 	case SK_YUKON:
686 	case SK_YUKON_LITE:
687 	case SK_YUKON_LP:
688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
689 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
690 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
691 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
692 		break;
693 	}
694 }
695 
696 int
697 sk_init_rx_ring(struct sk_if_softc *sc_if)
698 {
699 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
700 	struct sk_ring_data	*rd = sc_if->sk_rdata;
701 	int			i;
702 
703 	memset((char *)rd->sk_rx_ring, 0,
704 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
705 
706 	for (i = 0; i < SK_RX_RING_CNT; i++) {
707 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
708 		if (i == (SK_RX_RING_CNT - 1)) {
709 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
710 			rd->sk_rx_ring[i].sk_next =
711 				htole32(SK_RX_RING_ADDR(sc_if, 0));
712 		} else {
713 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
714 			rd->sk_rx_ring[i].sk_next =
715 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
716 		}
717 	}
718 
719 	for (i = 0; i < SK_RX_RING_CNT; i++) {
720 		if (sk_newbuf(sc_if, i, NULL,
721 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
722 			aprint_error_dev(sc_if->sk_dev,
723 			    "failed alloc of %dth mbuf\n", i);
724 			return ENOBUFS;
725 		}
726 	}
727 	sc_if->sk_cdata.sk_rx_prod = 0;
728 	sc_if->sk_cdata.sk_rx_cons = 0;
729 
730 	return 0;
731 }
732 
733 int
734 sk_init_tx_ring(struct sk_if_softc *sc_if)
735 {
736 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
737 	struct sk_ring_data	*rd = sc_if->sk_rdata;
738 	int			i;
739 
740 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
741 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
742 
743 	for (i = 0; i < SK_TX_RING_CNT; i++) {
744 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
745 		if (i == (SK_TX_RING_CNT - 1)) {
746 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
747 			rd->sk_tx_ring[i].sk_next =
748 				htole32(SK_TX_RING_ADDR(sc_if, 0));
749 		} else {
750 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
751 			rd->sk_tx_ring[i].sk_next =
752 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
753 		}
754 	}
755 
756 	sc_if->sk_cdata.sk_tx_prod = 0;
757 	sc_if->sk_cdata.sk_tx_cons = 0;
758 	sc_if->sk_cdata.sk_tx_cnt = 0;
759 
760 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
761 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
762 
763 	return 0;
764 }
765 
766 int
767 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
768 	  bus_dmamap_t dmamap)
769 {
770 	struct mbuf		*m_new = NULL;
771 	struct sk_chain		*c;
772 	struct sk_rx_desc	*r;
773 
774 	if (m == NULL) {
775 		void *buf = NULL;
776 
777 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
778 		if (m_new == NULL) {
779 			aprint_error_dev(sc_if->sk_dev,
780 			    "no memory for rx list -- packet dropped!\n");
781 			return ENOBUFS;
782 		}
783 
784 		/* Allocate the jumbo buffer */
785 		buf = sk_jalloc(sc_if);
786 		if (buf == NULL) {
787 			m_freem(m_new);
788 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
789 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
790 			return ENOBUFS;
791 		}
792 
793 		/* Attach the buffer to the mbuf */
794 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
795 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
796 
797 	} else {
798 		/*
799 		 * We're re-using a previously allocated mbuf;
800 		 * be sure to re-init pointers and lengths to
801 		 * default values.
802 		 */
803 		m_new = m;
804 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
805 		m_new->m_data = m_new->m_ext.ext_buf;
806 	}
807 	m_adj(m_new, ETHER_ALIGN);
808 
809 	c = &sc_if->sk_cdata.sk_rx_chain[i];
810 	r = c->sk_desc;
811 	c->sk_mbuf = m_new;
812 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
813 	    (((vaddr_t)m_new->m_data
814 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
815 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
816 
817 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
818 
819 	return 0;
820 }
821 
822 /*
823  * Memory management for jumbo frames.
824  */
825 
826 int
827 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
828 {
829 	struct sk_softc		*sc = sc_if->sk_softc;
830 	char *ptr, *kva;
831 	bus_dma_segment_t	seg;
832 	int		i, rseg, state, error;
833 	struct sk_jpool_entry	*entry;
834 
835 	state = error = 0;
836 
837 	/* Grab a big chunk o' storage. */
838 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
839 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
840 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
841 		return ENOBUFS;
842 	}
843 
844 	state = 1;
845 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
846 			   BUS_DMA_NOWAIT)) {
847 		aprint_error_dev(sc->sk_dev,
848 		    "can't map dma buffers (%d bytes)\n",
849 		    SK_JMEM);
850 		error = ENOBUFS;
851 		goto out;
852 	}
853 
854 	state = 2;
855 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
856 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
857 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
858 		error = ENOBUFS;
859 		goto out;
860 	}
861 
862 	state = 3;
863 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
864 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
865 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
866 		error = ENOBUFS;
867 		goto out;
868 	}
869 
870 	state = 4;
871 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
872 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
873 
874 	LIST_INIT(&sc_if->sk_jfree_listhead);
875 	LIST_INIT(&sc_if->sk_jinuse_listhead);
876 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
877 
878 	/*
879 	 * Now divide it up into 9K pieces and save the addresses
880 	 * in an array.
881 	 */
882 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
883 	for (i = 0; i < SK_JSLOTS; i++) {
884 		sc_if->sk_cdata.sk_jslots[i] = ptr;
885 		ptr += SK_JLEN;
886 		entry = malloc(sizeof(struct sk_jpool_entry),
887 		    M_DEVBUF, M_NOWAIT);
888 		if (entry == NULL) {
889 			aprint_error_dev(sc->sk_dev,
890 			    "no memory for jumbo buffer queue!\n");
891 			error = ENOBUFS;
892 			goto out;
893 		}
894 		entry->slot = i;
895 		if (i)
896 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
897 				 entry, jpool_entries);
898 		else
899 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
900 				 entry, jpool_entries);
901 	}
902 out:
903 	if (error != 0) {
904 		switch (state) {
905 		case 4:
906 			bus_dmamap_unload(sc->sc_dmatag,
907 			    sc_if->sk_cdata.sk_rx_jumbo_map);
908 			/* FALLTHROUGH */
909 		case 3:
910 			bus_dmamap_destroy(sc->sc_dmatag,
911 			    sc_if->sk_cdata.sk_rx_jumbo_map);
912 			/* FALLTHROUGH */
913 		case 2:
914 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
915 			/* FALLTHROUGH */
916 		case 1:
917 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
918 			break;
919 		default:
920 			break;
921 		}
922 	}
923 
924 	return error;
925 }
926 
927 /*
928  * Allocate a jumbo buffer.
929  */
930 void *
931 sk_jalloc(struct sk_if_softc *sc_if)
932 {
933 	struct sk_jpool_entry	*entry;
934 
935 	mutex_enter(&sc_if->sk_jpool_mtx);
936 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
937 
938 	if (entry == NULL) {
939 		mutex_exit(&sc_if->sk_jpool_mtx);
940 		return NULL;
941 	}
942 
943 	LIST_REMOVE(entry, jpool_entries);
944 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
945 	mutex_exit(&sc_if->sk_jpool_mtx);
946 	return sc_if->sk_cdata.sk_jslots[entry->slot];
947 }
948 
949 /*
950  * Release a jumbo buffer.
951  */
952 void
953 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
954 {
955 	struct sk_jpool_entry *entry;
956 	struct sk_if_softc *sc;
957 	int i;
958 
959 	/* Extract the softc struct pointer. */
960 	sc = (struct sk_if_softc *)arg;
961 
962 	if (sc == NULL)
963 		panic("sk_jfree: can't find softc pointer!");
964 
965 	/* calculate the slot this buffer belongs to */
966 
967 	i = ((vaddr_t)buf
968 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
969 
970 	if ((i < 0) || (i >= SK_JSLOTS))
971 		panic("sk_jfree: asked to free buffer that we don't manage!");
972 
973 	mutex_enter(&sc->sk_jpool_mtx);
974 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
975 	if (entry == NULL)
976 		panic("sk_jfree: buffer not in use!");
977 	entry->slot = i;
978 	LIST_REMOVE(entry, jpool_entries);
979 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
980 	mutex_exit(&sc->sk_jpool_mtx);
981 
982 	if (__predict_true(m != NULL))
983 		pool_cache_put(mb_cache, m);
984 }
985 
986 /*
987  * Set media options.
