xref: /netbsd-src/sys/dev/pci/if_sk.c (revision eb961d0e02b7a46a9acfa877b02df48df6637278)
1 /*	$NetBSD: if_sk.c,v 1.21 2006/02/25 02:28:58 wiz Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include "bpfilter.h"
125 #include "rnd.h"
126 
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 
139 #include <net/if.h>
140 #include <net/if_dl.h>
141 #include <net/if_types.h>
142 
143 #ifdef INET
144 #include <netinet/in.h>
145 #include <netinet/in_systm.h>
146 #include <netinet/in_var.h>
147 #include <netinet/ip.h>
148 #include <netinet/if_ether.h>
149 #endif
150 
151 #include <net/if_media.h>
152 
153 #if NBPFILTER > 0
154 #include <net/bpf.h>
155 #endif
156 #if NRND > 0
157 #include <sys/rnd.h>
158 #endif
159 
160 #include <dev/mii/mii.h>
161 #include <dev/mii/miivar.h>
162 #include <dev/mii/brgphyreg.h>
163 
164 #include <dev/pci/pcireg.h>
165 #include <dev/pci/pcivar.h>
166 #include <dev/pci/pcidevs.h>
167 
168 #define	SK_VERBOSE
169 /* #define SK_USEIOSPACE */
170 
171 #include <dev/pci/if_skreg.h>
172 #include <dev/pci/if_skvar.h>
173 
174 int skc_probe(struct device *, struct cfdata *, void *);
175 void skc_attach(struct device *, struct device *self, void *aux);
176 int sk_probe(struct device *, struct cfdata *, void *);
177 void sk_attach(struct device *, struct device *self, void *aux);
178 int skcprint(void *, const char *);
179 int sk_intr(void *);
180 void sk_intr_bcom(struct sk_if_softc *);
181 void sk_intr_xmac(struct sk_if_softc *);
182 void sk_intr_yukon(struct sk_if_softc *);
183 void sk_rxeof(struct sk_if_softc *);
184 void sk_txeof(struct sk_if_softc *);
185 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
186 void sk_start(struct ifnet *);
187 int sk_ioctl(struct ifnet *, u_long, caddr_t);
188 int sk_init(struct ifnet *);
189 void sk_init_xmac(struct sk_if_softc *);
190 void sk_init_yukon(struct sk_if_softc *);
191 void sk_stop(struct ifnet *, int);
192 void sk_watchdog(struct ifnet *);
193 void sk_shutdown(void *);
194 int sk_ifmedia_upd(struct ifnet *);
195 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
196 void sk_reset(struct sk_softc *);
197 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
198 int sk_init_rx_ring(struct sk_if_softc *);
199 int sk_init_tx_ring(struct sk_if_softc *);
200 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
201 void sk_vpd_read_res(struct sk_softc *,
202 					struct vpd_res *, int);
203 void sk_vpd_read(struct sk_softc *);
204 
205 void sk_update_int_mod(struct sk_softc *);
206 
207 int sk_xmac_miibus_readreg(struct device *, int, int);
208 void sk_xmac_miibus_writereg(struct device *, int, int, int);
209 void sk_xmac_miibus_statchg(struct device *);
210 
211 int sk_marv_miibus_readreg(struct device *, int, int);
212 void sk_marv_miibus_writereg(struct device *, int, int, int);
213 void sk_marv_miibus_statchg(struct device *);
214 
215 u_int32_t sk_xmac_hash(caddr_t);
216 u_int32_t sk_yukon_hash(caddr_t);
217 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
218 void sk_setmulti(struct sk_if_softc *);
219 void sk_tick(void *);
220 
221 /* #define SK_DEBUG 2 */
222 #ifdef SK_DEBUG
223 #define DPRINTF(x)	if (skdebug) printf x
224 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
225 int	skdebug = SK_DEBUG;
226 
227 void sk_dump_txdesc(struct sk_tx_desc *, int);
228 void sk_dump_mbuf(struct mbuf *);
229 void sk_dump_bytes(const char *, int);
230 #else
231 #define DPRINTF(x)
232 #define DPRINTFN(n,x)
233 #endif
234 
235 #define SK_SETBIT(sc, reg, x)		\
236 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
237 
238 #define SK_CLRBIT(sc, reg, x)		\
239 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
240 
241 #define SK_WIN_SETBIT_4(sc, reg, x)	\
242 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
243 
244 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
245 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
246 
247 #define SK_WIN_SETBIT_2(sc, reg, x)	\
248 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
249 
250 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
251 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
252 
253 static int sk_sysctl_handler(SYSCTLFN_PROTO);
254 static int sk_root_num;
255 
256 /* supported device vendors */
257 static const struct sk_product {
258 	pci_vendor_id_t		sk_vendor;
259 	pci_product_id_t	sk_product;
260 } sk_products[] = {
261 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
262 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
263 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
264 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
265 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
266 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
267 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
268 	{ 0, 0, }
269 };
270 
271 #define SK_LINKSYS_EG1032_SUBID	0x00151737
272 
273 static inline u_int32_t
274 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
275 {
276 #ifdef SK_USEIOSPACE
277 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
278 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
279 #else
280 	return CSR_READ_4(sc, reg);
281 #endif
282 }
283 
284 static inline u_int16_t
285 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
286 {
287 #ifdef SK_USEIOSPACE
288 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
289 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
290 #else
291 	return CSR_READ_2(sc, reg);
292 #endif
293 }
294 
295 static inline u_int8_t
296 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
297 {
298 #ifdef SK_USEIOSPACE
299 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
300 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
301 #else
302 	return CSR_READ_1(sc, reg);
303 #endif
304 }
305 
306 static inline void
307 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
308 {
309 #ifdef SK_USEIOSPACE
310 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
311 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
312 #else
313 	CSR_WRITE_4(sc, reg, x);
314 #endif
315 }
316 
317 static inline void
318 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
319 {
320 #ifdef SK_USEIOSPACE
321 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
322 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
323 #else
324 	CSR_WRITE_2(sc, reg, x);
325 #endif
326 }
327 
328 static inline void
329 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
330 {
331 #ifdef SK_USEIOSPACE
332 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
333 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
334 #else
335 	CSR_WRITE_1(sc, reg, x);
336 #endif
337 }
338 
339 /*
340  * The VPD EEPROM contains Vital Product Data, as suggested in
341  * the PCI 2.1 specification. The VPD data is separared into areas
342  * denoted by resource IDs. The SysKonnect VPD contains an ID string
343  * resource (the name of the adapter), a read-only area resource
344  * containing various key/data fields and a read/write area which
345  * can be used to store asset management information or log messages.
346  * We read the ID string and read-only into buffers attached to
347  * the controller softc structure for later use. At the moment,
348  * we only use the ID string during sk_attach().
349  */
350 u_int8_t
351 sk_vpd_readbyte(struct sk_softc *sc, int addr)
352 {
353 	int			i;
354 
355 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
356 	for (i = 0; i < SK_TIMEOUT; i++) {
357 		DELAY(1);
358 		if (sk_win_read_2(sc,
359 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
360 			break;
361 	}
362 
363 	if (i == SK_TIMEOUT)
364 		return(0);
365 
366 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
367 }
368 
369 void
370 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
371 {
372 	int			i;
373 	u_int8_t		*ptr;
374 
375 	ptr = (u_int8_t *)res;
376 	for (i = 0; i < sizeof(struct vpd_res); i++)
377 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
378 }
379 
380 void
381 sk_vpd_read(struct sk_softc *sc)
382 {
383 	int			pos = 0, i;
384 	struct vpd_res		res;
385 
386 	if (sc->sk_vpd_prodname != NULL)
387 		free(sc->sk_vpd_prodname, M_DEVBUF);
388 	if (sc->sk_vpd_readonly != NULL)
389 		free(sc->sk_vpd_readonly, M_DEVBUF);
390 	sc->sk_vpd_prodname = NULL;
391 	sc->sk_vpd_readonly = NULL;
392 
393 	sk_vpd_read_res(sc, &res, pos);
394 
395 	if (res.vr_id != VPD_RES_ID) {
396 		printf("%s: bad VPD resource id: expected %x got %x\n",
397 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
398 		return;
399 	}
400 
401 	pos += sizeof(res);
402 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
403 	if (sc->sk_vpd_prodname == NULL)
404 		panic("sk_vpd_read");
405 	for (i = 0; i < res.vr_len; i++)
406 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
407 	sc->sk_vpd_prodname[i] = '\0';
408 	pos += i;
409 
410 	sk_vpd_read_res(sc, &res, pos);
411 
412 	if (res.vr_id != VPD_RES_READ) {
413 		printf("%s: bad VPD resource id: expected %x got %x\n",
414 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
415 		return;
416 	}
417 
418 	pos += sizeof(res);
419 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
420 	if (sc->sk_vpd_readonly == NULL)
421 		panic("sk_vpd_read");
422 	for (i = 0; i < res.vr_len ; i++)
423 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
424 }
425 
426 int
427 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
428 {
429 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
430 	int i;
431 
432 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
433 
434 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
435 		return(0);
436 
437 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
438 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
439 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
440 		for (i = 0; i < SK_TIMEOUT; i++) {
441 			DELAY(1);
442 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
443 			    XM_MMUCMD_PHYDATARDY)
444 				break;
445 		}
446 
447 		if (i == SK_TIMEOUT) {
448 			printf("%s: phy failed to come ready\n",
449 			    sc_if->sk_dev.dv_xname);
450 			return(0);
451 		}
452 	}
453 	DELAY(1);
454 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
455 }
456 
457 void
458 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
459 {
460 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
461 	int i;
462 
463 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
464 
465 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
466 	for (i = 0; i < SK_TIMEOUT; i++) {
467 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
468 			break;
469 	}
470 
471 	if (i == SK_TIMEOUT) {
472 		printf("%s: phy failed to come ready\n",
473 		    sc_if->sk_dev.dv_xname);
474 		return;
475 	}
476 
477 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
478 	for (i = 0; i < SK_TIMEOUT; i++) {
479 		DELAY(1);
480 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
481 			break;
482 	}
483 
484 	if (i == SK_TIMEOUT)
485 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
486 }
487 
488 void
489 sk_xmac_miibus_statchg(struct device *dev)
490 {
491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 	struct mii_data *mii = &sc_if->sk_mii;
493 
494 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
495 
496 	/*
497 	 * If this is a GMII PHY, manually set the XMAC's
498 	 * duplex mode accordingly.
