xref: /netbsd-src/sys/dev/pci/if_sk.c (revision f3b496ec9be495acbb17756f05d342b6b7b495e9)
1 /*	$NetBSD: if_sk.c,v 1.33 2006/09/10 18:39:27 riz Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include "bpfilter.h"
125 #include "rnd.h"
126 
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139 
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143 
144 #include <net/if_media.h>
145 
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152 
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156 
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160 
161 /* #define SK_USEIOSPACE */
162 
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165 
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 					struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200 
201 void sk_update_int_mod(struct sk_softc *);
202 
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206 
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210 
211 u_int32_t sk_xmac_hash(caddr_t);
212 u_int32_t sk_yukon_hash(caddr_t);
213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216 
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x)	if (skdebug) printf x
220 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
221 int	skdebug = SK_DEBUG;
222 
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230 
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233 
234 /* supported device vendors */
235 static const struct sk_product {
236 	pci_vendor_id_t		sk_vendor;
237 	pci_product_id_t	sk_product;
238 } sk_products[] = {
239 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
240 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
241 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
242 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 	{ 0, 0, }
249 };
250 
251 #define SK_LINKSYS_EG1032_SUBID	0x00151737
252 
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 	return CSR_READ_4(sc, reg);
261 #endif
262 }
263 
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 	return CSR_READ_2(sc, reg);
272 #endif
273 }
274 
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 	return CSR_READ_1(sc, reg);
283 #endif
284 }
285 
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 	CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296 
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 	CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307 
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 	CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318 
319 /*
320  * The VPD EEPROM contains Vital Product Data, as suggested in
321  * the PCI 2.1 specification. The VPD data is separared into areas
322  * denoted by resource IDs. The SysKonnect VPD contains an ID string
323  * resource (the name of the adapter), a read-only area resource
324  * containing various key/data fields and a read/write area which
325  * can be used to store asset management information or log messages.
326  * We read the ID string and read-only into buffers attached to
327  * the controller softc structure for later use. At the moment,
328  * we only use the ID string during sk_attach().
329  */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 	int			i;
334 
335 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 	for (i = 0; i < SK_TIMEOUT; i++) {
337 		DELAY(1);
338 		if (sk_win_read_2(sc,
339 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 			break;
341 	}
342 
343 	if (i == SK_TIMEOUT)
344 		return 0;
345 
346 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348 
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 	int			i;
353 	u_int8_t		*ptr;
354 
355 	ptr = (u_int8_t *)res;
356 	for (i = 0; i < sizeof(struct vpd_res); i++)
357 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359 
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 	int			pos = 0, i;
364 	struct vpd_res		res;
365 
366 	if (sc->sk_vpd_prodname != NULL)
367 		free(sc->sk_vpd_prodname, M_DEVBUF);
368 	if (sc->sk_vpd_readonly != NULL)
369 		free(sc->sk_vpd_readonly, M_DEVBUF);
370 	sc->sk_vpd_prodname = NULL;
371 	sc->sk_vpd_readonly = NULL;
372 
373 	sk_vpd_read_res(sc, &res, pos);
374 
375 	if (res.vr_id != VPD_RES_ID) {
376 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 		return;
379 	}
380 
381 	pos += sizeof(res);
382 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 	if (sc->sk_vpd_prodname == NULL)
384 		panic("sk_vpd_read");
385 	for (i = 0; i < res.vr_len; i++)
386 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 	sc->sk_vpd_prodname[i] = '\0';
388 	pos += i;
389 
390 	sk_vpd_read_res(sc, &res, pos);
391 
392 	if (res.vr_id != VPD_RES_READ) {
393 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 		return;
396 	}
397 
398 	pos += sizeof(res);
399 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 	if (sc->sk_vpd_readonly == NULL)
401 		panic("sk_vpd_read");
402 	for (i = 0; i < res.vr_len ; i++)
403 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405 
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 	int i;
411 
412 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413 
414 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 		return 0;
416 
417 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 		for (i = 0; i < SK_TIMEOUT; i++) {
421 			DELAY(1);
422 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 			    XM_MMUCMD_PHYDATARDY)
424 				break;
425 		}
426 
427 		if (i == SK_TIMEOUT) {
428 			aprint_error("%s: phy failed to come ready\n",
429 			    sc_if->sk_dev.dv_xname);
430 			return 0;
431 		}
432 	}
433 	DELAY(1);
434 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436 
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 	int i;
442 
443 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444 
445 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 	for (i = 0; i < SK_TIMEOUT; i++) {
447 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 			break;
449 	}
450 
451 	if (i == SK_TIMEOUT) {
452 		aprint_error("%s: phy failed to come ready\n",
453 		    sc_if->sk_dev.dv_xname);
454 		return;
455 	}
456 
457 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 	for (i = 0; i < SK_TIMEOUT; i++) {
459 		DELAY(1);
460 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 			break;
462 	}
463 
464 	if (i == SK_TIMEOUT)
465 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467 
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 	struct mii_data *mii = &sc_if->sk_mii;
473 
474 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475 
476 	/*
477 	 * If this is a GMII PHY, manually set the XMAC's
478 	 * duplex mode accordingly.
479 	 */
480 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 		else
484 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 	}
486 }
487 
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 	u_int16_t val;
493 	int i;
494 
495 	if (phy != 0 ||
496 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 			     phy, reg));
500 		return 0;
501 	}
502 
503         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505 
506 	for (i = 0; i < SK_TIMEOUT; i++) {
507 		DELAY(1);
508 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 		if (val & YU_SMICR_READ_VALID)
510 			break;
511 	}
512 
513 	if (i == SK_TIMEOUT) {
514 		aprint_error("%s: phy failed to come ready\n",
515 		       sc_if->sk_dev.dv_xname);
516 		return 0;
517 	}
518 
519  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 		     SK_TIMEOUT));
521 
522         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523 
524 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 		     phy, reg, val));
526 
527 	return val;
528 }
529 
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 	int i;
535 
536 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 		     phy, reg, val));
538 
539 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542 
543 	for (i = 0; i < SK_TIMEOUT; i++) {
544 		DELAY(1);
545 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
546 			break;
547 	}
548 }
549 
550 void
551 sk_marv_miibus_statchg(struct device *dev)
552 {
553 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
555 }
556 
557 #define SK_HASH_BITS		6
558 
559 u_int32_t
560 sk_xmac_hash(caddr_t addr)
561 {
562 	u_int32_t		crc;
563 
564 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
565 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
567 	return crc;
568 }
569 
570 u_int32_t
571 sk_yukon_hash(caddr_t addr)
572 {
573 	u_int32_t		crc;
574 
575 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
576 	crc &= ((1 << SK_HASH_BITS) - 1);
577 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
578 	return crc;
579 }
580 
581 void
582 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
583 {
584 	int base = XM_RXFILT_ENTRY(slot);
585 
586 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
587 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
588 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
589 }
590 
591 void
592 sk_setmulti(struct sk_if_softc *sc_if)
593 {
594 	struct sk_softc *sc = sc_if->sk_softc;
595 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
596 	u_int32_t hashes[2] = { 0, 0 };
597 	int h = 0, i;
598 	struct ethercom *ec = &sc_if->sk_ethercom;
599 	struct ether_multi *enm;
600 	struct ether_multistep step;
601 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
602 
603 	/* First, zot all the existing filters. */
604 	switch (sc->sk_type) {
605 	case SK_GENESIS:
606 		for (i = 1; i < XM_RXFILT_MAX; i++)
607 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
608 
609 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
610 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
611 		break;
612 	case SK_YUKON:
613 	case SK_YUKON_LITE:
614 	case SK_YUKON_LP:
615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
619 		break;
620 	}
621 
622 	/* Now program new ones. */
623 allmulti:
624 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
625 		hashes[0] = 0xFFFFFFFF;
626 		hashes[1] = 0xFFFFFFFF;
627 	} else {
628 		i = 1;
629 		/* First find the tail of the list. */
630 		ETHER_FIRST_MULTI(step, ec, enm);
631 		while (enm != NULL) {
632 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
633 				 ETHER_ADDR_LEN)) {
634 				ifp->if_flags |= IFF_ALLMULTI;
635 				goto allmulti;
636 			}
637 			DPRINTFN(2,("multicast address %s\n",
638 	    			ether_sprintf(enm->enm_addrlo)));
639 			/*
640 			 * Program the first XM_RXFILT_MAX multicast groups
641 			 * into the perfect filter. For all others,
642 			 * use the hash table.