988  */
989 int
990 sk_ifmedia_upd(struct ifnet *ifp)
991 {
992 	struct sk_if_softc *sc_if = ifp->if_softc;
993 	int rc;
994 
995 	(void) sk_init(ifp);
996 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
997 		return 0;
998 	return rc;
999 }
1000 
1001 static void
1002 sk_promisc(struct sk_if_softc *sc_if, int on)
1003 {
1004 	struct sk_softc *sc = sc_if->sk_softc;
1005 	switch (sc->sk_type) {
1006 	case SK_GENESIS:
1007 		if (on)
1008 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1009 		else
1010 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1011 		break;
1012 	case SK_YUKON:
1013 	case SK_YUKON_LITE:
1014 	case SK_YUKON_LP:
1015 		if (on)
1016 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1017 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1018 		else
1019 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1020 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1021 		break;
1022 	default:
1023 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1024 			sc->sk_type);
1025 		break;
1026 	}
1027 }
1028 
1029 int
1030 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1031 {
1032 	struct sk_if_softc *sc_if = ifp->if_softc;
1033 	int s, error = 0;
1034 
1035 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1036 
1037 	s = splnet();
1038 
1039 	switch (command) {
1040 
1041 	case SIOCSIFFLAGS:
1042 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1043 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1044 			break;
1045 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1046 		case IFF_RUNNING:
1047 			sk_stop(ifp, 1);
1048 			break;
1049 		case IFF_UP:
1050 			sk_init(ifp);
1051 			break;
1052 		case IFF_UP | IFF_RUNNING:
1053 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
1054 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1055 				sk_setmulti(sc_if);
1056 			} else
1057 				sk_init(ifp);
1058 			break;
1059 		}
1060 		sc_if->sk_if_flags = ifp->if_flags;
1061 		error = 0;
1062 		break;
1063 
1064 	default:
1065 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
1066 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1067 			break;
1068 
1069 		error = 0;
1070 
1071 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1072 			;
1073 		else if (ifp->if_flags & IFF_RUNNING) {
1074 			sk_setmulti(sc_if);
1075 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1076 		}
1077 		break;
1078 	}
1079 
1080 	splx(s);
1081 	return error;
1082 }
1083 
1084 void
1085 sk_update_int_mod(struct sk_softc *sc)
1086 {
1087 	uint32_t imtimer_ticks;
1088 
1089 	/*
1090 	 * Configure interrupt moderation. The moderation timer
1091 	 * defers interrupts specified in the interrupt moderation
1092 	 * timer mask based on the timeout specified in the interrupt
1093 	 * moderation timer init register. Each bit in the timer
1094 	 * register represents one tick, so to specify a timeout in
1095 	 * microseconds, we have to multiply by the correct number of
1096 	 * ticks-per-microsecond.
1097 	 */
1098 	switch (sc->sk_type) {
1099 	case SK_GENESIS:
1100 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1101 		break;
1102 	case SK_YUKON_EC:
1103 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1104 		break;
1105 	default:
1106 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1107 	}
1108 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1109 	    sc->sk_int_mod);
1110 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1111 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1112 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1113 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1114 	sc->sk_int_mod_pending = 0;
1115 }
1116 
1117 /*
1118  * Lookup: Check the PCI vendor and device, and return a pointer to
1119  * The structure if the IDs match against our list.
1120  */
1121 
1122 static const struct sk_product *
1123 sk_lookup(const struct pci_attach_args *pa)
1124 {
1125 	const struct sk_product *psk;
1126 
1127 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1128 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1129 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1130 			return psk;
1131 	}
1132 	return NULL;
1133 }
1134 
1135 /*
1136  * Probe for a SysKonnect GEnesis chip.
1137  */
1138 
1139 int
1140 skc_probe(device_t parent, cfdata_t match, void *aux)
1141 {
1142 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1143 	const struct sk_product *psk;
1144 	pcireg_t subid;
1145 
1146 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1147 
1148 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1149 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1150 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1151 	    subid == SK_LINKSYS_EG1032_SUBID)
1152 		return 1;
1153 
1154 	if ((psk = sk_lookup(pa))) {
1155 		return 1;
1156 	}
1157 	return 0;
1158 }
1159 
1160 /*
1161  * Force the GEnesis into reset, then bring it out of reset.
1162  */
1163 void sk_reset(struct sk_softc *sc)
1164 {
1165 	DPRINTFN(2, ("sk_reset\n"));
1166 
1167 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1169 	if (SK_YUKON_FAMILY(sc->sk_type))
1170 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1171 
1172 	DELAY(1000);
1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1174 	DELAY(2);
1175 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1176 	if (SK_YUKON_FAMILY(sc->sk_type))
1177 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1178 
1179 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1180 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1181 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1182 
1183 	if (sc->sk_type == SK_GENESIS) {
1184 		/* Configure packet arbiter */
1185 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1186 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1187 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1188 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1189 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1190 	}
1191 
1192 	/* Enable RAM interface */
1193 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1194 
1195 	sk_update_int_mod(sc);
1196 }
1197 
1198 int
1199 sk_probe(device_t parent, cfdata_t match, void *aux)
1200 {
1201 	struct skc_attach_args *sa = aux;
1202 
1203 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1204 		return 0;
1205 
1206 	return 1;
1207 }
1208 
1209 /*
1210  * Each XMAC chip is attached as a separate logical IP interface.
1211  * Single port cards will have only one logical interface of course.
1212  */
1213 void
1214 sk_attach(device_t parent, device_t self, void *aux)
1215 {
1216 	struct sk_if_softc *sc_if = device_private(self);
1217 	struct mii_data *mii = &sc_if->sk_mii;
1218 	struct sk_softc *sc = device_private(parent);
1219 	struct skc_attach_args *sa = aux;
1220 	struct sk_txmap_entry	*entry;
1221 	struct ifnet *ifp;
1222 	bus_dma_segment_t seg;
1223 	bus_dmamap_t dmamap;
1224 	prop_data_t data;
1225 	void *kva;
1226 	int i, rseg;
1227 	int mii_flags = 0;
1228 
1229 	aprint_naive("\n");
1230 
1231 	sc_if->sk_dev = self;
1232 	sc_if->sk_port = sa->skc_port;
1233 	sc_if->sk_softc = sc;
1234 	sc->sk_if[sa->skc_port] = sc_if;
1235 
1236 	if (sa->skc_port == SK_PORT_A)
1237 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1238 	if (sa->skc_port == SK_PORT_B)
1239 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1240 
1241 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1242 
1243 	/*
1244 	 * Get station address for this interface. Note that
1245 	 * dual port cards actually come with three station
1246 	 * addresses: one for each port, plus an extra. The
1247 	 * extra one is used by the SysKonnect driver software
1248 	 * as a 'virtual' station address for when both ports
1249 	 * are operating in failover mode. Currently we don't
1250 	 * use this extra address.
1251 	 */
1252 	data = prop_dictionary_get(device_properties(self), "mac-address");
1253 	if (data != NULL) {
1254 		/*
1255 		 * Try to get the station address from device properties
1256 		 * first, in case the ROM is missing.
1257 		 */
1258 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1259 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1260 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1261 		    ETHER_ADDR_LEN);
1262 	} else
1263 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1264 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1265 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1266 
1267 	aprint_normal(": Ethernet address %s\n",
1268 	    ether_sprintf(sc_if->sk_enaddr));
1269 
1270 	/*
1271 	 * Set up RAM buffer addresses. The NIC will have a certain
1272 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1273 	 * need to divide this up a) between the transmitter and
1274 	 * receiver and b) between the two XMACs, if this is a
1275 	 * dual port NIC. Our algorithm is to divide up the memory
1276 	 * evenly so that everyone gets a fair share.