499 	 */
500 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
501 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
502 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
503 		} else {
504 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
505 		}
506 	}
507 }
508 
509 int
510 sk_marv_miibus_readreg(dev, phy, reg)
511 	struct device *dev;
512 	int phy, reg;
513 {
514 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
515 	u_int16_t val;
516 	int i;
517 
518 	if (phy != 0 ||
519 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
520 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
521 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
522 			     phy, reg));
523 		return(0);
524 	}
525 
526         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
527 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
528 
529 	for (i = 0; i < SK_TIMEOUT; i++) {
530 		DELAY(1);
531 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
532 		if (val & YU_SMICR_READ_VALID)
533 			break;
534 	}
535 
536 	if (i == SK_TIMEOUT) {
537 		printf("%s: phy failed to come ready\n",
538 		       sc_if->sk_dev.dv_xname);
539 		return 0;
540 	}
541 
542  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
543 		     SK_TIMEOUT));
544 
545         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
546 
547 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
548 		     phy, reg, val));
549 
550 	return val;
551 }
552 
553 void
554 sk_marv_miibus_writereg(dev, phy, reg, val)
555 	struct device *dev;
556 	int phy, reg, val;
557 {
558 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
559 	int i;
560 
561 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
562 		     phy, reg, val));
563 
564 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
565 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
566 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
567 
568 	for (i = 0; i < SK_TIMEOUT; i++) {
569 		DELAY(1);
570 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
571 			break;
572 	}
573 }
574 
575 void
576 sk_marv_miibus_statchg(dev)
577 	struct device *dev;
578 {
579 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
580 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
581 }
582 
583 #define SK_HASH_BITS		6
584 
585 u_int32_t
586 sk_xmac_hash(caddr_t addr)
587 {
588 	u_int32_t		crc;
589 
590 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
591 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
592 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
593 	return (crc);
594 }
595 
596 u_int32_t
597 sk_yukon_hash(caddr_t addr)
598 {
599 	u_int32_t		crc;
600 
601 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
602 	crc &= ((1 << SK_HASH_BITS) - 1);
603 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
604 	return (crc);
605 }
606 
607 void
608 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
609 {
610 	int base = XM_RXFILT_ENTRY(slot);
611 
612 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
613 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
614 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
615 }
616 
617 void
618 sk_setmulti(struct sk_if_softc *sc_if)
619 {
620 	struct sk_softc *sc = sc_if->sk_softc;
621 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
622 	u_int32_t hashes[2] = { 0, 0 };
623 	int h = 0, i;
624 	struct ethercom *ec = &sc_if->sk_ethercom;
625 	struct ether_multi *enm;
626 	struct ether_multistep step;
627 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
628 
629 	/* First, zot all the existing filters. */
630 	switch(sc->sk_type) {
631 	case SK_GENESIS:
632 		for (i = 1; i < XM_RXFILT_MAX; i++)
633 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
634 
635 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
636 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
637 		break;
638 	case SK_YUKON:
639 	case SK_YUKON_LITE:
640 	case SK_YUKON_LP:
641 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
642 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
643 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
644 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
645 		break;
646 	}
647 
648 	/* Now program new ones. */
649 allmulti:
650 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
651 		hashes[0] = 0xFFFFFFFF;
652 		hashes[1] = 0xFFFFFFFF;
653 	} else {
654 		i = 1;
655 		/* First find the tail of the list. */
656 		ETHER_FIRST_MULTI(step, ec, enm);
657 		while (enm != NULL) {
658 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
659 				 ETHER_ADDR_LEN)) {
660 				ifp->if_flags |= IFF_ALLMULTI;
661 				goto allmulti;
662 			}
663 			DPRINTFN(2,("multicast address %s\n",
664 	    			ether_sprintf(enm->enm_addrlo)));
665 			/*
666 			 * Program the first XM_RXFILT_MAX multicast groups
667 			 * into the perfect filter. For all others,
668 			 * use the hash table.
669 			 */
670 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
671 				sk_setfilt(sc_if, enm->enm_addrlo, i);
672 				i++;
673 			}
674 			else {
675 				switch (sc->sk_type) {
676 				case SK_GENESIS:
677 					h = sk_xmac_hash(enm->enm_addrlo);
678 					break;
679 				case SK_YUKON:
680 				case SK_YUKON_LITE:
681 				case SK_YUKON_LP:
682 					h = sk_yukon_hash(enm->enm_addrlo);
683 					break;
684 				}
685 				if (h < 32)
686 					hashes[0] |= (1 << h);
687 				else
688 					hashes[1] |= (1 << (h - 32));
689 			}
690 
691 			ETHER_NEXT_MULTI(step, enm);
692 		}
693 	}
694 
695 	switch(sc->sk_type) {
696 	case SK_GENESIS:
697 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
698 			       XM_MODE_RX_USE_PERFECT);
699 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
700 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
701 		break;
702 	case SK_YUKON:
703 	case SK_YUKON_LITE:
704 	case SK_YUKON_LP:
705 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
706 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
707 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
708 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
709 		break;
710 	}
711 }
712 
713 int
714 sk_init_rx_ring(struct sk_if_softc *sc_if)
715 {
716 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
717 	struct sk_ring_data	*rd = sc_if->sk_rdata;
718 	int			i;
719 
720 	bzero((char *)rd->sk_rx_ring,
721 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
722 
723 	for (i = 0; i < SK_RX_RING_CNT; i++) {
724 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
725 		if (i == (SK_RX_RING_CNT - 1)) {
726 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
727 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
728 		} else {
729 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
730 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
731 		}
732 	}
733 
734 	for (i = 0; i < SK_RX_RING_CNT; i++) {
735 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
736 			printf("%s: failed alloc of %dth mbuf\n",
737 			    sc_if->sk_dev.dv_xname, i);
738 			return(ENOBUFS);
739 		}
740 	}
741 	sc_if->sk_cdata.sk_rx_prod = 0;
742 	sc_if->sk_cdata.sk_rx_cons = 0;
743 
744 	return(0);
745 }
746 
747 int
748 sk_init_tx_ring(struct sk_if_softc *sc_if)
749 {
750 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
751 	struct sk_ring_data	*rd = sc_if->sk_rdata;
752 	int			i;
753 
754 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
755 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
756 
757 	for (i = 0; i < SK_TX_RING_CNT; i++) {
758 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
759 		if (i == (SK_TX_RING_CNT - 1)) {
760 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
761 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
762 		} else {
763 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
764 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
765 		}
766 	}
767 
768 	sc_if->sk_cdata.sk_tx_prod = 0;
769 	sc_if->sk_cdata.sk_tx_cons = 0;
770 	sc_if->sk_cdata.sk_tx_cnt = 0;
771 
772 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
773 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
774 
775 	return (0);
776 }
777 
778 int
779 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
780 	  bus_dmamap_t dmamap)
781 {
782 	struct sk_softc		*sc = sc_if->sk_softc;
783 	struct mbuf		*m_new = NULL;
784 	struct sk_chain		*c;
785 	struct sk_rx_desc	*r;
786 
787 	if (dmamap == NULL) {
788 		/* if (m) panic() */
789 
790 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
791 				      0, BUS_DMA_NOWAIT, &dmamap)) {
792 			printf("%s: can't create recv map\n",
793 			       sc_if->sk_dev.dv_xname);
794 			return(ENOMEM);
795 		}
796 	} else if (m == NULL)
797 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
798 
799 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
800 
801 	if (m == NULL) {
802 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
803 		if (m_new == NULL) {
804 			printf("%s: no memory for rx list -- "
805 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
806 			return(ENOBUFS);
807 		}
808 
809 		/* Allocate the jumbo buffer */
810 		MCLGET(m_new, M_DONTWAIT);
811 		if (!(m_new->m_flags & M_EXT)) {
812 			m_freem(m_new);
813 			return (ENOBUFS);
814 		}
815 
816 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
817 
818 		m_adj(m_new, ETHER_ALIGN);
819 
820 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
821 					 BUS_DMA_NOWAIT))
822 			return(ENOBUFS);
823 	} else {
824 		/*
825 	 	 * We're re-using a previously allocated mbuf;
826 		 * be sure to re-init pointers and lengths to
827 		 * default values.
828 		 */
829 		m_new = m;
830 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
831 		m_adj(m_new, ETHER_ALIGN);
832 		m_new->m_data = m_new->m_ext.ext_buf;
833 	}
834 
835 	c = &sc_if->sk_cdata.sk_rx_chain[i];
836 	r = c->sk_desc;
837 	c->sk_mbuf = m_new;
838 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
839 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
840 
841 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
842 
843 	return(0);
844 }
845 
846 /*
847  * Set media options.