643 			 */
644 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
645 				sk_setfilt(sc_if, enm->enm_addrlo, i);
646 				i++;
647 			}
648 			else {
649 				switch (sc->sk_type) {
650 				case SK_GENESIS:
651 					h = sk_xmac_hash(enm->enm_addrlo);
652 					break;
653 				case SK_YUKON:
654 				case SK_YUKON_LITE:
655 				case SK_YUKON_LP:
656 					h = sk_yukon_hash(enm->enm_addrlo);
657 					break;
658 				}
659 				if (h < 32)
660 					hashes[0] |= (1 << h);
661 				else
662 					hashes[1] |= (1 << (h - 32));
663 			}
664 
665 			ETHER_NEXT_MULTI(step, enm);
666 		}
667 	}
668 
669 	switch (sc->sk_type) {
670 	case SK_GENESIS:
671 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
672 			       XM_MODE_RX_USE_PERFECT);
673 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
674 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
675 		break;
676 	case SK_YUKON:
677 	case SK_YUKON_LITE:
678 	case SK_YUKON_LP:
679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
680 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
683 		break;
684 	}
685 }
686 
687 int
688 sk_init_rx_ring(struct sk_if_softc *sc_if)
689 {
690 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
691 	struct sk_ring_data	*rd = sc_if->sk_rdata;
692 	int			i;
693 
694 	bzero((char *)rd->sk_rx_ring,
695 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
696 
697 	for (i = 0; i < SK_RX_RING_CNT; i++) {
698 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
699 		if (i == (SK_RX_RING_CNT - 1)) {
700 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
701 			rd->sk_rx_ring[i].sk_next =
702 				htole32(SK_RX_RING_ADDR(sc_if, 0));
703 		} else {
704 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
705 			rd->sk_rx_ring[i].sk_next =
706 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
707 		}
708 	}
709 
710 	for (i = 0; i < SK_RX_RING_CNT; i++) {
711 		if (sk_newbuf(sc_if, i, NULL,
712 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
713 			aprint_error("%s: failed alloc of %dth mbuf\n",
714 			    sc_if->sk_dev.dv_xname, i);
715 			return ENOBUFS;
716 		}
717 	}
718 	sc_if->sk_cdata.sk_rx_prod = 0;
719 	sc_if->sk_cdata.sk_rx_cons = 0;
720 
721 	return 0;
722 }
723 
724 int
725 sk_init_tx_ring(struct sk_if_softc *sc_if)
726 {
727 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
728 	struct sk_ring_data	*rd = sc_if->sk_rdata;
729 	int			i;
730 
731 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
732 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
733 
734 	for (i = 0; i < SK_TX_RING_CNT; i++) {
735 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
736 		if (i == (SK_TX_RING_CNT - 1)) {
737 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
738 			rd->sk_tx_ring[i].sk_next =
739 				htole32(SK_TX_RING_ADDR(sc_if, 0));
740 		} else {
741 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
742 			rd->sk_tx_ring[i].sk_next =
743 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
744 		}
745 	}
746 
747 	sc_if->sk_cdata.sk_tx_prod = 0;
748 	sc_if->sk_cdata.sk_tx_cons = 0;
749 	sc_if->sk_cdata.sk_tx_cnt = 0;
750 
751 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
752 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753 
754 	return 0;
755 }
756 
757 int
758 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
759 	  bus_dmamap_t dmamap)
760 {
761 	struct mbuf		*m_new = NULL;
762 	struct sk_chain		*c;
763 	struct sk_rx_desc	*r;
764 
765 	if (m == NULL) {
766 		caddr_t buf = NULL;
767 
768 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
769 		if (m_new == NULL) {
770 			aprint_error("%s: no memory for rx list -- "
771 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
772 			return ENOBUFS;
773 		}
774 
775 		/* Allocate the jumbo buffer */
776 		buf = sk_jalloc(sc_if);
777 		if (buf == NULL) {
778 			m_freem(m_new);
779 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
780 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
781 			return ENOBUFS;
782 		}
783 
784 		/* Attach the buffer to the mbuf */
785 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
786 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
787 
788 	} else {
789 		/*
790 	 	 * We're re-using a previously allocated mbuf;
791 		 * be sure to re-init pointers and lengths to
792 		 * default values.
793 		 */
794 		m_new = m;
795 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
796 		m_new->m_data = m_new->m_ext.ext_buf;
797 	}
798 	m_adj(m_new, ETHER_ALIGN);
799 
800 	c = &sc_if->sk_cdata.sk_rx_chain[i];
801 	r = c->sk_desc;
802 	c->sk_mbuf = m_new;
803 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
804 	    (((vaddr_t)m_new->m_data
805 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
806 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
807 
808 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
809 
810 	return 0;
811 }
812 
813 /*
814  * Memory management for jumbo frames.
815  */
816 
817 int
818 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
819 {
820 	struct sk_softc		*sc = sc_if->sk_softc;
821 	caddr_t			ptr, kva;
822 	bus_dma_segment_t	seg;
823 	int		i, rseg, state, error;
824 	struct sk_jpool_entry   *entry;
825 
826 	state = error = 0;
827 
828 	/* Grab a big chunk o' storage. */
829 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
830 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
831 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
832 		return ENOBUFS;
833 	}
834 
835 	state = 1;
836 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
837 			   BUS_DMA_NOWAIT)) {
838 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
839 		    sc->sk_dev.dv_xname, SK_JMEM);
840 		error = ENOBUFS;
841 		goto out;
842 	}
843 
844 	state = 2;
845 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
846 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
847 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
848 		error = ENOBUFS;
849 		goto out;
850 	}
851 
852 	state = 3;
853 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
854 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
855 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
856 		error = ENOBUFS;
857 		goto out;
858 	}
859 
860 	state = 4;
861 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
862 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
863 
864 	LIST_INIT(&sc_if->sk_jfree_listhead);
865 	LIST_INIT(&sc_if->sk_jinuse_listhead);
866 
867 	/*
868 	 * Now divide it up into 9K pieces and save the addresses
869 	 * in an array.
870 	 */
871 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
872 	for (i = 0; i < SK_JSLOTS; i++) {
873 		sc_if->sk_cdata.sk_jslots[i] = ptr;
874 		ptr += SK_JLEN;
875 		entry = malloc(sizeof(struct sk_jpool_entry),
876 		    M_DEVBUF, M_NOWAIT);
877 		if (entry == NULL) {
878 			aprint_error("%s: no memory for jumbo buffer queue!\n",
879 			    sc->sk_dev.dv_xname);
880 			error = ENOBUFS;
881 			goto out;
882 		}
883 		entry->slot = i;
884 		if (i)
885 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
886 				 entry, jpool_entries);
887 		else
888 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
889 				 entry, jpool_entries);
890 	}
891 out:
892 	if (error != 0) {
893 		switch (state) {
894 		case 4:
895 			bus_dmamap_unload(sc->sc_dmatag,
896 			    sc_if->sk_cdata.sk_rx_jumbo_map);
897 		case 3:
898 			bus_dmamap_destroy(sc->sc_dmatag,
899 			    sc_if->sk_cdata.sk_rx_jumbo_map);
900 		case 2:
901 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
902 		case 1:
903 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
904 			break;
905 		default:
906 			break;
907 		}
908 	}
909 
910 	return error;
911 }
912 
913 /*
914  * Allocate a jumbo buffer.
915  */
916 void *
917 sk_jalloc(struct sk_if_softc *sc_if)
918 {
919 	struct sk_jpool_entry   *entry;
920 
921 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
922 
923 	if (entry == NULL)
924 		return NULL;
925 
926 	LIST_REMOVE(entry, jpool_entries);
927 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
928 	return sc_if->sk_cdata.sk_jslots[entry->slot];
929 }
930 
931 /*
932  * Release a jumbo buffer.
933  */
934 void
935 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void	*arg)
936 {
937 	struct sk_jpool_entry *entry;
938 	struct sk_if_softc *sc;
939 	int i, s;
940 
941 	/* Extract the softc struct pointer. */
942 	sc = (struct sk_if_softc *)arg;
943 
944 	if (sc == NULL)
945 		panic("sk_jfree: can't find softc pointer!");
946 
947 	/* calculate the slot this buffer belongs to */
948 
949 	i = ((vaddr_t)buf
950 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
951 
952 	if ((i < 0) || (i >= SK_JSLOTS))
953 		panic("sk_jfree: asked to free buffer that we don't manage!");
954 
955 	s = splvm();
956 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
957 	if (entry == NULL)
958 		panic("sk_jfree: buffer not in use!");
959 	entry->slot = i;
960 	LIST_REMOVE(entry, jpool_entries);
961 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
962 
963 	if (__predict_true(m != NULL))
964 		pool_cache_put(&mbpool_cache, m);
965 	splx(s);
966 }
967 
968 /*
969  * Set media options.
970  */
971 int
972 sk_ifmedia_upd(struct ifnet *ifp)
973 {
974 	struct sk_if_softc *sc_if = ifp->if_softc;
975 
976 	(void) sk_init(ifp);
977 	mii_mediachg(&sc_if->sk_mii);
978 	return 0;
979 }
980 
981 /*
982  * Report current media status.