1277 	 */
1278 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1279 		uint32_t		chunk, val;
1280 
1281 		chunk = sc->sk_ramsize / 2;
1282 		val = sc->sk_rboff / sizeof(uint64_t);
1283 		sc_if->sk_rx_ramstart = val;
1284 		val += (chunk / sizeof(uint64_t));
1285 		sc_if->sk_rx_ramend = val - 1;
1286 		sc_if->sk_tx_ramstart = val;
1287 		val += (chunk / sizeof(uint64_t));
1288 		sc_if->sk_tx_ramend = val - 1;
1289 	} else {
1290 		uint32_t		chunk, val;
1291 
1292 		chunk = sc->sk_ramsize / 4;
1293 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1294 		    sizeof(uint64_t);
1295 		sc_if->sk_rx_ramstart = val;
1296 		val += (chunk / sizeof(uint64_t));
1297 		sc_if->sk_rx_ramend = val - 1;
1298 		sc_if->sk_tx_ramstart = val;
1299 		val += (chunk / sizeof(uint64_t));
1300 		sc_if->sk_tx_ramend = val - 1;
1301 	}
1302 
1303 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1304 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
1305 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1306 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1307 
1308 	/* Read and save PHY type and set PHY address */
1309 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1310 	switch (sc_if->sk_phytype) {
1311 	case SK_PHYTYPE_XMAC:
1312 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1313 		break;
1314 	case SK_PHYTYPE_BCOM:
1315 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1316 		break;
1317 	case SK_PHYTYPE_MARV_COPPER:
1318 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1319 		break;
1320 	default:
1321 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1322 		    sc_if->sk_phytype);
1323 		return;
1324 	}
1325 
1326 	/* Allocate the descriptor queues. */
1327 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1328 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1329 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1330 		goto fail;
1331 	}
1332 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1333 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1334 		aprint_error_dev(sc_if->sk_dev,
1335 		    "can't map dma buffers (%lu bytes)\n",
1336 		    (u_long) sizeof(struct sk_ring_data));
1337 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1338 		goto fail;
1339 	}
1340 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1341 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1342 	    &sc_if->sk_ring_map)) {
1343 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1344 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1345 		    sizeof(struct sk_ring_data));
1346 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1347 		goto fail;
1348 	}
1349 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1350 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1351 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1352 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1353 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1354 		    sizeof(struct sk_ring_data));
1355 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1356 		goto fail;
1357 	}
1358 
1359 	for (i = 0; i < SK_RX_RING_CNT; i++)
1360 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1361 
1362 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1363 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1364 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1365 
1366 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1367 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1368 			aprint_error_dev(sc_if->sk_dev,
1369 			    "Can't create TX dmamap\n");
1370 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1371 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1372 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1373 			    sizeof(struct sk_ring_data));
1374 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1375 			goto fail;
1376 		}
1377 
1378 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1379 		if (!entry) {
1380 			aprint_error_dev(sc_if->sk_dev,
1381 			    "Can't alloc txmap entry\n");
1382 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1383 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1384 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1385 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1386 			    sizeof(struct sk_ring_data));
1387 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1388 			goto fail;
1389 		}
1390 		entry->dmamap = dmamap;
1391 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1392 	}
1393 
1394 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
1395 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1396 
1397 	ifp = &sc_if->sk_ethercom.ec_if;
1398 	/* Try to allocate memory for jumbo buffers. */
1399 	if (sk_alloc_jumbo_mem(sc_if)) {
1400 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1401 		goto fail;
1402 	}
1403 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1404 		| ETHERCAP_JUMBO_MTU;
1405 
1406 	ifp->if_softc = sc_if;
1407 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1408 	ifp->if_ioctl = sk_ioctl;
1409 	ifp->if_start = sk_start;
1410 	ifp->if_stop = sk_stop;
1411 	ifp->if_init = sk_init;
1412 	ifp->if_watchdog = sk_watchdog;
1413 	ifp->if_capabilities = 0;
1414 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1415 	IFQ_SET_READY(&ifp->if_snd);
1416 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1417 
1418 	/*
1419 	 * Do miibus setup.
1420 	 */
1421 	switch (sc->sk_type) {
1422 	case SK_GENESIS:
1423 		sk_init_xmac(sc_if);
1424 		break;
1425 	case SK_YUKON:
1426 	case SK_YUKON_LITE:
1427 	case SK_YUKON_LP:
1428 		sk_init_yukon(sc_if);
1429 		break;
1430 	default:
1431 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1432 			sc->sk_type);
1433 		goto fail;
1434 	}
1435 
1436 	DPRINTFN(2, ("sk_attach: 1\n"));
1437 
1438 	mii->mii_ifp = ifp;
1439 	switch (sc->sk_type) {
1440 	case SK_GENESIS:
1441 		mii->mii_readreg = sk_xmac_miibus_readreg;
1442 		mii->mii_writereg = sk_xmac_miibus_writereg;
1443 		mii->mii_statchg = sk_xmac_miibus_statchg;
1444 		break;
1445 	case SK_YUKON:
1446 	case SK_YUKON_LITE:
1447 	case SK_YUKON_LP:
1448 		mii->mii_readreg = sk_marv_miibus_readreg;
1449 		mii->mii_writereg = sk_marv_miibus_writereg;
1450 		mii->mii_statchg = sk_marv_miibus_statchg;
1451 		mii_flags = MIIF_DOPAUSE;
1452 		break;
1453 	}
1454 
1455 	sc_if->sk_ethercom.ec_mii = mii;
1456 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1457 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1458 	    MII_OFFSET_ANY, mii_flags);
1459 	if (LIST_EMPTY(&mii->mii_phys)) {
1460 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1461 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1462 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1463 	} else
1464 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1465 
1466 	callout_init(&sc_if->sk_tick_ch, 0);
1467 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1468 
1469 	DPRINTFN(2, ("sk_attach: 1\n"));
1470 
1471 	/*
1472 	 * Call MI attach routines.
1473 	 */
1474 	if_attach(ifp);
1475 	if_deferred_start_init(ifp, NULL);
1476 
1477 	ether_ifattach(ifp, sc_if->sk_enaddr);
1478 
1479 	if (sc->rnd_attached++ == 0) {
1480 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1481 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
1482 	}
1483 
1484 	if (pmf_device_register(self, NULL, sk_resume))
1485 		pmf_class_network_register(self, ifp);
1486 	else
1487 		aprint_error_dev(self, "couldn't establish power handler\n");
1488 
1489 	DPRINTFN(2, ("sk_attach: end\n"));
1490 
1491 	return;
1492 
1493 fail:
1494 	sc->sk_if[sa->skc_port] = NULL;
1495 }
1496 
1497 int
1498 skcprint(void *aux, const char *pnp)
1499 {
1500 	struct skc_attach_args *sa = aux;
1501 
1502 	if (pnp)
1503 		aprint_normal("sk port %c at %s",
1504 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1505 	else
1506 		aprint_normal(" port %c",
1507 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1508 	return UNCONF;
1509 }
1510 
1511 /*
1512  * Attach the interface. Allocate softc structures, do ifmedia
1513  * setup and ethernet/BPF attach.
1514  */
1515 void
1516 skc_attach(device_t parent, device_t self, void *aux)
1517 {
1518 	struct sk_softc *sc = device_private(self);
1519 	struct pci_attach_args *pa = aux;
1520 	struct skc_attach_args skca;
1521 	pci_chipset_tag_t pc = pa->pa_pc;
1522 #ifndef SK_USEIOSPACE
1523 	pcireg_t memtype;
1524 #endif
1525 	pci_intr_handle_t ih;
1526 	const char *intrstr = NULL;
1527 	bus_addr_t iobase;
1528 	bus_size_t iosize;
1529 	int rc, sk_nodenum;
1530 	uint32_t command;
1531 	const char *revstr;
1532 	const struct sysctlnode *node;
1533 	char intrbuf[PCI_INTRSTR_LEN];
1534 
1535 	sc->sk_dev = self;
1536 	aprint_naive("\n");
1537 
1538 	DPRINTFN(2, ("begin skc_attach\n"));
1539 
1540 	/*
1541 	 * Handle power management nonsense.
1542 	 */
1543 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1544 
1545 	if (command == 0x01) {
1546 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1547 		if (command & SK_PSTATE_MASK) {
1548 			uint32_t		xiobase, membase, irq;
1549 
1550 			/* Save important PCI config data. */
1551 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1552 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1553 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1554 
1555 			/* Reset the power state. */
1556 			aprint_normal_dev(sc->sk_dev,
1557 			    "chip is in D%d power mode -- setting to D0\n",
1558 			    command & SK_PSTATE_MASK);
1559 			command &= 0xFFFFFFFC;
1560 			pci_conf_write(pc, pa->pa_tag,
1561 			    SK_PCI_PWRMGMTCTRL, command);
1562 
1563 			/* Restore PCI config data. */
1564 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1565 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1566 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * The firmware might have configured the interface to revert the
1572 	 * byte order in all descriptors. Make that undone.
1573 	 */
1574 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1575 	if (command & SK_REG2_REV_DESC)
1576 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1577 		    command & ~SK_REG2_REV_DESC);
1578 
1579 	/*
1580 	 * Map control/status registers.
1581 	 */
1582 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1583 	command |= PCI_COMMAND_IO_ENABLE |
1584 	    PCI_COMMAND_MEM_ENABLE |
1585 	    PCI_COMMAND_MASTER_ENABLE;
1586 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1587 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1588 
1589 #ifdef SK_USEIOSPACE
1590 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1591 		aprint_error(": failed to enable I/O ports!\n");
1592 		return;
1593 	}
1594 	/*
1595 	 * Map control/status registers.