848  */
849 int
850 sk_ifmedia_upd(struct ifnet *ifp)
851 {
852 	struct sk_if_softc *sc_if = ifp->if_softc;
853 
854 	(void) sk_init(ifp);
855 	mii_mediachg(&sc_if->sk_mii);
856 	return(0);
857 }
858 
859 /*
860  * Report current media status.
861  */
862 void
863 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
864 {
865 	struct sk_if_softc *sc_if = ifp->if_softc;
866 
867 	mii_pollstat(&sc_if->sk_mii);
868 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
869 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
870 }
871 
872 int
873 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
874 {
875 	struct sk_if_softc *sc_if = ifp->if_softc;
876 	struct sk_softc *sc = sc_if->sk_softc;
877 	struct ifreq *ifr = (struct ifreq *) data;
878 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
879 	struct mii_data *mii;
880 	int s, error = 0;
881 
882 	/* DPRINTFN(2, ("sk_ioctl\n")); */
883 
884 	s = splnet();
885 
886 	switch(command) {
887 
888 	case SIOCSIFFLAGS:
889 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
890 		if (ifp->if_flags & IFF_UP) {
891 			if (ifp->if_flags & IFF_RUNNING &&
892 			    ifp->if_flags & IFF_PROMISC &&
893 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
894 				switch(sc->sk_type) {
895 				case SK_GENESIS:
896 					SK_XM_SETBIT_4(sc_if, XM_MODE,
897 					    XM_MODE_RX_PROMISC);
898 					break;
899 				case SK_YUKON:
900 				case SK_YUKON_LITE:
901 				case SK_YUKON_LP:
902 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
903 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
904 					break;
905 				}
906 				sk_setmulti(sc_if);
907 			} else if (ifp->if_flags & IFF_RUNNING &&
908 			    !(ifp->if_flags & IFF_PROMISC) &&
909 			    sc_if->sk_if_flags & IFF_PROMISC) {
910 				switch(sc->sk_type) {
911 				case SK_GENESIS:
912 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
913 					    XM_MODE_RX_PROMISC);
914 					break;
915 				case SK_YUKON:
916 				case SK_YUKON_LITE:
917 				case SK_YUKON_LP:
918 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
919 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
920 					break;
921 				}
922 
923 				sk_setmulti(sc_if);
924 			} else
925 				(void) sk_init(ifp);
926 		} else {
927 			if (ifp->if_flags & IFF_RUNNING)
928 				sk_stop(ifp,0);
929 		}
930 		sc_if->sk_if_flags = ifp->if_flags;
931 		error = 0;
932 		break;
933 
934 	case SIOCGIFMEDIA:
935 	case SIOCSIFMEDIA:
936 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
937 		mii = &sc_if->sk_mii;
938 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
939 		break;
940 	default:
941 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
942 		error = ether_ioctl(ifp, command, data);
943 
944 		if ( error == ENETRESET) {
945 			if (ifp->if_flags & IFF_RUNNING) {
946 				sk_setmulti(sc_if);
947 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
948 			}
949 			error = 0;
950 		} else if ( error ) {
951 			splx(s);
952 			return error;
953 		}
954 		break;
955 	}
956 
957 	splx(s);
958 	return(error);
959 }
960 
961 void
962 sk_update_int_mod(struct sk_softc *sc)
963 {
964 	u_int32_t sk_imtimer_ticks;
965 
966 	/*
967          * Configure interrupt moderation. The moderation timer
968 	 * defers interrupts specified in the interrupt moderation
969 	 * timer mask based on the timeout specified in the interrupt
970 	 * moderation timer init register. Each bit in the timer
971 	 * register represents one tick, so to specify a timeout in
972 	 * microseconds, we have to multiply by the correct number of
973 	 * ticks-per-microsecond.
974 	 */
975 	switch (sc->sk_type) {
976 	case SK_GENESIS:
977 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
978 		break;
979 	case SK_YUKON_EC:
980 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
981 		break;
982 	default:
983 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
984 	}
985 	aprint_verbose("%s: interrupt moderation is %d us\n",
986 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
987         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
988         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
989 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
990         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
991 	sc->sk_int_mod_pending = 0;
992 }
993 
994 /*
995  * Lookup: Check the PCI vendor and device, and return a pointer to
996  * The structure if the IDs match against our list.
997  */
998 
999 static const struct sk_product *
1000 sk_lookup(const struct pci_attach_args *pa)
1001 {
1002 	const struct sk_product *psk;
1003 
1004 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1005 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1006 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1007 			return (psk);
1008 	}
1009 	return (NULL);
1010 }
1011 
1012 /*
1013  * Probe for a SysKonnect GEnesis chip.
1014  */
1015 
1016 int
1017 skc_probe(struct device *parent, struct cfdata *match, void *aux)
1018 {
1019 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1020 	const struct sk_product *psk;
1021 	pcireg_t subid;
1022 
1023 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1024 
1025 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1026 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1027 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1028 	    subid == SK_LINKSYS_EG1032_SUBID)
1029 		return(1);
1030 
1031 	if ((psk = sk_lookup(pa))) {
1032 		return(1);
1033 	}
1034 	return(0);
1035 }
1036 
1037 /*
1038  * Force the GEnesis into reset, then bring it out of reset.
1039  */
1040 void sk_reset(struct sk_softc *sc)
1041 {
1042 	DPRINTFN(2, ("sk_reset\n"));
1043 
1044 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1045 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1046 	if (SK_YUKON_FAMILY(sc->sk_type))
1047 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1048 
1049 	DELAY(1000);
1050 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1051 	DELAY(2);
1052 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1053 	if (SK_YUKON_FAMILY(sc->sk_type))
1054 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1055 
1056 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1057 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1058 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1059 
1060 	if (sc->sk_type == SK_GENESIS) {
1061 		/* Configure packet arbiter */
1062 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1063 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1064 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1065 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1066 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1067 	}
1068 
1069 	/* Enable RAM interface */
1070 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1071 
1072 	sk_update_int_mod(sc);
1073 }
1074 
1075 int
1076 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1077 {
1078 	struct skc_attach_args *sa = aux;
1079 
1080 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1081 		return(0);
1082 
1083 	return (1);
1084 }
1085 
1086 /*
1087  * Each XMAC chip is attached as a separate logical IP interface.
1088  * Single port cards will have only one logical interface of course.
1089  */
1090 void
1091 sk_attach(struct device *parent, struct device *self, void *aux)
1092 {
1093 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1094 	struct sk_softc *sc = (struct sk_softc *)parent;
1095 	struct skc_attach_args *sa = aux;
1096 	struct sk_txmap_entry	*entry;
1097 	struct ifnet *ifp;
1098 	bus_dma_segment_t seg;
1099 	bus_dmamap_t dmamap;
1100 	caddr_t kva;
1101 	int i, rseg;
1102 
1103 	sc_if->sk_port = sa->skc_port;
1104 	sc_if->sk_softc = sc;
1105 	sc->sk_if[sa->skc_port] = sc_if;
1106 
1107 	if (sa->skc_port == SK_PORT_A)
1108 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1109 	if (sa->skc_port == SK_PORT_B)
1110 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1111 
1112 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1113 
1114 	/*
1115 	 * Get station address for this interface. Note that
1116 	 * dual port cards actually come with three station
1117 	 * addresses: one for each port, plus an extra. The
1118 	 * extra one is used by the SysKonnect driver software
1119 	 * as a 'virtual' station address for when both ports
1120 	 * are operating in failover mode. Currently we don't
1121 	 * use this extra address.
1122 	 */
1123 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1124 		sc_if->sk_enaddr[i] =
1125 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1126 
1127 
1128 	aprint_normal(": Ethernet address %s\n",
1129 	    ether_sprintf(sc_if->sk_enaddr));
1130 
1131 	/*
1132 	 * Set up RAM buffer addresses. The NIC will have a certain
1133 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1134 	 * need to divide this up a) between the transmitter and
1135  	 * receiver and b) between the two XMACs, if this is a
1136 	 * dual port NIC. Our algotithm is to divide up the memory
1137 	 * evenly so that everyone gets a fair share.