983  */
984 void
985 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
986 {
987 	struct sk_if_softc *sc_if = ifp->if_softc;
988 
989 	mii_pollstat(&sc_if->sk_mii);
990 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
991 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
992 }
993 
994 int
995 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
996 {
997 	struct sk_if_softc *sc_if = ifp->if_softc;
998 	struct sk_softc *sc = sc_if->sk_softc;
999 	struct ifreq *ifr = (struct ifreq *) data;
1000 	struct mii_data *mii;
1001 	int s, error = 0;
1002 
1003 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1004 
1005 	s = splnet();
1006 
1007 	switch (command) {
1008 
1009 	case SIOCSIFFLAGS:
1010 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1011 		if (ifp->if_flags & IFF_UP) {
1012 			if (ifp->if_flags & IFF_RUNNING &&
1013 			    ifp->if_flags & IFF_PROMISC &&
1014 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1015 				switch (sc->sk_type) {
1016 				case SK_GENESIS:
1017 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1018 					    XM_MODE_RX_PROMISC);
1019 					break;
1020 				case SK_YUKON:
1021 				case SK_YUKON_LITE:
1022 				case SK_YUKON_LP:
1023 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1024 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1025 					break;
1026 				}
1027 				sk_setmulti(sc_if);
1028 			} else if (ifp->if_flags & IFF_RUNNING &&
1029 			    !(ifp->if_flags & IFF_PROMISC) &&
1030 			    sc_if->sk_if_flags & IFF_PROMISC) {
1031 				switch (sc->sk_type) {
1032 				case SK_GENESIS:
1033 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1034 					    XM_MODE_RX_PROMISC);
1035 					break;
1036 				case SK_YUKON:
1037 				case SK_YUKON_LITE:
1038 				case SK_YUKON_LP:
1039 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1040 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1041 					break;
1042 				}
1043 
1044 				sk_setmulti(sc_if);
1045 			} else
1046 				(void) sk_init(ifp);
1047 		} else {
1048 			if (ifp->if_flags & IFF_RUNNING)
1049 				sk_stop(ifp,0);
1050 		}
1051 		sc_if->sk_if_flags = ifp->if_flags;
1052 		error = 0;
1053 		break;
1054 
1055 	case SIOCGIFMEDIA:
1056 	case SIOCSIFMEDIA:
1057 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1058 		mii = &sc_if->sk_mii;
1059 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1060 		break;
1061 	default:
1062 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1063 		error = ether_ioctl(ifp, command, data);
1064 
1065 		if ( error == ENETRESET) {
1066 			if (ifp->if_flags & IFF_RUNNING) {
1067 				sk_setmulti(sc_if);
1068 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1069 			}
1070 			error = 0;
1071 		} else if ( error ) {
1072 			splx(s);
1073 			return error;
1074 		}
1075 		break;
1076 	}
1077 
1078 	splx(s);
1079 	return error;
1080 }
1081 
1082 void
1083 sk_update_int_mod(struct sk_softc *sc)
1084 {
1085 	u_int32_t sk_imtimer_ticks;
1086 
1087 	/*
1088          * Configure interrupt moderation. The moderation timer
1089 	 * defers interrupts specified in the interrupt moderation
1090 	 * timer mask based on the timeout specified in the interrupt
1091 	 * moderation timer init register. Each bit in the timer
1092 	 * register represents one tick, so to specify a timeout in
1093 	 * microseconds, we have to multiply by the correct number of
1094 	 * ticks-per-microsecond.
1095 	 */
1096 	switch (sc->sk_type) {
1097 	case SK_GENESIS:
1098 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1099 		break;
1100 	case SK_YUKON_EC:
1101 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1102 		break;
1103 	default:
1104 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1105 	}
1106 	aprint_verbose("%s: interrupt moderation is %d us\n",
1107 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
1108         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1109         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1110 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1111         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1112 	sc->sk_int_mod_pending = 0;
1113 }
1114 
1115 /*
1116  * Lookup: Check the PCI vendor and device, and return a pointer to
1117  * The structure if the IDs match against our list.
1118  */
1119 
1120 static const struct sk_product *
1121 sk_lookup(const struct pci_attach_args *pa)
1122 {
1123 	const struct sk_product *psk;
1124 
1125 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1126 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1127 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1128 			return psk;
1129 	}
1130 	return NULL;
1131 }
1132 
1133 /*
1134  * Probe for a SysKonnect GEnesis chip.
1135  */
1136 
1137 int
1138 skc_probe(struct device *parent, struct cfdata *match, void *aux)
1139 {
1140 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1141 	const struct sk_product *psk;
1142 	pcireg_t subid;
1143 
1144 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1145 
1146 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1147 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1148 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1149 	    subid == SK_LINKSYS_EG1032_SUBID)
1150 		return 1;
1151 
1152 	if ((psk = sk_lookup(pa))) {
1153 		return 1;
1154 	}
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Force the GEnesis into reset, then bring it out of reset.
1160  */
1161 void sk_reset(struct sk_softc *sc)
1162 {
1163 	DPRINTFN(2, ("sk_reset\n"));
1164 
1165 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1166 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1167 	if (SK_YUKON_FAMILY(sc->sk_type))
1168 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1169 
1170 	DELAY(1000);
1171 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1172 	DELAY(2);
1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1174 	if (SK_YUKON_FAMILY(sc->sk_type))
1175 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1176 
1177 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1178 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1179 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1180 
1181 	if (sc->sk_type == SK_GENESIS) {
1182 		/* Configure packet arbiter */
1183 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1184 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1185 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1186 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1187 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1188 	}
1189 
1190 	/* Enable RAM interface */
1191 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1192 
1193 	sk_update_int_mod(sc);
1194 }
1195 
1196 int
1197 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1198 {
1199 	struct skc_attach_args *sa = aux;
1200 
1201 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1202 		return 0;
1203 
1204 	return 1;
1205 }
1206 
1207 /*
1208  * Each XMAC chip is attached as a separate logical IP interface.
1209  * Single port cards will have only one logical interface of course.
1210  */
1211 void
1212 sk_attach(struct device *parent, struct device *self, void *aux)
1213 {
1214 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1215 	struct sk_softc *sc = (struct sk_softc *)parent;
1216 	struct skc_attach_args *sa = aux;
1217 	struct sk_txmap_entry	*entry;
1218 	struct ifnet *ifp;
1219 	bus_dma_segment_t seg;
1220 	bus_dmamap_t dmamap;
1221 	caddr_t kva;
1222 	int i, rseg;
1223 
1224 	sc_if->sk_port = sa->skc_port;
1225 	sc_if->sk_softc = sc;
1226 	sc->sk_if[sa->skc_port] = sc_if;
1227 
1228 	if (sa->skc_port == SK_PORT_A)
1229 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1230 	if (sa->skc_port == SK_PORT_B)
1231 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1232 
1233 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1234 
1235 	/*
1236 	 * Get station address for this interface. Note that
1237 	 * dual port cards actually come with three station
1238 	 * addresses: one for each port, plus an extra. The
1239 	 * extra one is used by the SysKonnect driver software
1240 	 * as a 'virtual' station address for when both ports
1241 	 * are operating in failover mode. Currently we don't
1242 	 * use this extra address.
1243 	 */
1244 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1245 		sc_if->sk_enaddr[i] =
1246 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1247 
1248 
1249 	aprint_normal(": Ethernet address %s\n",
1250 	    ether_sprintf(sc_if->sk_enaddr));
1251 
1252 	/*
1253 	 * Set up RAM buffer addresses. The NIC will have a certain
1254 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1255 	 * need to divide this up a) between the transmitter and
1256  	 * receiver and b) between the two XMACs, if this is a
1257 	 * dual port NIC. Our algorithm is to divide up the memory
1258 	 * evenly so that everyone gets a fair share.
1259 	 */
1260 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1261 		u_int32_t		chunk, val;
1262 
1263 		chunk = sc->sk_ramsize / 2;
1264 		val = sc->sk_rboff / sizeof(u_int64_t);
1265 		sc_if->sk_rx_ramstart = val;
1266 		val += (chunk / sizeof(u_int64_t));
1267 		sc_if->sk_rx_ramend = val - 1;
1268 		sc_if->sk_tx_ramstart = val;
1269 		val += (chunk / sizeof(u_int64_t));
1270 		sc_if->sk_tx_ramend = val - 1;
1271 	} else {
1272 		u_int32_t		chunk, val;
1273 
1274 		chunk = sc->sk_ramsize / 4;
1275 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1276 		    sizeof(u_int64_t);
1277 		sc_if->sk_rx_ramstart = val;
1278 		val += (chunk / sizeof(u_int64_t));
1279 		sc_if->sk_rx_ramend = val - 1;
1280 		sc_if->sk_tx_ramstart = val;
1281 		val += (chunk / sizeof(u_int64_t));
1282 		sc_if->sk_tx_ramend = val - 1;
1283 	}
1284 
1285 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1286 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1287 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1288 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1289 
1290 	/* Read and save PHY type and set PHY address */
1291 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1292 	switch (sc_if->sk_phytype) {
1293 	case SK_PHYTYPE_XMAC:
1294 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1295 		break;
1296 	case SK_PHYTYPE_BCOM:
1297 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1298 		break;
1299 	case SK_PHYTYPE_MARV_COPPER:
1300 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1301 		break;
1302 	default:
1303 		aprint_error("%s: unsupported PHY type: %d\n",
1304 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1305 		return;
1306 	}
1307 
1308 	/* Allocate the descriptor queues. */
1309 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1310 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1311 		aprint_error("%s: can't alloc rx buffers\n",
1312 		    sc->sk_dev.dv_xname);
1313 		goto fail;
1314 	}
1315 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1316 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1317 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1318 		       sc_if->sk_dev.dv_xname,
1319 		       (u_long) sizeof(struct sk_ring_data));
1320 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1321 		goto fail;
1322 	}
1323 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1324 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1325             &sc_if->sk_ring_map)) {
1326 		aprint_error("%s: can't create dma map\n",
1327 		    sc_if->sk_dev.dv_xname);
1328 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 		    sizeof(struct sk_ring_data));
1330 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 		goto fail;
1332 	}
1333 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1334 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1335 		aprint_error("%s: can't load dma map\n",
1336 		    sc_if->sk_dev.dv_xname);
1337 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1338 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1339 		    sizeof(struct sk_ring_data));
1340 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1341 		goto fail;
1342 	}
1343 
1344 	for (i = 0; i < SK_RX_RING_CNT; i++)
1345 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1346 
1347 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1348 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1349 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1350 
1351 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1352 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1353 			aprint_error("%s: Can't create TX dmamap\n",
1354 				sc_if->sk_dev.dv_xname);
1355 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1356 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1357 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1358 			    sizeof(struct sk_ring_data));
1359 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1360 			goto fail;
1361 		}
1362 
1363 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1364 		if (!entry) {
1365 			aprint_error("%s: Can't alloc txmap entry\n",
1366 				sc_if->sk_dev.dv_xname);
1367 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1368 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1369 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1370 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1371 			    sizeof(struct sk_ring_data));
1372 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1373 			goto fail;
1374 		}
1375 		entry->dmamap = dmamap;
1376 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1377 	}
1378 
1379         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1380 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1381 
1382 	ifp = &sc_if->sk_ethercom.ec_if;
1383 	/* Try to allocate memory for jumbo buffers. */
1384 	if (sk_alloc_jumbo_mem(sc_if)) {
1385 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1386 		goto fail;
1387 	}
1388 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1389 		| ETHERCAP_JUMBO_MTU;
1390 
1391 	ifp->if_softc = sc_if;
1392 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1393 	ifp->if_ioctl = sk_ioctl;
1394 	ifp->if_start = sk_start;
1395 	ifp->if_stop = sk_stop;
1396 	ifp->if_init = sk_init;
1397 	ifp->if_watchdog = sk_watchdog;
1398 	ifp->if_capabilities = 0;
1399 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1400 	IFQ_SET_READY(&ifp->if_snd);
1401 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1402 
1403 	/*
1404 	 * Do miibus setup.