1596 	 */
1597 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1598 			&sc->sk_btag, &sc->sk_bhandle,
1599 			&iobase, &iosize)) {
1600 		aprint_error(": can't find i/o space\n");
1601 		return;
1602 	}
1603 #else
1604 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1605 		aprint_error(": failed to enable memory mapping!\n");
1606 		return;
1607 	}
1608 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1609 	switch (memtype) {
1610 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1611 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1612 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1613 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1614 				   &iobase, &iosize) == 0)
1615 			break;
1616 		/* FALLTHROUGH */
1617 	default:
1618 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1619 		return;
1620 	}
1621 
1622 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1623 	    iobase, iosize));
1624 #endif
1625 	sc->sc_dmatag = pa->pa_dmat;
1626 
1627 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1628 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1629 
1630 	/* bail out here if chip is not recognized */
1631 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1632 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1633 		goto fail;
1634 	}
1635 	if (SK_IS_YUKON2(sc)) {
1636 		aprint_error_dev(sc->sk_dev,
1637 		    "Does not support Yukon2--try msk(4).\n");
1638 		goto fail;
1639 	}
1640 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1641 
1642 	/* Allocate interrupt */
1643 	if (pci_intr_map(pa, &ih)) {
1644 		aprint_error(": couldn't map interrupt\n");
1645 		goto fail;
1646 	}
1647 
1648 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1649 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
1650 	    device_xname(sc->sk_dev));
1651 	if (sc->sk_intrhand == NULL) {
1652 		aprint_error(": couldn't establish interrupt");
1653 		if (intrstr != NULL)
1654 			aprint_error(" at %s", intrstr);
1655 		aprint_error("\n");
1656 		goto fail;
1657 	}
1658 	aprint_normal(": %s\n", intrstr);
1659 
1660 	/* Reset the adapter. */
1661 	sk_reset(sc);
1662 
1663 	/* Read and save vital product data from EEPROM. */
1664 	sk_vpd_read(sc);
1665 
1666 	if (sc->sk_type == SK_GENESIS) {
1667 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1668 		/* Read and save RAM size and RAMbuffer offset */
1669 		switch (val) {
1670 		case SK_RAMSIZE_512K_64:
1671 			sc->sk_ramsize = 0x80000;
1672 			sc->sk_rboff = SK_RBOFF_0;
1673 			break;
1674 		case SK_RAMSIZE_1024K_64:
1675 			sc->sk_ramsize = 0x100000;
1676 			sc->sk_rboff = SK_RBOFF_80000;
1677 			break;
1678 		case SK_RAMSIZE_1024K_128:
1679 			sc->sk_ramsize = 0x100000;
1680 			sc->sk_rboff = SK_RBOFF_0;
1681 			break;
1682 		case SK_RAMSIZE_2048K_128:
1683 			sc->sk_ramsize = 0x200000;
1684 			sc->sk_rboff = SK_RBOFF_0;
1685 			break;
1686 		default:
1687 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1688 			       val);
1689 			goto fail_1;
1690 			break;
1691 		}
1692 
1693 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1694 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1695 			     sc->sk_rboff));
1696 	} else {
1697 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1698 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1699 		sc->sk_rboff = SK_RBOFF_0;
1700 
1701 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1702 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1703 			     sc->sk_rboff));
1704 	}
1705 
1706 	/* Read and save physical media type */
1707 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1708 	case SK_PMD_1000BASESX:
1709 		sc->sk_pmd = IFM_1000_SX;
1710 		break;
1711 	case SK_PMD_1000BASELX:
1712 		sc->sk_pmd = IFM_1000_LX;
1713 		break;
1714 	case SK_PMD_1000BASECX:
1715 		sc->sk_pmd = IFM_1000_CX;
1716 		break;
1717 	case SK_PMD_1000BASETX:
1718 	case SK_PMD_1000BASETX_ALT:
1719 		sc->sk_pmd = IFM_1000_T;
1720 		break;
1721 	default:
1722 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1723 		    sk_win_read_1(sc, SK_PMDTYPE));
1724 		goto fail_1;
1725 	}
1726 
1727 	/* determine whether to name it with vpd or just make it up */
1728 	/* Marvell Yukon VPD's can freqently be bogus */
1729 
1730 	switch (pa->pa_id) {
1731 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1732 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1733 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1734 	case PCI_PRODUCT_3COM_3C940:
1735 	case PCI_PRODUCT_DLINK_DGE530T:
1736 	case PCI_PRODUCT_DLINK_DGE560T:
1737 	case PCI_PRODUCT_DLINK_DGE560T_2:
1738 	case PCI_PRODUCT_LINKSYS_EG1032:
1739 	case PCI_PRODUCT_LINKSYS_EG1064:
1740 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1741 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1742 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1743 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1744 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1745 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1746 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1747 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1748 		sc->sk_name = sc->sk_vpd_prodname;
1749 		break;
1750 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1751 	/* whoops yukon vpd prodname bears no resemblance to reality */
1752 		switch (sc->sk_type) {
1753 		case SK_GENESIS:
1754 			sc->sk_name = sc->sk_vpd_prodname;
1755 			break;
1756 		case SK_YUKON:
1757 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1758 			break;
1759 		case SK_YUKON_LITE:
1760 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1761 			break;
1762 		case SK_YUKON_LP:
1763 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1764 			break;
1765 		default:
1766 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1767 		}
1768 
1769 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1770 
1771 		if ( sc->sk_type == SK_YUKON ) {
1772 			uint32_t flashaddr;
1773 			uint8_t testbyte;
1774 
1775 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1776 
1777 			/* test Flash-Address Register */
1778 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1779 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1780 
1781 			if (testbyte != 0) {
1782 				/* this is yukon lite Rev. A0 */
1783 				sc->sk_type = SK_YUKON_LITE;
1784 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1785 				/* restore Flash-Address Register */
1786 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1787 			}
1788 		}
1789 		break;
1790 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1791 		sc->sk_name = sc->sk_vpd_prodname;
1792 		break;
1793 	default:
1794 		sc->sk_name = "Unknown Marvell";
1795 	}
1796 
1797 
1798 	if ( sc->sk_type == SK_YUKON_LITE ) {
1799 		switch (sc->sk_rev) {
1800 		case SK_YUKON_LITE_REV_A0:
1801 			revstr = "A0";
1802 			break;
1803 		case SK_YUKON_LITE_REV_A1:
1804 			revstr = "A1";
1805 			break;
1806 		case SK_YUKON_LITE_REV_A3:
1807 			revstr = "A3";
1808 			break;
1809 		default:
1810 			revstr = "";
1811 		}
1812 	} else {
1813 		revstr = "";
1814 	}
1815 
1816 	/* Announce the product name. */
1817 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1818 			      sc->sk_name, revstr, sc->sk_rev);
1819 
1820 	skca.skc_port = SK_PORT_A;
1821 	(void)config_found(sc->sk_dev, &skca, skcprint);
1822 
1823 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1824 		skca.skc_port = SK_PORT_B;
1825 		(void)config_found(sc->sk_dev, &skca, skcprint);
1826 	}
1827 
1828 	/* Turn on the 'driver is loaded' LED. */
1829 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1830 
1831 	/* skc sysctl setup */
1832 
1833 	sc->sk_int_mod = SK_IM_DEFAULT;
1834 	sc->sk_int_mod_pending = 0;
1835 
1836 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1837 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1838 	    SYSCTL_DESCR("skc per-controller controls"),
1839 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1840 	    CTL_EOL)) != 0) {
1841 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1842 		goto fail_1;
1843 	}
1844 
1845 	sk_nodenum = node->sysctl_num;
1846 
1847 	/* interrupt moderation time in usecs */
1848 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1849 	    CTLFLAG_READWRITE,
1850 	    CTLTYPE_INT, "int_mod",
1851 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1852 	    sk_sysctl_handler, 0, (void *)sc,
1853 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1854 	    CTL_EOL)) != 0) {
1855 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1856 		goto fail_1;
1857 	}
1858 
1859 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1860 		aprint_error_dev(self, "couldn't establish power handler\n");
1861 
1862 	return;
1863 
1864 fail_1:
1865 	pci_intr_disestablish(pc, sc->sk_intrhand);
1866 fail:
1867 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1868 }
1869 
1870 int
1871 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1872 {
1873 	struct sk_softc		*sc = sc_if->sk_softc;
1874 	struct sk_tx_desc	*f = NULL;
1875 	uint32_t		frag, cur, cnt = 0, sk_ctl;
1876 	int			i;
1877 	struct sk_txmap_entry	*entry;
1878 	bus_dmamap_t		txmap;
1879 
1880 	DPRINTFN(3, ("sk_encap\n"));
1881 
1882 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1883 	if (entry == NULL) {
1884 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1885 		return ENOBUFS;
1886 	}
1887 	txmap = entry->dmamap;
1888 
1889 	cur = frag = *txidx;
1890 
1891 #ifdef SK_DEBUG
1892 	if (skdebug >= 3)
1893 		sk_dump_mbuf(m_head);
1894 #endif
1895 
1896 	/*
1897 	 * Start packing the mbufs in this chain into
1898 	 * the fragment pointers. Stop when we run out
1899 	 * of fragments or hit the end of the mbuf chain.