1138 	 */
1139 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1140 		u_int32_t		chunk, val;
1141 
1142 		chunk = sc->sk_ramsize / 2;
1143 		val = sc->sk_rboff / sizeof(u_int64_t);
1144 		sc_if->sk_rx_ramstart = val;
1145 		val += (chunk / sizeof(u_int64_t));
1146 		sc_if->sk_rx_ramend = val - 1;
1147 		sc_if->sk_tx_ramstart = val;
1148 		val += (chunk / sizeof(u_int64_t));
1149 		sc_if->sk_tx_ramend = val - 1;
1150 	} else {
1151 		u_int32_t		chunk, val;
1152 
1153 		chunk = sc->sk_ramsize / 4;
1154 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1155 		    sizeof(u_int64_t);
1156 		sc_if->sk_rx_ramstart = val;
1157 		val += (chunk / sizeof(u_int64_t));
1158 		sc_if->sk_rx_ramend = val - 1;
1159 		sc_if->sk_tx_ramstart = val;
1160 		val += (chunk / sizeof(u_int64_t));
1161 		sc_if->sk_tx_ramend = val - 1;
1162 	}
1163 
1164 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1165 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1166 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1167 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1168 
1169 	/* Read and save PHY type and set PHY address */
1170 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1171 	switch (sc_if->sk_phytype) {
1172 	case SK_PHYTYPE_XMAC:
1173 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1174 		break;
1175 	case SK_PHYTYPE_BCOM:
1176 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1177 		break;
1178 	case SK_PHYTYPE_MARV_COPPER:
1179 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1180 		break;
1181 	default:
1182 		aprint_error("%s: unsupported PHY type: %d\n",
1183 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1184 		return;
1185 	}
1186 
1187 	/* Allocate the descriptor queues. */
1188 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1189 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1190 		aprint_error("%s: can't alloc rx buffers\n",
1191 		    sc->sk_dev.dv_xname);
1192 		goto fail;
1193 	}
1194 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1195 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1196 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1197 		       sc_if->sk_dev.dv_xname,
1198 		       (u_long) sizeof(struct sk_ring_data));
1199 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1200 		goto fail;
1201 	}
1202 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1203 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1204             &sc_if->sk_ring_map)) {
1205 		aprint_error("%s: can't create dma map\n",
1206 		    sc_if->sk_dev.dv_xname);
1207 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1208 		    sizeof(struct sk_ring_data));
1209 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1210 		goto fail;
1211 	}
1212 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1213 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1214 		aprint_error("%s: can't load dma map\n",
1215 		    sc_if->sk_dev.dv_xname);
1216 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1217 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1218 		    sizeof(struct sk_ring_data));
1219 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1220 		goto fail;
1221 	}
1222 
1223 	for (i = 0; i < SK_RX_RING_CNT; i++)
1224 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1225 
1226 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1227 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1228 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1229 
1230 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1231 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1232 			aprint_error("%s: Can't create TX dmamap\n",
1233 				sc_if->sk_dev.dv_xname);
1234 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1235 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1236 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1237 			    sizeof(struct sk_ring_data));
1238 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1239 			goto fail;
1240 		}
1241 
1242 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1243 		if (!entry) {
1244 			aprint_error("%s: Can't alloc txmap entry\n",
1245 				sc_if->sk_dev.dv_xname);
1246 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1247 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1248 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1249 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1250 			    sizeof(struct sk_ring_data));
1251 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1252 			goto fail;
1253 		}
1254 		entry->dmamap = dmamap;
1255 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1256 	}
1257 
1258         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1259 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1260 
1261 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
1262 	   XXX TLS support in this driver, so we don't enable it. */
1263 
1264 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1265 
1266 	ifp = &sc_if->sk_ethercom.ec_if;
1267 	ifp->if_softc = sc_if;
1268 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1269 	ifp->if_ioctl = sk_ioctl;
1270 	ifp->if_start = sk_start;
1271 	ifp->if_stop = sk_stop;
1272 	ifp->if_init = sk_init;
1273 	ifp->if_watchdog = sk_watchdog;
1274 	ifp->if_capabilities = 0;
1275 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1276 	IFQ_SET_READY(&ifp->if_snd);
1277 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1278 
1279 	/*
1280 	 * Do miibus setup.
1281 	 */
1282 	switch (sc->sk_type) {
1283 	case SK_GENESIS:
1284 		sk_init_xmac(sc_if);
1285 		break;
1286 	case SK_YUKON:
1287 	case SK_YUKON_LITE:
1288 	case SK_YUKON_LP:
1289 		sk_init_yukon(sc_if);
1290 		break;
1291 	default:
1292 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1293 		      sc->sk_type);
1294 	}
1295 
1296  	DPRINTFN(2, ("sk_attach: 1\n"));
1297 
1298 	sc_if->sk_mii.mii_ifp = ifp;
1299 	switch (sc->sk_type) {
1300 	case SK_GENESIS:
1301 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1302 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1303 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1304 		break;
1305 	case SK_YUKON:
1306 	case SK_YUKON_LITE:
1307 	case SK_YUKON_LP:
1308 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1309 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1310 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1311 		break;
1312 	}
1313 
1314 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1315 	    sk_ifmedia_upd, sk_ifmedia_sts);
1316 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1317 	    MII_OFFSET_ANY, 0);
1318 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1319 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1320 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1321 			    0, NULL);
1322 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1323 	}
1324 	else
1325 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1326 
1327 	callout_init(&sc_if->sk_tick_ch);
1328 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1329 
1330 	DPRINTFN(2, ("sk_attach: 1\n"));
1331 
1332 	/*
1333 	 * Call MI attach routines.
1334 	 */
1335 	if_attach(ifp);
1336 
1337 	ether_ifattach(ifp, sc_if->sk_enaddr);
1338 
1339 #if NRND > 0
1340         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1341             RND_TYPE_NET, 0);
1342 #endif
1343 
1344 	DPRINTFN(2, ("sk_attach: end\n"));
1345 
1346 	return;
1347 
1348 fail:
1349 	sc->sk_if[sa->skc_port] = NULL;
1350 }
1351 
1352 int
1353 skcprint(void *aux, const char *pnp)
1354 {
1355 	struct skc_attach_args *sa = aux;
1356 
1357 	if (pnp)
1358 		aprint_normal("sk port %c at %s",
1359 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1360 	else
1361 		aprint_normal(" port %c",
1362 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1363 	return (UNCONF);
1364 }
1365 
1366 /*
1367  * Attach the interface. Allocate softc structures, do ifmedia
1368  * setup and ethernet/BPF attach.
1369  */
1370 void
1371 skc_attach(struct device *parent, struct device *self, void *aux)
1372 {
1373 	struct sk_softc *sc = (struct sk_softc *)self;
1374 	struct pci_attach_args *pa = aux;
1375 	struct skc_attach_args skca;
1376 	pci_chipset_tag_t pc = pa->pa_pc;
1377 	pcireg_t memtype;
1378 	pci_intr_handle_t ih;
1379 	const char *intrstr = NULL;
1380 	bus_addr_t iobase;
1381 	bus_size_t iosize;
1382 	int s, rc, sk_nodenum;
1383 	u_int32_t command;
1384 	const char *revstr;
1385 	const struct sysctlnode *node;
1386 
1387 	DPRINTFN(2, ("begin skc_attach\n"));
1388 
1389 	s = splnet();
1390 
1391 	/*
1392 	 * Handle power management nonsense.
1393 	 */
1394 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1395 
1396 	if (command == 0x01) {
1397 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1398 		if (command & SK_PSTATE_MASK) {
1399 			u_int32_t		xiobase, membase, irq;
1400 
1401 			/* Save important PCI config data. */
1402 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1403 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1404 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1405 
1406 			/* Reset the power state. */
1407 			aprint_normal("%s chip is in D%d power mode "
1408 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1409 			    command & SK_PSTATE_MASK);
1410 			command &= 0xFFFFFFFC;
1411 			pci_conf_write(pc, pa->pa_tag,
1412 			    SK_PCI_PWRMGMTCTRL, command);
1413 
1414 			/* Restore PCI config data. */
1415 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1416 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1417 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * Map control/status registers.
1423 	 */
1424 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1425 	command |= PCI_COMMAND_IO_ENABLE |
1426 	    PCI_COMMAND_MEM_ENABLE |
1427 	    PCI_COMMAND_MASTER_ENABLE;
1428 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1429 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1430 
1431 #ifdef SK_USEIOSPACE
1432 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1433 		aprint_error(": failed to enable I/O ports!\n");
1434 		goto fail;
1435 	}
1436 	/*
1437 	 * Map control/status registers.