1405 	 */
1406 	switch (sc->sk_type) {
1407 	case SK_GENESIS:
1408 		sk_init_xmac(sc_if);
1409 		break;
1410 	case SK_YUKON:
1411 	case SK_YUKON_LITE:
1412 	case SK_YUKON_LP:
1413 		sk_init_yukon(sc_if);
1414 		break;
1415 	default:
1416 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1417 		      sc->sk_type);
1418 	}
1419 
1420  	DPRINTFN(2, ("sk_attach: 1\n"));
1421 
1422 	sc_if->sk_mii.mii_ifp = ifp;
1423 	switch (sc->sk_type) {
1424 	case SK_GENESIS:
1425 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1426 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1427 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1428 		break;
1429 	case SK_YUKON:
1430 	case SK_YUKON_LITE:
1431 	case SK_YUKON_LP:
1432 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1433 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1434 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1435 		break;
1436 	}
1437 
1438 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1439 	    sk_ifmedia_upd, sk_ifmedia_sts);
1440 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1441 	    MII_OFFSET_ANY, 0);
1442 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1443 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1444 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1445 			    0, NULL);
1446 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1447 	} else
1448 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1449 
1450 	callout_init(&sc_if->sk_tick_ch);
1451 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1452 
1453 	DPRINTFN(2, ("sk_attach: 1\n"));
1454 
1455 	/*
1456 	 * Call MI attach routines.
1457 	 */
1458 	if_attach(ifp);
1459 
1460 	ether_ifattach(ifp, sc_if->sk_enaddr);
1461 
1462 #if NRND > 0
1463         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1464             RND_TYPE_NET, 0);
1465 #endif
1466 
1467 	DPRINTFN(2, ("sk_attach: end\n"));
1468 
1469 	return;
1470 
1471 fail:
1472 	sc->sk_if[sa->skc_port] = NULL;
1473 }
1474 
1475 int
1476 skcprint(void *aux, const char *pnp)
1477 {
1478 	struct skc_attach_args *sa = aux;
1479 
1480 	if (pnp)
1481 		aprint_normal("sk port %c at %s",
1482 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1483 	else
1484 		aprint_normal(" port %c",
1485 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1486 	return UNCONF;
1487 }
1488 
1489 /*
1490  * Attach the interface. Allocate softc structures, do ifmedia
1491  * setup and ethernet/BPF attach.
1492  */
1493 void
1494 skc_attach(struct device *parent, struct device *self, void *aux)
1495 {
1496 	struct sk_softc *sc = (struct sk_softc *)self;
1497 	struct pci_attach_args *pa = aux;
1498 	struct skc_attach_args skca;
1499 	pci_chipset_tag_t pc = pa->pa_pc;
1500 #ifndef SK_USEIOSPACE
1501 	pcireg_t memtype;
1502 #endif
1503 	pci_intr_handle_t ih;
1504 	const char *intrstr = NULL;
1505 	bus_addr_t iobase;
1506 	bus_size_t iosize;
1507 	int rc, sk_nodenum;
1508 	u_int32_t command;
1509 	const char *revstr;
1510 	const struct sysctlnode *node;
1511 
1512 	DPRINTFN(2, ("begin skc_attach\n"));
1513 
1514 	/*
1515 	 * Handle power management nonsense.
1516 	 */
1517 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1518 
1519 	if (command == 0x01) {
1520 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1521 		if (command & SK_PSTATE_MASK) {
1522 			u_int32_t		xiobase, membase, irq;
1523 
1524 			/* Save important PCI config data. */
1525 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1526 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1527 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1528 
1529 			/* Reset the power state. */
1530 			aprint_normal("%s chip is in D%d power mode "
1531 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1532 			    command & SK_PSTATE_MASK);
1533 			command &= 0xFFFFFFFC;
1534 			pci_conf_write(pc, pa->pa_tag,
1535 			    SK_PCI_PWRMGMTCTRL, command);
1536 
1537 			/* Restore PCI config data. */
1538 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1539 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1540 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Map control/status registers.
1546 	 */
1547 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1548 	command |= PCI_COMMAND_IO_ENABLE |
1549 	    PCI_COMMAND_MEM_ENABLE |
1550 	    PCI_COMMAND_MASTER_ENABLE;
1551 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1552 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1553 
1554 #ifdef SK_USEIOSPACE
1555 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1556 		aprint_error(": failed to enable I/O ports!\n");
1557 		return;
1558 	}
1559 	/*
1560 	 * Map control/status registers.
1561 	 */
1562 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1563 			&sc->sk_btag, &sc->sk_bhandle,
1564 			&iobase, &iosize)) {
1565 		aprint_error(": can't find i/o space\n");
1566 		return;
1567 	}
1568 #else
1569 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1570 		aprint_error(": failed to enable memory mapping!\n");
1571 		return;
1572 	}
1573 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1574 	switch (memtype) {
1575         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1576         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1577                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1578 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1579 				   &iobase, &iosize) == 0)
1580                         break;
1581         default:
1582                 aprint_error("%s: can't find mem space\n",
1583 		       sc->sk_dev.dv_xname);
1584                 return;
1585 	}
1586 
1587 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1588 #endif
1589 	sc->sc_dmatag = pa->pa_dmat;
1590 
1591 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1592 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1593 
1594 	/* bail out here if chip is not recognized */
1595 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1596 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1597 		goto fail;
1598 	}
1599 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1600 
1601 	/* Allocate interrupt */
1602 	if (pci_intr_map(pa, &ih)) {
1603 		aprint_error(": couldn't map interrupt\n");
1604 		goto fail;
1605 	}
1606 
1607 	intrstr = pci_intr_string(pc, ih);
1608 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1609 	if (sc->sk_intrhand == NULL) {
1610 		aprint_error(": couldn't establish interrupt");
1611 		if (intrstr != NULL)
1612 			aprint_normal(" at %s", intrstr);
1613 		goto fail;
1614 	}
1615 	aprint_normal(": %s\n", intrstr);
1616 
1617 	/* Reset the adapter. */
1618 	sk_reset(sc);
1619 
1620 	/* Read and save vital product data from EEPROM. */
1621 	sk_vpd_read(sc);
1622 
1623 	if (sc->sk_type == SK_GENESIS) {
1624 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1625 		/* Read and save RAM size and RAMbuffer offset */
1626 		switch (val) {
1627 		case SK_RAMSIZE_512K_64:
1628 			sc->sk_ramsize = 0x80000;
1629 			sc->sk_rboff = SK_RBOFF_0;
1630 			break;
1631 		case SK_RAMSIZE_1024K_64:
1632 			sc->sk_ramsize = 0x100000;
1633 			sc->sk_rboff = SK_RBOFF_80000;
1634 			break;
1635 		case SK_RAMSIZE_1024K_128:
1636 			sc->sk_ramsize = 0x100000;
1637 			sc->sk_rboff = SK_RBOFF_0;
1638 			break;
1639 		case SK_RAMSIZE_2048K_128:
1640 			sc->sk_ramsize = 0x200000;
1641 			sc->sk_rboff = SK_RBOFF_0;
1642 			break;
1643 		default:
1644 			aprint_error("%s: unknown ram size: %d\n",
1645 			       sc->sk_dev.dv_xname, val);
1646 			goto fail_1;
1647 			break;
1648 		}
1649 
1650 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1651 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1652 			     sc->sk_rboff));
1653 	} else {
1654 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1655 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1656 		sc->sk_rboff = SK_RBOFF_0;
1657 
1658 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1659 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1660 			     sc->sk_rboff));
1661 	}
1662 
1663 	/* Read and save physical media type */
1664 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1665 	case SK_PMD_1000BASESX:
1666 		sc->sk_pmd = IFM_1000_SX;
1667 		break;
1668 	case SK_PMD_1000BASELX:
1669 		sc->sk_pmd = IFM_1000_LX;
1670 		break;
1671 	case SK_PMD_1000BASECX:
1672 		sc->sk_pmd = IFM_1000_CX;
1673 		break;
1674 	case SK_PMD_1000BASETX:
1675 	case SK_PMD_1000BASETX_ALT:
1676 		sc->sk_pmd = IFM_1000_T;
1677 		break;
1678 	default:
1679 		aprint_error("%s: unknown media type: 0x%x\n",
1680 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1681 		goto fail_1;
1682 	}
1683 
1684 	/* determine whether to name it with vpd or just make it up */
1685 	/* Marvell Yukon VPD's can freqently be bogus */
1686 
1687 	switch (pa->pa_id) {
1688 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1689 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1690 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1691 	case PCI_PRODUCT_3COM_3C940:
1692 	case PCI_PRODUCT_DLINK_DGE530T:
1693 	case PCI_PRODUCT_DLINK_DGE560T:
1694 	case PCI_PRODUCT_DLINK_DGE560T_2:
1695 	case PCI_PRODUCT_LINKSYS_EG1032:
1696 	case PCI_PRODUCT_LINKSYS_EG1064:
1697 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1698 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1699 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1700 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1701 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1702 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1703 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1704 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1705  		sc->sk_name = sc->sk_vpd_prodname;
1706  		break;
1707 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1708 	/* whoops yukon vpd prodname bears no resemblance to reality */
1709 		switch (sc->sk_type) {
1710 		case SK_GENESIS:
1711 			sc->sk_name = sc->sk_vpd_prodname;
1712 			break;
1713 		case SK_YUKON:
1714 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1715 			break;
1716 		case SK_YUKON_LITE:
1717 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1718 			break;
1719 		case SK_YUKON_LP:
1720 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1721 			break;
1722 		default:
1723 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1724 		}
1725 
1726 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1727 
1728 		if ( sc->sk_type == SK_YUKON ) {
1729 			uint32_t flashaddr;
1730 			uint8_t testbyte;
1731 
1732 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1733 
1734 			/* test Flash-Address Register */
1735 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1736 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1737 
1738 			if (testbyte != 0) {
1739 				/* this is yukon lite Rev. A0 */
1740 				sc->sk_type = SK_YUKON_LITE;
1741 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1742 				/* restore Flash-Address Register */
1743 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1744 			}
1745 		}
1746 		break;
1747 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1748 		sc->sk_name = sc->sk_vpd_prodname;
1749 		break;
1750  	default:
1751 		sc->sk_name = "Unknown Marvell";
1752 	}
1753 
1754 
1755 	if ( sc->sk_type == SK_YUKON_LITE ) {
1756 		switch (sc->sk_rev) {
1757 		case SK_YUKON_LITE_REV_A0:
1758 			revstr = "A0";
1759 			break;
1760 		case SK_YUKON_LITE_REV_A1:
1761 			revstr = "A1";
1762 			break;
1763 		case SK_YUKON_LITE_REV_A3:
1764 			revstr = "A3";
1765 			break;
1766 		default:
1767 			revstr = "";
1768 		}
1769 	} else {
1770 		revstr = "";
1771 	}
1772 
1773 	/* Announce the product name. */
1774 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1775 			      sc->sk_name, revstr, sc->sk_rev);
1776 
1777 	skca.skc_port = SK_PORT_A;
1778 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1779 
1780 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1781 		skca.skc_port = SK_PORT_B;
1782 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1783 	}
1784 
1785 	/* Turn on the 'driver is loaded' LED. */
1786 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1787 
1788 	/* skc sysctl setup */
1789 
1790 	sc->sk_int_mod = SK_IM_DEFAULT;
1791 	sc->sk_int_mod_pending = 0;
1792 
1793 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1794 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1795 	    SYSCTL_DESCR("skc per-controller controls"),
1796 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1797 	    CTL_EOL)) != 0) {
1798 		aprint_normal("%s: couldn't create sysctl node\n",
1799 		    sc->sk_dev.dv_xname);
1800 		goto fail_1;
1801 	}
1802 
1803 	sk_nodenum = node->sysctl_num;
1804 
1805 	/* interrupt moderation time in usecs */
1806 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1807 	    CTLFLAG_READWRITE,
1808 	    CTLTYPE_INT, "int_mod",
1809 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1810 	    sk_sysctl_handler, 0, sc,
1811 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1812 	    CTL_EOL)) != 0) {
1813 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1814 		    sc->sk_dev.dv_xname);
1815 		goto fail_1;
1816 	}
1817 
1818 	return;
1819 
1820 fail_1:
1821 	pci_intr_disestablish(pc, sc->sk_intrhand);
1822 fail:
1823 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1824 }
1825 
1826 int
1827 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1828 {
1829 	struct sk_softc		*sc = sc_if->sk_softc;
1830 	struct sk_tx_desc	*f = NULL;
1831 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1832 	int			i;
1833 	struct sk_txmap_entry	*entry;
1834 	bus_dmamap_t		txmap;
1835 
1836 	DPRINTFN(3, ("sk_encap\n"));
1837 
1838 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1839 	if (entry == NULL) {
1840 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1841 		return ENOBUFS;
1842 	}
1843 	txmap = entry->dmamap;
1844 
1845 	cur = frag = *txidx;
1846 
1847 #ifdef SK_DEBUG
1848 	if (skdebug >= 3)
1849 		sk_dump_mbuf(m_head);
1850 #endif
1851 
1852 	/*
1853 	 * Start packing the mbufs in this chain into
1854 	 * the fragment pointers. Stop when we run out
1855 	 * of fragments or hit the end of the mbuf chain.
1856 	 */
1857 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1858 	    BUS_DMA_NOWAIT)) {
1859 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1860 		return ENOBUFS;
1861 	}
1862 
1863 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1864 
1865 	/* Sync the DMA map. */
1866 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1867 	    BUS_DMASYNC_PREWRITE);
1868 
1869 	for (i = 0; i < txmap->dm_nsegs; i++) {
1870 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1871 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1872 			return ENOBUFS;
1873 		}
1874 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1875 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1876 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1877 		if (cnt == 0)
1878 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1879 		else
1880 			sk_ctl |= SK_TXCTL_OWN;
1881 		f->sk_ctl = htole32(sk_ctl);
1882 		cur = frag;
1883 		SK_INC(frag, SK_TX_RING_CNT);
1884 		cnt++;
1885 	}
1886 
1887 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1888 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1889 
1890 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1891 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1892 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1893 
1894 	/* Sync descriptors before handing to chip */
1895 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1896 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1897 
1898 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1899 		htole32(SK_TXCTL_OWN);
1900 
1901 	/* Sync first descriptor to hand it off */
1902 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1903 
1904 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1905 
1906 #ifdef SK_DEBUG
1907 	if (skdebug >= 3) {
1908 		struct sk_tx_desc *desc;
1909 		u_int32_t idx;
1910 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1911 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1912 			sk_dump_txdesc(desc, idx);
1913 		}
1914 	}
1915 #endif
1916 
1917 	*txidx = frag;
1918 
1919 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1920 
1921 	return 0;
1922 }
1923 
1924 void
1925 sk_start(struct ifnet *ifp)
1926 {
1927         struct sk_if_softc	*sc_if = ifp->if_softc;
1928         struct sk_softc		*sc = sc_if->sk_softc;
1929         struct mbuf		*m_head = NULL;
1930         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1931 	int			pkts = 0;
1932 
1933 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1934 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1935 
1936 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1937 		IFQ_POLL(&ifp->if_snd, m_head);
1938 		if (m_head == NULL)
1939 			break;
1940 
1941 		/*
1942 		 * Pack the data into the transmit ring. If we
1943 		 * don't have room, set the OACTIVE flag and wait
1944 		 * for the NIC to drain the ring.
1945 		 */
1946 		if (sk_encap(sc_if, m_head, &idx)) {
1947 			ifp->if_flags |= IFF_OACTIVE;
1948 			break;
1949 		}
1950 
1951 		/* now we are committed to transmit the packet */
1952 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1953 		pkts++;
1954 
1955 		/*
1956 		 * If there's a BPF listener, bounce a copy of this frame
1957 		 * to him.
1958 		 */
1959 #if NBPFILTER > 0
1960 		if (ifp->if_bpf)
1961 			bpf_mtap(ifp->if_bpf, m_head);
1962 #endif
1963 	}
1964 	if (pkts == 0)
1965 		return;
1966 
1967 	/* Transmit */
1968 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1969 		sc_if->sk_cdata.sk_tx_prod = idx;
1970 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1971 
1972 		/* Set a timeout in case the chip goes out to lunch. */
1973 		ifp->if_timer = 5;
1974 	}
1975 }
1976 
1977 
1978 void
1979 sk_watchdog(struct ifnet *ifp)
1980 {
1981 	struct sk_if_softc *sc_if = ifp->if_softc;
1982 
1983 	/*
1984 	 * Reclaim first as there is a possibility of losing Tx completion
1985 	 * interrupts.
1986 	 */
1987 	sk_txeof(sc_if);
1988 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1989 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1990 
1991 		ifp->if_oerrors++;
1992 
1993 		sk_init(ifp);
1994 	}
1995 }
1996 
1997 void
1998 sk_shutdown(void * v)
1999 {
2000 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2001 	struct sk_softc		*sc = sc_if->sk_softc;
2002 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2003 
2004 	DPRINTFN(2, ("sk_shutdown\n"));
2005 	sk_stop(ifp,1);
2006 
2007 	/* Turn off the 'driver is loaded' LED. */
2008 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2009 
2010 	/*
2011 	 * Reset the GEnesis controller. Doing this should also
2012 	 * assert the resets on the attached XMAC(s).