1900 	 */
1901 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1902 	    BUS_DMA_NOWAIT)) {
1903 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1904 		return ENOBUFS;
1905 	}
1906 
1907 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1908 
1909 	/* Sync the DMA map. */
1910 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1911 	    BUS_DMASYNC_PREWRITE);
1912 
1913 	for (i = 0; i < txmap->dm_nsegs; i++) {
1914 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1915 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1916 			return ENOBUFS;
1917 		}
1918 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1919 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1920 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1921 		if (cnt == 0)
1922 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1923 		else
1924 			sk_ctl |= SK_TXCTL_OWN;
1925 		f->sk_ctl = htole32(sk_ctl);
1926 		cur = frag;
1927 		SK_INC(frag, SK_TX_RING_CNT);
1928 		cnt++;
1929 	}
1930 
1931 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1932 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1933 
1934 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1935 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1936 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1937 
1938 	/* Sync descriptors before handing to chip */
1939 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1940 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1941 
1942 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1943 		htole32(SK_TXCTL_OWN);
1944 
1945 	/* Sync first descriptor to hand it off */
1946 	SK_CDTXSYNC(sc_if, *txidx, 1,
1947 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1948 
1949 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1950 
1951 #ifdef SK_DEBUG
1952 	if (skdebug >= 3) {
1953 		struct sk_tx_desc *desc;
1954 		uint32_t idx;
1955 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1956 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1957 			sk_dump_txdesc(desc, idx);
1958 		}
1959 	}
1960 #endif
1961 
1962 	*txidx = frag;
1963 
1964 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1965 
1966 	return 0;
1967 }
1968 
1969 void
1970 sk_start(struct ifnet *ifp)
1971 {
1972 	struct sk_if_softc	*sc_if = ifp->if_softc;
1973 	struct sk_softc		*sc = sc_if->sk_softc;
1974 	struct mbuf		*m_head = NULL;
1975 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1976 	int			pkts = 0;
1977 
1978 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1979 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1980 
1981 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1982 		IFQ_POLL(&ifp->if_snd, m_head);
1983 		if (m_head == NULL)
1984 			break;
1985 
1986 		/*
1987 		 * Pack the data into the transmit ring. If we
1988 		 * don't have room, set the OACTIVE flag and wait
1989 		 * for the NIC to drain the ring.
1990 		 */
1991 		if (sk_encap(sc_if, m_head, &idx)) {
1992 			ifp->if_flags |= IFF_OACTIVE;
1993 			break;
1994 		}
1995 
1996 		/* now we are committed to transmit the packet */
1997 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1998 		pkts++;
1999 
2000 		/*
2001 		 * If there's a BPF listener, bounce a copy of this frame
2002 		 * to him.
2003 		 */
2004 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2005 	}
2006 	if (pkts == 0)
2007 		return;
2008 
2009 	/* Transmit */
2010 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2011 		sc_if->sk_cdata.sk_tx_prod = idx;
2012 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2013 
2014 		/* Set a timeout in case the chip goes out to lunch. */
2015 		ifp->if_timer = 5;
2016 	}
2017 }
2018 
2019 
2020 void
2021 sk_watchdog(struct ifnet *ifp)
2022 {
2023 	struct sk_if_softc *sc_if = ifp->if_softc;
2024 
2025 	/*
2026 	 * Reclaim first as there is a possibility of losing Tx completion
2027 	 * interrupts.
2028 	 */
2029 	sk_txeof(sc_if);
2030 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2031 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2032 
2033 		ifp->if_oerrors++;
2034 
2035 		sk_init(ifp);
2036 	}
2037 }
2038 
2039 void
2040 sk_shutdown(void *v)
2041 {
2042 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2043 	struct sk_softc		*sc = sc_if->sk_softc;
2044 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2045 
2046 	DPRINTFN(2, ("sk_shutdown\n"));
2047 	sk_stop(ifp, 1);
2048 
2049 	/* Turn off the 'driver is loaded' LED. */
2050 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2051 
2052 	/*
2053 	 * Reset the GEnesis controller. Doing this should also
2054 	 * assert the resets on the attached XMAC(s).
2055 	 */
2056 	sk_reset(sc);
2057 }
2058 
2059 void
2060 sk_rxeof(struct sk_if_softc *sc_if)
2061 {
2062 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2063 	struct mbuf		*m;
2064 	struct sk_chain		*cur_rx;
2065 	struct sk_rx_desc	*cur_desc;
2066 	int			i, cur, total_len = 0;
2067 	uint32_t		rxstat, sk_ctl;
2068 	bus_dmamap_t		dmamap;
2069 
2070 	i = sc_if->sk_cdata.sk_rx_prod;
2071 
2072 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2073 
2074 	for (;;) {
2075 		cur = i;
2076 
2077 		/* Sync the descriptor */
2078 		SK_CDRXSYNC(sc_if, cur,
2079 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2080 
2081 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2082 		if (sk_ctl & SK_RXCTL_OWN) {
2083 			/* Invalidate the descriptor -- it's not ready yet */
2084 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2085 			sc_if->sk_cdata.sk_rx_prod = i;
2086 			break;
2087 		}
2088 
2089 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2090 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2091 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2092 
2093 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2094 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2095 
2096 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2097 		m = cur_rx->sk_mbuf;
2098 		cur_rx->sk_mbuf = NULL;
2099 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2100 
2101 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2102 
2103 		SK_INC(i, SK_RX_RING_CNT);
2104 
2105 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2106 			ifp->if_ierrors++;
2107 			sk_newbuf(sc_if, cur, m, dmamap);
2108 			continue;
2109 		}
2110 
2111 		/*
2112 		 * Try to allocate a new jumbo buffer. If that
2113 		 * fails, copy the packet to mbufs and put the
2114 		 * jumbo buffer back in the ring so it can be
2115 		 * re-used. If allocating mbufs fails, then we
2116 		 * have to drop the packet.
2117 		 */
2118 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2119 			struct mbuf		*m0;
2120 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2121 			    total_len + ETHER_ALIGN, 0, ifp);
2122 			sk_newbuf(sc_if, cur, m, dmamap);
2123 			if (m0 == NULL) {
2124 				aprint_error_dev(sc_if->sk_dev, "no receive "
2125 				    "buffers available -- packet dropped!\n");
2126 				ifp->if_ierrors++;
2127 				continue;
2128 			}
2129 			m_adj(m0, ETHER_ALIGN);
2130 			m = m0;
2131 		} else {
2132 			m_set_rcvif(m, ifp);
2133 			m->m_pkthdr.len = m->m_len = total_len;
2134 		}
2135 
2136 		/* pass it on. */
2137 		if_percpuq_enqueue(ifp->if_percpuq, m);
2138 	}
2139 }
2140 
2141 void
2142 sk_txeof(struct sk_if_softc *sc_if)
2143 {
2144 	struct sk_softc		*sc = sc_if->sk_softc;
2145 	struct sk_tx_desc	*cur_tx;
2146 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2147 	uint32_t		idx, sk_ctl;
2148 	struct sk_txmap_entry	*entry;
2149 
2150 	DPRINTFN(3, ("sk_txeof\n"));
2151 
2152 	/*
2153 	 * Go through our tx ring and free mbufs for those
2154 	 * frames that have been sent.