1438 	 */
1439 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1440 			   &iobase, &iosize)) {
1441 		aprint_error(": can't find i/o space\n");
1442 		goto fail;
1443 	}
1444 #else
1445 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1446 		aprint_error(": failed to enable memory mapping!\n");
1447 		goto fail;
1448 	}
1449 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1450 	switch (memtype) {
1451         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1452         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1453                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1454 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1455 				   &iobase, &iosize) == 0)
1456                         break;
1457         default:
1458                 aprint_error("%s: can't find mem space\n",
1459 		       sc->sk_dev.dv_xname);
1460                 return;
1461 	}
1462 
1463 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1464 #endif
1465 	sc->sc_dmatag = pa->pa_dmat;
1466 
1467 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1468 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1469 
1470 	/* bail out here if chip is not recognized */
1471 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1472 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1473 		goto fail;
1474 	}
1475 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1476 
1477 	/* Allocate interrupt */
1478 	if (pci_intr_map(pa, &ih)) {
1479 		aprint_error(": couldn't map interrupt\n");
1480 		goto fail;
1481 	}
1482 
1483 	intrstr = pci_intr_string(pc, ih);
1484 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1485 	if (sc->sk_intrhand == NULL) {
1486 		aprint_error(": couldn't establish interrupt");
1487 		if (intrstr != NULL)
1488 			aprint_normal(" at %s", intrstr);
1489 		goto fail;
1490 	}
1491 	aprint_normal(": %s\n", intrstr);
1492 
1493 	/* Reset the adapter. */
1494 	sk_reset(sc);
1495 
1496 	/* Read and save vital product data from EEPROM. */
1497 	sk_vpd_read(sc);
1498 
1499 	if (sc->sk_type == SK_GENESIS) {
1500 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1501 		/* Read and save RAM size and RAMbuffer offset */
1502 		switch(val) {
1503 		case SK_RAMSIZE_512K_64:
1504 			sc->sk_ramsize = 0x80000;
1505 			sc->sk_rboff = SK_RBOFF_0;
1506 			break;
1507 		case SK_RAMSIZE_1024K_64:
1508 			sc->sk_ramsize = 0x100000;
1509 			sc->sk_rboff = SK_RBOFF_80000;
1510 			break;
1511 		case SK_RAMSIZE_1024K_128:
1512 			sc->sk_ramsize = 0x100000;
1513 			sc->sk_rboff = SK_RBOFF_0;
1514 			break;
1515 		case SK_RAMSIZE_2048K_128:
1516 			sc->sk_ramsize = 0x200000;
1517 			sc->sk_rboff = SK_RBOFF_0;
1518 			break;
1519 		default:
1520 			aprint_error("%s: unknown ram size: %d\n",
1521 			       sc->sk_dev.dv_xname, val);
1522 			goto fail;
1523 			break;
1524 		}
1525 
1526 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1527 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1528 			     sc->sk_rboff));
1529 	} else {
1530 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1531 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1532 		sc->sk_rboff = SK_RBOFF_0;
1533 
1534 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1535 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1536 			     sc->sk_rboff));
1537 	}
1538 
1539 	/* Read and save physical media type */
1540 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1541 	case SK_PMD_1000BASESX:
1542 		sc->sk_pmd = IFM_1000_SX;
1543 		break;
1544 	case SK_PMD_1000BASELX:
1545 		sc->sk_pmd = IFM_1000_LX;
1546 		break;
1547 	case SK_PMD_1000BASECX:
1548 		sc->sk_pmd = IFM_1000_CX;
1549 		break;
1550 	case SK_PMD_1000BASETX:
1551 		sc->sk_pmd = IFM_1000_T;
1552 		break;
1553 	default:
1554 		aprint_error("%s: unknown media type: 0x%x\n",
1555 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1556 		goto fail;
1557 	}
1558 
1559 	/* determine whether to name it with vpd or just make it up */
1560 	/* Marvell Yukon VPD's can freqently be bogus */
1561 
1562 	switch (pa->pa_id) {
1563 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1564 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1565 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1566 	case PCI_PRODUCT_3COM_3C940:
1567 	case PCI_PRODUCT_DLINK_DGE530T:
1568 	case PCI_PRODUCT_LINKSYS_EG1032:
1569 	case PCI_PRODUCT_LINKSYS_EG1064:
1570 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1571 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1572 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1573 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1574 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1575 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1576  		sc->sk_name = sc->sk_vpd_prodname;
1577  		break;
1578 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1579 	/* whoops yukon vpd prodname bears no resemblance to reality */
1580 		switch (sc->sk_type) {
1581 		case SK_GENESIS:
1582 			sc->sk_name = sc->sk_vpd_prodname;
1583 			break;
1584 		case SK_YUKON:
1585 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1586 			break;
1587 		case SK_YUKON_LITE:
1588 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1589 			break;
1590 		case SK_YUKON_LP:
1591 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1592 			break;
1593 		default:
1594 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1595 		}
1596 
1597 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1598 
1599 		if ( sc->sk_type == SK_YUKON ) {
1600 			uint32_t flashaddr;
1601 			uint8_t testbyte;
1602 
1603 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1604 
1605 			/* test Flash-Address Register */
1606 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1607 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1608 
1609 			if (testbyte != 0) {
1610 				/* this is yukon lite Rev. A0 */
1611 				sc->sk_type = SK_YUKON_LITE;
1612 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1613 				/* restore Flash-Address Register */
1614 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1615 			}
1616 		}
1617 		break;
1618 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
1619 		sc->sk_name = sc->sk_vpd_prodname;
1620 		break;
1621  	default:
1622 		sc->sk_name = "Unknown Marvell";
1623 	}
1624 
1625 
1626 	if ( sc->sk_type == SK_YUKON_LITE ) {
1627 		switch (sc->sk_rev) {
1628 		case SK_YUKON_LITE_REV_A0:
1629 			revstr = "A0";
1630 			break;
1631 		case SK_YUKON_LITE_REV_A1:
1632 			revstr = "A1";
1633 			break;
1634 		case SK_YUKON_LITE_REV_A3:
1635 			revstr = "A3";
1636 			break;
1637 		default:
1638 			revstr = "";
1639 		}
1640 	} else {
1641 		revstr = "";
1642 	}
1643 
1644 	/* Announce the product name. */
1645 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1646 			      sc->sk_name, revstr, sc->sk_rev);
1647 
1648 	skca.skc_port = SK_PORT_A;
1649 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1650 
1651 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1652 		skca.skc_port = SK_PORT_B;
1653 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1654 	}
1655 
1656 	/* Turn on the 'driver is loaded' LED. */
1657 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1658 
1659 	/* skc sysctl setup */
1660 
1661 	sc->sk_int_mod = SK_IM_DEFAULT;
1662 	sc->sk_int_mod_pending = 0;
1663 
1664 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1665 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1666 	    SYSCTL_DESCR("skc per-controller controls"),
1667 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1668 	    CTL_EOL)) != 0) {
1669 		aprint_normal("%s: couldn't create sysctl node\n",
1670 		    sc->sk_dev.dv_xname);
1671 		goto fail;
1672 	}
1673 
1674 	sk_nodenum = node->sysctl_num;
1675 
1676 	/* interrupt moderation time in usecs */
1677 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1678 	    CTLFLAG_READWRITE,
1679 	    CTLTYPE_INT, "int_mod",
1680 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1681 	    sk_sysctl_handler, 0, sc,
1682 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1683 	    CTL_EOL)) != 0) {
1684 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1685 		    sc->sk_dev.dv_xname);
1686 		goto fail;
1687 	}
1688 
1689 fail:
1690 	splx(s);
1691 }
1692 
1693 int
1694 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1695 {
1696 	struct sk_softc		*sc = sc_if->sk_softc;
1697 	struct sk_tx_desc	*f = NULL;
1698 	u_int32_t		frag, cur, cnt = 0;
1699 	int			i;
1700 	struct sk_txmap_entry	*entry;
1701 	bus_dmamap_t		txmap;
1702 
1703 	DPRINTFN(3, ("sk_encap\n"));
1704 
1705 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1706 	if (entry == NULL) {
1707 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1708 		return ENOBUFS;
1709 	}
1710 	txmap = entry->dmamap;
1711 
1712 	cur = frag = *txidx;
1713 
1714 #ifdef SK_DEBUG
1715 	if (skdebug >= 3)
1716 		sk_dump_mbuf(m_head);
1717 #endif
1718 
1719 	/*
1720 	 * Start packing the mbufs in this chain into
1721 	 * the fragment pointers. Stop when we run out
1722 	 * of fragments or hit the end of the mbuf chain.
1723 	 */
1724 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1725 	    BUS_DMA_NOWAIT)) {
1726 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1727 		return(ENOBUFS);
1728 	}
1729 
1730 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1731 
1732 	/* Sync the DMA map. */
1733 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1734 	    BUS_DMASYNC_PREWRITE);
1735 
1736 	for (i = 0; i < txmap->dm_nsegs; i++) {
1737 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1738 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1739 			return(ENOBUFS);
1740 		}
1741 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1742 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1743 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1744 		if (cnt == 0)
1745 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1746 		else
1747 			f->sk_ctl |= SK_TXCTL_OWN;
1748 
1749 		cur = frag;
1750 		SK_INC(frag, SK_TX_RING_CNT);
1751 		cnt++;
1752 	}
1753 
1754 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1755 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1756 
1757 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1758 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1759 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1760 
1761 	/* Sync descriptors before handing to chip */
1762 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1763 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1764 
1765 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1766 
1767 	/* Sync first descriptor to hand it off */
1768 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1769 
1770 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1771 
1772 #ifdef SK_DEBUG
1773 	if (skdebug >= 3) {
1774 		struct sk_tx_desc *desc;
1775 		u_int32_t idx;
1776 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1777 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1778 			sk_dump_txdesc(desc, idx);
1779 		}
1780 	}
1781 #endif
1782 
1783 	*txidx = frag;
1784 
1785 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1786 
1787 	return(0);
1788 }
1789 
1790 void
1791 sk_start(struct ifnet *ifp)
1792 {
1793         struct sk_if_softc	*sc_if = ifp->if_softc;
1794         struct sk_softc		*sc = sc_if->sk_softc;
1795         struct mbuf		*m_head = NULL;
1796         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1797 	int			pkts = 0;
1798 
1799 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1800 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1801 
1802 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1803 
1804 		IFQ_POLL(&ifp->if_snd, m_head);
1805 		if (m_head == NULL)
1806 			break;
1807 
1808 		/*
1809 		 * Pack the data into the transmit ring. If we
1810 		 * don't have room, set the OACTIVE flag and wait
1811 		 * for the NIC to drain the ring.
1812 		 */
1813 		if (sk_encap(sc_if, m_head, &idx)) {
1814 			ifp->if_flags |= IFF_OACTIVE;
1815 			break;
1816 		}
1817 
1818 		/* now we are committed to transmit the packet */
1819 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1820 		pkts++;
1821 
1822 		/*
1823 		 * If there's a BPF listener, bounce a copy of this frame
1824 		 * to him.
1825 		 */
1826 #if NBPFILTER > 0
1827 		if (ifp->if_bpf)
1828 			bpf_mtap(ifp->if_bpf, m_head);
1829 #endif
1830 	}
1831 	if (pkts == 0)
1832 		return;
1833 
1834 	/* Transmit */
1835 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1836 		sc_if->sk_cdata.sk_tx_prod = idx;
1837 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1838 
1839 		/* Set a timeout in case the chip goes out to lunch. */
1840 		ifp->if_timer = 5;
1841 	}
1842 }
1843 
1844 
1845 void
1846 sk_watchdog(struct ifnet *ifp)
1847 {
1848 	struct sk_if_softc *sc_if = ifp->if_softc;
1849 
1850 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1851 	(void) sk_init(ifp);
1852 }
1853 
1854 void
1855 sk_shutdown(void * v)
1856 {
1857 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1858 	struct sk_softc		*sc = sc_if->sk_softc;
1859 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
1860 
1861 	DPRINTFN(2, ("sk_shutdown\n"));
1862 	sk_stop(ifp,1);
1863 
1864 	/* Turn off the 'driver is loaded' LED. */
1865 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1866 
1867 	/*
1868 	 * Reset the GEnesis controller. Doing this should also
1869 	 * assert the resets on the attached XMAC(s).