2013 	 */
2014 	sk_reset(sc);
2015 }
2016 
2017 void
2018 sk_rxeof(struct sk_if_softc *sc_if)
2019 {
2020 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2021 	struct mbuf		*m;
2022 	struct sk_chain		*cur_rx;
2023 	struct sk_rx_desc	*cur_desc;
2024 	int			i, cur, total_len = 0;
2025 	u_int32_t		rxstat, sk_ctl;
2026 	bus_dmamap_t		dmamap;
2027 
2028 	i = sc_if->sk_cdata.sk_rx_prod;
2029 
2030 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2031 
2032 	for (;;) {
2033 		cur = i;
2034 
2035 		/* Sync the descriptor */
2036 		SK_CDRXSYNC(sc_if, cur,
2037 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2038 
2039 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2040 		if (sk_ctl & SK_RXCTL_OWN) {
2041 			/* Invalidate the descriptor -- it's not ready yet */
2042 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2043 			sc_if->sk_cdata.sk_rx_prod = i;
2044 			break;
2045 		}
2046 
2047 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2048 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2049 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2050 
2051 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2052 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2053 
2054 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2055 		m = cur_rx->sk_mbuf;
2056 		cur_rx->sk_mbuf = NULL;
2057 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2058 
2059 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2060 
2061 		SK_INC(i, SK_RX_RING_CNT);
2062 
2063 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2064 			ifp->if_ierrors++;
2065 			sk_newbuf(sc_if, cur, m, dmamap);
2066 			continue;
2067 		}
2068 
2069 		/*
2070 		 * Try to allocate a new jumbo buffer. If that
2071 		 * fails, copy the packet to mbufs and put the
2072 		 * jumbo buffer back in the ring so it can be
2073 		 * re-used. If allocating mbufs fails, then we
2074 		 * have to drop the packet.
2075 		 */
2076 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2077 			struct mbuf		*m0;
2078 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2079 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2080 			sk_newbuf(sc_if, cur, m, dmamap);
2081 			if (m0 == NULL) {
2082 				aprint_error("%s: no receive buffers "
2083 				    "available -- packet dropped!\n",
2084 				    sc_if->sk_dev.dv_xname);
2085 				ifp->if_ierrors++;
2086 				continue;
2087 			}
2088 			m_adj(m0, ETHER_ALIGN);
2089 			m = m0;
2090 		} else {
2091 			m->m_pkthdr.rcvif = ifp;
2092 			m->m_pkthdr.len = m->m_len = total_len;
2093 		}
2094 
2095 		ifp->if_ipackets++;
2096 
2097 #if NBPFILTER > 0
2098 		if (ifp->if_bpf)
2099 			bpf_mtap(ifp->if_bpf, m);
2100 #endif
2101 		/* pass it on. */
2102 		(*ifp->if_input)(ifp, m);
2103 	}
2104 }
2105 
2106 void
2107 sk_txeof(struct sk_if_softc *sc_if)
2108 {
2109 	struct sk_softc		*sc = sc_if->sk_softc;
2110 	struct sk_tx_desc	*cur_tx;
2111 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2112 	u_int32_t		idx, sk_ctl;
2113 	struct sk_txmap_entry	*entry;
2114 
2115 	DPRINTFN(3, ("sk_txeof\n"));
2116 
2117 	/*
2118 	 * Go through our tx ring and free mbufs for those
2119 	 * frames that have been sent.
2120 	 */
2121 	idx = sc_if->sk_cdata.sk_tx_cons;
2122 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2123 		SK_CDTXSYNC(sc_if, idx, 1,
2124 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2125 
2126 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2127 		sk_ctl = le32toh(cur_tx->sk_ctl);
2128 #ifdef SK_DEBUG
2129 		if (skdebug >= 3)
2130 			sk_dump_txdesc(cur_tx, idx);
2131 #endif
2132 		if (sk_ctl & SK_TXCTL_OWN) {
2133 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2134 			break;
2135 		}
2136 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2137 			ifp->if_opackets++;
2138 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2139 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2140 
2141 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2142 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2143 
2144 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2145 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2146 
2147 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2148 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2149 					  link);
2150 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2151 		}
2152 		sc_if->sk_cdata.sk_tx_cnt--;
2153 		SK_INC(idx, SK_TX_RING_CNT);
2154 	}
2155 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2156 		ifp->if_timer = 0;
2157 	else /* nudge chip to keep tx ring moving */
2158 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2159 
2160 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2161 		ifp->if_flags &= ~IFF_OACTIVE;
2162 
2163 	sc_if->sk_cdata.sk_tx_cons = idx;
2164 }
2165 
2166 void
2167 sk_tick(void *xsc_if)
2168 {
2169 	struct sk_if_softc *sc_if = xsc_if;
2170 	struct mii_data *mii = &sc_if->sk_mii;
2171 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2172 	int i;
2173 
2174 	DPRINTFN(3, ("sk_tick\n"));
2175 
2176 	if (!(ifp->if_flags & IFF_UP))
2177 		return;
2178 
2179 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2180 		sk_intr_bcom(sc_if);
2181 		return;
2182 	}
2183 
2184 	/*
2185 	 * According to SysKonnect, the correct way to verify that
2186 	 * the link has come back up is to poll bit 0 of the GPIO
2187 	 * register three times. This pin has the signal from the
2188 	 * link sync pin connected to it; if we read the same link
2189 	 * state 3 times in a row, we know the link is up.
2190 	 */
2191 	for (i = 0; i < 3; i++) {
2192 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2193 			break;
2194 	}
2195 
2196 	if (i != 3) {
2197 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2198 		return;
2199 	}
2200 
2201 	/* Turn the GP0 interrupt back on. */
2202 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2203 	SK_XM_READ_2(sc_if, XM_ISR);
2204 	mii_tick(mii);
2205 	mii_pollstat(mii);
2206 	callout_stop(&sc_if->sk_tick_ch);
2207 }
2208 
2209 void
2210 sk_intr_bcom(struct sk_if_softc *sc_if)
2211 {
2212 	struct mii_data *mii = &sc_if->sk_mii;
2213 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2214 	int status;
2215 
2216 
2217 	DPRINTFN(3, ("sk_intr_bcom\n"));
2218 
2219 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2220 
2221 	/*
2222 	 * Read the PHY interrupt register to make sure
2223 	 * we clear any pending interrupts.
2224 	 */
2225 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2226 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2227 
2228 	if (!(ifp->if_flags & IFF_RUNNING)) {
2229 		sk_init_xmac(sc_if);
2230 		return;
2231 	}
2232 
2233 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2234 		int lstat;
2235 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2236 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2237 
2238 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2239 			mii_mediachg(mii);
2240 			/* Turn off the link LED. */
2241 			SK_IF_WRITE_1(sc_if, 0,
2242 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2243 			sc_if->sk_link = 0;
2244 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2245 			sk_xmac_miibus_writereg((struct device *)sc_if,
2246 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2247 			mii_tick(mii);
2248 			sc_if->sk_link = 1;
2249 			/* Turn on the link LED. */
2250 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2251 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2252 			    SK_LINKLED_BLINK_OFF);
2253 			mii_pollstat(mii);
2254 		} else {
2255 			mii_tick(mii);
2256 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2257 		}
2258 	}
2259 
2260 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2261 }
2262 
2263 void
2264 sk_intr_xmac(struct sk_if_softc	*sc_if)
2265 {
2266 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2267 
2268 	DPRINTFN(3, ("sk_intr_xmac\n"));
2269 
2270 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2271 		if (status & XM_ISR_GP0_SET) {
2272 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2273 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2274 		}
2275 
2276 		if (status & XM_ISR_AUTONEG_DONE) {
2277 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2278 		}
2279 	}
2280 
2281 	if (status & XM_IMR_TX_UNDERRUN)
2282 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2283 
2284 	if (status & XM_IMR_RX_OVERRUN)
2285 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2286 }
2287 
2288 void
2289 sk_intr_yukon(struct sk_if_softc *sc_if)
2290 {
2291 	int status;
2292 
2293 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2294 
2295 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2296 }
2297 
2298 int
2299 sk_intr(void *xsc)
2300 {
2301 	struct sk_softc		*sc = xsc;
2302 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2303 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2304 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2305 	u_int32_t		status;
2306 	int			claimed = 0;
2307 
2308 	if (sc_if0 != NULL)
2309 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2310 	if (sc_if1 != NULL)
2311 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2312 
2313 	for (;;) {
2314 		status = CSR_READ_4(sc, SK_ISSR);
2315 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2316 
2317 		if (!(status & sc->sk_intrmask))
2318 			break;
2319 
2320 		claimed = 1;
2321 
2322 		/* Handle receive interrupts first. */
2323 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2324 			sk_rxeof(sc_if0);
2325 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2326 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2327 		}
2328 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2329 			sk_rxeof(sc_if1);
2330 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2331 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2332 		}
2333 
2334 		/* Then transmit interrupts. */
2335 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2336 			sk_txeof(sc_if0);
2337 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2338 			    SK_TXBMU_CLR_IRQ_EOF);
2339 		}
2340 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2341 			sk_txeof(sc_if1);
2342 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2343 			    SK_TXBMU_CLR_IRQ_EOF);
2344 		}
2345 
2346 		/* Then MAC interrupts. */
2347 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2348 		    (ifp0->if_flags & IFF_RUNNING)) {
2349 			if (sc->sk_type == SK_GENESIS)
2350 				sk_intr_xmac(sc_if0);
2351 			else
2352 				sk_intr_yukon(sc_if0);
2353 		}
2354 
2355 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2356 		    (ifp1->if_flags & IFF_RUNNING)) {
2357 			if (sc->sk_type == SK_GENESIS)
2358 				sk_intr_xmac(sc_if1);
2359 			else
2360 				sk_intr_yukon(sc_if1);
2361 
2362 		}
2363 
2364 		if (status & SK_ISR_EXTERNAL_REG) {
2365 			if (sc_if0 != NULL &&
2366 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2367 				sk_intr_bcom(sc_if0);
2368 
2369 			if (sc_if1 != NULL &&
2370 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2371 				sk_intr_bcom(sc_if1);
2372 		}
2373 	}
2374 
2375 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2376 
2377 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2378 		sk_start(ifp0);
2379 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2380 		sk_start(ifp1);
2381 
2382 #if NRND > 0
2383 	if (RND_ENABLED(&sc->rnd_source))
2384 		rnd_add_uint32(&sc->rnd_source, status);
2385 #endif
2386 
2387 	if (sc->sk_int_mod_pending)
2388 		sk_update_int_mod(sc);
2389 
2390 	return claimed;
2391 }
2392 
2393 void
2394 sk_init_xmac(struct sk_if_softc	*sc_if)
2395 {
2396 	struct sk_softc		*sc = sc_if->sk_softc;
2397 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2398 	static const struct sk_bcom_hack     bhack[] = {
2399 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2400 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2401 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2402 	{ 0, 0 } };
2403 
2404 	DPRINTFN(1, ("sk_init_xmac\n"));
2405 
2406 	/* Unreset the XMAC. */
2407 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2408 	DELAY(1000);
2409 
2410 	/* Reset the XMAC's internal state. */
2411 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2412 
2413 	/* Save the XMAC II revision */
2414 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2415 
2416 	/*
2417 	 * Perform additional initialization for external PHYs,
2418 	 * namely for the 1000baseTX cards that use the XMAC's
2419 	 * GMII mode.