2155 	 */
2156 	idx = sc_if->sk_cdata.sk_tx_cons;
2157 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2158 		SK_CDTXSYNC(sc_if, idx, 1,
2159 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2160 
2161 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2162 		sk_ctl = le32toh(cur_tx->sk_ctl);
2163 #ifdef SK_DEBUG
2164 		if (skdebug >= 3)
2165 			sk_dump_txdesc(cur_tx, idx);
2166 #endif
2167 		if (sk_ctl & SK_TXCTL_OWN) {
2168 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2169 			break;
2170 		}
2171 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2172 			ifp->if_opackets++;
2173 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2174 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2175 
2176 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2177 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2178 
2179 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2180 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2181 
2182 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2183 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2184 					  link);
2185 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2186 		}
2187 		sc_if->sk_cdata.sk_tx_cnt--;
2188 		SK_INC(idx, SK_TX_RING_CNT);
2189 	}
2190 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2191 		ifp->if_timer = 0;
2192 	else /* nudge chip to keep tx ring moving */
2193 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2194 
2195 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2196 		ifp->if_flags &= ~IFF_OACTIVE;
2197 
2198 	sc_if->sk_cdata.sk_tx_cons = idx;
2199 }
2200 
2201 void
2202 sk_tick(void *xsc_if)
2203 {
2204 	struct sk_if_softc *sc_if = xsc_if;
2205 	struct mii_data *mii = &sc_if->sk_mii;
2206 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2207 	int i;
2208 
2209 	DPRINTFN(3, ("sk_tick\n"));
2210 
2211 	if (!(ifp->if_flags & IFF_UP))
2212 		return;
2213 
2214 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2215 		sk_intr_bcom(sc_if);
2216 		return;
2217 	}
2218 
2219 	/*
2220 	 * According to SysKonnect, the correct way to verify that
2221 	 * the link has come back up is to poll bit 0 of the GPIO
2222 	 * register three times. This pin has the signal from the
2223 	 * link sync pin connected to it; if we read the same link
2224 	 * state 3 times in a row, we know the link is up.
2225 	 */
2226 	for (i = 0; i < 3; i++) {
2227 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2228 			break;
2229 	}
2230 
2231 	if (i != 3) {
2232 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2233 		return;
2234 	}
2235 
2236 	/* Turn the GP0 interrupt back on. */
2237 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2238 	SK_XM_READ_2(sc_if, XM_ISR);
2239 	mii_tick(mii);
2240 	if (ifp->if_link_state != LINK_STATE_UP)
2241 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2242 	else
2243 		callout_stop(&sc_if->sk_tick_ch);
2244 }
2245 
2246 void
2247 sk_intr_bcom(struct sk_if_softc *sc_if)
2248 {
2249 	struct mii_data *mii = &sc_if->sk_mii;
2250 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2251 	uint16_t status;
2252 
2253 
2254 	DPRINTFN(3, ("sk_intr_bcom\n"));
2255 
2256 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2257 
2258 	/*
2259 	 * Read the PHY interrupt register to make sure
2260 	 * we clear any pending interrupts.
2261 	 */
2262 	sk_xmac_miibus_readreg(sc_if->sk_dev,
2263 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2264 
2265 	if (!(ifp->if_flags & IFF_RUNNING)) {
2266 		sk_init_xmac(sc_if);
2267 		return;
2268 	}
2269 
2270 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2271 		uint16_t lstat;
2272 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2273 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2274 
2275 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2276 			(void)mii_mediachg(mii);
2277 			/* Turn off the link LED. */
2278 			SK_IF_WRITE_1(sc_if, 0,
2279 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2280 			sc_if->sk_link = 0;
2281 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2282 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2283 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2284 			mii_tick(mii);
2285 			sc_if->sk_link = 1;
2286 			/* Turn on the link LED. */
2287 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2288 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2289 			    SK_LINKLED_BLINK_OFF);
2290 			mii_pollstat(mii);
2291 		} else {
2292 			mii_tick(mii);
2293 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2294 		}
2295 	}
2296 
2297 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2298 }
2299 
2300 void
2301 sk_intr_xmac(struct sk_if_softc	*sc_if)
2302 {
2303 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2304 
2305 	DPRINTFN(3, ("sk_intr_xmac\n"));
2306 
2307 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2308 		if (status & XM_ISR_GP0_SET) {
2309 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2310 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2311 		}
2312 
2313 		if (status & XM_ISR_AUTONEG_DONE) {
2314 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2315 		}
2316 	}
2317 
2318 	if (status & XM_IMR_TX_UNDERRUN)
2319 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2320 
2321 	if (status & XM_IMR_RX_OVERRUN)
2322 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2323 }
2324 
2325 void
2326 sk_intr_yukon(struct sk_if_softc *sc_if)
2327 {
2328 #ifdef SK_DEBUG
2329 	int status;
2330 
2331 	status =
2332 #endif
2333 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2334 
2335 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2336 }
2337 
2338 int
2339 sk_intr(void *xsc)
2340 {
2341 	struct sk_softc		*sc = xsc;
2342 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2343 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2344 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2345 	uint32_t		status;
2346 	int			claimed = 0;
2347 
2348 	if (sc_if0 != NULL)
2349 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2350 	if (sc_if1 != NULL)
2351 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2352 
2353 	for (;;) {
2354 		status = CSR_READ_4(sc, SK_ISSR);
2355 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2356 
2357 		if (!(status & sc->sk_intrmask))
2358 			break;
2359 
2360 		claimed = 1;
2361 
2362 		/* Handle receive interrupts first. */
2363 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2364 			sk_rxeof(sc_if0);
2365 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2366 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2367 		}
2368 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2369 			sk_rxeof(sc_if1);
2370 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2371 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2372 		}
2373 
2374 		/* Then transmit interrupts. */
2375 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2376 			sk_txeof(sc_if0);
2377 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2378 			    SK_TXBMU_CLR_IRQ_EOF);
2379 		}
2380 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2381 			sk_txeof(sc_if1);
2382 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2383 			    SK_TXBMU_CLR_IRQ_EOF);
2384 		}
2385 
2386 		/* Then MAC interrupts. */
2387 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2388 		    (ifp0->if_flags & IFF_RUNNING)) {
2389 			if (sc->sk_type == SK_GENESIS)
2390 				sk_intr_xmac(sc_if0);
2391 			else
2392 				sk_intr_yukon(sc_if0);
2393 		}
2394 
2395 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2396 		    (ifp1->if_flags & IFF_RUNNING)) {
2397 			if (sc->sk_type == SK_GENESIS)
2398 				sk_intr_xmac(sc_if1);
2399 			else
2400 				sk_intr_yukon(sc_if1);
2401 
2402 		}
2403 
2404 		if (status & SK_ISR_EXTERNAL_REG) {
2405 			if (sc_if0 != NULL &&
2406 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2407 				sk_intr_bcom(sc_if0);
2408 
2409 			if (sc_if1 != NULL &&
2410 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2411 				sk_intr_bcom(sc_if1);
2412 		}
2413 	}
2414 
2415 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2416 
2417 	if (ifp0 != NULL)
2418 		if_schedule_deferred_start(ifp0);
2419 	if (ifp1 != NULL)
2420 		if_schedule_deferred_start(ifp1);
2421 
2422 	KASSERT(sc->rnd_attached > 0);
2423 	rnd_add_uint32(&sc->rnd_source, status);
2424 
2425 	if (sc->sk_int_mod_pending)
2426 		sk_update_int_mod(sc);
2427 
2428 	return claimed;
2429 }
2430 
2431 void
2432 sk_init_xmac(struct sk_if_softc	*sc_if)
2433 {
2434 	struct sk_softc		*sc = sc_if->sk_softc;
2435 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2436 	static const struct sk_bcom_hack     bhack[] = {
2437 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2438 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2439 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2440 	{ 0, 0 } };
2441 
2442 	DPRINTFN(1, ("sk_init_xmac\n"));
2443 
2444 	/* Unreset the XMAC. */
2445 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2446 	DELAY(1000);
2447 
2448 	/* Reset the XMAC's internal state. */
2449 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2450 
2451 	/* Save the XMAC II revision */
2452 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2453 
2454 	/*
2455 	 * Perform additional initialization for external PHYs,
2456 	 * namely for the 1000baseTX cards that use the XMAC's
2457 	 * GMII mode.
2458 	 */
2459 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2460 		int			i = 0;
2461 		uint32_t		val;
2462 		uint16_t		phyval;
2463 
2464 		/* Take PHY out of reset. */
2465 		val = sk_win_read_4(sc, SK_GPIO);
2466 		if (sc_if->sk_port == SK_PORT_A)
2467 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2468 		else
2469 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2470 		sk_win_write_4(sc, SK_GPIO, val);
2471 
2472 		/* Enable GMII mode on the XMAC. */
2473 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2474 
2475 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2476 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2477 		DELAY(10000);
2478 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2479 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2480 
2481 		/*
2482 		 * Early versions of the BCM5400 apparently have
2483 		 * a bug that requires them to have their reserved
2484 		 * registers initialized to some magic values. I don't
2485 		 * know what the numbers do, I'm just the messenger.