1870 	 */
1871 	sk_reset(sc);
1872 }
1873 
1874 void
1875 sk_rxeof(struct sk_if_softc *sc_if)
1876 {
1877 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1878 	struct mbuf		*m;
1879 	struct sk_chain		*cur_rx;
1880 	struct sk_rx_desc	*cur_desc;
1881 	int			i, cur, total_len = 0;
1882 	u_int32_t		rxstat;
1883 	bus_dmamap_t		dmamap;
1884 
1885 	i = sc_if->sk_cdata.sk_rx_prod;
1886 
1887 	DPRINTFN(3, ("sk_rxeof %d\n", i));
1888 
1889 	for (;;) {
1890 		cur = i;
1891 
1892 		/* Sync the descriptor */
1893 		SK_CDRXSYNC(sc_if, cur,
1894 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1895 
1896 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1897 			/* Invalidate the descriptor -- it's not ready yet */
1898 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1899 			sc_if->sk_cdata.sk_rx_prod = i;
1900 			break;
1901 		}
1902 
1903 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1904 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1905 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1906 
1907 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1908 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1909 
1910 		rxstat = cur_desc->sk_xmac_rxstat;
1911 		m = cur_rx->sk_mbuf;
1912 		cur_rx->sk_mbuf = NULL;
1913 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
1914 
1915 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
1916 
1917 		SK_INC(i, SK_RX_RING_CNT);
1918 
1919 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1920 			ifp->if_ierrors++;
1921 			sk_newbuf(sc_if, cur, m, dmamap);
1922 			continue;
1923 		}
1924 
1925 		/*
1926 		 * Try to allocate a new jumbo buffer. If that
1927 		 * fails, copy the packet to mbufs and put the
1928 		 * jumbo buffer back in the ring so it can be
1929 		 * re-used. If allocating mbufs fails, then we
1930 		 * have to drop the packet.
1931 		 */
1932 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1933 			struct mbuf		*m0;
1934 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1935 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1936 			sk_newbuf(sc_if, cur, m, dmamap);
1937 			if (m0 == NULL) {
1938 				printf("%s: no receive buffers "
1939 				    "available -- packet dropped!\n",
1940 				    sc_if->sk_dev.dv_xname);
1941 				ifp->if_ierrors++;
1942 				continue;
1943 			}
1944 			m_adj(m0, ETHER_ALIGN);
1945 			m = m0;
1946 		} else {
1947 			m->m_pkthdr.rcvif = ifp;
1948 			m->m_pkthdr.len = m->m_len = total_len;
1949 		}
1950 
1951 		ifp->if_ipackets++;
1952 
1953 #if NBPFILTER > 0
1954 		if (ifp->if_bpf)
1955 			bpf_mtap(ifp->if_bpf, m);
1956 #endif
1957 		/* pass it on. */
1958 		(*ifp->if_input)(ifp, m);
1959 	}
1960 }
1961 
1962 void
1963 sk_txeof(struct sk_if_softc *sc_if)
1964 {
1965 	struct sk_softc		*sc = sc_if->sk_softc;
1966 	struct sk_tx_desc	*cur_tx;
1967 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1968 	u_int32_t		idx;
1969 	struct sk_txmap_entry	*entry;
1970 
1971 	DPRINTFN(3, ("sk_txeof\n"));
1972 
1973 	/*
1974 	 * Go through our tx ring and free mbufs for those
1975 	 * frames that have been sent.
1976 	 */
1977 	idx = sc_if->sk_cdata.sk_tx_cons;
1978 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1979 		SK_CDTXSYNC(sc_if, idx, 1,
1980 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1981 
1982 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1983 #ifdef SK_DEBUG
1984 		if (skdebug >= 3)
1985 			sk_dump_txdesc(cur_tx, idx);
1986 #endif
1987 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1988 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1989 			break;
1990 		}
1991 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1992 			ifp->if_opackets++;
1993 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1994 			entry = sc_if->sk_cdata.sk_tx_map[idx];
1995 
1996 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1997 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1998 
1999 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2000 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2001 
2002 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2003 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2004 					  link);
2005 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2006 		}
2007 		sc_if->sk_cdata.sk_tx_cnt--;
2008 		SK_INC(idx, SK_TX_RING_CNT);
2009 	}
2010 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2011 		ifp->if_timer = 0;
2012 	else /* nudge chip to keep tx ring moving */
2013 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2014 
2015 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2016 		ifp->if_flags &= ~IFF_OACTIVE;
2017 
2018 	sc_if->sk_cdata.sk_tx_cons = idx;
2019 }
2020 
2021 void
2022 sk_tick(void *xsc_if)
2023 {
2024 	struct sk_if_softc *sc_if = xsc_if;
2025 	struct mii_data *mii = &sc_if->sk_mii;
2026 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2027 	int i;
2028 
2029 	DPRINTFN(3, ("sk_tick\n"));
2030 
2031 	if (!(ifp->if_flags & IFF_UP))
2032 		return;
2033 
2034 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2035 		sk_intr_bcom(sc_if);
2036 		return;
2037 	}
2038 
2039 	/*
2040 	 * According to SysKonnect, the correct way to verify that
2041 	 * the link has come back up is to poll bit 0 of the GPIO
2042 	 * register three times. This pin has the signal from the
2043 	 * link sync pin connected to it; if we read the same link
2044 	 * state 3 times in a row, we know the link is up.
2045 	 */
2046 	for (i = 0; i < 3; i++) {
2047 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2048 			break;
2049 	}
2050 
2051 	if (i != 3) {
2052 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2053 		return;
2054 	}
2055 
2056 	/* Turn the GP0 interrupt back on. */
2057 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2058 	SK_XM_READ_2(sc_if, XM_ISR);
2059 	mii_tick(mii);
2060 	mii_pollstat(mii);
2061 	callout_stop(&sc_if->sk_tick_ch);
2062 }
2063 
2064 void
2065 sk_intr_bcom(struct sk_if_softc *sc_if)
2066 {
2067 	struct mii_data *mii = &sc_if->sk_mii;
2068 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2069 	int status;
2070 
2071 
2072 	DPRINTFN(3, ("sk_intr_bcom\n"));
2073 
2074 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2075 
2076 	/*
2077 	 * Read the PHY interrupt register to make sure
2078 	 * we clear any pending interrupts.
2079 	 */
2080 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2081 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2082 
2083 	if (!(ifp->if_flags & IFF_RUNNING)) {
2084 		sk_init_xmac(sc_if);
2085 		return;
2086 	}
2087 
2088 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2089 		int lstat;
2090 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2091 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2092 
2093 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2094 			mii_mediachg(mii);
2095 			/* Turn off the link LED. */
2096 			SK_IF_WRITE_1(sc_if, 0,
2097 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2098 			sc_if->sk_link = 0;
2099 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2100 			sk_xmac_miibus_writereg((struct device *)sc_if,
2101 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2102 			mii_tick(mii);
2103 			sc_if->sk_link = 1;
2104 			/* Turn on the link LED. */
2105 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2106 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2107 			    SK_LINKLED_BLINK_OFF);
2108 			mii_pollstat(mii);
2109 		} else {
2110 			mii_tick(mii);
2111 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2112 		}
2113 	}
2114 
2115 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2116 }
2117 
2118 void
2119 sk_intr_xmac(struct sk_if_softc	*sc_if)
2120 {
2121 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2122 
2123 	DPRINTFN(3, ("sk_intr_xmac\n"));
2124 
2125 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2126 		if (status & XM_ISR_GP0_SET) {
2127 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2128 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2129 		}
2130 
2131 		if (status & XM_ISR_AUTONEG_DONE) {
2132 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2133 		}
2134 	}
2135 
2136 	if (status & XM_IMR_TX_UNDERRUN)
2137 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2138 
2139 	if (status & XM_IMR_RX_OVERRUN)
2140 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2141 }
2142 
2143 void
2144 sk_intr_yukon(sc_if)
2145 	struct sk_if_softc *sc_if;
2146 {
2147 	int status;
2148 
2149 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2150 
2151 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2152 }
2153 
2154 int
2155 sk_intr(void *xsc)
2156 {
2157 	struct sk_softc		*sc = xsc;
2158 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2159 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2160 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2161 	u_int32_t		status;
2162 	int			claimed = 0;
2163 
2164 	if (sc_if0 != NULL)
2165 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2166 	if (sc_if1 != NULL)
2167 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2168 
2169 	for (;;) {
2170 		status = CSR_READ_4(sc, SK_ISSR);
2171 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2172 
2173 		if (!(status & sc->sk_intrmask))
2174 			break;
2175 
2176 		claimed = 1;
2177 
2178 		/* Handle receive interrupts first. */
2179 		if (status & SK_ISR_RX1_EOF) {
2180 			sk_rxeof(sc_if0);
2181 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2182 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2183 		}
2184 		if (status & SK_ISR_RX2_EOF) {
2185 			sk_rxeof(sc_if1);
2186 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2187 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2188 		}
2189 
2190 		/* Then transmit interrupts. */
2191 		if (status & SK_ISR_TX1_S_EOF) {
2192 			sk_txeof(sc_if0);
2193 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2194 			    SK_TXBMU_CLR_IRQ_EOF);
2195 		}
2196 		if (status & SK_ISR_TX2_S_EOF) {
2197 			sk_txeof(sc_if1);
2198 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2199 			    SK_TXBMU_CLR_IRQ_EOF);
2200 		}
2201 
2202 		/* Then MAC interrupts. */
2203 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2204 			if (sc->sk_type == SK_GENESIS)
2205 				sk_intr_xmac(sc_if0);
2206 			else
2207 				sk_intr_yukon(sc_if0);
2208 		}
2209 
2210 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2211 			if (sc->sk_type == SK_GENESIS)
2212 				sk_intr_xmac(sc_if1);
2213 			else
2214 				sk_intr_yukon(sc_if1);
2215 
2216 		}
2217 
2218 		if (status & SK_ISR_EXTERNAL_REG) {
2219 			if (ifp0 != NULL &&
2220 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2221 				sk_intr_bcom(sc_if0);
2222 
2223 			if (ifp1 != NULL &&
2224 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2225 				sk_intr_bcom(sc_if1);
2226 		}
2227 	}
2228 
2229 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2230 
2231 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2232 		sk_start(ifp0);
2233 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2234 		sk_start(ifp1);
2235 
2236 #if NRND > 0
2237 	if (RND_ENABLED(&sc->rnd_source))
2238 		rnd_add_uint32(&sc->rnd_source, status);
2239 #endif
2240 
2241 	if (sc->sk_int_mod_pending)
2242 		sk_update_int_mod(sc);
2243 
2244 	return (claimed);
2245 }
2246 
2247 void
2248 sk_init_xmac(struct sk_if_softc	*sc_if)
2249 {
2250 	struct sk_softc		*sc = sc_if->sk_softc;
2251 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2252 	static const struct sk_bcom_hack     bhack[] = {
2253 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2254 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2255 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2256 	{ 0, 0 } };
2257 
2258 	DPRINTFN(1, ("sk_init_xmac\n"));
2259 
2260 	/* Unreset the XMAC. */
2261 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2262 	DELAY(1000);
2263 
2264 	/* Reset the XMAC's internal state. */
2265 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2266 
2267 	/* Save the XMAC II revision */
2268 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2269 
2270 	/*
2271 	 * Perform additional initialization for external PHYs,
2272 	 * namely for the 1000baseTX cards that use the XMAC's
2273 	 * GMII mode.