2420 	 */
2421 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2422 		int			i = 0;
2423 		u_int32_t		val;
2424 
2425 		/* Take PHY out of reset. */
2426 		val = sk_win_read_4(sc, SK_GPIO);
2427 		if (sc_if->sk_port == SK_PORT_A)
2428 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2429 		else
2430 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2431 		sk_win_write_4(sc, SK_GPIO, val);
2432 
2433 		/* Enable GMII mode on the XMAC. */
2434 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2435 
2436 		sk_xmac_miibus_writereg((struct device *)sc_if,
2437 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2438 		DELAY(10000);
2439 		sk_xmac_miibus_writereg((struct device *)sc_if,
2440 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2441 
2442 		/*
2443 		 * Early versions of the BCM5400 apparently have
2444 		 * a bug that requires them to have their reserved
2445 		 * registers initialized to some magic values. I don't
2446 		 * know what the numbers do, I'm just the messenger.
2447 		 */
2448 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2449 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2450 			while (bhack[i].reg) {
2451 				sk_xmac_miibus_writereg((struct device *)sc_if,
2452 				    SK_PHYADDR_BCOM, bhack[i].reg,
2453 				    bhack[i].val);
2454 				i++;
2455 			}
2456 		}
2457 	}
2458 
2459 	/* Set station address */
2460 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2461 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2462 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2463 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2464 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2465 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2466 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2467 
2468 	if (ifp->if_flags & IFF_PROMISC)
2469 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2470 	else
2471 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2472 
2473 	if (ifp->if_flags & IFF_BROADCAST)
2474 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2475 	else
2476 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2477 
2478 	/* We don't need the FCS appended to the packet. */
2479 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2480 
2481 	/* We want short frames padded to 60 bytes. */
2482 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2483 
2484 	/*
2485 	 * Enable the reception of all error frames. This is is
2486 	 * a necessary evil due to the design of the XMAC. The
2487 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2488 	 * frames can be up to 9000 bytes in length. When bad
2489 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2490 	 * in 'store and forward' mode. For this to work, the
2491 	 * entire frame has to fit into the FIFO, but that means
2492 	 * that jumbo frames larger than 8192 bytes will be
2493 	 * truncated. Disabling all bad frame filtering causes
2494 	 * the RX FIFO to operate in streaming mode, in which
2495 	 * case the XMAC will start transfering frames out of the
2496 	 * RX FIFO as soon as the FIFO threshold is reached.
2497 	 */
2498 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2499 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2500 	    XM_MODE_RX_INRANGELEN);
2501 
2502 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2503 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2504 	else
2505 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2506 
2507 	/*
2508 	 * Bump up the transmit threshold. This helps hold off transmit
2509 	 * underruns when we're blasting traffic from both ports at once.
2510 	 */
2511 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2512 
2513 	/* Set multicast filter */
2514 	sk_setmulti(sc_if);
2515 
2516 	/* Clear and enable interrupts */
2517 	SK_XM_READ_2(sc_if, XM_ISR);
2518 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2519 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2520 	else
2521 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2522 
2523 	/* Configure MAC arbiter */
2524 	switch (sc_if->sk_xmac_rev) {
2525 	case XM_XMAC_REV_B2:
2526 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2527 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2528 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2529 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2530 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2531 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2532 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2533 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2534 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2535 		break;
2536 	case XM_XMAC_REV_C1:
2537 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2538 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2539 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2540 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2541 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2542 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2543 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2544 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2545 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2546 		break;
2547 	default:
2548 		break;
2549 	}
2550 	sk_win_write_2(sc, SK_MACARB_CTL,
2551 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2552 
2553 	sc_if->sk_link = 1;
2554 }
2555 
2556 void sk_init_yukon(struct sk_if_softc *sc_if)
2557 {
2558 	u_int32_t		/*mac, */phy;
2559 	u_int16_t		reg;
2560 	struct sk_softc		*sc;
2561 	int			i;
2562 
2563 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2564 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2565 
2566 	sc = sc_if->sk_softc;
2567 	if (sc->sk_type == SK_YUKON_LITE &&
2568 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2569 		/* Take PHY out of reset. */
2570 		sk_win_write_4(sc, SK_GPIO,
2571 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2572 	}
2573 
2574 
2575 	/* GMAC and GPHY Reset */
2576 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2577 
2578 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2579 
2580 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2581 	DELAY(1000);
2582 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2583 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2584 	DELAY(1000);
2585 
2586 
2587 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2588 
2589 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2590 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2591 
2592 	switch (sc_if->sk_softc->sk_pmd) {
2593 	case IFM_1000_SX:
2594 	case IFM_1000_LX:
2595 		phy |= SK_GPHY_FIBER;
2596 		break;
2597 
2598 	case IFM_1000_CX:
2599 	case IFM_1000_T:
2600 		phy |= SK_GPHY_COPPER;
2601 		break;
2602 	}
2603 
2604 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2605 
2606 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2607 	DELAY(1000);
2608 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2609 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2610 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2611 
2612 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2613 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2614 
2615 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2616 
2617 	/* unused read of the interrupt source register */
2618 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2619 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2620 
2621 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2622 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2623 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2624 
2625 	/* MIB Counter Clear Mode set */
2626         reg |= YU_PAR_MIB_CLR;
2627 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2628 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2629 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2630 
2631 	/* MIB Counter Clear Mode clear */
2632 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2633         reg &= ~YU_PAR_MIB_CLR;
2634 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2635 
2636 	/* receive control reg */
2637 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2638 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2639 		      YU_RCR_CRCR);
2640 
2641 	/* transmit parameter register */
2642 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2643 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2644 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2645 
2646 	/* serial mode register */
2647 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2648 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2649 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2650 		      YU_SMR_IPG_DATA(0x1e));
2651 
2652 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2653 	/* Setup Yukon's address */
2654 	for (i = 0; i < 3; i++) {
2655 		/* Write Source Address 1 (unicast filter) */
2656 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2657 			      sc_if->sk_enaddr[i * 2] |
2658 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2659 	}
2660 
2661 	for (i = 0; i < 3; i++) {
2662 		reg = sk_win_read_2(sc_if->sk_softc,
2663 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2664 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2665 	}
2666 
2667 	/* Set multicast filter */
2668 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2669 	sk_setmulti(sc_if);
2670 
2671 	/* enable interrupt mask for counter overflows */
2672 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2673 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2674 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2675 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2676 
2677 	/* Configure RX MAC FIFO */
2678 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2679 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2680 
2681 	/* Configure TX MAC FIFO */
2682 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2683 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2684 
2685 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2686 }
2687 
2688 /*
2689  * Note that to properly initialize any part of the GEnesis chip,
2690  * you first have to take it out of reset mode.