2486 		 */
2487 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2488 		    SK_PHYADDR_BCOM, 0x03, &phyval);
2489 		if (phyval == 0x6041) {
2490 			while (bhack[i].reg) {
2491 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2492 				    SK_PHYADDR_BCOM, bhack[i].reg,
2493 				    bhack[i].val);
2494 				i++;
2495 			}
2496 		}
2497 	}
2498 
2499 	/* Set station address */
2500 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2501 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
2502 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2503 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
2504 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2505 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
2506 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2507 
2508 	if (ifp->if_flags & IFF_PROMISC)
2509 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2510 	else
2511 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2512 
2513 	if (ifp->if_flags & IFF_BROADCAST)
2514 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2515 	else
2516 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2517 
2518 	/* We don't need the FCS appended to the packet. */
2519 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2520 
2521 	/* We want short frames padded to 60 bytes. */
2522 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2523 
2524 	/*
2525 	 * Enable the reception of all error frames. This is is
2526 	 * a necessary evil due to the design of the XMAC. The
2527 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2528 	 * frames can be up to 9000 bytes in length. When bad
2529 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2530 	 * in 'store and forward' mode. For this to work, the
2531 	 * entire frame has to fit into the FIFO, but that means
2532 	 * that jumbo frames larger than 8192 bytes will be
2533 	 * truncated. Disabling all bad frame filtering causes
2534 	 * the RX FIFO to operate in streaming mode, in which
2535 	 * case the XMAC will start transfering frames out of the
2536 	 * RX FIFO as soon as the FIFO threshold is reached.
2537 	 */
2538 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2539 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2540 	    XM_MODE_RX_INRANGELEN);
2541 
2542 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2543 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2544 	else
2545 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2546 
2547 	/*
2548 	 * Bump up the transmit threshold. This helps hold off transmit
2549 	 * underruns when we're blasting traffic from both ports at once.
2550 	 */
2551 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2552 
2553 	/* Set multicast filter */
2554 	sk_setmulti(sc_if);
2555 
2556 	/* Clear and enable interrupts */
2557 	SK_XM_READ_2(sc_if, XM_ISR);
2558 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2559 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2560 	else
2561 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2562 
2563 	/* Configure MAC arbiter */
2564 	switch (sc_if->sk_xmac_rev) {
2565 	case XM_XMAC_REV_B2:
2566 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2567 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2568 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2569 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2570 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2571 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2572 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2573 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2574 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2575 		break;
2576 	case XM_XMAC_REV_C1:
2577 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2578 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2579 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2580 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2581 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2582 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2583 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2584 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2585 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2586 		break;
2587 	default:
2588 		break;
2589 	}
2590 	sk_win_write_2(sc, SK_MACARB_CTL,
2591 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2592 
2593 	sc_if->sk_link = 1;
2594 }
2595 
2596 void sk_init_yukon(struct sk_if_softc *sc_if)
2597 {
2598 	uint32_t		/*mac, */phy;
2599 	uint16_t		reg;
2600 	struct sk_softc		*sc;
2601 	int			i;
2602 
2603 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2604 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2605 
2606 	sc = sc_if->sk_softc;
2607 	if (sc->sk_type == SK_YUKON_LITE &&
2608 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2609 		/* Take PHY out of reset. */
2610 		sk_win_write_4(sc, SK_GPIO,
2611 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2612 	}
2613 
2614 
2615 	/* GMAC and GPHY Reset */
2616 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2617 
2618 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2619 
2620 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2621 	DELAY(1000);
2622 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2623 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2624 	DELAY(1000);
2625 
2626 
2627 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2628 
2629 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2630 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2631 
2632 	switch (sc_if->sk_softc->sk_pmd) {
2633 	case IFM_1000_SX:
2634 	case IFM_1000_LX:
2635 		phy |= SK_GPHY_FIBER;
2636 		break;
2637 
2638 	case IFM_1000_CX:
2639 	case IFM_1000_T:
2640 		phy |= SK_GPHY_COPPER;
2641 		break;
2642 	}
2643 
2644 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2645 
2646 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2647 	DELAY(1000);
2648 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2649 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2650 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2651 
2652 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2653 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2654 
2655 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2656 
2657 	/* unused read of the interrupt source register */
2658 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2659 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2660 
2661 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2662 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2663 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2664 
2665 	/* MIB Counter Clear Mode set */
2666 	reg |= YU_PAR_MIB_CLR;
2667 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2668 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2669 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2670 
2671 	/* MIB Counter Clear Mode clear */
2672 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2673 	reg &= ~YU_PAR_MIB_CLR;
2674 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2675 
2676 	/* receive control reg */
2677 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2678 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2679 		      YU_RCR_CRCR);
2680 
2681 	/* transmit parameter register */
2682 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2683 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2684 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2685 
2686 	/* serial mode register */
2687 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2688 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2689 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2690 		      YU_SMR_IPG_DATA(0x1e));
2691 
2692 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2693 	/* Setup Yukon's address */
2694 	for (i = 0; i < 3; i++) {
2695 		/* Write Source Address 1 (unicast filter) */
2696 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2697 			      sc_if->sk_enaddr[i * 2] |
2698 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2699 	}
2700 
2701 	for (i = 0; i < 3; i++) {
2702 		reg = sk_win_read_2(sc_if->sk_softc,
2703 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2704 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2705 	}
2706 
2707 	/* Set multicast filter */
2708 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2709 	sk_setmulti(sc_if);
2710 
2711 	/* enable interrupt mask for counter overflows */
2712 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2713 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2714 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2715 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2716 
2717 	/* Configure RX MAC FIFO */
2718 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2719 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2720 
2721 	/* Configure TX MAC FIFO */
2722 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2723 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2724 
2725 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2726 }
2727 
2728 /*
2729  * Note that to properly initialize any part of the GEnesis chip,
2730  * you first have to take it out of reset mode.