2274 	 */
2275 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2276 		int			i = 0;
2277 		u_int32_t		val;
2278 
2279 		/* Take PHY out of reset. */
2280 		val = sk_win_read_4(sc, SK_GPIO);
2281 		if (sc_if->sk_port == SK_PORT_A)
2282 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2283 		else
2284 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2285 		sk_win_write_4(sc, SK_GPIO, val);
2286 
2287 		/* Enable GMII mode on the XMAC. */
2288 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2289 
2290 		sk_xmac_miibus_writereg((struct device *)sc_if,
2291 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2292 		DELAY(10000);
2293 		sk_xmac_miibus_writereg((struct device *)sc_if,
2294 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2295 
2296 		/*
2297 		 * Early versions of the BCM5400 apparently have
2298 		 * a bug that requires them to have their reserved
2299 		 * registers initialized to some magic values. I don't
2300 		 * know what the numbers do, I'm just the messenger.
2301 		 */
2302 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2303 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2304 			while(bhack[i].reg) {
2305 				sk_xmac_miibus_writereg((struct device *)sc_if,
2306 				    SK_PHYADDR_BCOM, bhack[i].reg,
2307 				    bhack[i].val);
2308 				i++;
2309 			}
2310 		}
2311 	}
2312 
2313 	/* Set station address */
2314 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2315 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2316 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2317 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2318 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2319 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2320 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2321 
2322 	if (ifp->if_flags & IFF_PROMISC) {
2323 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2324 	} else {
2325 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2326 	}
2327 
2328 	if (ifp->if_flags & IFF_BROADCAST) {
2329 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2330 	} else {
2331 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2332 	}
2333 
2334 	/* We don't need the FCS appended to the packet. */
2335 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2336 
2337 	/* We want short frames padded to 60 bytes. */
2338 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2339 
2340 	/*
2341 	 * Enable the reception of all error frames. This is is
2342 	 * a necessary evil due to the design of the XMAC. The
2343 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2344 	 * frames can be up to 9000 bytes in length. When bad
2345 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2346 	 * in 'store and forward' mode. For this to work, the
2347 	 * entire frame has to fit into the FIFO, but that means
2348 	 * that jumbo frames larger than 8192 bytes will be
2349 	 * truncated. Disabling all bad frame filtering causes
2350 	 * the RX FIFO to operate in streaming mode, in which
2351 	 * case the XMAC will start transfering frames out of the
2352 	 * RX FIFO as soon as the FIFO threshold is reached.
2353 	 */
2354 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2355 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2356 	    XM_MODE_RX_INRANGELEN);
2357 
2358 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2359 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2360 	else
2361 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2362 
2363 	/*
2364 	 * Bump up the transmit threshold. This helps hold off transmit
2365 	 * underruns when we're blasting traffic from both ports at once.
2366 	 */
2367 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2368 
2369 	/* Set multicast filter */
2370 	sk_setmulti(sc_if);
2371 
2372 	/* Clear and enable interrupts */
2373 	SK_XM_READ_2(sc_if, XM_ISR);
2374 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2375 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2376 	else
2377 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2378 
2379 	/* Configure MAC arbiter */
2380 	switch(sc_if->sk_xmac_rev) {
2381 	case XM_XMAC_REV_B2:
2382 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2383 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2384 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2385 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2386 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2387 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2388 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2389 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2390 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2391 		break;
2392 	case XM_XMAC_REV_C1:
2393 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2394 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2395 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2396 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2397 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2398 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2399 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2400 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2401 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2402 		break;
2403 	default:
2404 		break;
2405 	}
2406 	sk_win_write_2(sc, SK_MACARB_CTL,
2407 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2408 
2409 	sc_if->sk_link = 1;
2410 }
2411 
2412 void sk_init_yukon(sc_if)
2413 	struct sk_if_softc	*sc_if;
2414 {
2415 	u_int32_t		/*mac, */phy;
2416 	u_int16_t		reg;
2417 	struct sk_softc		*sc;
2418 	int			i;
2419 
2420 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2421 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2422 
2423 	sc = sc_if->sk_softc;
2424 	if (sc->sk_type == SK_YUKON_LITE &&
2425 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2426 		/* Take PHY out of reset. */
2427 		sk_win_write_4(sc, SK_GPIO,
2428 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2429 	}
2430 
2431 
2432 	/* GMAC and GPHY Reset */
2433 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2434 
2435 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2436 
2437 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2438 	DELAY(1000);
2439 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2440 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2441 	DELAY(1000);
2442 
2443 
2444 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2445 
2446 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2447 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2448 
2449 	switch(sc_if->sk_softc->sk_pmd) {
2450 	case IFM_1000_SX:
2451 	case IFM_1000_LX:
2452 		phy |= SK_GPHY_FIBER;
2453 		break;
2454 
2455 	case IFM_1000_CX:
2456 	case IFM_1000_T:
2457 		phy |= SK_GPHY_COPPER;
2458 		break;
2459 	}
2460 
2461 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2462 
2463 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2464 	DELAY(1000);
2465 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2466 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2467 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2468 
2469 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2470 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2471 
2472 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2473 
2474 	/* unused read of the interrupt source register */
2475 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2476 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2477 
2478 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2479 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2480 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2481 
2482 	/* MIB Counter Clear Mode set */
2483         reg |= YU_PAR_MIB_CLR;
2484 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2485 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2486 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2487 
2488 	/* MIB Counter Clear Mode clear */
2489 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2490         reg &= ~YU_PAR_MIB_CLR;
2491 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2492 
2493 	/* receive control reg */
2494 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2495 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2496 		      YU_RCR_CRCR);
2497 
2498 	/* transmit parameter register */
2499 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2500 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2501 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2502 
2503 	/* serial mode register */
2504 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2505 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2506 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2507 
2508 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2509 	/* Setup Yukon's address */
2510 	for (i = 0; i < 3; i++) {
2511 		/* Write Source Address 1 (unicast filter) */
2512 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2513 			      sc_if->sk_enaddr[i * 2] |
2514 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2515 	}
2516 
2517 	for (i = 0; i < 3; i++) {
2518 		reg = sk_win_read_2(sc_if->sk_softc,
2519 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2520 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2521 	}
2522 
2523 	/* Set multicast filter */
2524 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2525 	sk_setmulti(sc_if);
2526 
2527 	/* enable interrupt mask for counter overflows */
2528 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2529 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2530 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2531 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2532 
2533 	/* Configure RX MAC FIFO */
2534 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2535 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2536 
2537 	/* Configure TX MAC FIFO */
2538 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2539 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2540 
2541 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2542 }
2543 
2544 /*
2545  * Note that to properly initialize any part of the GEnesis chip,
2546  * you first have to take it out of reset mode.