2691  */
2692 int
2693 sk_init(struct ifnet *ifp)
2694 {
2695 	struct sk_if_softc	*sc_if = ifp->if_softc;
2696 	struct sk_softc		*sc = sc_if->sk_softc;
2697 	struct mii_data		*mii = &sc_if->sk_mii;
2698 	int			s;
2699 	u_int32_t		imr, sk_imtimer_ticks;
2700 
2701 	DPRINTFN(1, ("sk_init\n"));
2702 
2703 	s = splnet();
2704 
2705 	if (ifp->if_flags & IFF_RUNNING) {
2706 		splx(s);
2707 		return 0;
2708 	}
2709 
2710 	/* Cancel pending I/O and free all RX/TX buffers. */
2711 	sk_stop(ifp,0);
2712 
2713 	if (sc->sk_type == SK_GENESIS) {
2714 		/* Configure LINK_SYNC LED */
2715 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2716 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2717 			      SK_LINKLED_LINKSYNC_ON);
2718 
2719 		/* Configure RX LED */
2720 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2721 			      SK_RXLEDCTL_COUNTER_START);
2722 
2723 		/* Configure TX LED */
2724 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2725 			      SK_TXLEDCTL_COUNTER_START);
2726 	}
2727 
2728 	/* Configure I2C registers */
2729 
2730 	/* Configure XMAC(s) */
2731 	switch (sc->sk_type) {
2732 	case SK_GENESIS:
2733 		sk_init_xmac(sc_if);
2734 		break;
2735 	case SK_YUKON:
2736 	case SK_YUKON_LITE:
2737 	case SK_YUKON_LP:
2738 		sk_init_yukon(sc_if);
2739 		break;
2740 	}
2741 	mii_mediachg(mii);
2742 
2743 	if (sc->sk_type == SK_GENESIS) {
2744 		/* Configure MAC FIFOs */
2745 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2747 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2748 
2749 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2750 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2751 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2752 	}
2753 
2754 	/* Configure transmit arbiter(s) */
2755 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2756 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2757 
2758 	/* Configure RAMbuffers */
2759 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2765 
2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2773 
2774 	/* Configure BMUs */
2775 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2777 	    SK_RX_RING_ADDR(sc_if, 0));
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2779 
2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2781 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2782             SK_TX_RING_ADDR(sc_if, 0));
2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2784 
2785 	/* Init descriptors */
2786 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2787 		aprint_error("%s: initialization failed: no "
2788 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2789 		sk_stop(ifp,0);
2790 		splx(s);
2791 		return ENOBUFS;
2792 	}
2793 
2794 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2795 		aprint_error("%s: initialization failed: no "
2796 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2797 		sk_stop(ifp,0);
2798 		splx(s);
2799 		return ENOBUFS;
2800 	}
2801 
2802 	/* Set interrupt moderation if changed via sysctl. */
2803 	switch (sc->sk_type) {
2804 	case SK_GENESIS:
2805 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2806 		break;
2807 	case SK_YUKON_EC:
2808 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2809 		break;
2810 	default:
2811 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2812 	}
2813 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2814 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2815 		sk_win_write_4(sc, SK_IMTIMERINIT,
2816 		    SK_IM_USECS(sc->sk_int_mod));
2817 		aprint_verbose("%s: interrupt moderation is %d us\n",
2818 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2819 	}
2820 
2821 	/* Configure interrupt handling */
2822 	CSR_READ_4(sc, SK_ISSR);
2823 	if (sc_if->sk_port == SK_PORT_A)
2824 		sc->sk_intrmask |= SK_INTRS1;
2825 	else
2826 		sc->sk_intrmask |= SK_INTRS2;
2827 
2828 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2829 
2830 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2831 
2832 	/* Start BMUs. */
2833 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2834 
2835 	if (sc->sk_type == SK_GENESIS) {
2836 		/* Enable XMACs TX and RX state machines */
2837 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2838 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2839 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2840 	}
2841 
2842 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2843 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2844 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2845 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2846 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2847 	}
2848 
2849 
2850 	ifp->if_flags |= IFF_RUNNING;
2851 	ifp->if_flags &= ~IFF_OACTIVE;
2852 
2853 	splx(s);
2854 	return 0;
2855 }
2856 
2857 void
2858 sk_stop(struct ifnet *ifp, int disable)
2859 {
2860         struct sk_if_softc	*sc_if = ifp->if_softc;
2861 	struct sk_softc		*sc = sc_if->sk_softc;
2862 	int			i;
2863 
2864 	DPRINTFN(1, ("sk_stop\n"));
2865 
2866 	callout_stop(&sc_if->sk_tick_ch);
2867 
2868 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2869 		u_int32_t		val;
2870 
2871 		/* Put PHY back into reset. */
2872 		val = sk_win_read_4(sc, SK_GPIO);
2873 		if (sc_if->sk_port == SK_PORT_A) {
2874 			val |= SK_GPIO_DIR0;
2875 			val &= ~SK_GPIO_DAT0;
2876 		} else {
2877 			val |= SK_GPIO_DIR2;
2878 			val &= ~SK_GPIO_DAT2;
2879 		}
2880 		sk_win_write_4(sc, SK_GPIO, val);
2881 	}
2882 
2883 	/* Turn off various components of this interface. */
2884 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2885 	switch (sc->sk_type) {
2886 	case SK_GENESIS:
2887 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2888 			      SK_TXMACCTL_XMAC_RESET);
2889 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2890 		break;
2891 	case SK_YUKON:
2892 	case SK_YUKON_LITE:
2893 	case SK_YUKON_LP:
2894 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2895 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2896 		break;
2897 	}
2898 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2899 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2900 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2901 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2902 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2903 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2904 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2905 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2906 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2907 
2908 	/* Disable interrupts */
2909 	if (sc_if->sk_port == SK_PORT_A)
2910 		sc->sk_intrmask &= ~SK_INTRS1;
2911 	else
2912 		sc->sk_intrmask &= ~SK_INTRS2;
2913 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2914 
2915 	SK_XM_READ_2(sc_if, XM_ISR);
2916 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2917 
2918 	/* Free RX and TX mbufs still in the queues. */
2919 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2920 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2921 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2922 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2923 		}
2924 	}
2925 
2926 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2927 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2928 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2929 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2930 		}
2931 	}
2932 
2933 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2934 }
2935 
2936 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2937 
2938 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2939 
2940 #ifdef SK_DEBUG
2941 void
2942 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2943 {
2944 #define DESC_PRINT(X)					\
2945 	if (X)					\
2946 		printf("txdesc[%d]." #X "=%#x\n",	\
2947 		       idx, X);
2948 
2949 	DESC_PRINT(le32toh(desc->sk_ctl));
2950 	DESC_PRINT(le32toh(desc->sk_next));
2951 	DESC_PRINT(le32toh(desc->sk_data_lo));
2952 	DESC_PRINT(le32toh(desc->sk_data_hi));
2953 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2954 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2955 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2956 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2957 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2958 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2959 #undef PRINT
2960 }
2961 
2962 void
2963 sk_dump_bytes(const char *data, int len)
2964 {
2965 	int c, i, j;
2966 
2967 	for (i = 0; i < len; i += 16) {
2968 		printf("%08x  ", i);
2969 		c = len - i;
2970 		if (c > 16) c = 16;
2971 
2972 		for (j = 0; j < c; j++) {
2973 			printf("%02x ", data[i + j] & 0xff);
2974 			if ((j & 0xf) == 7 && j > 0)
2975 				printf(" ");
2976 		}
2977 
2978 		for (; j < 16; j++)
2979 			printf("   ");
2980 		printf("  ");
2981 
2982 		for (j = 0; j < c; j++) {
2983 			int ch = data[i + j] & 0xff;
2984 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2985 		}
2986 
2987 		printf("\n");
2988 
2989 		if (c < 16)
2990 			break;
2991 	}
2992 }
2993 
2994 void
2995 sk_dump_mbuf(struct mbuf *m)
2996 {
2997 	int count = m->m_pkthdr.len;
2998 
2999 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3000 
3001 	while (count > 0 && m) {
3002 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3003 		       m, m->m_data, m->m_len);
3004 		sk_dump_bytes(mtod(m, char *), m->m_len);
3005 
3006 		count -= m->m_len;
3007 		m = m->m_next;
3008 	}
3009 }
3010 #endif
3011 
3012 static int
3013 sk_sysctl_handler(SYSCTLFN_ARGS)
3014 {
3015 	int error, t;
3016 	struct sysctlnode node;
3017 	struct sk_softc *sc;
3018 
3019 	node = *rnode;
3020 	sc = node.sysctl_data;
3021 	t = sc->sk_int_mod;
3022 	node.sysctl_data = &t;
3023 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3024 	if (error || newp == NULL)
3025 		return error;
3026 
3027 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3028 		return EINVAL;
3029 
3030 	/* update the softc with sysctl-changed value, and mark
3031 	   for hardware update */
3032 	sc->sk_int_mod = t;
3033 	sc->sk_int_mod_pending = 1;
3034 	return 0;
3035 }
3036 
3037 /*
3038  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3039  * set up in skc_attach()
3040  */
3041 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3042 {
3043 	int rc;
3044 	const struct sysctlnode *node;
3045 
3046 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3047 	    0, CTLTYPE_NODE, "hw", NULL,
3048 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3049 		goto err;
3050 	}
3051 
3052 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3053 	    0, CTLTYPE_NODE, "sk",
3054 	    SYSCTL_DESCR("sk interface controls"),
3055 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3056 		goto err;
3057 	}
3058 
3059 	sk_root_num = node->sysctl_num;
3060 	return;
3061 
3062 err:
3063 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3064 }
3065