2731  */
2732 int
2733 sk_init(struct ifnet *ifp)
2734 {
2735 	struct sk_if_softc	*sc_if = ifp->if_softc;
2736 	struct sk_softc		*sc = sc_if->sk_softc;
2737 	struct mii_data		*mii = &sc_if->sk_mii;
2738 	int			rc = 0, s;
2739 	uint32_t		imr, imtimer_ticks;
2740 
2741 	DPRINTFN(1, ("sk_init\n"));
2742 
2743 	s = splnet();
2744 
2745 	if (ifp->if_flags & IFF_RUNNING) {
2746 		splx(s);
2747 		return 0;
2748 	}
2749 
2750 	/* Cancel pending I/O and free all RX/TX buffers. */
2751 	sk_stop(ifp, 0);
2752 
2753 	if (sc->sk_type == SK_GENESIS) {
2754 		/* Configure LINK_SYNC LED */
2755 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2756 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2757 			      SK_LINKLED_LINKSYNC_ON);
2758 
2759 		/* Configure RX LED */
2760 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2761 			      SK_RXLEDCTL_COUNTER_START);
2762 
2763 		/* Configure TX LED */
2764 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2765 			      SK_TXLEDCTL_COUNTER_START);
2766 	}
2767 
2768 	/* Configure I2C registers */
2769 
2770 	/* Configure XMAC(s) */
2771 	switch (sc->sk_type) {
2772 	case SK_GENESIS:
2773 		sk_init_xmac(sc_if);
2774 		break;
2775 	case SK_YUKON:
2776 	case SK_YUKON_LITE:
2777 	case SK_YUKON_LP:
2778 		sk_init_yukon(sc_if);
2779 		break;
2780 	}
2781 	if ((rc = mii_mediachg(mii)) == ENXIO)
2782 		rc = 0;
2783 	else if (rc != 0)
2784 		goto out;
2785 
2786 	if (sc->sk_type == SK_GENESIS) {
2787 		/* Configure MAC FIFOs */
2788 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2789 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2790 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2791 
2792 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2793 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2794 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2795 	}
2796 
2797 	/* Configure transmit arbiter(s) */
2798 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2799 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2800 
2801 	/* Configure RAMbuffers */
2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2803 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2805 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2806 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2807 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2808 
2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2810 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2811 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2812 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2813 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2814 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2815 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2816 
2817 	/* Configure BMUs */
2818 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2819 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2820 	    SK_RX_RING_ADDR(sc_if, 0));
2821 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2822 
2823 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2824 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2825 	    SK_TX_RING_ADDR(sc_if, 0));
2826 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2827 
2828 	/* Init descriptors */
2829 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2830 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2831 		    "memory for rx buffers\n");
2832 		sk_stop(ifp, 0);
2833 		splx(s);
2834 		return ENOBUFS;
2835 	}
2836 
2837 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2838 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2839 		    "memory for tx buffers\n");
2840 		sk_stop(ifp, 0);
2841 		splx(s);
2842 		return ENOBUFS;
2843 	}
2844 
2845 	/* Set interrupt moderation if changed via sysctl. */
2846 	switch (sc->sk_type) {
2847 	case SK_GENESIS:
2848 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2849 		break;
2850 	case SK_YUKON_EC:
2851 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2852 		break;
2853 	default:
2854 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2855 	}
2856 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2857 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2858 		sk_win_write_4(sc, SK_IMTIMERINIT,
2859 		    SK_IM_USECS(sc->sk_int_mod));
2860 		aprint_verbose_dev(sc->sk_dev,
2861 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2862 	}
2863 
2864 	/* Configure interrupt handling */
2865 	CSR_READ_4(sc, SK_ISSR);
2866 	if (sc_if->sk_port == SK_PORT_A)
2867 		sc->sk_intrmask |= SK_INTRS1;
2868 	else
2869 		sc->sk_intrmask |= SK_INTRS2;
2870 
2871 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2872 
2873 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2874 
2875 	/* Start BMUs. */
2876 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2877 
2878 	if (sc->sk_type == SK_GENESIS) {
2879 		/* Enable XMACs TX and RX state machines */
2880 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2881 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2882 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2883 	}
2884 
2885 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2886 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2887 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2888 #if 0
2889 		/* XXX disable 100Mbps and full duplex mode? */
2890 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2891 #endif
2892 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2893 	}
2894 
2895 
2896 	ifp->if_flags |= IFF_RUNNING;
2897 	ifp->if_flags &= ~IFF_OACTIVE;
2898 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2899 
2900 out:
2901 	splx(s);
2902 	return rc;
2903 }
2904 
2905 void
2906 sk_stop(struct ifnet *ifp, int disable)
2907 {
2908 	struct sk_if_softc	*sc_if = ifp->if_softc;
2909 	struct sk_softc		*sc = sc_if->sk_softc;
2910 	int			i;
2911 
2912 	DPRINTFN(1, ("sk_stop\n"));
2913 
2914 	callout_stop(&sc_if->sk_tick_ch);
2915 
2916 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2917 		uint32_t		val;
2918 
2919 		/* Put PHY back into reset. */
2920 		val = sk_win_read_4(sc, SK_GPIO);
2921 		if (sc_if->sk_port == SK_PORT_A) {
2922 			val |= SK_GPIO_DIR0;
2923 			val &= ~SK_GPIO_DAT0;
2924 		} else {
2925 			val |= SK_GPIO_DIR2;
2926 			val &= ~SK_GPIO_DAT2;
2927 		}
2928 		sk_win_write_4(sc, SK_GPIO, val);
2929 	}
2930 
2931 	/* Turn off various components of this interface. */
2932 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2933 	switch (sc->sk_type) {
2934 	case SK_GENESIS:
2935 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2936 			      SK_TXMACCTL_XMAC_RESET);
2937 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2938 		break;
2939 	case SK_YUKON:
2940 	case SK_YUKON_LITE:
2941 	case SK_YUKON_LP:
2942 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2943 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2944 		break;
2945 	}
2946 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2947 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2948 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2949 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2950 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2951 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2952 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2953 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2954 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2955 
2956 	/* Disable interrupts */
2957 	if (sc_if->sk_port == SK_PORT_A)
2958 		sc->sk_intrmask &= ~SK_INTRS1;
2959 	else
2960 		sc->sk_intrmask &= ~SK_INTRS2;
2961 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2962 
2963 	SK_XM_READ_2(sc_if, XM_ISR);
2964 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2965 
2966 	/* Free RX and TX mbufs still in the queues. */
2967 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2968 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2969 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2970 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2971 		}
2972 	}
2973 
2974 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2975 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2976 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2977 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2978 		}
2979 	}
2980 
2981 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2982 }
2983 
2984 /* Power Management Framework */
2985 
2986 static bool
2987 skc_suspend(device_t dv, const pmf_qual_t *qual)
2988 {
2989 	struct sk_softc *sc = device_private(dv);
2990 
2991 	DPRINTFN(2, ("skc_suspend\n"));
2992 
2993 	/* Turn off the driver is loaded LED */
2994 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2995 
2996 	return true;
2997 }
2998 
2999 static bool
3000 skc_resume(device_t dv, const pmf_qual_t *qual)
3001 {
3002 	struct sk_softc *sc = device_private(dv);
3003 
3004 	DPRINTFN(2, ("skc_resume\n"));
3005 
3006 	sk_reset(sc);
3007 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3008 
3009 	return true;
3010 }
3011 
3012 static bool
3013 sk_resume(device_t dv, const pmf_qual_t *qual)
3014 {
3015 	struct sk_if_softc *sc_if = device_private(dv);
3016 
3017 	sk_init_yukon(sc_if);
3018 	return true;
3019 }
3020 
3021 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3022     skc_probe, skc_attach, NULL, NULL);
3023 
3024 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3025     sk_probe, sk_attach, NULL, NULL);
3026 
3027 #ifdef SK_DEBUG
3028 void
3029 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3030 {
3031 #define DESC_PRINT(X)					\
3032 	if (X)					\
3033 		printf("txdesc[%d]." #X "=%#x\n",	\
3034 		       idx, X);
3035 
3036 	DESC_PRINT(le32toh(desc->sk_ctl));
3037 	DESC_PRINT(le32toh(desc->sk_next));
3038 	DESC_PRINT(le32toh(desc->sk_data_lo));
3039 	DESC_PRINT(le32toh(desc->sk_data_hi));
3040 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3041 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3042 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3043 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3044 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3045 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3046 #undef PRINT
3047 }
3048 
3049 void
3050 sk_dump_bytes(const char *data, int len)
3051 {
3052 	int c, i, j;
3053 
3054 	for (i = 0; i < len; i += 16) {
3055 		printf("%08x  ", i);
3056 		c = len - i;
3057 		if (c > 16) c = 16;
3058 
3059 		for (j = 0; j < c; j++) {
3060 			printf("%02x ", data[i + j] & 0xff);
3061 			if ((j & 0xf) == 7 && j > 0)
3062 				printf(" ");
3063 		}
3064 
3065 		for (; j < 16; j++)
3066 			printf("   ");
3067 		printf("  ");
3068 
3069 		for (j = 0; j < c; j++) {
3070 			int ch = data[i + j] & 0xff;
3071 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3072 		}
3073 
3074 		printf("\n");
3075 
3076 		if (c < 16)
3077 			break;
3078 	}
3079 }
3080 
3081 void
3082 sk_dump_mbuf(struct mbuf *m)
3083 {
3084 	int count = m->m_pkthdr.len;
3085 
3086 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3087 
3088 	while (count > 0 && m) {
3089 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3090 		       m, m->m_data, m->m_len);
3091 		sk_dump_bytes(mtod(m, char *), m->m_len);
3092 
3093 		count -= m->m_len;
3094 		m = m->m_next;
3095 	}
3096 }
3097 #endif
3098 
3099 static int
3100 sk_sysctl_handler(SYSCTLFN_ARGS)
3101 {
3102 	int error, t;
3103 	struct sysctlnode node;
3104 	struct sk_softc *sc;
3105 
3106 	node = *rnode;
3107 	sc = node.sysctl_data;
3108 	t = sc->sk_int_mod;
3109 	node.sysctl_data = &t;
3110 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3111 	if (error || newp == NULL)
3112 		return error;
3113 
3114 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3115 		return EINVAL;
3116 
3117 	/* update the softc with sysctl-changed value, and mark
3118 	   for hardware update */
3119 	sc->sk_int_mod = t;
3120 	sc->sk_int_mod_pending = 1;
3121 	return 0;
3122 }
3123 
3124 /*
3125  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3126  * set up in skc_attach()
3127  */
3128 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3129 {
3130 	int rc;
3131 	const struct sysctlnode *node;
3132 
3133 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3134 	    0, CTLTYPE_NODE, "sk",
3135 	    SYSCTL_DESCR("sk interface controls"),
3136 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3137 		goto err;
3138 	}
3139 
3140 	sk_root_num = node->sysctl_num;
3141 	return;
3142 
3143 err:
3144 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3145 }
3146