2547  */
2548 int
2549 sk_init(struct ifnet *ifp)
2550 {
2551 	struct sk_if_softc	*sc_if = ifp->if_softc;
2552 	struct sk_softc		*sc = sc_if->sk_softc;
2553 	struct mii_data		*mii = &sc_if->sk_mii;
2554 	int			s;
2555 	u_int32_t		imr, sk_imtimer_ticks;
2556 
2557 	DPRINTFN(1, ("sk_init\n"));
2558 
2559 	s = splnet();
2560 
2561 	if (ifp->if_flags & IFF_RUNNING) {
2562 		splx(s);
2563 		return 0;
2564 	}
2565 
2566 	/* Cancel pending I/O and free all RX/TX buffers. */
2567 	sk_stop(ifp,0);
2568 
2569 	if (sc->sk_type == SK_GENESIS) {
2570 		/* Configure LINK_SYNC LED */
2571 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2572 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2573 			      SK_LINKLED_LINKSYNC_ON);
2574 
2575 		/* Configure RX LED */
2576 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2577 			      SK_RXLEDCTL_COUNTER_START);
2578 
2579 		/* Configure TX LED */
2580 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2581 			      SK_TXLEDCTL_COUNTER_START);
2582 	}
2583 
2584 	/* Configure I2C registers */
2585 
2586 	/* Configure XMAC(s) */
2587 	switch (sc->sk_type) {
2588 	case SK_GENESIS:
2589 		sk_init_xmac(sc_if);
2590 		break;
2591 	case SK_YUKON:
2592 	case SK_YUKON_LITE:
2593 	case SK_YUKON_LP:
2594 		sk_init_yukon(sc_if);
2595 		break;
2596 	}
2597 	mii_mediachg(mii);
2598 
2599 	if (sc->sk_type == SK_GENESIS) {
2600 		/* Configure MAC FIFOs */
2601 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2602 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2603 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2604 
2605 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2606 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2607 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2608 	}
2609 
2610 	/* Configure transmit arbiter(s) */
2611 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2612 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2613 
2614 	/* Configure RAMbuffers */
2615 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2616 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2617 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2618 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2619 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2620 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2621 
2622 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2623 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2624 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2625 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2626 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2627 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2628 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2629 
2630 	/* Configure BMUs */
2631 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2632 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2633 	    SK_RX_RING_ADDR(sc_if, 0));
2634 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2635 
2636 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2637 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2638             SK_TX_RING_ADDR(sc_if, 0));
2639 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2640 
2641 	/* Init descriptors */
2642 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2643 		printf("%s: initialization failed: no "
2644 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2645 		sk_stop(ifp,0);
2646 		splx(s);
2647 		return(ENOBUFS);
2648 	}
2649 
2650 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2651 		printf("%s: initialization failed: no "
2652 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2653 		sk_stop(ifp,0);
2654 		splx(s);
2655 		return(ENOBUFS);
2656 	}
2657 
2658 	/* Set interrupt moderation if changed via sysctl. */
2659 	switch (sc->sk_type) {
2660 	case SK_GENESIS:
2661 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2662 		break;
2663 	case SK_YUKON_EC:
2664 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2665 		break;
2666 	default:
2667 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2668 	}
2669 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2670 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2671 		sk_win_write_4(sc, SK_IMTIMERINIT,
2672 		    SK_IM_USECS(sc->sk_int_mod));
2673 		aprint_verbose("%s: interrupt moderation is %d us\n",
2674 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2675 	}
2676 
2677 	/* Configure interrupt handling */
2678 	CSR_READ_4(sc, SK_ISSR);
2679 	if (sc_if->sk_port == SK_PORT_A)
2680 		sc->sk_intrmask |= SK_INTRS1;
2681 	else
2682 		sc->sk_intrmask |= SK_INTRS2;
2683 
2684 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2685 
2686 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2687 
2688 	/* Start BMUs. */
2689 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2690 
2691 	if (sc->sk_type == SK_GENESIS) {
2692 		/* Enable XMACs TX and RX state machines */
2693 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2694 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2695 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2696 	}
2697 
2698 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2699 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2700 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2701 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2702 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2703 	}
2704 
2705 
2706 	ifp->if_flags |= IFF_RUNNING;
2707 	ifp->if_flags &= ~IFF_OACTIVE;
2708 
2709 	splx(s);
2710 	return(0);
2711 }
2712 
2713 void
2714 sk_stop(struct ifnet *ifp, int disable)
2715 {
2716         struct sk_if_softc	*sc_if = ifp->if_softc;
2717 	struct sk_softc		*sc = sc_if->sk_softc;
2718 	//struct sk_txmap_entry	*dma;
2719 	int			i;
2720 
2721 	DPRINTFN(1, ("sk_stop\n"));
2722 
2723 	callout_stop(&sc_if->sk_tick_ch);
2724 
2725 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2726 		u_int32_t		val;
2727 
2728 		/* Put PHY back into reset. */
2729 		val = sk_win_read_4(sc, SK_GPIO);
2730 		if (sc_if->sk_port == SK_PORT_A) {
2731 			val |= SK_GPIO_DIR0;
2732 			val &= ~SK_GPIO_DAT0;
2733 		} else {
2734 			val |= SK_GPIO_DIR2;
2735 			val &= ~SK_GPIO_DAT2;
2736 		}
2737 		sk_win_write_4(sc, SK_GPIO, val);
2738 	}
2739 
2740 	/* Turn off various components of this interface. */
2741 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2742 	switch (sc->sk_type) {
2743 	case SK_GENESIS:
2744 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2745 			      SK_TXMACCTL_XMAC_RESET);
2746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2747 		break;
2748 	case SK_YUKON:
2749 	case SK_YUKON_LITE:
2750 	case SK_YUKON_LP:
2751 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2752 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2753 		break;
2754 	}
2755 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2756 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2757 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2758 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2759 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2760 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2761 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2762 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2763 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2764 
2765 	/* Disable interrupts */
2766 	if (sc_if->sk_port == SK_PORT_A)
2767 		sc->sk_intrmask &= ~SK_INTRS1;
2768 	else
2769 		sc->sk_intrmask &= ~SK_INTRS2;
2770 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2771 
2772 	SK_XM_READ_2(sc_if, XM_ISR);
2773 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2774 
2775 	/* Free RX and TX mbufs still in the queues. */
2776 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2777 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2778 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2779 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2780 		}
2781 	}
2782 
2783 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2784 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2785 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2786 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2787 		}
2788 	}
2789 
2790 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2791 }
2792 
2793 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2794 
2795 /*
2796 struct cfdriver skc_cd = {
2797 	0, "skc", DV_DULL
2798 };
2799 */
2800 
2801 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2802 
2803 /*
2804 struct cfdriver sk_cd = {
2805 	0, "sk", DV_IFNET
2806 };
2807 */
2808 
2809 #ifdef SK_DEBUG
2810 void
2811 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2812 {
2813 #define DESC_PRINT(X)					\
2814 	if (desc->X)					\
2815 		printf("txdesc[%d]." #X "=%#x\n",	\
2816 		       idx, desc->X);
2817 
2818 	DESC_PRINT(sk_ctl);
2819 	DESC_PRINT(sk_next);
2820 	DESC_PRINT(sk_data_lo);
2821 	DESC_PRINT(sk_data_hi);
2822 	DESC_PRINT(sk_xmac_txstat);
2823 	DESC_PRINT(sk_rsvd0);
2824 	DESC_PRINT(sk_csum_startval);
2825 	DESC_PRINT(sk_csum_startpos);
2826 	DESC_PRINT(sk_csum_writepos);
2827 	DESC_PRINT(sk_rsvd1);
2828 #undef PRINT
2829 }
2830 
2831 void
2832 sk_dump_bytes(const char *data, int len)
2833 {
2834 	int c, i, j;
2835 
2836 	for (i = 0; i < len; i += 16) {
2837 		printf("%08x  ", i);
2838 		c = len - i;
2839 		if (c > 16) c = 16;
2840 
2841 		for (j = 0; j < c; j++) {
2842 			printf("%02x ", data[i + j] & 0xff);
2843 			if ((j & 0xf) == 7 && j > 0)
2844 				printf(" ");
2845 		}
2846 
2847 		for (; j < 16; j++)
2848 			printf("   ");
2849 		printf("  ");
2850 
2851 		for (j = 0; j < c; j++) {
2852 			int ch = data[i + j] & 0xff;
2853 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2854 		}
2855 
2856 		printf("\n");
2857 
2858 		if (c < 16)
2859 			break;
2860 	}
2861 }
2862 
2863 void
2864 sk_dump_mbuf(struct mbuf *m)
2865 {
2866 	int count = m->m_pkthdr.len;
2867 
2868 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2869 
2870 	while (count > 0 && m) {
2871 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2872 		       m, m->m_data, m->m_len);
2873 		sk_dump_bytes(mtod(m, char *), m->m_len);
2874 
2875 		count -= m->m_len;
2876 		m = m->m_next;
2877 	}
2878 }
2879 #endif
2880 
2881 static int
2882 sk_sysctl_handler(SYSCTLFN_ARGS)
2883 {
2884 	int error, t;
2885 	struct sysctlnode node;
2886 	struct sk_softc *sc;
2887 
2888 	node = *rnode;
2889 	sc = node.sysctl_data;
2890 	t = sc->sk_int_mod;
2891 	node.sysctl_data = &t;
2892 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2893 	if (error || newp == NULL)
2894 		return (error);
2895 
2896 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2897 		return (EINVAL);
2898 
2899 	/* update the softc with sysctl-changed value, and mark
2900 	   for hardware update */
2901 	sc->sk_int_mod = t;
2902 	sc->sk_int_mod_pending = 1;
2903 	return (0);
2904 }
2905 
2906 /*
2907  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2908  * set up in skc_attach()
2909  */
2910 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
2911 {
2912 	int rc;
2913 	const struct sysctlnode *node;
2914 
2915 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2916 	    0, CTLTYPE_NODE, "hw", NULL,
2917 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2918 		goto err;
2919 	}
2920 
2921 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2922 	    0, CTLTYPE_NODE, "sk",
2923 	    SYSCTL_DESCR("sk interface controls"),
2924 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2925 		goto err;
2926 	}
2927 
2928 	sk_root_num = node->sysctl_num;
2929 	return;
2930 
2931 err:
2932 	printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2933 }
2934